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Abstract Allometric growth investigations are usu-

ally conducted by fitting the allometric model (L)

y ¼ axb , log y ¼ log aþ b log x (y, x are morpho-

metric characters and b the allometric exponent),

which is quite simple both conceptually and mathe-

matically, and its parameters are easy to estimate by

linear regression. However b is not necessarily con-

stant and it may change either continuously or

abruptly at specific breakpoints; thus, the simple L

model quite often fails to describe allometric growth

successfully. In the current context, a better alterna-

tive is proposed, based on Kullback–Leibler (K-L)

information theory and multi-model inference (MMI).

Allometric growth was investigated in eight marine

species: the bivalves Pecten jacobaeus and Pinna no-

bilis, the squids Todarodes sagittatus and Todaropsis

eblanae, the crab Pachygrapsus marmoratus (females),

the ghost shrimp Pestarella tyrrhena (males), and the

fishes Trachurus trachurus and Sparus aurata. In each

of the eight species, a pair of body parts was mea-

sured and the allometric growth of one body part in

relation to the other (reference dimension) was

studied, by fitting five different candidate models

including: the simple allometric model, two models

assuming that b changed continuously and two other

assuming that b had a breakpoint. For each species,

the ‘best’ model was selected by minimizing the small-

sample, bias-corrected form of the Akaike Informa-

tion Criterion. To quantify the plausibility of each

model, given the data and the set of five models, the

‘Akaike weight’ wi of each model was calculated;

based on wi the average model was estimated for each

case. MMI is beneficial, more robust, and may reveal

more information than the classical approach. As

demonstrated with the given examples, estimation of

b from the linear model, when it was not supported

by the data, revealed some characteristic pitfalls, such

as concluding positive allometry when there is actu-

ally negative or vice versa, or reporting allometry

when the data in reality support isometric growth or

vice versa.

Introduction

Growth is often accompanied by changes in propor-

tion as well as in size, the phenomenon of relative or

allometric growth. The use of the allometric equation

(Huxley 1932) is the most extensively used method of

analysis for relative growth during ontogeny; the
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relationship between the size of a part of the body y

and another part x (taken as a reference dimension)

has the form y = axb, where the exponent b is a

measure of the difference in the growth rates of the

two parts of the body; when b < 1 the type of growth

is described as negative allometric, when b > 1 as

positive allometric and when b = 1 as isometric. To

estimate the coefficients of the allometric equation,

the data are usually log-transformed and a linear

regression is fitted; b is the slope of the resulting

linear equation. Logarithmic transformation is gener-

ally appropriate because morphological data tend to

have log normal structure, as they are non-negative,

with positively-skewed distributions and variances

that increase with the mean (Jolicoeur 1990; Ebert

and Russell 1994). However, the allometric exponent

b is not necessarily constant. The existence of

breakpoints (i.e. points of discontinuity in slope b) in

allometric data has been recognized since the allo-

metric equation was first proposed (Huxley 1932).

Such breakpoints are usually identified visually, when

data are obviously separated, and then regression

analysis is done on both sides of the selected break-

point. Estimating breakpoints visually is not, however,

an accurate method and the use of segmented

regression models is a better alternative (Shea and

Vecchione 2002; Hall et al. 2006).

The allometric exponent may also change continu-

ously following a smooth, curvilinear trend without

exhibiting marked breakpoints (e.g. Hall et al. 2006).

Such a smooth change of the allometric exponent (in

contrast to the marked instantaneous change at

breakpoints) might occur e.g. when maturity favors the

relative growth of reproduction-related body parts but

later in ontogeny size constraints reduce the relative

growth rates.

When conducting an allometric growth investiga-

tion, it is common practice among researchers to sim-

ply estimate the slope of the linear regression equation

fitted to log-transformed data. In the present paper, it

is demonstrated that such an approach may give very

poor and misleading results. A better alternative is

proposed, based on Kullback–Leibler (K-L) informa-

tion theory and multi-model inference (MMI) as de-

scribed by Burnham and Anderson (2002).

