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Abstract. The surface charges and the electric field outside Zusammenfassung.Die Flachenladung und das elektrische
steady current carrying conductors has been for long the Feld auRerhalb eines gleichstromtragenden Leiters ist seit
subject of many investigations. It turns out that both langem das Thema vieler Untersuchungen gewesen. Es zeigt
guantities strongly depend on the configuration of the circuit. sich, daBbeide @fen stark von der Struktur des Stomkreises
In this work an attempt to distinguish and clarify the essentialabfangen. In diesem Werk wird der Versuch, die

factors of this dependence is presented. To this end, a simplaiesentlichen Faktoren dieser Abfgigkeit zu unterscheiden
three-dimensional model is proposed and quantitative resultsund zu erkéiren, presentiert. Zu diesem Zweck wird ein

are derived which are in agreement with experimental data. einfaches dreidimensionales Modell vorgeschlagen und

In addition, the existence of electric fields outside current  quantitative Ergebnisse, die Wibereinstimmung mit

carrying conductors and their behaviour can be easily experimentellen Daten stehen, werden abgeleitetaZlish
demonstrated in class by recourse to the model, with the helgann die Existenz elektrischer Felder auRerhalb

of a computer program, thus avoiding inconvenient or stromtragender Leiter und ihr Verhalten durch dieses Modell
dangerous experimental set-ups. und mit Hilfe eines Computerprogramms einfach im

Klassenzimmer demonstriert werden, so dalamdiiche und
gefahrliche Experimentaufbauten vermieden werdénrien.

1. Introduction works depend strongly on the circuit configuration,
giving a vague picture of the whole effect.
One of the most common assumptions in physics is The first theoretical publication [9] in the subject is
to consider the electric field inside a Current Carryingrelatively old (1941) and it predicts the formation of
Conductor (CCC) homogeneous.  This intuitively surface charges on the CCC, but in a very peculiar
acceptable assumption inevitably entails the existencgeometry; the current of the CCC returns to the battery
of surface charge densities on the CCCs when the lawly a conductor which is coaxial to the CCC. Later
of electrostatics are taken into account [9]. This surfac@n (1969), Sarachman [22] tried to find the electric
charge is usually omitted in textbooks [2, 17, 23], aparfield outside a CCC by general principles, like energy
from rare exceptions [8,24]. This fact could lead toconservation. It turned out [10] however, that the form
the misconception that a ‘closed current in a stationargf the charge density depends strongly on the imposed
conductor exerts no force on stationary electricity’ [13]boundary conditions. This form is determined by the
or in other words that electric fields outside CCCs do nosgolution of a related boundary value problem. Different
exist. However, experiments that were made [4, 7, 14poundary conditions result in different forms of the
showed that this is not the case. A charge density doestirface charge density. In the case of parallel CCCs it
really exists on the surface of a CCC and the outsidavas pointed out that the surface charge density should
electric field is different from zero though very small vary linearly with the distance [21]. Additionally,
[20]. Nevertheless, the results from previous theoreticawo different aspects of charge density formation in
CCCs had also been suggested [3,11]. Up to that time
+ N S is supported by a grant of the National Scholarship(1970) the battery region of the circuit had attracted no
Foundation of Greece, IKY. interest. A fruitful debate started after Professor Eugen
+t NS, CALandS S S araith the Physics Department, Merzbacher set again the problem [5, 6,12, 25] a decade
G K and P T are with the Pedagogical DepartterE of the  later. As an outcome, Heald [5] was the first to find the
University of Athens. electric field outside closed circuits, where the battery
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(see figure 1). Such a model, apart that it meets the
| requirements of the previous paragraph, satisfies another
I two as well:
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(i) Each battery balances the voltage drop along the
wire before it so that no source at infinity is needed

| | ! | [9,25].

- - - ; (i) There is no energy flow between the planes normal
to the conductor in the middle of two successive
resistors.

