Carbon and oxygen are the main unintentionally added impurities in Si during growth. Carbon is an isovalent impurity in Si at substitutional sites, being electrically inactive. Due to its smaller covalent radius than that of Si ($r_C = 0.77 \AA$, $r_Si = 1.17 \AA$) carbon induces tensile strains in the Si lattice. On the other hand, oxygen is located interstitially in the Si lattice being also electrically inactive. Although both impurities do not introduce electric levels in the gap, however during processing or/and irradiation give rise to electrically active complexes which affect the properties and behaviour of Si material. Furthermore, doping of Si with isovalent impurities improves the performance of devices for certain applications. Due to its larger covalent radius than that of Si ($r_{Sn} = 1.41 \AA$, $r_Si = 1.17 \AA$) Sn acts as a trap for vacancies and small impurity atoms as for example carbon. In any case, the simultaneous presence of carbon and tin in the Si lattice is expected to affect the balance of vacancies and self-interstitial defects available due to irradiation and thermal treatments and therefore affect the formation of oxygen-related defects.

The immediate products of irradiation are vacancies and self-interstitials. Oxygen is the main trap for vacancies leading to the formation of VO defect ($V+O \rightarrow VO$) the so-called A-center [1, 2] which introduces a level at Ec-0.17 eV in the gap [3]. Carbon is the main trap for self-interstitials leading to the formation of the COi and the C_Ci defects [4] in Si, through the Watkins exchange mechanism ($C_i + Si \rightarrow C_i$). In Cz-Si the COi center is the dominant carbon-related defect giving rise to a level at Ev+0.36 eV in the gap [4, 5]. Both VO and COi defects are optically active. An IR band at 830 cm$^{-1}$ has been assigned to the VO defect [2]. At least six bands, with the strongest one at 860 cm$^{-1}$, have been assigned to the COi defect [4].

The main reaction channel that VO defect participates upon annealing is that of the addition of oxygen atoms, leading to the formation of VO$_x$ complexes [2, 6]. VO defect is stable to ~ 300 $^\circ$C and then becomes mobile to produce VO$_2$ defect (VO+O\rightarrow VO$_2$). An IR band at 885 cm$^{-1}$ has been assigned to the VO$_2$ defect [5, 6]. VO$_2$ defect is stable to ~ 400$^\circ$C and then it is captured by a mobile oxygen atom leading to the formation of VO$_3$ defect (VO$_2$+O\rightarrow VO$_3$). Three IR bands at 904, 968 and 1000 cm$^{-1}$ have been assigned to the VO$_2$ defect [5, 6]. VO$_3$ defect is stable to ~ 500 $^\circ$C and then by capturing an oxygen atom forms VO$_4$ defect (VO$_3$+O\rightarrow VO$_4$) which is stable to ~ 550 $^\circ$C. Two bands at 985 and 1009 cm$^{-1}$ have been assigned to the VO$_4$ defect [7]. At higher temperatures, where oxygen atoms are very mobile in the Si lattice, VO$_2$ and VO$_3$ defects are formed either from the addition of an oxygen atom via the reactions VO$_2$+O\rightarrow VO$_3$, VO$_3$+O\rightarrow VO$_4$, correspondingly, or with the participation of oxygen dimmers by following the reactions VO$_2$+O$_2$ \rightarrow VO$_3$, VO$_3$+O$_2$ \rightarrow VO$_4$ [8, 9]. Other reactions are also possible as for example V$_2$O$_3$+O\rightarrow V$_2$O$_5$, V$_2$O$_5$+2O\rightarrowV$_2$O$_7$, V$_2$O$_5$+O \rightarrowV$_2$O$_6$, etc leading generally to the formation of VO$_{6m}$ defects [7]. A number of bands have been generally correlated with the VO$_x$/ VO$_y$ defects [8, 9] or/and with VO$_{6m}$ structures [7]. Any particular assignment of bands to the VO$_x$ or the VO$_y$ defect has not been made so far. Furthermore the thermal stability of the VO$_x$ and VO$_y$ defects has not been investigated. The main objective of this work was to study the effect of Sn doping in the behaviour of vacancy-oxygen-related defects in Si.

