Two-dimensional frameworks built from Single-Molecule Magnets†

Athanassios D. Katsenis, a Ross Inglis,b Alessandro Prescimone, b Euan K. Brechin ab and Giannis S. Papaefstathiou a*

Received 16th November 2011, Accepted 16th December 2011
DOI: 10.1039/c2ce06536c

The incorporation of trimesic acid into Single-Molecule Magnets (SMMs) and polycarboxylate ligands. For this purpose, we incorporate a large number of (saoH2 and trinuclear, [Mn3], Mn III complexes of general formulae 1: the magnetic properties of Single-Molecule Magnets (SMMs) in the solid state by modulating their surroundings.1 To this end, we recently exploited certain members of a family of hexanuclear, [Mn6], and trinuclear, [Mn3], MnII complexes of general formulae [MnIII2O2(R-sao)3(O2CR)2(L)4] and [MnIII2O(R-sao)3(X)(L)3] (saoH2 = salicylaldoxime; R = H, Me, Et, etc.; X = RCO2−, ClO4−; L = solvent) as building blocks for constructing discrete and infinite supramolecular architectures with the use of both bis-pyridyl14 and bis-carboxylate4 type ligands. Both types of bridging ligands resulted in, among others, coordination polymers built from either [Mn6] or [Mn3] clusters. The bis-pyridyl type ligands gave rise to both one-dimensional (1D) and two-dimensional (2D) coordination polymers based on [Mn6] SMMs while the bis-carboxylate ligands resulted in 1D coordination polymers incorporating [Mn6] SMMs.4,5

Having in mind that the incorporation of bis-carboxylate ligands resulted in polymeric species where the [Mn6] clusters retained their single molecule behaviour, we sought to construct higher dimensionality coordination polymers (i.e. 2D or 3D) built from [Mn6] SMMs and polycarboxylate ligands. For this purpose, we incorporated one of the previously mentioned ligands into blends of manganese/salicylaldoxime and trimesic acid reaction mixtures to isolate the 1D coordination polymer [Mn6O2(sao)3(tma)0.66(MeOH)3.33(H2O)1.33]·(MeOH)4.66(H2O)2·(MeOH)3.66(H2O). Both polymers are constructed from [Mn6] SMM building blocks. Besides the efforts to intentionally link SMMs or magnetically interesting clusters, higher dimensionality (i.e. 2D, 3D) polymers are scarce.6 Complex 2 represents a rare 2D framework constructed intentionally from SMM building blocks.

Although it is possible to employ pre-formed [Mn6] and [Mn3] species as starting materials for the synthesis of polymeric materials [they are solution stable as gauged by NMR, mass spectrometry and solution SQUID magnetometry], it is much more efficient to simply perform the reactions in situ. The Mn(CIO4)2·6H2O/saoH2/tmaH3/base reaction blend is however very sensitive to reaction conditions and indeed it produces different complexes depending on the order of addition of the reagents. The 1D coordination polymer 1 is produced when tmaH3 is added into an alcoholic solution containing Mn(CIO4)2·6H2O/saoH2/MeONa, while the 2D coordination polymer 2 is formed when MeONa was added into an alcoholic solution containing Mn(CIO4)2·6H2O/saoH2/tmaH3. Complex 1 was isolated serendipitously during our efforts to synthesise the targeted 2D coordination polymer 2.

Complex 1 (Fig. 1) crystallises in the triclinic space group P1.† The asymmetric unit consists of two tmaH3− anions, one [Mn6] and two [Mn3] units.† In effect, there are two crystallographically independent [Mn6] clusters, namely [Mn6A] and [Mn6B], repeating along the chain of 1. Each [Mn6] unit consists of two off-set, stacked [MnIII2O (saoH2)2] triangles linked by two oximato O-atoms, while one phenolato O-atom bridges between the [Mn6] subunits in [Mn6A]. Four sao2− ligands bridge along the edges of the [Mn6] subunits in a μ4:η1:η1:η1 fasion, one in a μ4:η1:η1:η1 fashion while the remaining seven sao2− ligands adopt the μ4:η1:η1:η1 coordination mode. Ten out of the twelve crystallographically independent MnII atoms are in (axially) elongated octahedral environments with one MnII in each of the [Mn6] clusters being five-coordinate and in a square pyramidal environment. Nine MeOH molecules (one is 50% disordered with a H2O molecule) occupy the Jahn Teller positions on the MnII ions, with the remaining sites coordinated by carboxylato O-atoms from the two crystallographically independent tmaH3− ligands. These ligands adopt the μ4:η1:η1:η1:η1 and μ4:η1:η1:η1:η1 coordination modes, respectively. The Mn−N−O−Mn torsion angles for [Mn6A] are 32.5° for Mn4−N−O−Mn5, 38.22° for Mn5−N−O−Mn6, 21.47° for Mn6−N−O−Mn4, 41.83° for Mn7−N−O−Mn8, 12.25° for Mn8−N−O−Mn9 and 30.13° for Mn9−N−O−Mn7. For [Mn6B] the corresponding

Fine tuning the Mn/salicylaldoxime/trimesic acid reaction conditions leads to the formation of a regular 2D net held together by dative bonds and to a non-regular 2D net stabilised by both dative and hydrogen bonds. Both networks are built from [Mn6] Single-Molecule Magnets.

