

EXMATEC 2010

10th International Workshop on Expert Evaluation and Control of Compound Semiconductor Materials and Technologies

May 19-21, 2010 Darmstadt/Seeheim, Germany

PROGRAM and ABSTRACTS

Compiled and Edited by

Dimitris Pavlidis Oktay Yilmazoglu Jens-Peter Biethan

Technische Universität Darmstadt Department of High Frequency Electronics Merckstrasse 25 64283 Darmstadt Germany

10.10-10.20	Thermal Management of Mid-IR Sb-Based Surface Emitting Lasers JP. Perez ⁽¹⁾ , A. Laurain ⁽¹⁾ , L. Cerutti ⁽¹⁾ , I. Sagnes ⁽²⁾ , A. Garnache ⁽¹⁾	
	⁽¹⁾ University Montpellier 2 (France)	
	⁽²⁾ Laboratoire de Photonique et Nanostructures (France)	
10.20-10.30	Dark Current in Porous Silver Contacts of Silicon Solar Cells	
	V. I. Laptev ⁽¹⁾ , <u>H.M. Khlyap⁽²⁾</u>	
	⁽¹⁾ Russian New University (Russian Federation) ⁽²⁾ Kaiserslautern (Germany)	
10.30-10.40	HgCdTe/Si Infrared Photovoltaic Detector for Room Temperature Operation	
10.20 10.10	F. F. Sizov, R. K. Savkina, A. B. Smirnov, V. A. Deriglazov	
	V. E. Lashkaryov Institute of Semiconductor Physics of NASU (Ukraine)	
10.40-10.50	HFET Stability and 1/f Noise	
5	H. Morkoç ⁽¹⁾ , C. Kayis ⁽¹⁾ , J. Leach ⁽¹⁾ , C. Zhu ⁽¹⁾ , <u>P. H. Handel⁽²⁾</u>	
	⁽¹⁾ Virginia Commonwealth University (USA) ⁽²⁾ University of Missouri (USA)	
10.50-11.00	Influence of Barrier Material on the Optical Performance of InGaN-Multiple Quantum	
	Wells Emitting at 450 nm	
	U. Zeimer ⁽¹⁾ , V. Hoffmann ⁽¹⁾ , U. Jahn ⁽²⁾ , C. Netzel ⁽¹⁾ , JR. van Look ⁽³⁾ , M. Weyers ⁽¹⁾ , M. Kneissl ^(3, 1)	
	(1) Ferdinand-Braun-Institut, Leibnizinstitut für Höchstfrequenztechnik (Germany)	
	⁽²⁾ Paul-Drude-Institut für Festkörperelektronik (Germany)	
	⁽³⁾ TU Berlin (Germany)	
-11.00-11.30	Coffee Break 10.50-11.20 coffee On the 60	
12.00		
11.30-13.20	Session E7 - Defects & Doping and Semiconductor Properties	
	Invited: Electrical Reliability and Failure Mechanisms of GaN-Based HEMTs	
00 23	J. Joh and J. A. del Alamo Massachusetts Institute of Technology (USA)	
11.50-12.00	Evaluation of Cz-Si-Ce Microstructure After High Temperature-Pressure Treatment	
1100 112	<u>A. Misiuk⁽¹⁾</u> , N. V. Abrosimov ⁽²⁾ , J. Bak-Misiuk ⁽³⁾ , W.Wierzchowski ⁽⁴⁾ , K.Wieteska ⁽⁵⁾ , C. A. -Londos ⁽⁶⁾ , J. Kucytowski ⁽⁷⁾	
11.0 -11.	-Londos ⁽⁶⁾ , J. Kucytowski ⁽⁷⁾	
	⁽¹⁾ Institute of Electron Technology, Warsaw (Poland) ⁽²⁾ Institute for Crystal Growth, Berlin (Germany)	
	⁽³⁾ Institute of Physics, Warsaw (Poland)	
	(4)Institute of Electronic Materials Technology, Warsaw (Poland)	
	⁽⁵⁾ Institute of Atomic Energy, Otwock-Swierk (Poland)	
	⁽⁶⁾ University of Athens (Greece)	
12.00-12.10	⁽⁷⁾ University of Silesia, Katowice (Poland) Degradation Analysis of High Power Laser Diodes	
12.00-12.10	<u>A. Martín-Martín⁽¹⁾</u> , M. P. Iñiguez ⁽¹⁾ , J. Jiménez ⁽¹⁾ , M. Oudart ⁽²⁾ , J. Nagle ⁽³⁾	
11-20 -119	^{O(1)} Universidad de Valladolid (Spain)	
	⁽²⁾ Alcatel-Thales 3-5lab (France)	
10 10 10 00	⁽³⁾ Thales Research and Technology (France)	
12.10-12.20	Trapping Effects in Al ₂ O ₃ /AlGaN/GaN MOS Structures with Gate Oxide Prepared by Different Deposition Techniques	
	D. Gramčova ^(1,2) Ch. Mizue ⁽²⁾ V. Hori ⁽²⁾ P. Stoklas ⁽¹⁾ I. Novák ⁽¹⁾ T. Hashizume ⁽²⁾ and	
11.W -11-n	P. Kordoš ^(1,3)	
	⁽¹⁾ Slovak Academy of Sciences, Bratislava (Slovakia)	
	⁽²⁾ Hokkaido University, Sapporo (Japan)	
12.20-12.30	⁽³⁾ Slovak University of Technology, Bratislava (Slovakia) LTPL and TEM Investigations of 6H-Type Stacking Faults in Low-Doped 4H-SiC	
1100-1200	Epitaxial Layers <u>T. Robert⁽¹⁾</u> , M. Marinova ⁽²⁾ , S. Juillaguet ⁽¹⁾ , A. Henry ⁽³⁾ , E. K. Polychroniadis ⁽²⁾ , J. Camassel ⁽¹⁾ ⁽¹⁾ GES (France)	
	UES (Trance)	
	⁽²⁾ Aristotle University of Thessaloniki (Greece) ⁽³⁾ University of Linköping (Sweden)	