Model selection based on information theory is a

relatively new paradigm in biological sciences and is

quite different from the usual methods that are based

on null hypothesis testing. The information theory

approach to model selection and inference is based on

K-L information Iðf ; gÞ ¼
R

f ðxÞ log f ðxÞ
gðxjhÞ

� �
dx (Kull-

back and Leibler 1951). I(f,g) is the ‘information’ lost

when model g (with parameters h) is used to approxi-

mate full reality or truth f; equivalently I(f,g) is inter-

preted as the distance from the approximating model

to full reality (Burnham and Anderson 2002).

According to information theory, minimization of K-L

distance is a fundamental basis for model selection.

Full reality f is unknown in real problems and thus

I(f,g) may not be computed directly. Akaike (1973)

devised a method to approximate K-L distance, based

on the empirical log-likelihood function. This is known

as Akaike’s information criterion (AIC) and is sum-

marized by the formula AIC ¼ �2logðLðĥjdataÞÞ þ 2K;

where logðLðĥjdataÞÞ is the numerical value of the log-

likelihood at its maximum point, ĥ is the vector of the

estimated model parameters and K the number of

estimable parameters.

According to the information-theoretic approach,

data analysis is assumed to be the integrated process of

a priori specification of a set of candidate models

(based on the science of the problem), model selection

based on the principle of parsimony (i.e. selection of a

model with the smallest possible number of parameters

for adequate representation of the data; a bias versus

variance tradeoff) according to AIC, and estimation of

parameters and their precision.

Information-theoretic methods free the researcher

from the limiting concept that the proper approxi-

mating model is somehow ‘given’. When a model is

‘picked’ in some way, independent of the data, and

used to approximate the data as a basis for inference,

both the uncertainty associated with model selection

and the benefits of selecting a parsimonious model are

ignored. This strategy incurs substantial costs in terms

of reliable inferences, because uncertainty in model

selection is assumed to be zero. If model selection

uncertainty is ignored, precision is often overesti-

mated, estimated confidence intervals of the parame-

ters are below the nominal level, and predictions are

less accurate than expected (Burnham and Anderson

2002; Katsanevakis 2006). When the data support evi-

dence of more than one model, model-averaging the

predicted response variable across models is advanta-

geous in reaching a robust inference that is not con-

ditional on a single model. Rather than estimating

parameters from only the ‘best’ model, parameters can

be estimated from several or even all the models con-

sidered. This procedure is termed multi-model infer-

ence (MMI) and has several theoretical and practical

advantages (Burnham and Anderson 2002). Model-

averaging ideas are well developed from the Bayesian

perspective (e.g. Hoeting et al. 1999) but have not yet

been commonly adapted into applied frequentist

inferences (Burnham and Anderson 2002).
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Materials and methods

Allometric growth was investigated in eight different

marine species: the bivalves Pecten jacobaeus and

Pinna nobilis, the squids Todarodes sagittatus and To-

daropsis eblanae, the crab Pachygrapsus marmoratus

(females), the ghost shrimp Pestarella tyrrhena (males),

and the fishes Trachurus trachurus and Sparus aurata

(Fig. 1). All specimens were collected from Greek

waters. In each of the eight species, a pair of body parts

was measured and the allometric growth of one body

part in relation to the other was studied (Fig. 1,

Table 1).

Five candidate models were fitted to the log-trans-

formed data (natural logarithms) of each dataset, with

least squares: the linear (L), quadratic (Q), cubic (C),

broken-stick (BS), and two-segment (TS) (Table 2).

The L model was fitted with simple linear regression,

while polynomial regression was used for the Q and C

models. The BS and TS models assume a marked

morphological change at a specific size of X = B. The

BS model represents two straight line segments with

different slope that intersect at X = B. The TS model

represents two straight line segments that do not

intersect; thus, there is a point of discontinuity at

X = B, and the slope of the two segments may or may

not be equal. To fit the BS and TS models, the

breakpoint X = B was allowed to vary between the

minimum and maximum value of the independent

variable with a sufficiently small step. For each value of

the breakpoint, two separate lines were fitted with

linear regression to the data before and after the

breakpoint (independent lines in the case of TS or

connected lines at the breakpoint in the case of BS)

and the corresponding residual sum of squares (RSS)

was calculated as the sum of the two RSS for the two

lines; this was done automatically in MsExcel by what-

if analysis (one variable data table). The value of the

breakpoint that gave the minimum RSS was found and

the corresponding model parameters were estimated.