The Si material used in this work was Czochralski crystals doped with tin (Sn). The Sn concentration was [Sn]$_0$=3x1017 cm$^{-3}$. The oxygen and carbon concentrations were [O$_i$]$_0$=9.6 x 1017 cm$^{-3}$ and[C$_i$]$_0$=4.7x1017 cm$^{-3}$, respectively. The samples were irradiated with 2 MeV electrons at 95 $^\circ$C using the Dynamitron accelerator at Takasaki-JAERI (Japan). The irradiation dose was 1x1018 cm$^{-2}$. The evolution of the radiation induced defects were studied by 20 min isochronal anneals in steps of 10 $^\circ$C up to 750 $^\circ$C. After each annealing step, the IR spectra were recorded at room temperature by means of a FTIR spectrometer with a resolution of 1cm$^{-1}$. Fig. 1
The thermal evolution of VO, VO2, and VO3 defects in the Sn-doped Si samples immediately after irradiation and at various selective temperatures in a course of the isochronal anneals. A number of defects were observed. Actually, the well-known defects VO (830 cm⁻¹), VO2 (888 cm⁻¹), VO3 (904, 968, 1000 cm⁻¹), VO4 (985, 1009 cm⁻¹) are present in the spectra together with the less known bands at 967, 1005, 1037 and 1051 cm⁻¹ which appear above 550 °C. Figs 2 and 3 show the thermal evolution of all the bands in the samples. Noticeably, at room temperature the two bands at 1037 and 1051 cm⁻¹ have been seen previously and attributed to either VO₉m structures [7] and/or to VO/ VO₆ [8, 5] defects. The two other bands at 967 and 1005 cm⁻¹ have also been detected previously [7] in neutron irradiated Si and correlated with VO₉m defects. On the other hand, measurements at cryogenic temperatures of electron-irradiated Si have detected additional bands at 992, 1024, and 1108 cm⁻¹ which were correlated [8] with the VO/ VO₆ defects. In the present detailed work we have observed that the bands at 1037 and 1051 cm⁻¹ appear together in the spectra upon annealing of the VO₄ defects and disappear also together just above 700 °C. Another pair of bands at 967 and 1005 cm⁻¹ also appear together in the spectra upon disappearing of the VO₄ defect and decay out also together about 740 °C. Judging from their thermal stability we tentatively correlated the first pair of bands at 1037, 1051 cm⁻¹ with the VO₄ defect and the other pair at 967 and 1005 cm⁻¹ to the VO₆ defect. In this attribution we have taken into account that all the bands emerge in the spectra upon annealing of the VO₄ defect and therefore it is more reasonable to correlate them with VO₄ defects, instead of the more general attribution to VO₉m structures. From the general behaviour of the thermal stability of the VO₆ (1 ≤ n ≤ 4), where the larger the number n of the oxygen atoms the higher the annealing temperature of the structure, we attribute the first pair of bands (1037, 1051 cm⁻¹) to the VO₄ defect annealing out at ~710 °C and the second pair of bands at (967, 1005 cm⁻¹) to the VO₆ defect which anneals out at a higher temperature (~750 °C). It is worth noting that the above four weak bands of VO₄ and VO₆ defects appear in the IR spectra of neutron irradiated Cz-Si received at room temperature [7], as well as in the spectra of electron irradiated Si received at He liquid temperatures [8]. Understandably, in neutron irradiation the concentration of defects is comparably larger than that of electron irradiation, allowing their detection at room temperature measurements in the former case which may not be detected in the latter case. Also measurements at cryogenic temperatures allow for weak signals to be seen in the IR spectra, although may pass undetected in room temperature measurements.

In summary, we studied the evolution of VO₆ defects in Si material containing carbon and tin by FTIR. Noticeably, signals from VO₆ structures with n=4 are present in the IR spectra of Sn-doped Si and two pairs of bands at (1037, 1058 cm⁻¹) and (967, 1005 cm⁻¹) were correlated with the VO₄ and VO₆ defects, respectively. The effect of Sn presence in the Si lattice was considered and it was found that Sn plays an important role in the enhanced formation of VO₆/ VO₄ defects.