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Abstract Previous infrared spectroscopy studies of the

defect spectrum of neutron irradiated Czochralski grown

silicon (Cz-Si) revealed a band at 533 cm-1, which dis-

appears from the spectra at *170 �C and exhibits a similar

thermal stability with the Si-P6 Electron paramagnetic

resonance (EPR) spectrum correlated with the di-interstitial

defect. The proposed structural model for this defect con-

sists of two self-interstitial atoms located symmetrically

around a lattice site Si atom. The calculations reveal that

the previously suggested structure of the Si-P6 defect has a

vibrational frequency at about 513 cm-1, which is close to

the experimental value of 533 cm-1. The modeling results

indicate that the 533 cm-1 infrared band originates from

the same structure as that of the Si-P6 EPR spectrum.

1 Introduction

Defect processes in Si as in most semiconductor materials

are greatly affected by point defects and/or doping in the

lattice [1–11]. Small self-interstitial clusters in Si can have

a fundamental role in many solid-state processes and this

impacts its mechanical and electrical properties. In

particular, small interstitial clusters can cause or contribute

[12, 13] to anomalous transient enhanced phenomena of

dopants in Si. Additionally, the evolution of small inter-

stitial clusters to {311} extended defects is not completely

understood, however, it has been proposed that di-inter-

stitial defects act as precursors for the formation of the

{311} defects [14–18]. It is therefore necessary to control

them as their formation can cause detrimental effects and

impact technological application.

Electron paramagnetic resonance (EPR) measurements

concluded [19] that an EPR center (called Si-P6) consists

from two self-interstitials placed symmetrically ({100}

symmetry) a substitutional atom. Its g-tensor exhibits a C2

(or C1h) symmetry with the symmetry axis along the

\100[direction at lower temperatures (200 K), becoming

D2d at 300 K. The Si-P6 signal corresponds [20] to the

positive charge state of the defect, whereas ab initio total

energy calculations [21] support this model for the Si-P6

defect and a transition between a C1h and a C2v symmetry.

Density functional theory (DFT) calculations [22] indi-

cated that the stress-tensor B of the suggested Si-P6 model

of the defect is significantly different from that determined

experimentally [19]. The DFT calculations have also

shown that the di-interstitial defect exhibits considerable

diffusion even at room temperature [22]. The implication is

that it can be undetected for measurements at these tem-

peratures supporting other theoretical results [23] for other

di- interstitial structural forms. It was suggested therefore

that the Si-P6 EPR cannot originate from a di-interstitial

defect. Accordingly, it may originate either from a meta-

stable version of it or from a larger interstitial complex

[22]. So far a universally approved picture regarding the

structure and geometry of the di-interstitial defect has not

been established. Further investigations are necessary to

bridge relative experimental and theoretical results in a
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unified picture. In this line of thought, theoretical calcu-

lations of the vibrational frequency of the EPR Si-P6 defect

geometry suggested by Lee [19] and its correlation with the

533 cm-1 infrared band it is expected to provide additional

evidence in favor or against the correct structure of the di-

interstitial defect.

The present study is focused on the investigation and

modeling of the 533 cm-1 infrared band in neutron irra-

diated Si. In particular semi-empirical calculations were

employed to estimate a Localized Vibrational Mode

(LVM) frequency of the Si-P6 defect model.

2 Modeling the di-interstitial defect

Experimental results concerning radiation defects can be

gathered from electron irradiations and low fluence ion

implantations as these produce native point defects. Neu-

tron irradiation typically produces more complex defects

with more complicated spectra. Neutron damage produces

a higher concentration of native defects favouring the

formation of larger clusters [24, 25].

The similarity of the thermal stability of the 533 cm-1

band and the Si-P6 EPR center lead us to investigate the

possibility whether the di-interstitial defect structure sug-

gested [19] as the origin of the Si-P6 center can have a

vibrational frequency in the range of 533 cm-1. In the

model suggested [19] for Si-P6 EPR defect the di-inter-

stitial complex comprises two interstitials I1, I2 which are

located symmetrically around a lattice site Si atom C. The

I1, I2 dumbbell is u = 17o away from the [001] axis (refer

to Fig. 1). The figure comprises the structure of the di-

interstitial defect suggested by Lee [19] and some selected

surrounding atoms for clarity. In what follows we shall

calculate the vibrational frequency of the complex con-

sidering the defect as a triatomic linear molecule. In this

respect considering the longitudinal atomic displacements,

it can be shown [26] that the kinetic T and potential U

energies of the molecule are given by the expressions:

T ¼ 1

2
mI1 _x2

I1þ
1

2
mI2 _x2

I2 þ
1

2
mC _x2

C;

U ¼ 1

2
kC�I1ðxC - xI1Þ2 þ

1

2
kC�I2ðxC - xI2Þ2

where mC, mI1 and mI2 are the respective masses of the

atoms, xC, xI1 and xI2 are the respective displacements from

the equilibrium sites and kC-I1, kC-I2, are the interatomic

force constants (IFC’s) that bind atoms C and I1, and C and

I2 respectively. In our case: mI1 ¼ mI2 ¼ mC � m, where m

is the mass of the Si atom, and due to symmetry of the

structure: kC�I1 ¼ kC�I2 � k. Then the kinetic T̂ and the

potential Û matrixes are respectively:

T̂ ¼
m 0 0

0 m 0

0 0 m

0
@

1
A; Û ¼

k �k 0

�k 2k �k

0 �k k

0
@

1
A ð1Þ

Therefore the characteristic equation of the system is:

Û � x2T̂
�� �� ¼ 0 ð2Þ

where x are its characteristic normal frequencies. There are

three possible vibrational modes: the symmetric one with

xsym: ¼
ffiffiffi
k
m

q
, the antisymmetric one with xantisym: ¼

ffiffi
k
l

q
,

where l = m/3, the reduced mass of the molecule, and the

collective one with a normal mode frequency xcol that

corresponds to the state where the entire molecule oscillates

collectively as a single structure. Notably, for a free tri-

atomic molecule, this mode corresponds to the simple

transitional motion, therefore xcol. = 0. Obviously, if the

molecule is considered to be inside the silicon crystal, the

collective mode would have a vibrational frequency dif-

ferent than zero (xcol. [ 0). However, the latter frequency

has the lowest value among the frequencies of the three

modes, whereas it is expected that the antisymmetric fre-

quency xantisym has the highest value.

We shall now calculate the frequency of the collective

mode of oscillation of the defect structure. In studying this

mode we shall consider that the three atoms oscillate as an

entity in the field of their nearest neighbours, the latter

considered immobile. This approximation allows the cal-

culation of the distance d of the interstitial atoms of the

structure from their nearest neighbours e.g. the distance

between atoms I2 and B (equivalently the distance between

I1 and A) and finally to estimate the frequency of the mode.

The coordinates of some of the atoms are: b3ð0; 0; 0Þ,
Cða=2; a=2; 0Þ, Bða=4; a=4; a=4Þ, b1ða=2; 0; a=2Þ and so

on, where a = 5.43 Å is the lattice constant for Si.

Tða=2; a=2; a=2Þ, is the tetrahedral interstitial site, at the

center of the fcc cell depicted in Fig. 1 and

T�ða=2; a=2; a=4Þ is the site located halfway [19] down

from the T site along the [001] axis.

Firstly we calculate the exact location of the atom I2.

The I1 � I2 ‘‘dumbbell’’ is 17o away from the [001]

direction and located about half-way down from the tet-

rahedral interstitial sites above the lattice site Si atoms A

and B [19]. Thus, we assumed that the projections of I2 in

the axis CT is at T* located at half-way CT (refer to

Fig. 1). So the exact coordinates of the interstitial atom I2

are a=2; a=2� d0; a=4ð Þ, where:

d0 ¼ I2T� ¼ CT� tan 17o ¼ a

4
tan 17o ¼ 0:415Å ð3Þ

Thus the distance of I2 atom from the nearest neighbour

atom B is:
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d ¼ I2Bð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a

2
� a

4

� �2

þ a

2
� d0 � a

4

� �2

þ a

4
� a

4

� �2
r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

8
� ad0

2
þ d02

r
ffi 1:653Å ð4Þ

The maximum frequency [27, 28] x of the phonon

branch in Si is * 523 cm-1. At this frequency we assume

that a single Si atom in the undistorted lattice vibrates with

respect to its neighbors. This frequency can be written in

the form of x =
ffiffiffiffi
K
m0

q
, where K is a generalized force

constant and m0 refers to the mass of the respective mode.

Following our assumption that the three Si atoms oscillate

as an entity in the field of their nearest neighbours the latter

considered immovable, we will make use of the results

obtained by Aouissi et al. [29] on the interatomic force

(IFC) constants of diamond structure lattices. In that work

the real space IFC’s of diamond, Si, Ge and a-Sn were

calculated by employing DFT (see Ref. [29] and references

therein).

Analytical expressions for certain high symmetry points

were obtained [29]; for example, the phonon frequency at

the C point, which corresponds to the center of the brillouin

zone, in terms of the IFC’s a0, a1, l1 and k2 is

x0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a0 � 4a1 þ 8l2 þ 4k2

m

r
ð5Þ

These IFC’s when plotted (see Fig. 2) versus the nearest

neighbor distance R indicate a dominating 1/R3 behavior.

Thus, we may assume that K varies as K � (R/R0)-a where

a & 3, and R0 = 2.35 Å is the nearest neighbor distance in

the Si lattice. For the collective mode of the cluster

described above, where the three Si atoms oscillate as an

entity (m0 = 3 m, where m is the mass of the silicon atom)

in the field of their 1st neighbors. It is reasonable to assume

that the corresponding generalized constant K0 also varies

as K0 � d-3, where d = 1.65 Å is the distance between the

Si atom of the vibrating cluster and the nearest neighbor.