The L model assumes that allometry does not

change as body size increases (b = b1 = const.). In the

current context the ‘allometric exponent b’ of the al-

lometric relationship of the morphometric variable Y

in relation to the variable X is generalized and taken to

mean the first derivative of logY with respect to logX.

The Q and C models assume that b changes continu-

ously with increasing body size (b = b1 + 2b2logX and

b = b1 + 2b2log X + 3b3(log X)2, respectively). The

BS and TS models assume that the allometric exponent

takes two (generally different) constant values b1 and

b2, before and after the breakpoint X = B.

The small-sample, bias-corrected form AICc (Hur-

vich and Tsai 1989) of the AIC (Akaike 1973; Burn-

ham and Anderson 2002) was used for model selection.

Specifically, AICc ¼ AIC þ 2kðkþ1Þ
n�k�1 , where for least

squares AIC ¼ n log 2p RSS
n

� �
þ 1

� �
þ 2k, RSS is the

residual sum of squares, n the number of observations,

and k is the number of regression parameters plus 1

(normally distributed deviations with constant variance

were assumed). The model with the smallest AICc

value (AICc,min) was selected as the ‘best’ among the

models tested. The AICc differences, Di = AICc,i –

AICc,min were computed over all candidate models.

According to Burnham and Anderson (2002), models

with Di > 10 have essentially no support and might be

omitted from further consideration, models with Di < 2

Fig. 1 The pairs of
morphometric characters
measured for each species.
For Todaropsis eblanae the
morphometric characters
measured were the same as
for Todarodes sagittatus, and
for Sparus aurata the same as
for Trachurus trachurus.
Pictures are not in scale.
Abbreviations of
morphometric characters as
in Table 1
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have substantial support, while there is considerably

less support for models with 4 < Di < 7. To quantify the

plausibility of each model, given the data and the set of

five models, the ‘Akaike weight’ wi of each model was

calculated, where wi ¼ expð�0:5DiÞP5

k¼1
exp�ð0:5DkÞ

. The ‘Akaike

weight’ is considered as the weight of evidence in favor

of model i being the actual best model of the available

set of models (Akaike 1983; Buckland et al. 1997;

Burnham and Anderson 2002). ‘Average’ models were

estimated by averaging the predicted response variable

across models, using the corresponding wi as weights

(Burnham and Anderson 2002). Absolute residuals

were plotted against logX for the linear and the aver-

age model, as a diagnostic tool to check model

assumptions and especially to check for curvature in

the pattern of residuals; the display was enhanced by a

smooth loess (local regression) curve fitted to the

residuals (first degree loess with a span of 0.6).

Results

The regression parameters and the corresponding

AICc, Di, and wi of the five candidate models were

estimated for each dataset (Tables 3, 4). For P. ja-

cobaeus, L was the best model, but the rest of the

models were also supported by the data, especially Q

and TS. For P. nobilis TS was the best model with BS

also having some support. For both squids T. sagittatus

and T. eblanae, TS was the best model and no other

models had substantial support. For P. marmoratus, C

was the best model with TS having considerably

less support. For P. tyrrhena, Q was the best model,

Table 1 The measured body parts and the corresponding size ranges for each species (Y is the dependent and X the independent
variable), the corresponding sample size n, and the sources of data. f females, m males

n Y Ymin–Ymax X Xmin–Xmax Source

Pecten jacobaeus 245 Shell length (L, cm) 1.79–16.00 Shell height
(H, cm)

1.72–13.85 Katsanevakis (2005a) plus
13 extra measurements
at missing sizes

Pinna nobilis 98 Shell width (W, cm) 1.6–25.0 Shell length
(L, cm)

6.1–70.1 Katsanevakis (2005b)
plus 59 extra
measurements

Todarodes sagittatus 76 Upper jaw angles
distance (UJA, mm)

1.559–7.070 Mantle
length
(ML, mm)

121–341 Present study

Todaropsis eblanae 123 Upper jaw angles
distance (UJA, mm)

1.186–4.284 Mantle
length
(ML, mm)

36–170 Present study

Pachygrapsus marmoratus (f) 51 Telson width (T, mm) 0.78–16.20 Carapace
width
(CW, mm)

