Polarizing-field orientation and thermal treatment effects on the dielectric behavior of fluorapatite

AglaiA Vassilikou-Dova and Ioannis M. Kalogeras
Department of Physics, Solid State Physics Section, University of Athens, Panepistimiopolis, 157 84 Zografos, Greece

Boguslaw Macalik
Polish Academy of Sciences, Institute of Low Temperature and Structure Research, 50-950 Wroclaw, Poland

Charalampos A. Londos
Department of Physics, Solid State Physics Section, University of Athens, Panepistimiopolis, 157 84 Zografos, Greece

(Received 13 May 1998; accepted for publication 6 October 1998)

A thermally stimulated depolarization currents (TSDC) study in natural fluorapatite single crystals has established different relaxation mechanisms for two polarization orientations (E_p parallel and perpendicular to the crystallographic c axis), which are discussed in relation to the defect chemistry and the specific columnar structure in apatite. The intensities of the thermostimulated current signals between the two poling field orientations demonstrate a difference of at least one order of magnitude, with the higher one recorded for the electric field parallel to the c axis. The TSDC thermogram appearing with the electric field parallel to c axis, in the 10–320 K range, consists of a broad and complex band (HT), with a maximum around 300 K. The relative intensity of associated current signals is indicative of extensive dipole-like ionic motions along c axis with a distribution in their activation energies ranging between 0.14 and 0.85 eV. The microdomain structure of fluorapatite along c axis permits the formation of charge layers at the interfaces. After annealing, the induced changes of size and/or shape of the interfaces could explain the observed changes of band intensity and location. With the electric field perpendicular to c axis, the spectrum consists of at least five well-defined relaxation bands, the high temperature ones (HT_1, HT_2, HT_3) decreasing after heating at 673–873 K. The most dramatic change was recorded for an intermediate LT_2 single-relaxation band located around 185 K, with a high activation energy of 1.06 eV, which manifested a significant growth after annealing. Rietveld analysis of the x-ray diffraction patterns of the original and annealed apatite powders, indicates change in the unit cell parameters of the hexagonal structure (i.e., a increases from 9.3921 to 9.3940 Å after annealing), which can be related to the establishment of a new equilibrium distribution of the abundant trivalent rare-earth (Ce, La, Nd, Pr,...) impurity ions. The origin of the TSDC bands is discussed and tentative correlations are suggested, in terms of substitute aliovalent ions-vacancy dipoles. The thermal response of the high temperature relaxation bands in the case of E_p // c axis, is characteristic of dipole clustering phenomena—although an explanation based on localized changes in the structural environment of the pertinent dipoles/ions cannot be disregarded. © 1999 American Institute of Physics.

I. INTRODUCTION

The apatite group inherited its name (from the Greek "ἀπατήτα" = 1 delude) prior to the end of the 18th century, through Werner’s recognition that its members were frequently confused with other mineral species. Apatite with the general chemical formula Ca_{10}(PO_4)_6(F, OH, Cl) is a material found in nature and also synthetically prepared, with a high technological interest in material science.1–5 The group members usually belong to the P6_3/m space group and their extremely stable structure allows many chemical modifications, as well as the incorporation of a wide number of impurities.6–9

The apatitic structure can be described briefly as follows (Fig. 1, Ref. 10). PO_4 tetrahedra are arranged in trees around hexad axes (screw axes 6_3) forming columns parallel to the crystallographic c axis, with halogen and hydroxyl ions arranged along the column axis. The two distinguishing Ca structural locations have dissimilar stereochemistries. 6/10 of the Ca_2^2+ ions per unit cell, occupying the so-called Ca(2) site, line the columns internally and tie in the X=(F^−, OH^−, Cl^−) ions in addition to holding the assemblage together. Each of them is one of the triad that surrounds and is coplanar with an X^- ion at each corner of the unit cell. Their coordination polyhedron is very irregular and approximates to coordination number VII, consisting of six O and one X anions (CaO_3X). The remaining four Ca_2^2+ ions, occupying the so-called Ca(1) sites, link neighboring
columns. Ca(1) sites have a coordination number IX (CaO₉ polyhedron with average Ca–O=2.554 Å in fluorapatite) in a regular trigonal antiprism with 6¯ symmetry and are coplanar with three widely spaced O²⁻ ions that form a mirror plane bisecting a trigonal prism. The above atomic arrangement forms a hexagonal network. It should be pointed out that for fluorapatite, at least, the “tunnels” or “channels,” referred to by some authors for describing the neighboring columns, are not a realistic model inasmuch as the Ca to F bond of the triangular configuration FCa₃ on the 6₃ axis appears to involve distances that are slightly less than the sum of the radii for FIII and Ca VII.