Thus we have:

B

c2

a3

b3

A

a1

a2

b2

b1

C

c1

I1

I2d

d

17o

[100]

[010] [001]

a
T

T*

Fig. 1 The model of the Si di-interstitial defect after Ref. [19]. A unit cell is also depicted, the c enter of which is the tetrahedral interstitial site T

Fig. 2 Some IFC’s versus the nearest neighbor distance R. The

values have been obtained from Table 1 of Ref. [29]. The notation is

according to Ref. [30]. The solid lines correspond to the 1/R3

behavior and have been drawn as a guide to the eye. Only l2 deviates

from the 1/R3 behavior exhibiting a more pronounced behavior (i.e.

1/R3.5)
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x0

x
¼

ffiffiffiffiffiffiffiffiffiffiffi
K 0

K

m

m0

r
¼ R

d

� �3=2 ffiffiffiffiffiffi
m

3m

r
¼ 2:35

1:65

� �3=2
1ffiffiffi
3
p ffi 0:98

ð6Þ

and x0 = 0.98x = 0.98�523 cm-1 = 513 cm-1.

Additionally, by applying the above approach, the esti-

mated frequency of the antisymmetric mode (where

m0 = m/3) at the C-point, as received from formula (6) has

a value of about 1,540 cm-1. This value is much larger

than that of our experimental value for the 533 cm-1 band,

and reasonably the latter band does not correspond to the

antisymmetric frequency of the di-interstitial defect.

Regarding the symmetric mode of oscillation, following

the same way (m0 = m), the calculated frequency at the

C-point gives a value of about 889 cm-1. Similarly, this

value also cannot be associated with the 533 cm-1 band.

Notably, the calculation of the IFC’s, drawn from first

principles, is based [29] on the existence of covalent bonds

between the Si atoms and was applied in the case of a

perfect Si crystal. In particular, each Si atom is bonded

with its nearest neighbors with sp3–hybrid covalent bonds.

However, in the structural model considered for the di-

interstitial defect, the two extreme atoms are at interstitial

sites. As a result, it is not possible for them to be connected

with the central Si atom of the structure with a sp3-cova-

lent bond, due to its geometry. Apparently the central atom

can be sp3-covalently bonded only with neighboring lattice

Si atoms. Furthermore, both of these interstitial atoms also

interact with their local crystalline environment, of course

with a much weaker force potential than that of a covalent

bond. Importantly, the presence of interstitial atoms

destroys the local symmetry of the perfect crystal. As a

result the IFC’s model, introduces substantial errors in the

calculation of the vibrational frequency of the antisym-

metric and the symmetric mode. On the other hand, the

513 cm-1 value derived for the collective mode of oscil-

lation deviates \5 %, actually 3.7 % from the experi-

mental one, supporting the correlation of the 533 cm-1

band to the di-interstitial structure suggested by Lee [19].

Notably, in finding the oscillation frequency of the col-

lective mode, the applying IFC’s approach for the calcu-

lation [29] of k simulates more realistically the physical

problem under consideration. The sp3-orbitals approach is

more representative for this kind of oscillation as com-

pared with the other two cases. Indeed, in the case of the

collective mode the three atoms are oscillating in phase as

one entity, representing in essence one point of the silicon

lattice which is physically connected with sp3-orbitals with

the other neighbor lattice points. Thus, the introduced

errors by applying the IFC’s approach are expected to be

much smaller than the two other cases of symmetric and

antisymmetric oscillation.

The small differences about 20 cm-1 between the the-

oretically calculated frequency of the collective mode and

the experimentally measured frequency, may be due to

(i) ignoring the existence of additional individual interac-

tions of the two extreme interstitial atoms with their nearest

neighbors and (ii) to the extended structure of the defect,

which possibly create compressive stresses in the near

crystalline environment. Both of these factors may increase

the actual measured vibrational frequency (533 cm-1) of

the collective mode as compared to the calculated one

(513 cm-1).

After careful consideration we suggest that the 533 cm-1

IR band and the Si-P6 EPR spectrum in Si originate from

the same center attributed to the di-interstitial defect. Our

assignment was mainly based firstly on the similarity of the

thermal stability of the two centers and the consistency

between the extracted experimental values of the activation

energies [31] and on the present theoretical calculations of

the vibration frequency of the collective oscillation of the

three atoms of the di-interstitial defect.

3 Conclusions

The present study was mainly focused on the modeling of

the 533 cm-1 band that is observed in the IR spectra of

neutron- irradiated Si. Calculations of the collective mode

vibrational frequency of the suggested di-interstitial struc-

ture correlated with the Si-P6 defect, gave a value at about

513 cm-1 in good agreement with the reported experi-

mental values of 533 cm-1. This indicates that the

533 cm-1 IR band originates from the same defect as that

of the Si-P6 EPR spectrum attributed to a di-interstitial

structure. From a technological viewpoint the present study

provides further information on a defect that is important

for the agglomeration processes of self-interstitials in heat-

treated Si leading to extended structural defects, thus

impacting the Si material properties.
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