4.34–34.90 Protopapas (2006)

Pestarella tyrrhena
(m)

114 Propodus width (PW, mm) 0.28–7.39 Carapace
length
(CL, mm)

1.12–10.87 Present study

Trachurus
trachurus

144 Eye diameter (ED,
mm)

9.8–18.9 Total length
(TL, mm)

160–313 Present study

Sparus aurata 243 Eye diameter (ED, cm) 0.44–2.06 Total length
(TL, cm)

6.1–41.9 Present study

Table 2 The candidate
models used for allometric
growth investigation

Name of model Abbr. k Equation

Linear L 3 log Y = a1 + b1log X
Quadratic Q 4 log Y = a1 + b1log X + b2(log X)2

Cubic C 5 log Y = a1 + b1log X + b2(log X)2+b3(log X)3

Broken-stick BS 5 log Y ¼ a1 þ b1 log X; X � B
a1 þ ðb1 � b2Þ log Bþ b2 log X; X[B

�

Two-segment TS 6 log Y ¼ a1 þ b1 log X; X � B
a1 þ b2 log X; X[B

�
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while C, BS, and TS also had substantial support. For

T. trachurus and S. aurata, TS was the best model

with essentially no support for any other model. The

L model had essentially no support in most cases

(P. nobilis, T. sagittatus, T. eblanae, P. marmoratus,

T. trachurus, and S. aurata), except for P. jacobaeus

where it was the best model and P. tyrrhena where it

had considerably less support than the best model.

From the loess fit of the residuals, it is clear that in

all cases except for P. jacobaeus the assumption of

linearity is more or less violated as the residuals of

the L model do not have a random distribution

around zero but exhibit evident curvature (Fig. 2).

The situation clearly improved with the average

model, with the loess fit of its residuals much closer to

the horizontal axis (Fig. 2). In the case of P. jacoba-

eus, the residuals of the L model were randomly

distributed around the horizontal axis and the average

model did not make any essential difference in

residual distribution.

Table 3 The parameters and the residual sum of squares RSS of the regression equations between the logarithms of the measured
biometric variables Y and X. Model abbreviations as in Table 2

Model P. jacobaeus P. nobilis T. sagittatus T. eblanae P. marmoratus P. tyrrhena T. trachurus S. aurata

L a1 0.0647 –0.7701 –6.4375 –2.2883 –2.7302 –1.4652 –1.9447 –1.8995
b1 1.0365 0.9581 1.4430 0.7199 1.5787 1.4556 0.8517 0.6945
RSS 0.15696 2.27883 1.38386 1.92287 0.74479 0.89374 0.90759 1.96447

Q a1 0.0293 –3.6164 16.3485 –5.2748 –2.2304 –1.5791 –25.5047 –2.9811
b1 1.0779 2.8374 –7.1119 2.0841 1.1472 1.6598 9.5435 1.5640
b2 –0.0110 –0.2967 0.8011 –0.1548 0.0864 –0.0733 –0.8011 –0.1655
RSS 0.15601 0.70981 1.18107 1.86484 0.71253 0.83594 0.85692 1.73616

C a1 –0.0070 –2.6807 158.6050 –5.1108 3.7138 –1.5201 –125.8580 –6.1495
b1 1.1513 1.8896 –87.7376 1.9713 –6.4521 1.4612 65.3062 5.2098
b2 –0.0568 0.0125 16.0093 –0.1291 3.1842 0.0936 –11.1238 –1.5197
b3 0.0089 –0.0326 –0.9547 –0.0019 –0.4064 –0.0406 0.6366 0.1636
RSS 0.15577 0.70270 1.15845 1.86484 0.46855 0.82926 0.85578 1.68902

BS a1 0.0611 –1.6809 –3.3510 –2.6832 –1.824 –1.514 –4.930 –2.387
b1 1.0387 1.3029 0.8384 0.8141 1.067 1.499 1.418 0.933
b2 0.9681 0.5691 1.8273 0.4748 1.700 1.290 0.721 0.499
logB 2.451 3.227 5.274 4.625 2.025 1.851 5.303 2.542
RSS 0.15584 0.63666 1.06263 1.81874 0.59432 0.82561 0.83890 1.63651