Apatite in various forms has been the subject for numerous investigations involving the application of spectroscopic and electrical methods. Its complicated structure and the multiplicity of substitutions offer a prominent background for the creation of vacancies, electrical dipoles or dipolar complexes, whose behavior is expected to be anisotropic. The thermally stimulated depolarization currents (TSDC) technique has been proved to be very sensitive for the characterization of fundamental temperature-dependent dipolar or dipolar-like motions, which contribute to a change in the dielectric polarizability of the material along preselected orientations (e.g., direction of the polarizing field). Such characterization provides information about the atomic scale orientationally dependent relaxation mechanisms. The TSDC technique has been successfully applied in studies of fluorapatite (Fap, Ref. 16), chlorapatite (Cl-ap, Ref. 12), hydroxyapatite (OH-ap, Ref. 14), A-type carbonated apatite [Sr₁₀(AsO₄)₃CO₃, Ref. 13], and mixed apatitic structures. Nevertheless, all direct current dielectric investigations, to the best of our knowledge, were performed with natural or synthetic apatitic material in compressed powder form, although single crystal experiments could give valuable information based on the different behavior along different orientations. Earlier TSDC investigations have revealed compensation temperatures for the Cl-ap and OH-ap structures in agreement with the reported monoclinic-to-hexagonal phase transition temperatures. At the other extreme lay the results collected for polycrystalline synthetic fluorapatites for which the analysis of the observed thermally activated processes in TSDC thermograms has not indicated any compensation phenomena below 1200 °C, that is, in agreement with reports stating that fluorapatite is structurally stabilized in this temperature range. The present work reports on the results of the investigation of the effect of poling field orientation on the dielectric response of a natural fluorapatite single crystal from Cerro de Mercado, Durango, Mexico. Studies involving the magnetic properties of this mineral indicate that the magnetic susceptibility of the Durango fluorapatite is very low, as would be expected because of the very low iron and manganese content. In two other cases, the mineralogy and geochemistry, as well as the elastic properties, of fluorapatites from this locality have been extensively studied.

II. EXPERIMENT
A. The method

The TSDC method which was introduced by Bucci and Fieschi has been widely established as a high resolution technique for the electrical characterization of dielectrics by virtue of its low detection limit of ~10⁻⁷ mole fraction of dipoles. The fundamental features of the typical experimental procedure can be summarized as follows:

(a) An external dc electric field is applied to the sample at a constant temperature Tₜ for a time period t₀, adequately chosen so that a saturation dipolar polarization can be reached [t₀ ≫ τ(T₀)]. The buildup of polarization P₀ is described by the Langevin function and the relaxation time τ(T) for dipole relaxation is usually defined according to the Arrhenius equation as

$$\tau(T) = \tau_0 \exp \left(\frac{E}{kT} \right).$$

(b) Keeping the field on, the sample is cooled down to a low temperature T₀, at which the relaxation time τ(T₀) is very large compared to the time required for the experiment, resulting in a “frozen-in” polarization state. The field is removed and the sample remains short circuited at T₀ for a time long enough so that the fast electronic and atomic polarization components can decay isothermally.

(c) The final step consists of a heating cycle at a preselected constant rate b=dT/dt. Each dipolar relaxation mechanism is activated within a certain temperature range at which the dipoles return to a random orientation. The rate of decrease of the corresponding dielectric polarization results to a transient current density J₀(T), which reaches a maximum at a characteristic temperature Tₘ, fulfilling the condition
\[\frac{d\tau}{dT} \bigg|_{T=T_m} = -1. \]

Under the description of the temperature-dependent properties of the Debye model, the resulting asymmetric current peak is described by the equation

\[J_B(T) = \frac{P_0}{\tau_0} \exp\left(-\frac{E}{kT} \right) \times \exp\left[-\frac{1}{b \tau_0} \int_{T_0}^{T} \exp\left(-\frac{E}{kT'} \right) dT' \right]. \]