EVALUATION OF Cz-Si-Ge MICROSTRUCTURE AFTER HIGH TEMPERATURE-PRESSURE TREATMENT

A.Misiuk^(1,*), N.V.Abrosimov⁽²⁾, J.Bak-Misiuk⁽³⁾, W.Wierzchowski⁽⁴⁾, K.Wieteska⁽⁵⁾, C.A.Londos⁽⁶⁾, J.Kucytowski⁽⁷⁾

⁽¹⁾ Institute of Electron Technology, 02-668 Warsaw, Poland
⁽²⁾ Institute for Crystal Growth, 12489 Berlin, Germany
⁽³⁾ Institute of Physics, PAS, 02-668 Warsaw, Poland
⁽⁴⁾ Institute of Electronic Materials Technology, 01-919 Warsaw, Poland
⁽⁵⁾ Institute of Atomic Energy, 05-400 Otwock-Swierk, Poland
⁽⁶⁾ University of Athens, Athens 15784, Greece
⁽⁷⁾ University of Silesia, 40-007 Katowice, Poland
^(*) E-mail: misiuk@ite.waw.pl

Annealing of Czochralski grown Si-Ge single crystals at high temperature (HT) under enhanced hydrostatic pressure (HP) affects their structure. Microstructure and homogeneity of Cz-Si-Ge samples with $c_{Ge} \le 8$ at.% were evaluated by X-ray (Bond method and reciprocal space mapping), infrared, synchrotron and related measurements, after annealing for up to 10 h at up to 1400 K under HP ≤ 1.1 GPa. HT-HP processing results in stimulated clustering of oxygen interstitials and assists in improvement of initial non-homogeneity of Ge distribution.