TS a1 0.0743 –1.5715 –4.1557 –2.2700 –2.324 –1.499 –1.742 –1.424
b1 1.0288 1.2554 0.9970 0.7119 1.354 1.480 0.799 0.432
a2 0.1781 0.6436 –3.3953 –0.4620 –1.987 –1.036 –1.071 –1.218
b2 0.9905 0.5801 0.9160 0.3405 1.351 1.248 0.693 0.482
logB 2.090 3.015 5.491 4.516 2.807 1.767 5.260 2.363
RSS 0.15327 0.60761 0.97099 1.68396 0.47868 0.80928 0.77574 1.52479

Table 4 Values of AICc, AICc differences (Di) and of the Akaike weights wi for the five models of the measured morphometric
variables, for each species. For each species, values corresponding to the best models are in bold characters

P. jacobaeus P. nobilis T. sagittatus T. eblanae P. marmoratus P. tyrrhena T. trachurus S. aurata

AICc

L –1100.11 –84.24 –82.43 –156.22 –64.31 –223.00 –314.79 –475.03
Q –1099.53 –196.37 –92.25 –157.85 –64.21 –228.47 –320.95 –502.98
C –1097.82 –195.14 –91.42 –155.68 –83.12 –227.20 –318.99 –507.59
BS –1097.72 –204.81 –97.98 –158.76 –71.00 –227.70 –321.86 –515.26
TS –1099.68 –207.12 –102.48 –166.01 –79.45 –227.75 –330.95 –530.34
Di

L 0.00 122.88 20.04 9.80 18.81 5.47 16.16 55.31
Q 0.58 10.74 10.23 8.16 18.91 0.00 10.01 27.36
C 2.29 11.98 11.06 10.34 0.00 1.27 11.96 22.75
BS 2.40 2.30 4.49 7.26 12.13 0.77 9.09 15.08
TS 0.43 0.00 0.00 0.00 3.67 0.72 0.00 0.00
wi (%)
L 31.5 0.0 0.0 0.7 0.0 2.2 0.0 0.0
Q 23.5 0.4 0.5 1.6 0.0 33.7 0.7 0.0
C 10.0 0.2 0.4 0.5 86.0 17.8 0.2 0.0
BS 9.5 23.9 9.5 2.5 0.2 22.9 1.0 0.1
TS 25.5 75.6 89.6 94.6 13.8 23.4 98.0 99.9
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Discussion

When investigating allometric growth, researchers al-

most always ‘pick’ the linear model for log-trans-

formed data, which is quite simple both conceptually

and mathematically and its parameters are easy to

estimate by linear regression. Researchers also check

for breakpoints using some version of broken stick or

segmented model (e.g. Shea and Vecchione 2002), but

this is not common practice. Examples of model

selection for allometric growth studies are rare (e.g.

Hall et al. 2006). In the examples of the present study,

a large part of information would have been lost had

we arbitrarily chosen the classic allometric model (L

model). In fact, with the exception of the P. jacobaeus

dataset, the L model had essentially no support or

considerably less support in all other cases, gave

residuals that were not randomly distributed but

exhibited non-linear patterns, and gave estimations of

the allometric exponent that actually ‘smoothed’ the

true picture or even contradicted the outcomes of the

more accurate average models.

During ontogeny, some somatic parts grow with a

constant allometric exponent, others exhibit a change

of their allometric exponent, while others show a dis-

continuity of their allometric exponent at a breakpoint.

Thus, a set of candidate models including the simple

linear, models that assume a continuous change in

allometry, and models that assume discontinuity at

breakpoints should be considered in allometric growth

studies.

In the past twenty years, modern statistical science

has been moving away from traditional formal meth-

odologies based on statistical hypothesis testing. In

particular, traditional approaches of hypothesis testing

when applied to model selection (such as stepup,

stepdown, and stepwise selection) have been often

found to be poor and of limited value (Akaike 1981)

and it is suggested that their application will diminish

in future (Burnham and Anderson 2002). As the latter

authors point out, hypothesis testing schemes are based

on arbitrary levels of type I error probabilities (com-

monly 0.05 or 0.01), while multiple testing and tests

between models that are not nested are problematic.