So we don't have to take into account the rest of the
(:%: array but doing physics on this energetically isolated
Z part of the space (the period) is enough. We will focus
Py P, our interest in the area shown on figure 1 for the sake
Y of simplicity. Both the battery and the conductor are
Figure 1. The infinite periodic array of batteries and conS|d§red as CyIlndrlca}I Cyllnders c.)f r.adlﬂs InSIde.
cylindrical resistors, along with the voltage variation the cylinder the potential is a periodic odd function

across the circuit elements. (Notice that no energy flows  Of the z coordinate with half period(see figure 1).

S

S o

through the planes P; and P,, which define a ‘unit cell’ According to our model this potentidl, is described
of the periodic array.) within the first half period by:

. . . . 0 if z <al
region was included. Heald noticed the importance of Us(z) =V l—z (1)

the circuit geometry and for simplification he analysed A—ay Te>el

only two-dimensional models. Recently, another model ) . . )
was proposed [1] where a completely different surfacavhere « is the portion of the half period which
charge density was used. Apparently, a clarification angorresponds to the battery. Such a potential simulates
classification of the essential parameters (battery regio®oth the voltage variation in the battery region of a
geometry, boundary conditions, etc) of the problem isVeston cell [17] and the voltage drop along the resistor.
needed. Since the boundary condition (1) doesn’t involve
The clarification of the essential parameters, which ighe angle¢ neither does the potential over all space.
among the objectives of the present work, is attempteonsequently the Laplace equation for our problem in
through a new model circuit. It is necessary, for thecylindrical coordinates can be written as:
general case that such a model satisfy at least the
following requirements:

e The CCC should be three dimensional.
e The potential at infinity should be taken zero. If we substitute a separable functio®(p,z) =
e Both the battery and the CCC should be consideredp (p)Z(z) in (2) we get:

since the role of the battery region and the related

2 190 920

i T o 2
8p2+p8p+812 )

voltage drop along the resistive wire have to be &?z

included. dz2 +K°Z = ®)
e The model should be free of any particular circuit

geometry, like bending of the wires or changes of d?p 1dpP K2P = 0 4

the wires’ cross section, since such complications dT)z + ;(;Tp - - (4)

restrict the application of the results.
herek is the separation constant. Owing to the fact that

On this basis, one can derive a fundamenta| ur boundary condition (1) is periodic and odd only the

contribution to the formed surface charge density.s

N g ine solutions of (3) are acceptable. Sintg) is a sine
Other contributions, due to the circuit geometry, cary,, ion the separation constant is real and equation (4)
be considered as corrections to it. In principle, all.

contributions should be taken into account [1, 3] in order the modified Bessel equation of order zero. From the

- - wo possible solutiong, and K, of the modified Bessel
tsczjrtfe:égn?rtlzrgéedfeogg?tyand the magnitude of the tOta!aquation onlyK, satisfies the usual boundary condition

that the potential is zero at infinity. So the solution of
(2) in our case takes the form:

2. The model ®(p,2) =Y AuKolkp) sin(kz) (5)
k

Imagine an infinite periodic array of batteries and
cylindrical resistors that are directed along thexis { PlanesP;, P, of figure 1.
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Figure 2. The intersection of the equipotential surfaces Figure 3. The electric field lines on the YZ plane. The
and the YZ plane. The region shown is that of the region shown is the same as in figure 2.

resistive wire with the two battery terminals at the edges.
The equipotential surfaces join points on the batteries

with points on the conductor.
750
2.1. The potential 500 B
© 250
Choosing the constantg; so that (5) satisfies (1) at >¢, 0 -
p = R, we get the potential: =2 —]
V(;O, Z) = 7’1;“)1 Sin(i) (6)
; Ko("5%) ! -750
with: 0 0.5 1 15 2
cognmwa) 2sin(nma) 2/l
a = Vo T 220 _ @) Figure 4. The dimensionless surface charge density
nmw n?m?(a — 1)

) ) _ (E;’\’/O) as a function of z//. The region shown, [0,2],
for the space outside the wirg,> R. Inside the CCC encloses the resistive wire in the middle, so as to stress
the electric field is constant, as it was stated from thehe characteristic linear dependence of o (region B) as
beginning. In the case of the Weston cell this holdsopposed to its singular behaviour near the battery

for the battery too. Thus, fop < R the potential is terminals (region A),(e = 0.05, R// =1073).

v(p, z) = Up(z). A graph of the equipotentials from (6)
is shown on figure 2.