1. INTRODUCTION

Silicon-germanium single crystals (Si-Ge) are of wide interest, especially for application in optoelectronics. In the case of Czochralski grown (CZ) single crystalline Si-Ge, containing a few at.% of Ge, it not distributed uniformly so different nanoand micro-defects are formed within the Si-Ge bulk [1]. As stated recently [2], such defects can be substantially affected by annealing the Si-Ge samples at high temperature (HT), especially under enhanced hydrostatic pressure (HP) [3].

The effect of HT-HP on single crystalline Si-Ge with relatively high content of oxygen interstitials is now investigated.

2. EXPERIMENTAL

The p-type (hole concentration $\approx 1.3 \times 10^{15}$ cm⁻³) single crystalline (111) oriented Si-Ge samples containing 1.8–8 at.% of Ge, with interstitial oxygen (O_i) concentration, c_0 =(0.8-1.2)×10¹⁸ cm⁻³, were cut from Czochralski grown Si-Ge rods.

Next the Si-Ge samples of about $8x6x(0.5-2)mm^3$ dimension were annealed in Ar atmosphere, typically for 5 h, at up to 1400 K under 10^5 Pa (atmospheric pressure) or HP=1.1-1.2 GPa.

The as-grown and HT-HP processed Si-Ge samples were investigated by X-ray (Bond method and reciprocal space mapping). synchrotron (at HASYLAB DESY), infrared, and related methods.

Fig. 1. White beam section (A) and projection (B) topographs of as-grown Si-Ge.

Fig. 2. XRRSM's of Si-Ge: A - processed for 5 h at 1270 K under 1.2 GPa and B – processed for 10 h at 1000 K under 10^5 Pa and, subsequently, for 5 h at 1270 K under 1.2 GPa ($c_0 = 6.5 \times 10^{17}$ cm⁻³).

3.RESULTS AND DISCUSSION

In what follows typical results concerning the Si-Ge samples with $c_{Ge} = 1.8$ at.% are presented.

Dislocations, slip bands and striations, evidencing nonuniform distribution of Ge and its segregation, were revealed in the as-grown Si-Ge samples, also by synchrotron topography (Fig. 1).

Processing of Si-Ge for 5 h at 1270/1400 K results in volume HP-dependent precipitation of oxygen interstitials.

Fig. 3. White beam projection sectional (A) and projection (B) topographs of Si-Ge processed for 5 h at 1400 K under 1.1 GPa ($c_0 = 5.3 \times 10^{17}$ cm⁻³).

Fig. 4. $2\Theta/\omega$ scans (111 reflection, triple axis configuration of X-Ray diffractometer) of Si-Ge: (1) as-grown, (2) processed for 5 h at 1400 K under 10^5 Pa ($\Delta c_o = 3.2 \times 10^{17}$ cm⁻³) and (3) processed under 1.1 GPa ($\Delta c_o = 6.7 \times 10^{17}$ cm⁻³).

After the treatment of Si-Ge at 1270 K under 10⁵ Pa and 1.2 GPa, a decrease of c_0 was, respectively, 3.5×10^{17} cm⁻³ and 7.5×10^{17} cm⁻³.

Such processing produces numerous nano-dimensional clusters (Fig. 2A).

³ The same treatment of the samples pre-annealed at 1000 K under 10⁵ Pa resulted in less pronounced X-Ray diffuse scattering, probably evidencing decreased dimension of newly created oxygen precipitates or/and their lowered concentration (Fig. 2B).

Annealing of Si-Ge at 1270 K / 1400 K under 10⁵ Pa exerts minor effect on its microstructure, contrary to the case of processing under HP (Figs 3, 4).

The samples processed at 1400 K under 11P present similar striations and slip bands as these observed in the as-grown samples (compare Figs 3 and 1). Still the Si-Ge sample processed at 1400 K under HP is of a little improved homogeneity (Fig. 3A). As follows from XRRSM's (not presented), the intensity of scattered X-Rays tends to decrease for Si-Ge processed at 1400 K under 11P also evidencing improved homogeneity (compare Fig. 2).