The adjusted coefficient of multiple determination (R2)

is also often used in model selection, but this approach

was found to be very poor (McQuarrie and Tsai 1998).

Model selection based on K-L information theory is a

relatively new and promising approach in biological

sciences.

In the present study, the comparison of the

estimated b-values from both the linear and the aver-

age model revealed some characteristic pitfalls in

investigating allometry using the L model when it

actually has no support from the data. The most serious

risk is to judge the type of allometry wrongly, i.e.

concluding positive allometry when there is actually

negative or vice versa, or reporting allometry when the

data support isometric growth or vice versa (Fig. 2).

For example, in P. nobilis there is a marked change in

the relative growth of width in relation to length; ini-

tially there is strong positive allometry which after a

length of ~20 cm becomes strongly negative. The linear

model ‘smoothes’ this picture and derives an allometric

exponent with a 95% confidence interval between 0.90

and 1.03, supporting isometric growth during ontogeny

and thus reaching a quite different conclusion. In T.

sagittatus positive allometry of UJA in relation to ML

was supported by the L model, while piecewise isom-

etry was supported by the average model (Fig. 2). In

the case of female P. marmoratus the allometry for the

growth of the telson in relation to carapace width was

initially negative (for small sizes), but the allometric

exponent increased continuously reaching values > 1

(positive allometry), attained a maximum of 1.86 and

decreased again in larger individuals. This pattern is

probably related to maturity, when the size of the

abdominal segments in females has to grow in a much

higher rate (b > > 1) in order to increase the size of the

abdomen for the accommodation of incubated egg

mass, while later in ontogeny the relative growth rate

may decline as the abdomen size is constrained by the

width of the carapace. Constant positive allometry

during ontogeny with a high and constant b = 1.58 was

concluded by the L model, missing the true pattern.

The main outcome of allometric growth studies

under the classic approach (i.e. using the L model) is to

define the allometric exponent and consequently the

type of allometry. Such an approach fails to locate the

possible existence of discontinuities in relative growth

curves. Such changes in the growth trajectories of

morphological characters during ontogeny are a

potentially useful source of information as they may be

caused by marked events in the life history of the

species or fast ecological change, and should not be

overlooked. Quite often maturity might be the cause of

a distinct change in morphology. The attainment of

morphometric maturity in crabs is identified by finding

such breakpoints in the allometry of certain body parts

at the puberty moult, usually chelae in male crabs and

abdominal segments in females (Somerton 1981; Hall

et al. 2006; Protopapas 2006). Shea and Vecchione

(2002) using a variation of a BS model and a quite

different approach than K-L information theory for

deciding on the significance of breakpoints, found

discontinuities in several morphological measurements
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of three species of squid; for each species, there was a

clustering of breakpoints into discrete size ranges and

it was considered as an ‘allomorphosis’, which may

correlate with rapid ecological change. The informa-

tion theoretic approach is quite effective in locating

breakpoints and thus providing more information than

the classic approach, which only states (often wrongly)

the type of allometry.

One of the assumptions of the ordinary least squares

(OLS) regression (or Model I regression) is that the

independent variable is under the control of the

investigator or known without error. However, with

morphological measurements, when we want to find

the functional relationship between two (usually log-

transformed) morphological variables y and x, both

ln(x) and ln(y) are subject to natural variability and

measurement errors and, thus, Model I regression may

not be appropriate. The Model I regression coefficient

(the allometric exponent in our case) is expected to be

lower in absolute value than the true slope of the

functional relationship (Laws and Archie 1981; Sokal

and Rohlf 1995; Prairie et al. 1995). Several authors

have recommended the replacement of OLS regression

with other slope estimators (subsumed under Model II

regression), such as the ordinary major axis or the re-

duced major axis (e.g. Ricker 1973; Jolicoeur 1990;

Sokal and Rohlf 1995; Ebert and Russel 1994) when

the observations are believed to be uncertain due ei-

ther to measurement errors or natural error variability.

