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Abstract. The surface charges and the electric field outside
steady current carrying conductors has been for long the
subject of many investigations. It turns out that both
quantities strongly depend on the configuration of the circuit.
In this work an attempt to distinguish and clarify the essential
factors of this dependence is presented. To this end, a simple,
three-dimensional model is proposed and quantitative results
are derived which are in agreement with experimental data.
In addition, the existence of electric fields outside current
carrying conductors and their behaviour can be easily
demonstrated in class by recourse to the model, with the help
of a computer program, thus avoiding inconvenient or
dangerous experimental set-ups.

Zusammenfassung.Die Flächenladung und das elektrische
Feld außerhalb eines gleichstromtragenden Leiters ist seit
langem das Thema vieler Untersuchungen gewesen. Es zeigt
sich, daßbeide Größen stark von der Struktur des Stomkreises
abḧangen. In diesem Werk wird der Versuch, die
wesentlichen Faktoren dieser Abhängigkeit zu unterscheiden
und zu erkl̈aren, presentiert. Zu diesem Zweck wird ein
einfaches dreidimensionales Modell vorgeschlagen und
quantitative Ergebnisse, die in̈Ubereinstimmung mit
experimentellen Daten stehen, werden abgeleitet. Zusätzlich
kann die Existenz elektrischer Felder außerhalb
stromtragender Leiter und ihr Verhalten durch dieses Modell
und mit Hilfe eines Computerprogramms einfach im
Klassenzimmer demonstriert werden, so daßumständliche und
gef̈ahrliche Experimentaufbauten vermieden werden können.

1. Introduction

One of the most common assumptions in physics is
to consider the electric field inside a Current Carrying
Conductor (CCC) homogeneous. This intuitively
acceptable assumption inevitably entails the existence
of surface charge densities on the CCCs when the laws
of electrostatics are taken into account [9]. This surface
charge is usually omitted in textbooks [2, 17, 23], apart
from rare exceptions [8, 24]. This fact could lead to
the misconception that a ‘closed current in a stationary
conductor exerts no force on stationary electricity’ [13]
or in other words that electric fields outside CCCs do not
exist. However, experiments that were made [4, 7, 14]
showed that this is not the case. A charge density does
really exists on the surface of a CCC and the outside
electric field is different from zero though very small
[20]. Nevertheless, the results from previous theoretical
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works depend strongly on the circuit configuration,
giving a vague picture of the whole effect.

The first theoretical publication [9] in the subject is
relatively old (1941) and it predicts the formation of
surface charges on the CCC, but in a very peculiar
geometry; the current of the CCC returns to the battery
by a conductor which is coaxial to the CCC. Later
on (1969), Sarachman [22] tried to find the electric
field outside a CCC by general principles, like energy
conservation. It turned out [10] however, that the form
of the charge density depends strongly on the imposed
boundary conditions. This form is determined by the
solution of a related boundary value problem. Different
boundary conditions result in different forms of the
surface charge density. In the case of parallel CCCs it
was pointed out that the surface charge density should
vary linearly with the distance [21]. Additionally,
two different aspects of charge density formation in
CCCs had also been suggested [3, 11]. Up to that time
(1970) the battery region of the circuit had attracted no
interest. A fruitful debate started after Professor Eugen
Merzbacher set again the problem [5, 6, 12, 25] a decade
later. As an outcome, Heald [5] was the first to find the
electric field outside closed circuits, where the battery

0143-0807/96/010037+06$19.50 c© 1996 IOP Publishing Ltd & The European Physical Society



38 N Sarlis et al

Figure 1. The infinite periodic array of batteries and
cylindrical resistors, along with the voltage variation
across the circuit elements. (Notice that no energy flows
through the planes P1 and P2, which define a ‘unit cell’
of the periodic array.)

region was included. Heald noticed the importance of
the circuit geometry and for simplification he analysed
only two-dimensional models. Recently, another model
was proposed [1] where a completely different surface
charge density was used. Apparently, a clarification and
classification of the essential parameters (battery region,
geometry, boundary conditions, etc) of the problem is
needed.