Processing of Si-Ge at HT (HP) affects nano-dimensional Ge-containing non-homogeneities produced at growth of the Si-Ge rods [1, 2]. These non-homogeneities dissolve partially in the matrix at processing. This is related to enhanced diffusivity of Ge atoms at HT-HP [4].

Processing of oxygen-rich Si-Ge affects also the c_n value because of O_i 's precipitation producing nano-dimensional substoichiometric SiO_{2-x} clusters as well as other defects, among them the extended ones [5]. The lattice parameter, a_n of cubic as-grown Si-Ge sample, determined from the $2\Theta/\omega$ scans (Fig. 4) is lower than that calculated from the Vegard law (that last assumes the linear dependence of *a* on the Ge concentration) [5]. This confirms that part of Ge admixture is contained in Si-Ge in the form of Ge-enriched clusters.

Processing of Si-Ge at 1270 K, both under 10⁵ Pa and 1.1 GPa, results in an increase of Δa ($\Delta a = a_{processed} - a_{insprown}$) for about 0.00005 nm (Δa determined at 293 K). Processing at 1400 K under 10⁵ Pa resulted in even more increased a_{293K} , $\Delta a = 0.0001$ nm (compare Fig. 4). These observations can be considered as proving dissolution of Ge-enriched clusters in the Si-Ge matrix. On the other hand, the value of *a* of the Si-Ge sample processed at 1400 K under 1.1 GPa (such treatment results in especially high percentage of precipitated Ω_i 's – see the Fig. 4 caption) remains unchanged ($\Delta a \approx 0$).

It is known that processing of oxygen-containing CZ-Si at HT-HP is associated with the decreased a value resulting from removal of O_i's from the lattice (the presence of O_i's results in the increased, c_o – dependent value of a).

So the treatment of Si-Ge at HT under 10⁵ Pa / HP exerts complex effects on its nanostructure, related, among other factors, to:

- dissolution of nano-dimensional Ge-enriched clusters in the Si-Ge matrix, dependent on IIT, IIP and annealing time, and
- precipitation of interstitial oxygen with a creation of nanodimensional clusters composed of sub-stoichiometric silicon dioxide.

4. CONCLUSIONS

In general, IHT-IHP processing of single crystalline oxygencontaining CZ-grown Si-Ge results in stimulated clustering of oxygen interstitials and seems to assist in partial healing of initially present non-homogeneity of Ge distribution.

In view of important role of single crystalline Si-Ge in modern microelectronics and optoelectronics, determination of the effect of high temperature pressure on its structure deserves extended future research.

[1] I.Yonenaga, T.Taishi, Y.Ohno, Y.Tokumoto, "Cellular structures in Czochralski-grown SiGe bulk crystal", J. Cryst. Growth, 312 (2010) 1065-1068.

[2] J.Chen, D.Yang, X.Ma, H.Li, L.Fu, M.Li, D.Que, "Dissolution of oxygen precipitates in germanium-doped Czochralski silicon during rapid thermal annealing", *J. Cryst. Growth*, 308 (2007) 247-251.

[3] A.Misiuk, N.V.Abrosimov, P.Romanowski, J.Bak-Misiuk, A.Wnuk, B.Surma, W.Wierzchowski, K.Wieteska, W.Graeff, M.Prujszczyk, "Effect of annealing under stress on defect structure of Si-Ge", *Matter. Sci. Engng B*, 154-155 (2008) 137-140.

[4] P.Zaumseil, G.G.Fisher, Ch.Quick, A.Misiuk, "The relaxation and diffusion behaviour of strained $Si_{1-x}Ge_x$ layers on Si substrates at high temperature under hydrostatic pressure", *Solid State Phen.* 47-48 (1996) 517-522.

[5] M.Veldkamp, A. Erko, et al., "Si_{1-x}Ge_x laterally graded crystals as monochromators for X-ray absorption spectroscopy studies", *Jpn. J. Appl. Phys.* 38, *Suppl.* 38-1 (1999) 612-615.