The initial part of a single depolarization current peak (for current signals up to \(-15\%) of the maximum current intensity \(J_m\) is approximated by

\[J_B(T) = \frac{P_0}{\tau_0} \exp\left(-\frac{E}{kT} \right) \]

and thus the activation energy \(E\) can be calculated from the logarithmic plot of \(\ln J_B(T)\) vs \(T^{-1}\). The relaxation time \(\tau(T)\) is calculated directly from the whole-curve graphical integration method.\(^{20}\)

In systems with axial or lower symmetry, different relaxation mechanisms may appear along different axes and although the TSDC method provides no information about the symmetry of the dipolar system, comparison of the differentiation’s encountered between the spectra with different polarization orientations can be valuable, as far as the dipolar-type defect chemistry is concerned. Moreover, the temperature-range overlap of more than one mechanism is not uncommon, and hidden relaxations of low intensity can arise after a suitable application of the external electric stimulus. In addition, cleaning procedures like the thermal sampling and partial discharge or depolarization techniques, as well as appropriate manipulation of the poling conditions \((E_p, T_p, t_p)\), can also lead to unraveling of complex relaxation spectra.\(^{22}\)

B. Experimental details

The subject matter in the present investigation were transparent, light yellow-greenish, fluorapatite crystals of gem quality from Cerro de Mercado, near Durango (Mexico), virtually free from inclusions and mineral coatings. The measuring samples were discs with thickness ranging between 1.0 and 1.4 mm, cut from a large prismatic ing. The measuring samples were discs with thickness ranging between 1.0 and 1.4 mm, cut from a large prismatic

III. RESULTS

We shall classify our thermally stimulated depolarization currents results in two groups, in connection with the relative orientations of the applied electric field vector \((E_p)\) and the crystallographic axis.
A. TSDC study with \(E_p\) parallel to \(c\) axis

Typical TSDC spectra recorded for the as-received (A1) and thermally treated (B1) samples are depicted in Fig. 2 (curves a–d). The spectra are dominated by an intense broad band (denoted HT) which reaches a maximum around 300 K and extends almost throughout the entire temperature range under investigation.

The application of the polarization field \(E_p\) at different polarization temperatures \(T_p\), within the 210–320 K temperature window, in both the A1 (presented in Fig. 3) and the B1 samples, manifested a strong dependence between \(T_p\) and the maximization temperature \(T_m\) (\(T_p\) lagging behind \(T_m\) by \(\sim 5^\circ – 15^\circ\), with reversed behavior for \(T_p > 290\) K). This shift of \(T_m\) was also accompanied by an increase of the maximum current intensity \(J_m\) with increasing temperature of polarization. The HT thermocurrents’ region of the A1 samples is apparently a complex relaxation band as two barely discernible knees appear in the TSDC spectrum at about 200 and 270 K, respectively.

Successive annealing of the B1 sample (at \(T = 673, 773,\) and 873 K, respectively) resulted in a \(10^\circ – 20^\circ\) shift of the main HT peak maximum to a higher temperature region accompanied by a moderate increase of \(J_m\). Moreover, the rising part of the band (previously featuring a knee at 200 K) was progressively smoothed out without further changes in the appearance of the HT relaxation band (Fig. 2, curves b–d). The above observations, in connection with certain characteristics of the TSDC high temperature peak (e.g., not exponential rise, coverage of an extended temperature range) are a first indication of highly overlapped dielectric polarization mechanisms, presenting a spectrum of relaxation times \(\tau(T)\). In order to decompose the band and obtain the energy spectrum of the relaxation mechanisms involved, we applied the partial discharge method (otherwise referred to as partial heating or partial depolarization method) in both specimens (A1 and B1) and at intervals of approximately \(10^\circ\) to cover the entire temperature range of interest (110–320 K). The analysis of the intensity current recordings by means of Eq. (4) yielded activation energy values ranging between 0.15 and 0.85 eV. Although there is no clear evidence for some stepwise changes in the plot of activation energy \(E\) vs the middle point of the discharge temperature range of each cycle \(T_{mp}\) (Fig. 4), within the experimental errors, there appears to be an accumulation of the energy parameters in the narrow spectral range \((210 ± 20)\) K at the values of \((0.53 ± 0.03)\) eV, for the original specimen, and \((0.62 ± 0.02)\) eV for the annealed sample, respectively.