The appropriateness, though, of any of these slope
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(a)Fig. 2 For each species:
(Top) the relative growth
patterns of the measured pair
of morphometric characters,
according to the L model
(light line) and the
corresponding average model
(dark line), (Middle) plot of
the absolute residuals against
logX for the linear and the
average model, with a loess
curve fitted to the residuals
(first degree loess with a span
of 0.6), (Bottom) the
allometric exponent b for the
relative growth of the
measured pair of
morphometric characters,
according to the L model
(light line) and the
corresponding ‘average’
model (dark line); the
bootstrap 95% confidence
interval of b, according to L
model is given with dotted
lines. Abbreviations of
morphometric characters as
in Table 1
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estimators depends on whether the specific data at

hand conform to the very restrictive assumptions of

each of these techniques. According to Prairie et al.

(1995), ‘‘the advice often found in the ecological lit-

erature regarding the use of these alternative regres-

sion techniques should be tempered with the

realization that, without an estimate of the natural

error variability component (not just measurement

errors), these estimators are equally likely to be worse

than they are to be better than the OLS estimates’’.

Furthermore, regarding Model II regression almost all

published work deal with the simple linear case (of log-

transformed data). Only a few publications deal with

specific non-linear Model II regressions (e.g. Ebert and

Russell 1994), whereas a unified non-linear Model II

approach is lacking. In addition, standard statistical

software does not incorporate Model II regression,

making its use non-trivial. Calculation of AIC’s

through maximum likelihood estimation under a

Model II non-linear approach might also be challeng-

ing (in relation to the simplified AIC calculation with

OLS).

Several other methods have been proposed to esti-

mate the functional relationship between two mor-

phological variables (e.g. Prairie et al. 1995; Shafer and

Purdy 1996) but they are either mathematically com-

plicated or restricted to the simple linear model. The

main target of the present study was to propose a
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(b)Fig. 2 continued
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simple and easy to implement (using standard statisti-

cal software) method to deal with the allometry prob-

lem (incorporating information theory and multi-

model inference), capable to extract additional infor-

mation such as the existence of discontinuities in rel-

ative growth curves that are related to episodes of

biological importance (such as maturity).

For all the above reasons we kept the simple OLS

approach, bearing in mind that our regression results

may be slightly biased and are susceptible of

improvement. According to Prairie et al. (1995), if both

y and x are subject to random error such that

Y = y + ey and X = x + ex (where X, Y are the ob-

served values, x, y the true values, y = a + byxx is the

true relationship, and ex, ey the random errors of x and

y respectively) the OLS slope estimator bYX is given by

the relationship: bYX = byx [1–var(ex)/var(X)]. One

may sample as wide a range in the predictor variable

(x) as possible so that var(ex) will be small relative to

var(X) and consequently var(ex)/var(X) fi 0, thereby

making bYX � byx; in this case, OLS is sufficient to

estimate the true functional relationship. In our data-

sets, we tried to sample the predictor variable in the

widest possible range; nevertheless it was difficult to

know how wide a range is wide enough to ensure that

bYX � byx. To check the appropriateness of OLS

regression for our datasets (based on the linear model)

we applied the ‘slope-range’ method of Prairie et al.
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(c)Fig. 2 continued
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(1995) to estimate ex and then the ratio var(ex)/var(X)

(Table 5). In most datasets the ratio var(ex)/var(X)

was < 0.5% and thus it seems that OLS is sufficient,

while for three datasets (T. sagittatus, T. eblanae and

T. trachurus) it was between 2 and 3%, indicating

that results might be improved if more complicated

errors-in-variables models were incorporated. Further

research is necessary in this direction.
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(d)Fig. 2 continued

Table 5 Estimation of the
random error ex associated
with the ‘independent’
variable x

Var(X) is the observed
variance of the ‘independent’
variable, and the ratio var(ex)/
var(X) is an index of the bias
of slope estimations based on
OLS regression

Dataset var(ex) var(X) var(ex)/var(X) (%)

P. jacobaeus 3.84E-05 0.194 0.02
P. nobilis 9.54E-04 0.422 0.23
T. sagittatus 1.97E-03 0.066 3.00
T. eblanae 3.44E-03 0.121 2.84
P. marmoratus (f) 1.45E-03 0.409 0.36
P. tyrrhena (m) 1.26E-03 0.274 0.46
T. trachurus 4.26E-04 0.019 2.30
S. aurata 3.78E-04 0.263 0.14
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