The clarification of the essential parameters, which is
among the objectives of the present work, is attempted
through a new model circuit. It is necessary, for the
general case that such a model satisfy at least the
following requirements:

• The CCC should be three dimensional.
• The potential at infinity should be taken zero.
• Both the battery and the CCC should be considered,

since the role of the battery region and the related
voltage drop along the resistive wire have to be
included.

• The model should be free of any particular circuit
geometry, like bending of the wires or changes of
the wires’ cross section, since such complications
restrict the application of the results.

On this basis, one can derive a fundamental
contribution to the formed surface charge density.
Other contributions, due to the circuit geometry, can
be considered as corrections to it. In principle, all
contributions should be taken into account [1, 3] in order
to estimate the form and the magnitude of the total
surface charge density.

2. The model

Imagine an infinite periodic array of batteries and
cylindrical resistors that are directed along thez-axis

(see figure 1). Such a model, apart that it meets the
requirements of the previous paragraph, satisfies another
two as well:

(i) Each battery balances the voltage drop along the
wire before it so that no source at infinity is needed
[9, 25].

(ii) There is no energy flow between the planes normal
to the conductor in the middle of two successive
resistors†.

So we don’t have to take into account the rest of the
array but doing physics on this energetically isolated
part of the space (the period) is enough. We will focus
our interest in the area shown on figure 1 for the sake
of simplicity. Both the battery and the conductor are
considered as cylindrical cylinders of radiusR. Inside
the cylinder the potential is a periodic odd function
of the z coordinate with half periodl(see figure 1).
According to our model this potentialU0 is described
within the first half period by:

U0(z) = V0

{
0 if z ≤ αl

l − z
(1 − α)l

if z > αl
(1)

where α is the portion of the half period which
corresponds to the battery. Such a potential simulates
both the voltage variation in the battery region of a
Weston cell [17] and the voltage drop along the resistor.

Since the boundary condition (1) doesn’t involve
the angleφ neither does the potential over all space.
Consequently the Laplace equation for our problem in
cylindrical coordinates can be written as:

∂28

∂ρ2
+ 1

ρ

∂8

∂ρ
+ ∂28

∂z2
= 0 (2)

If we substitute a separable function8(ρ, z) =
P(ρ)Z(z) in (2) we get:

d2Z

dz2
+ k2Z = 0 (3)

d2P

dρ2
+ 1

ρ

dP

dρ
− k2P = 0 (4)

wherek is the separation constant. Owing to the fact that
our boundary condition (1) is periodic and odd only the
sine solutions of (3) are acceptable. SinceZ(z) is a sine
function, the separation constant is real and equation (4)
is the modified Bessel equation of order zero. From the
two possible solutionsI0 andK0 of the modified Bessel
equation onlyK0 satisfies the usual boundary condition
that the potential is zero at infinity. So the solution of
(2) in our case takes the form:

8(ρ, z) =
∑

k

AkK0(kρ) sin(kz) (5)

† PlanesP1, P2 of figure 1.
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Figure 2. The intersection of the equipotential surfaces
and the YZ plane. The region shown is that of the
resistive wire with the two battery terminals at the edges.
The equipotential surfaces join points on the batteries
with points on the conductor.

2.1. The potential

Choosing the constantsAk so that (5) satisfies (1) at
ρ = R, we get the potential:

V (ρ, z) =
∞∑

n=1

K0(
nπρ

l
)

K0(
nπR

l
)
an sin(

nπz

l
) (6)

with:

an = V0

(
cos(nπα)

nπ
− 2 sin(nπα)

n2π2(α − 1)

)
(7)

for the space outside the wire,ρ > R. Inside the CCC
the electric field is constant, as it was stated from the
beginning. In the case of the Weston cell this holds
for the battery too. Thus, forρ < R the potential is
v(ρ, z) = U0(z). A graph of the equipotentials from (6)
is shown on figure 2.