B. TSDC study with \(E_p\) perpendicular to \(c\) axis

The TSDC spectrum of a thermally untreated (A2) sample with the electric field vector perpendicular to the crystallographic \(c\) axis is dominated by four overlapping bands that peak at approximately 172 K (denoted as \(LT_1\)), 206 K (\(HT_1\)), 235 K (\(HT_2\)), and 316 K (\(HT_3\)) (Fig. 5, curve a). We should note at this point the presence in the rising part of the \(HT_1\) band of a fifth, much narrower and extremely
weak, current signal, peaking at about $T_m = 183$ K [LT$_2$, Fig. 5(a)] which in independent TSDC experiments showed high reproducibility.

The TSDC thermogram recorded after annealing the fluorapatite sample at 673 K (Fig. 5, curve b) for one hour, with subsequent quenching at room temperature, demonstrate a considerable reduction of the high temperature (HT$_{1–3}$) peaks which progressively tend to disappear for higher annealing temperatures (773, 873 K). Especially in the case of the HT$_1$ relaxation band, in the course of the consecutive annealing procedures there was no substantial shift of its intensity maxima (Fig. 6, curves a–c). However, the most striking result after annealing is the manifestation of an intense and extremely sharp peak in the thermally treated (B2) sample, in the position where the weak LT$_2$ spike appeared in the spectrum of the as-received sample [Fig. 5(a)]. The intensity maximum of this sharp peak appears to have reached its highest value after annealing at 773 K for one hour (Fig. 6, curve b), with a moderate reduction at the topmost annealing temperature (Fig. 6, curve c). By repeating the TSDC measurement with identical poling conditions one year following annealing, the entire spectrum and especially peak LT$_2$ does not show any considerable changes. Application of the electric field at different polarization temperatures T_p and times t_p leaves the peak characteristics (T_m and/or J_m) unaffected for the three low temperature bands (LT$_1$, LT$_2$, and HT$_1$), while the maximization temperature for HT$_3$ always lags behind T_p. Moreover, the current intensity maxima of the low temperature bands (LT$_1$ and LT$_2$) show a linear dependence upon E_p.

For comparison purposes, we present in Fig. 7 a detailed scan of the TSDC spectrum of the as-received and annealed fluorapatite specimen, polarized with E_p parallel to the crystallographic c axis, in the temperature range of the LT$_1$ and LT$_2$ relaxations. From a direct comparison there appears to be no evidence about any similar relaxation signal, although we cannot firmly say the same for bands HT$_1$ and HT$_2$ which could be hidden below the left wing of the broad and intense HT relaxation band depicted in Fig. 2.

Analysis of the consecutive current rises collected by means of the partial heating method, applied in intervals of approximately 10° between 110 and 320 K for the A2 and B2 samples, gave results which are presented in Fig. 8. The straight line fitting of the points of the Arrhenius plot for the lower part of the complex spectrum, which coincides with the rising left wing of LT$_1$ peak, presents a ~re* orientation activation energy of $E_1 = (0.38 \pm 0.02)$ eV. A little higher, in the temperature range where LT$_2$ peak appears, there is a sudden sharp increase in the calculated activation energy values which reach a maximum at $E_2 = (0.86 \pm 0.03)$ eV in the as-received sample and $E_2 = (1.06 \pm 0.01)$ eV in the thermally treated sample. In the region of the HT$_1$ and HT$_2$ bands, around 200–240 K, the evaluation of the data for both samples gave activation energies between $E_3 = (0.60$–0.70) eV. The dominating HT$_3$ band in the latter part of the

FIG. 4. Plot of the activation energies E vs the middle-point temperature of the partial discharge cycles T_{mp} for $E_p || c$ axis (● thermally untreated sample; ○: annealed at 773 K). Dashed lines are to guide the eye.

FIG. 5. Thermally stimulated depolarization current spectra for (a) thermally untreated and (b) annealed samples at 673 K, polarized with $E_p || c$ axis, representative of the dramatic changes occurring in the low and high temperature spectral regions. Five clearly discernible relaxation bands are indicated.
A2 thermogram demonstrates energy values E_4 around 0.82 eV.