2.3. The surface charge density
The surface charge density on the surface of the

2.2. The electric field outside the CCC conductor is given by:
Since there_is energy flow outside the CQC the electric 0(z) = €k - it (10)
field there, is non-zero. The electric field = —VV i ) ] .
outside the CCC is expressed in cylindrical coordinatesvhere € is the vacuum dielectric constant andthe
with the help of (6), as follows: normal to the cylinder surface, directed outwardly from
the cylinder. So the surface charge density is according
- > K. ("2 . to (8):
B = Eog, =) ) gy g 0O
o1 Ko(5 l ! > K1("®) nwa, . nnz
0(z) = € Ry SII’I(T) (12)
- >\ Ko(*}?) nma, nmz = Ko("77)
E.=E-¢,.=— = cog——) 9) . i T
= Ko(77) | l Plotting (11) on figure 4 we can distinguish between

two characteristic regions, denoted after A and B in the
The electric field lines are shown in figure 3. Itis clearlyfigure.
seen that the electric field is not parallel to the resistive In the region A of the conductor, near the plates
wire. Therefore a surface charge density should exist oof the battery, a large amount of charge is gathered.
the conductor. In the area of space where[—al,«l] Indeed, near the plates of the battery and in the
and|r| > R, that includes points outside the battery andabsence of the conductor there are fringing phenomena.
away from the conductor, the electric field is parallel toWhen the conductor is connected to the battery a
the axis of the cylinder in agreement with the results ohomogeneous electric field is finally established inside
Heald [5]. it. So extra surface charge should gather in this region
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to homogenise the fringing electric field produced by the -

plates of the battery. The surface charge density shows 5107 -t 1

a singular behaviour near the plates of the battery, which T

is a result found previously for the two-dimensional 3107 HilH

circuits [5]. No matter the singularity, the total charge ¢ 2107 HHH

formed can be calculated easily because the related

integral converges. 1107 1=
In the region B of the conductor, away from the L |

battery, a linearlyz-dependent surface charge density 16-5 107 10-6‘10-5‘“10-JJ10-3 102

is formed. This result has already been considered

[21] and is related once again to the homogeneity of RI

the_electrlc field inside the_C(_:C. The charges at thq_igure 5. The «-parameter as a function of R//. The

region A produce an electric field that far from them gjative length of the battery, «, parametrizes the curves.

and inside the wire has a non-zero radial componengnotice that, although both R// and « vary over many

Far away from these charges and near the axis of th&ders of magnitude, « is relatively insensitive.)

CCC this radial component is small and to the lowest

order proportional to z, exactly like the field produced . . . .

by a charged disk [17]. We know, however, [14] that thethe cyllnder near the negative terming. is calculated

charges on the surface of the CCC arrange themselv&®m relation (11):

to homogenize the electric field inside the conductor. I pon

Hence the surface charge density in region B has to 0 :/ / o (z)Rdgdz

be linearly dependent so as to produce an electric field al /O

equal in measure to the one it has to balance. Doing this integration we get:
Thus the surface charge density in the case of our g, (1R

model is arranged in two characteristic formations: a) — 2ﬂéoRZ 1 L4, (coSamn) — (-1)")  (13)

singular one near the plates of the battery (region A) ‘= Ko(™]

and a linear one away from the battery (region B). These . .

formations of surface charge density exist in a realistiv?‘n important quantity referred to the charge formed on

circuit, no matter the geometry, and we shall try to ﬁnd_hethsurfa(;e of tEe conductor_tkls = tg"/(gol)' it Thisd
quantitative results about them. is the surface charge per unit length and voltage drop

along the wire:

NN

E
=

12

00 nw R

2.4. The energy flow. = 27150§ Z Kl(mik) %(cos(omn) — (1" (14)
Another interesting physical quantity the form of which nm1 Ko(570) Vo
depends crucially on the surface charge density is thi we plot « as a function of the rati® /! and« (fig.5),
energy flow. The surface charge density (11) and thé turns out that it has a small variation when the ratio
charges at the plates of the battery are responsible fqt// covers a range of six orders of magnitude, from
the potential (6) which determines the energy flow in thel0-8 to 102 and « covers the realistic range, from
following manner. The equipotential surfaces are thel0~* to 10* . From the values ok, which amount
surfaces on which the field lines of the Poynting vectorsome tenths of million electrons per metre and voltage
lie [5, 8]. Actually , the Poynting vecta§ = (ExB)/u,  drop, we can see that the whole effect is very small. In
is normal to the electric field vector which as thefact, the experiments that showed the existence of such
gradient of the potential is normal to the equipotentialcharges on CCCs where made [7, 14] by using 10 kV,
surfaces. So the field lines of the Poynting vectors aréow-current, power supplies so as to havé'ldlectrons
embedded in the equipotential surfaces. Therefore, froaer metre, or better a few nC per metre. Such charge
the graph of the equipotentials (figure 2) we can clearlylensities, though very small, can line up grass seeds [7]
see that the energy flows from the battery region tdr minute plastic fibers [14] and make their existence
the resistive wire through the outer space [15, 18]. Théletectable.

fact that no energy flows between two successive planes

(figure 1) simplifies the picture and clarifies the fact that

each battery in the array is responsible for the voltage. Analysis of other surface charge formations

drop in the wire included in the energy isolated region.on CCCs

The surface charge density so far discussed is
longitudinal and consists of the two characteristic
As we can see from the graph (figure 4) of the chargdormations mentioned above. It gives rise [19] to
density (11) an amount of charge sets on the surface a transverse electric field that prevents current flow
of the cylinder near the positive terminal of the sourceperpendicular to the wire. We will call it dsngitudinal
and an amount of charge Q sets on the surface of charge density. It is pertinent to this work to present

2.5. The amount of charge on the surface of a CCC.
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other mechanisms, previously appeared in the literature, The configurational dipole charge density [3].
that also produce surface charge densities. e The Hall-type charge density [11].

Firstly, Chester [3] proposed that @nfigurational e The excess charge density due to wire bending [20].
EMF should exist when the cross section of CCCe The transversal surface charge density [1].
changes abruptly. This configurational EMF corre-
sponds to a dipole surface charge density at the point q
discontinuity and its magnitude as estimated [3] is:

otice that, in our model the configurational and the
ansversal charge densities do not exist because of the
simple geometry, whereas the Hall-type charge density
SV. = ﬁvz_ (15) is taken into account implicitly by the solution of the

€7 Qe it Laplace equation for the space outside the wire.

wherem is the mass of the charge carriers. Because of

the smallness of the drift velocity in CCCs the dipole . .

charge density that stems from this configurational EMF4 Calculation of the surface charges in a

mechanism is extremely small. This configurationalrealistic circuit

dipole charge density didn’t exist in our model because ] )

there weren't any abrupt changes of the wire crosdt becomes apparent from the previous analysis that the

section. charge distribution in a CCC is generally determined by:
Secondly, Matzek and Russell [11] proposed thafl) The dimensionality of the circuit, (2) The boundary

since the homogeneous current density inside thgonditions, (3) The voltage drop along the CCC, (4) The

conductor produces a magnetic field, Hall-type battery region, (5) The cross section of the CCC, (6)

potential difference should exist between the axis and he curvature of the CCC, (7) The presence of external

the surface of a CCC. This potential difference is formecglectric fields. The first four parameters were included

by a uniform [16] charge density inside the conductorn our model, exactly the same way they intervene in

whose magnitude is given by [16]: a realistic circuit. In the general case however, the
) surface charges on the conductors should be estimated
_ Vdgrift (16) by adding the other three parameters necessitated by

g=en 2 the mechanisms explained in the previous paragraph.