2.2. The electric field outside the CCC

Since there is energy flow outside the CCC the electric
field there, is non-zero. The electric fieldEE = −∇V

outside the CCC is expressed in cylindrical coordinates,
with the help of (6), as follows:

Eρ = EE · Eeρ =
∞∑

n=1

K1(
nπρ

l
)

K0(
nπR

l
)

nπan

l
sin(

nπz

l
) (8)

Ez = EE · Eez = −
∞∑

n=1

K0(
nπρ

l
)

K0(
nπR

l
)

nπan

l
cos(

nπz

l
) (9)

The electric field lines are shown in figure 3. It is clearly
seen that the electric field is not parallel to the resistive
wire. Therefore a surface charge density should exist on
the conductor. In the area of space wherez ∈ [−αl, αl]
and|r| > R, that includes points outside the battery and
away from the conductor, the electric field is parallel to
the axis of the cylinder in agreement with the results of
Heald [5].

Figure 3. The electric field lines on the YZ plane. The
region shown is the same as in figure 2.

Figure 4. The dimensionless surface charge density
( σ l

ε0V0
) as a function of z/l . The region shown, [0,2],

encloses the resistive wire in the middle, so as to stress
the characteristic linear dependence of σ (region B) as
opposed to its singular behaviour near the battery
terminals (region A),(α = 0.05, R/l = 10−3).

2.3. The surface charge density

The surface charge density on the surface of the
conductor is given by:

σ(z) = ε0 EE · En (10)

where ε0 is the vacuum dielectric constant andEn the
normal to the cylinder surface, directed outwardly from
the cylinder. So the surface charge density is according
to (8):

σ(z) = ε0

∞∑
n=1

K1(
nπR

l
)

K0(
nπR

l
)

nπan

l
sin(

nπz

l
) (11)

Plotting (11) on figure 4 we can distinguish between
two characteristic regions, denoted after A and B in the
figure.

In the region A of the conductor, near the plates
of the battery, a large amount of charge is gathered.
Indeed, near the plates of the battery and in the
absence of the conductor there are fringing phenomena.
When the conductor is connected to the battery a
homogeneous electric field is finally established inside
it. So extra surface charge should gather in this region
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to homogenise the fringing electric field produced by the
plates of the battery. The surface charge density shows
a singular behaviour near the plates of the battery, which
is a result found previously for the two-dimensional
circuits [5]. No matter the singularity, the total charge
formed can be calculated easily because the related
integral converges.

In the region B of the conductor, away from the
battery, a linearlyz-dependent surface charge density
is formed. This result has already been considered
[21] and is related once again to the homogeneity of
the electric field inside the CCC. The charges at the
region A produce an electric field that far from them
and inside the wire has a non-zero radial component.
Far away from these charges and near the axis of the
CCC this radial component is small and to the lowest
order proportional to z, exactly like the field produced
by a charged disk [17]. We know, however, [14] that the
charges on the surface of the CCC arrange themselves
to homogenize the electric field inside the conductor.
Hence the surface charge density in region B has to
be linearly dependent so as to produce an electric field
equal in measure to the one it has to balance.

Thus the surface charge density in the case of our
model is arranged in two characteristic formations: a
singular one near the plates of the battery (region A)
and a linear one away from the battery (region B). These
formations of surface charge density exist in a realistic
circuit, no matter the geometry, and we shall try to find
quantitative results about them.

2.4. The energy flow.

Another interesting physical quantity the form of which
depends crucially on the surface charge density is the
energy flow. The surface charge density (11) and the
charges at the plates of the battery are responsible for
the potential (6) which determines the energy flow in the
following manner. The equipotential surfaces are the
surfaces on which the field lines of the Poynting vector
lie [5, 8]. Actually , the Poynting vectorES = ( EE× EB)/µ0

is normal to the electric field vector which as the
gradient of the potential is normal to the equipotential
surfaces. So the field lines of the Poynting vectors are
embedded in the equipotential surfaces. Therefore, from
the graph of the equipotentials (figure 2) we can clearly
see that the energy flows from the battery region to
the resistive wire through the outer space [15, 18]. The
fact that no energy flows between two successive planes
(figure 1) simplifies the picture and clarifies the fact that
each battery in the array is responsible for the voltage
drop in the wire included in the energy isolated region.