IV. DISCUSSION

The dielectric relaxation of an insulator is due to the rotation of impurity-vacancy ($I-V$) dipoles or molecules with intrinsic polarity, as well as to a migration process of a limited number of free electric charge carriers (e.g., electrons and ions). When aliovalent impurities are incorporated into a solid matrix, for charge compensation reasons an appreciable number of vacancies are formed. Such cation vacancies, when bound to a substitution impurity ion, form different kinds of $I-V$ dipoles, with dependence on the relative charge distance, and under certain conditions, they can constitute larger polar complexes. Moreover, the existence of free vacancies as free charge carriers in not uncommon in ionic crystals, and their drift in-between structural openings customarily dominates the high temperature (in the TSDC measurements) or low frequency (normally below 1 Hz in the ac dielectric spectroscopy) relaxation domains.

It is a well-established fact that the close packing and nonpolymerized nature of the $\text{[PO}_4\text{]}^2-$ groups in the unperturbed apatitic lattice inhibits the concentration of selective polarizability along axial or preferred directions. However, the preconditions for the development of macroscopic dielectric polarizability and charge storage at low temperatures are fulfilled if one takes into account in detail the apatite’s crystal structure data. The large dielectric effects previously observed in monoclinic (space group $P\overline{2}_1/b$) synthetic chlorapatites $[\text{Ca}_{10}\text{(PO}_4)_6\text{Cl}_2]$ studied by ac dielectric relaxation spectroscopy methods, despite their x-ray characterization as nonpolar crystal structures, are accounted for by a $\text{Cl}^-\text{-vacancy driven relaxation mechanism}$. The creation of Cl^- vacancies provides space in the apatitic columns necessary to allow the chlorine ions (at heights $z=0, 1/2c$ in the monoclinic cell) to move individually. Chlorapatites with 5% Cl^- vacancies were reported to exhibit dielectric permittivities (ε') exceeding 10^4 when the vector of the electric stimulus was parallel to the crystallographic c axis. The presence of vacancies in the contacting Cl^--Cl^- ions along the columns is somewhat dictated by the fact that the ordinary Cl^- ionic radii (1.81 Å) exceed by 0.24 Å the $\text{Cl}^-\text{--Cl}^-$ distance (~ 3.38 Å), and as a result individual Cl ions tend to be displaced towards the adjacent chlorine anion-vacancies. The intrinsic electric dipole in the chlorapatitic structure arises from the displacement of chlorine from the ideal symmetry position (at $z=0, 1/2c$ in the monoclinic cell), as the Cl^- ions occur at z positions distant δ from the midpoints between the $\text{Ca}(2)$-triangles (perpendicular to the columns at $z=1/4, 3/4c$). The resulting $\text{Cl}^-\text{--Ca}(2)^{2+}$ configuration constitutes a dipolar structure in which the electric dipole direction can be reversed by the mere movement of the Cl^- ion from $z=1/2+\delta$ to $z=1/2-\delta$.

In fluorapatite, the 6_3 axis of F^- ions (at $z=1/4, 3/4c$ in the hexagonal cell) passes perpendicularly to the planes of the adjacent $\text{Ca}(2)$ triangles and through their centers. In its
pure stoichiometric form, the F$^{-}$ ion exists exactly at the center of the calcium triangle and experiences no electrostatic forces tending to move it away [Ca–(O, F) distance of approximately 2.463 Å]. Such a configuration of the mineral structure does not allow the formation of dipole units and would normally render inapplicable dielectric methods in pure Fap crystals. This is not the case in fluorapatites that are compositionally modified. In fluorhydroxyapatite [Ca$_{10}$(PO$_4$)$_6$(F, OH)$_2$] for instance, the F$^{-}$ may have OH$^{-}$ neighbors, and hydrogen bonding (F...H–O) could cause fluorine to move slightly out of the plane of the calcium triangle.27 Even in the absence of OH$^{-}$ ions, both Ca sites in Fap are able to accommodate a variety of aliovalent (univalent, divalent and/or trivalent) cations. Among the transition metal ions we site manganese which can partially replace geological environments.28–30 The progressive decrease in Ca structural positions of rock-forming minerals of all approximately 1:10. Nevertheless, the most common group lent, divalent and/or trivalent Fap are able to accommodate a variety of aliovalent neighbors, and hydrogen bonding...
In relation to the second category of experiments (E⊥c) great attention has to be paid in polarization modes associated with the creation and selective partitioning of several structural defects. In an extended study in natural and synthetic fluorapatites by Fleet and Pan and the large body of references cited therein, the predictions of REE site preference and selectivity of the host mineral are conclusive to the proposal that light lanthanides (La, Ce, Pr, Nd) preferentially partition into fluorapatite and in particular favor the underbonded position Ca(2). The above hypothesis is supported by our XRF trace-element analysis of the Cerro de Mercado fluorapatite samples (Table I), which also indicates an appreciable amount of Sr2+ in addition to the actinides series elements of thorium and uranium (i.e., 418 ppm Th4+ and 15.3 ppm U3+). The LREE substitution for calcium in the Ca(2) positions, with the lower coordination number, accordingly increases the bond valences of these positions. Moreover, the total stereochemistry of the Ca(2), and to a lower degree Ca(1), positions occupied by REE3+ is clearly modified. The substitution of REE3+ into apatite may be charge balanced in various ways (e.g., see Ref. 34) although a common way appears to be