Rosser [20] calculated the Hall-type charge density in-(lj_he main ﬁomponent_is(;he Iongli)tud(ijnal S.lérf‘a‘ce chargle
copper and found (fof = 1 A, 7R — 10-3m?) that it density whose magnitude can be described concisely

i just 6000 electrons per cubic metre! So the Hall-typd®. the value of thex parameter. Hence, using the
charge density is extremely small. \{oltage drc_)p along the conductor and its Ier!gth we can
Thirdly, Rosser [20] proposed that an excess charg nd from figure 5 the amount of charge on its surface.

density exists due to the bending of CCC. He calculatedr®MPlicated geometry can be taken into account by the
that along the bending of a copper wire (with= 102 concepts of configurational EMF, excess charge density

m) to form a right angle, only one hundred electron duﬁ totr\]/wre bendmgt. and ftrt?]nsversdal fha(ge d?‘”ds"y-
were needed to guide a current of one hundred A. O en the cross section of the conauctor I varied, a

course, this charge is proportional to the current and fofliPOle surface charge density, to which a configurational
common magnitudes of currents is much less than on MF can be related [3], is arranged near the variation. A

electron! very small amount of charge, however, can account even

Finally, Aguirregabiriaet al [1] considered a certain for abrupt sgch changes in gooql conductors.l Moreover,
model circuit in which the current was generated(:u'.'rents going through a bending of the wire can be
by magnetic induction. In their case the electricgulded by few electrons [20] accumulated near the

feld generated by the varying magnetic field had .70 o LR SRANTINE SN 8 ot by
perpendicular to the wire component andransverse y

surface charge density had to exist to balance it. Thg~|e transverse surface charge density [1]. The surface
charge density was transverse in the sense that arges of other circuit elements produce an ‘external’
addition to having a modulation along the current flow ield on the CCC under consideration which is balanced

it had also an angular modulation alogg This source =Y. 1€ transvclerse sltjrface”chatrr?e density. ITthe“ig' fields
of charge density is clearly due to the geometry of theﬁ{,el mar%gn(?azﬁsgn;atr’aig\?eres;l \ﬁar;igtrioiqg? th(g surface
circuit and its order of magnitude is again small [1]: charge density with an amplitude smaller than or equal
o(¢) = 2¢0E, Sing + O(R/1) (17)  to 1C electrons per square metre! Finally, the Hall-

type charge density [11] is much smaller than the other
charge densities and can be neglected for practical

lRUI’DOSES.

where E, is the external field perpendicular to the
wire and O(R/1) a function of R/l and higher orders.
Clearly, such a surface charge density is absent in o
model which is axially symmetric.

Summarizing, we can say that charge distributions i .
CCCs are due to five different mechanisms: 5. Conclusions

e The usual longitudinal surface charge density [9]The purpose of this work was to clarify the charge
which we calculated. density formations in CCCs and calculate their
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magnitude. We achieved to separate the majoReferences

contribution of these charge densities via a certain model
including an array of batteries and resistive cylindrical [1]
conductors. This contribution consists of a singular
surface charge density near the plates of the source, ol
otherwise at points where fringing exists in the absence[S]
of the conductor, and of a linearly dependent surface[4]
charge density away from the source and along the
conductor. The charge per unit metre and voltage dropjs)
that is formed on the surface of the conductor is denoted[e]
by the k parameter. It turns out that for all practical [7]
applicationsc is few tens of million electrons per metre [8]
and voltage drop. The parameter can be used even in
the case of a complicated circuit geometry provided that[9
other contributions concerning surface charge densit 1]
[1,3,20] are taken into account. Typical orders 0f[12]
magnitude of these contributions are given. [13]
Within the framework of the present analysis the
electric field lines and the energy flow vector were[14]
also considered. The results compare favourably witlfi15]
the idea that energy flows in the conductors from the16]
space around them [15,18] and complement Heald'§L7]
results [5] in the case of two-dimensional circuits. On
the teaching aspect of the problem, the electric an 13%
Poynting vector field lines that show the existence o[2 I
the charge density and the flow of energy from the[21
source to the resistive wire can be easily reproduced bjp>]
a computer programthat was prepared in accordance[23]
with the model. Thus experimental devices [7,14],
including high-voltage generators could be avoided24]
when we demonstrate the phenomenon for teachin&
purposes. 5]

i A PC-version of the programlectro.zip is available by
ftp: :anonymous to the University of Athens supercomputer
atlas.uoa.ariadne-t.gr.
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