2.5. The amount of charge on the surface of a CCC.

As we can see from the graph (figure 4) of the charge
density (11) an amount of chargeQ sets on the surface
of the cylinder near the positive terminal of the source
and an amount of charge−Q sets on the surface of

Figure 5. The κ-parameter as a function of R/l . The
relative length of the battery, α, parametrizes the curves.
(Notice that, although both R/l and α vary over many
orders of magnitude, κ is relatively insensitive.)

the cylinder near the negative terminal.Q is calculated
from relation (11):

Q =
∫ l

αl

∫ 2π

0
σ(z)Rdφdz (12)

Doing this integration we get:

Q = 2πε0R

∞∑
n=1

K1(
nπR

l
)

K0(
nπR

l
)
an(cos(απn) − (−1)n) (13)

An important quantity referred to the charge formed on
the surface of the conductor isκ = Q0/(V0l). This
is the surface charge per unit length and voltage drop
along the wire:

κ = 2πε0
R

l

∞∑
n=1

K1(
nπR

l
)

K0(
nπR

l
)

an

V0
(cos(απn) − (−1)n) (14)

If we plot κ as a function of the ratioR/l andα (fig.5),
it turns out that it has a small variation when the ratio
R/l covers a range of six orders of magnitude, from
10−8 to 10−2 and α covers the realistic range, from
10−4 to 10−1 . From the values ofκ, which amount
some tenths of million electrons per metre and voltage
drop, we can see that the whole effect is very small. In
fact, the experiments that showed the existence of such
charges on CCCs where made [7, 14] by using 10 kV,
low-current, power supplies so as to have 1011 electrons
per metre, or better a few nC per metre. Such charge
densities, though very small, can line up grass seeds [7]
or minute plastic fibers [14] and make their existence
detectable.

3. Analysis of other surface charge formations
on CCCs

The surface charge density so far discussed is
longitudinal and consists of the two characteristic
formations mentioned above. It gives rise [19] to
a transverse electric field that prevents current flow
perpendicular to the wire. We will call it aslongitudinal
charge density. It is pertinent to this work to present
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other mechanisms, previously appeared in the literature,
that also produce surface charge densities.

Firstly, Chester [3] proposed that aconfigurational
EMF should exist when the cross section of CCC
changes abruptly. This configurational EMF corre-
sponds to a dipole surface charge density at the point of
discontinuity and its magnitude as estimated [3] is:

δVc = m

2e
v2

drift (15)

wherem is the mass of the charge carriers. Because of
the smallness of the drift velocity in CCCs the dipole
charge density that stems from this configurational EMF
mechanism is extremely small. This configurational
dipole charge density didn’t exist in our model because
there weren’t any abrupt changes of the wire cross
section.

Secondly, Matzek and Russell [11] proposed that
since the homogeneous current density inside the
conductor produces a magnetic field, aHall-type
potential difference should exist between the axis and
the surface of a CCC. This potential difference is formed
by a uniform [16] charge density inside the conductor
whose magnitude is given by [16]:

% = en
v2

drift

c2
(16)

Rosser [20] calculated the Hall-type charge density in
copper and found (forI = 1 A, πR2 = 10−3 m2) that it
is just 6000 electrons per cubic metre! So the Hall-type
charge density is extremely small.

Thirdly, Rosser [20] proposed that an excess charge
density exists due to the bending of CCC. He calculated
that along the bending of a copper wire (withR = 10−2

m) to form a right angle, only one hundred electrons
were needed to guide a current of one hundred A. Of
course, this charge is proportional to the current and for
common magnitudes of currents is much less than one
electron!

Finally, Aguirregabiriaet al [1] considered a certain
model circuit in which the current was generated
by magnetic induction. In their case the electric
field generated by the varying magnetic field had a
perpendicular to the wire component and atransverse
surface charge density had to exist to balance it. The
charge density was transverse in the sense that, in
addition to having a modulation along the current flow,
it had also an angular modulation alongφ. This source
of charge density is clearly due to the geometry of the
circuit and its order of magnitude is again small [1]:

σ(φ) = 2ε0E⊥ sinφ + O(R/l) (17)

where E⊥ is the external field perpendicular to the
wire andO(R/l) a function ofR/l and higher orders.
Clearly, such a surface charge density is absent in our
model which is axially symmetric.