\[
\text{REE}^{3+} + \text{Si}^{4+} = \text{Ca}^{2+} + \text{P}^{5+}
\]

or

\[
\text{REE}^{3+} + \text{Na}^{+} = 2\text{Ca}^{2+}.
\]

The fact that for the rare-earth elements, the valence state is higher than that of the host ion, implies the necessity of a higher (than the thermodynamically induced) number of cation vacancies and/or anion substitution. As an alternative, many authors assume that the excess of positive charge in the apaticic lattice can also be compensated by the substitution of oxygen for fluorine35

\[
\text{REE}^{3+} + 2\text{O}^{2-} = \text{Ca}^{2+} + \text{F}^{-}.
\]

Limited Cl− → F− substitution in the natural hexagonal skeleton of Durango Fap (e.g., Young et al. report a chlorine/fluorine weight percent ration of 3.54:0.41, Ref. 19) leads to a chlorine shift readily explained by the much larger radius of Cl− compared with F−, and followed by a moderate change in bond lengths. The fluorapatite crystals employed in the present investigation demonstrate lattice constants \(a = 9.3921 \text{ Å}\) and \(c = 6.8830 \text{ Å}\), which are similar to former reports for apatites from the same locality (9.3923 Å, 6.8821 Å, Ref. 19) and clearly distinguished from the lattice constants for pure Fap crystals (9.367, 6.884 Å). The main source of the observed variation in the unit cell parameters is the \(\text{REE}^{3+} → \text{Ca}^{2+}, \text{As}^{5+} → \text{P}^{5+} (r_{\text{As}}^{\text{VII}, \text{X}} > r_{\text{P}}^{\text{VII}, \text{X}} + 0.11 \text{ Å})\) and \(\text{F}^{-} → \text{Cl}^{-}/\text{OH}^{-}\) substitutions. As a result, the PO4 tetrahedra are significantly distorted, being elongated along the P–O(2) direction, to a degree very similar to the Cl-ap and OH-ap structures.9,36

A theoretical interpretation of the experimental data in the sense of making attribution of the relaxation spectra, in response to the electric poling field in the crystallographic \(c\)-axis direction, to definite microstructural mechanisms is difficult to be done. However, in the light of the foregoing discussion the following assignment could be put forward. A curve fitting method analysis of the low temperature current signals in both the A2 and B2 spectra (e.g., Fig. 9 for the B2 sample) has revealed that the LT1 band is due to the coalescence of two highly overlapped relaxations (denoted LT1a, LT1b). Both, the dipolar-type compatible response recorded between different TSDC experiments, and the range of the activation energies associated with the corresponding molecular mechanism responsible for the complex LT1 band (Table II), advocate a dipolar interpretation of either one of the following polarizability modes: (a) electric dipoles formed by chlorine/fluorine ions which are vertically or horizontally displaced from their ideal symmetry position at the columns, due to electrostatic forces by the trivalent rare earth ions residing on Ca(2) and nearby cation sites, and the positive charge of the Ca(2) triangles, and (b) cation jumping forth and back, on the \((ab)\) plane, between two of the nearest neighbor (nn) positions of a cation vacancy. As regards the second relaxation mode, it seems rational to hypothesize that the neighboring relaxations could arise from aliovalent substitute cations. In that case the low temperature peak (LT1a; Fig. 9) is assigned to the Na+ substitute ions, characterized by the smaller ionic radius comparable to calcium (for VII and IX coordination \(r_{\text{Na}} = r_{\text{Ca}} - 0.02 \text{ Å}\), and the higher temperature peak (LT1b; Fig. 9) to the larger LEE3+ ions (ionic radii typically \(r_{\text{REE}}^{\text{VII}, \text{X}} > r_{\text{Ca}} + 0.05 \text{ Å}\)).