Summarizing, we can say that charge distributions in
CCCs are due to five different mechanisms:

• The usual longitudinal surface charge density [9]
which we calculated.

• The configurational dipole charge density [3].
• The Hall-type charge density [11].
• The excess charge density due to wire bending [20].
• The transversal surface charge density [1].

Notice that, in our model the configurational and the
transversal charge densities do not exist because of the
simple geometry, whereas the Hall-type charge density
is taken into account implicitly by the solution of the
Laplace equation for the space outside the wire.

4. Calculation of the surface charges in a
realistic circuit

It becomes apparent from the previous analysis that the
charge distribution in a CCC is generally determined by:
(1) The dimensionality of the circuit, (2) The boundary
conditions, (3) The voltage drop along the CCC, (4) The
battery region, (5) The cross section of the CCC, (6)
The curvature of the CCC, (7) The presence of external
electric fields. The first four parameters were included
in our model, exactly the same way they intervene in
a realistic circuit. In the general case however, the
surface charges on the conductors should be estimated
by adding the other three parameters necessitated by
the mechanisms explained in the previous paragraph.
The main component is the longitudinal surface charge
density whose magnitude can be described concisely
by the value of theκ parameter. Hence, using the
voltage drop along the conductor and its length we can
find from figure 5 the amount of charge on its surface.
Complicated geometry can be taken into account by the
concepts of configurational EMF, excess charge density
due to wire bending and transversal charge density.
When the cross section of the conductor is varied, a
dipole surface charge density, to which a configurational
EMF can be related [3], is arranged near the variation. A
very small amount of charge, however, can account even
for abrupt such changes in good conductors. Moreover,
currents going through a bending of the wire can be
guided by few electrons [20] accumulated near the
bending. Other geometrical asymmetries as well as
external electric fields can be taken into account by
the transverse surface charge density [1]. The surface
charges of other circuit elements produce an ‘external’
field on the CCC under consideration which is balanced
by the transverse surface charge density. These fields
are in general small, smaller than or equal to 10−4 V
m−1, and cause a transversal variation of the surface
charge density with an amplitude smaller than or equal
to 104 electrons per square metre! Finally, the Hall-
type charge density [11] is much smaller than the other
charge densities and can be neglected for practical
purposes.

5. Conclusions

The purpose of this work was to clarify the charge
density formations in CCCs and calculate their
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magnitude. We achieved to separate the major
contribution of these charge densities via a certain model
including an array of batteries and resistive cylindrical
conductors. This contribution consists of a singular
surface charge density near the plates of the source, or
otherwise at points where fringing exists in the absence
of the conductor, and of a linearly dependent surface
charge density away from the source and along the
conductor. The charge per unit metre and voltage drop
that is formed on the surface of the conductor is denoted
by the κ parameter. It turns out that for all practical
applicationsκ is few tens of million electrons per metre
and voltage drop. Theκ parameter can be used even in
the case of a complicated circuit geometry provided that
other contributions concerning surface charge density
[1, 3, 20] are taken into account. Typical orders of
magnitude of these contributions are given.

Within the framework of the present analysis the
electric field lines and the energy flow vector were
also considered. The results compare favourably with
the idea that energy flows in the conductors from the
space around them [15, 18] and complement Heald’s
results [5] in the case of two-dimensional circuits. On
the teaching aspect of the problem, the electric and
Poynting vector field lines that show the existence of
the charge density and the flow of energy from the
source to the resistive wire can be easily reproduced by
a computer program† that was prepared in accordance
with the model. Thus experimental devices [7, 14],
including high-voltage generators could be avoided
when we demonstrate the phenomenon for teaching
purposes.

† A PC-version of the programelectro.zip is available by
ftp::anonymous to the University of Athens supercomputer
atlas.uoa.ariadne-t.gr.
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