![Fig. 9. Elementary peaks (LT1a, LT1b) composing the lowest temperature relaxation band (LT1) of the E⊥c axis TSDC spectra, shown here for annealing temperature 773 K. The LT1a,b and LT2 monoenergetic peaks resolved by the fitting procedure show an envelope (thick line) accurate reproduction of the experimental points (open cycles).](image-url)
TABLE II. Thermodynamic and spectral parameters for the fluorapatite sample polarized perpendicular to c axis (\(E_p \perp c\)). A2 denotes the as-received sample and B2 the sample annealed at 773 K for one hour.

<table>
<thead>
<tr>
<th>Band</th>
<th>T_m (K)</th>
<th>(J'_m , (\times 10^{-4} , s^{-1})^a)</th>
<th>E (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LT_{1a}</td>
<td>160b</td>
<td>(166)</td>
<td>0.38\pm0.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.60)</td>
<td>(0.44)</td>
</tr>
<tr>
<td>LT_{1b}</td>
<td>172</td>
<td>(176)</td>
<td>0.86\pm0.03</td>
</tr>
<tr>
<td>LT_2</td>
<td>183</td>
<td>186 (\sim 1.9) 14.43</td>
<td>0.70\pm0.10</td>
</tr>
<tr>
<td>HT_{1h}</td>
<td>206</td>
<td>205 5.67 1.5</td>
<td>0.62\pm0.02</td>
</tr>
<tr>
<td>HT_{1h}</td>
<td>235</td>
<td>uncertain 3.55 (-1.5)</td>
<td>0.82\pm0.02</td>
</tr>
<tr>
<td>HT_{1a}</td>
<td>314</td>
<td>uncertain 9.86 (-2.9)</td>
<td></td>
</tr>
</tbody>
</table>

a\(J'_m\) represents the current density value at the position of the maximum, corrected for the sample dimensions (surface area S and thickness d) and the polarizing field strength, through the relation \(J'_m = J_m / \epsilon_0 S E_p\), where \(\epsilon_0 = 8.85419 \times 10^{-12} \, \text{Cb/m V}.\)

bThe values given in brackets were obtained from the curve fitting of the spectral LT_1 complex band. All other \(T_m\) and \(J'_m\) values are spectral parameters.

After heating are associated with localized changes in the equilibrium ionic distribution, initiated by the temperature enhanced amplitude of the lattice vibrations as a whole, and the thermal energy of the ions which is sufficient for surpassing high potential wells after annealing at elevated temperature ranges. The XRD data analysis supports the above hypothesis, since there appear strong differentiation in lattice constants and to a lower degree in several bond distances (Table III). The most pronounced change has been calculated for the (a,b) dimension, while small differences in excess of the calculation error, appear for the Ca(2)–O(2) and P–O(2) bond distances. The LT_2 peak, in particular, barely appears in the A2 orientation spectrum, implying a very low concentration (\(N_D\)) of related dipole units (peak’s area is proportional to \(N_D \mu^2\), where \(\mu\) is the effective dipole moment).

After annealing the LT_2 peak becomes the predominant signal with a high single activation energy (1.06 eV) and extremely low pre-exponential factor \(\tau_0 \sim 10^{-28}\) s, unusual for thermostimulated current dielectric studies. Under the new energetic/ionic conditions which develop in the surrounding area of some ionic positions, in the “quenched” apatite structure after annealing, pre-existing mechanisms may become energetically unfavorable or simply frozen up due to simple steric hindrance. On the other hand, new ion jumping relaxation bands may appear, by simply considering the presence of new types of vacant structural sites. The appearance of the LT_2 relaxation peak even one year after the heating procedures and with the sample stored at RT conditions, indicates that the microstructural configuration developed after annealing is, at least, partially retained. The above observations favor an explanation based on a polarizability mode, involving ions jumping between vacant next-nearest-neighbor (nnn) positions that are located outside the columnar regions. We should also take into account that the heating procedure has been performed in oxygen atmosphere, which is a known element for its reactive properties, although by performing standard differential thermal analysis (DTA) of a Fap sample we did not find any evidence of weight change in the temperature ranges of interest.

In ionic crystals and minerals, the phenomenon of a sub-

TABLE III. Lattice parameters and bond distances obtained by Rietvelt analysis of the x-ray diffraction powder patterns of fluorapatite from Cerro de Mercado (Mexico), before and after annealing (at 773 K for one hour).

<table>
<thead>
<tr>
<th>Cell parameters (Å)</th>
<th>As-received sample</th>
<th>Annealed sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>9.3921 (2)</td>
<td>9.3940 (2)</td>
</tr>
<tr>
<td>c</td>
<td>6.8830 (2)</td>
<td>6.8822 (2)</td>
</tr>
<tr>
<td>Site</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fractional coordinates</td>
<td></td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>1/3</td>
<td>1/3</td>
</tr>
<tr>
<td>y</td>
<td>2/3</td>
<td>2/3</td>
</tr>
<tr>
<td>z</td>
<td>0.0029 (5)</td>
<td>0.0037 (6)</td>
</tr>
<tr>
<td>B</td>
<td>0.801</td>
<td>0.801</td>
</tr>
<tr>
<td>Bond distances (Å)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(1)</td>
<td>2.365 (5)</td>
<td>2.361 (4)</td>
</tr>
<tr>
<td>O(2)</td>
<td>2.470 (6)</td>
<td>2.475 (7)</td>
</tr>
<tr>
<td>O(3)</td>
<td>2.818 (3)</td>
<td>2.819 (6)</td>
</tr>
<tr>
<td>F</td>
<td>2.508 (5)</td>
<td>2.525 (3)</td>
</tr>
<tr>
<td>R_{wp}</td>
<td>11.13</td>
<td>10.44</td>
</tr>
<tr>
<td>R_{exp}</td>
<td>7.46</td>
<td>7.58</td>
</tr>
<tr>
<td>R_{wagg}</td>
<td>4.50</td>
<td>4.29</td>
</tr>
</tbody>
</table>
stantial decrease in a TSDC relaxation band after annealing, when not apparently related to intercrystalline water adsorption or protonic conductivity effects, is usually attributed to clustering phenomena. A process referring to dipole cluster formations whose concentration diminishes after annealing could explain the changes occurring at the HT relaxations appearing in the spectra where the \(E_{p\perp c} \) configuration was used. Nonetheless, a simple clustering scheme is not supported by the observation that even one year after annealing the high temperature bands have not restored much of their magnitude, as would be normally expected by the kinetics of clustering processes.

V. CONCLUSIONS

The TSDC technique has been applied to study the dielectric properties of fluorapatite single crystals for two poling field orientations, namely, parallel and perpendicular to the crystallographic \(c \) axis. The main depolarization current mechanisms along \(c \) axis are governed by dipolar reorientations in the apatite columns, through F and Cl jumps, and ionic motions at regions of long range structural defects (screw dislocations parallel to \(c \) axis). The almost linear dependence of the (re)orientation energies with scanning temperature can be attributed to a distribution of microdomains along the \(c \) axis, which differentiate the ionic surroundings. The five distinct TSDC relaxations characterizing the spectra when the poling field was perpendicular to \(c \) axis are tentatively discussed, in order of appearing temperature range, in terms of (a) relaxation of \(\text{REE}^{3+}/\text{Na}^{+} \) and cation (\(\text{Ca}^{2+} \))-vacancy dipoles, (b) a strong and persistent ion-jump relaxation effect which dominates in the annealed samples, and (c) dipole-clustering phenomena.

ACKNOWLEDGMENTS

Supply of the XRD spectra and Rietvelt analysis results by Professor Dr. M. Calamiotou and A. Gantis (Physics Department, Athens University) is gratefully acknowledged. The authors are also indebted to Dr. V. Perdikatiss (Institute of Geology and Mineral Exploration, Athens) for the DTA, and Dr. A. Karidas and Dr. Th. Paradelis (Laboratory for Mineral Analysis, Institute of Nuclear Physics, NRCPS “Demokritos”) for the XRF analysis.

23. S. A. Howard, Department of Ceramic Engineering, University of Missouri-Rolla, MO 65401.