Since it has been established that the physical properties of crystalline molecular materials can be influenced by crystal packing effects and intermolecular interactions (e.g. hydrogen bonding, π−π interactions, etc.), we and others have been investigating how to manipulate the magnetic properties of Single-Molecule Magnets (SMMs) in the solid state by modulating their surroundings.1 To this end, we recently exploited certain members of a family of hexanuclear, [Mn6], and trinuclear, [Mn3], MnII complexes of general formulae [MnIII2O2(R-sao)3(O2CR)2(L)4] and [MnIII2O(R-sao)3(X)(L)3] (saoH2 = salicylaldoxime; R = H, Me, Et, etc.; X = RCO2−, ClO4−; L = solvent) as building blocks for constructing discrete and infinite supramolecular architectures with the use of both bis-pyridyl4 and bis-carboxylate4 type ligands. Both types of bridging ligands resulted in, among others, coordination polymers built from either [Mn6] or [Mn3] clusters. The bis-pyridyl type ligands gave rise to both one-dimensional (1D) and two-dimensional (2D) coordination polymers based on [Mn6] SMMs while the bis-carboxylate ligands resulted in 1D coordination polymers incorporating [Mn6] SMMs.

Having in mind that the incorporation of bis-carboxylate ligands resulted in polymeric species where the [Mn6] clusters retained their single molecule behaviour, we sought to construct higher dimensionality coordination polymers (i.e. 2D or 3D) built from [Mn6] SMMs and polycarboxylate ligands. For this purpose, we incorporated one of the previously mentioned ligands into blends of manganese/salicylaldoxime and trimesic acid reaction mixtures to isolate the 1D coordination polymer [Mn6O2(sao)3(tma)(MeOH)3.33(H2O)1.33]·(MeOH)4.66(H2O)2·(MeOH)3.66(H2O). Both polymers are constructed from [Mn6] SMM building blocks. Besides the efforts to intentionally link SMMs or magnetically interesting clusters, higher dimensionality (i.e. 2D, 3D) polymers are scarce.6 Complex 2 represents a rare 2D framework constructed intentionally from SMM building blocks.

Although it is possible to employ pre-formed [Mn6] and [Mn3] species as starting materials for the synthesis of polymeric materials [they are solution stable as gauged by NMR, mass spectrometry and solution SQUID magnetometry], it is much more efficient to simply perform the reactions in situ. The Mn(CIO4)2·6H2O/saoH2/tmaH3/base reaction blend is however very sensitive to reaction conditions and indeed it produces different complexes depending on the order of addition of the reagents. The 1D coordination polymer 1 is produced when tmaH3 is added into an alcoholic solution containing Mn(CIO4)2·6H2O/saoH2/MeONa, while the 2D coordination polymer 2 is formed when MeONa was added into an alcoholic solution containing Mn(CIO4)2·6H2O/saoH2/tmaH3. Complex 1 was isolated serendipitously during our efforts to synthesise the targeted 2D coordination polymer 2.

Complex 1 (Fig. 1) crystallises in the triclinic space group P1.† The asymmetric unit consists of two tmaH3− anions, one [Mn6] and two [Mn3] units.† In effect, there are two crystallographically independent [Mn6] clusters, namely [Mn6A] and [Mn6B], repeating along the chain of 1. Each [Mn6] unit consists of two off-set, stacked [MnIII2O (saoH2)2] triangles linked by two oximato O-atoms, while one phenolato O-atom bridges between the [Mn6] subunits in [Mn6A]. Four sao2− ligands bridge along the edges of the [Mn6] subunits in a μ4:η1:η1:η1 fashion, one in a μ4:η1:η1:η1 fashion while the remaining seven sao2− ligands adopt the μ4:η1:η1:η1 coordination mode. Ten out of the twelve crystallographically independent MnII atoms are in (axially) elongated octahedral environments with one MnII in each of the [Mn6] clusters being five-coordinate and in a square pyramidal environment. Nine MeOH molecules (one is 50% disordered with a H2O molecule) occupy the Jahn Teller positions on the MnII ions, with the remaining sites coordinated by carboxylato O-atoms from the two crystallographically independent tmaH3− ligands. These ligands adopt the μ4:η1:η1:η1:η1 and μ4:η1:η1:η1:η1 coordination modes, respectively. The Mn−N−O−Mn torsion angles for [Mn6A] are 32.5° for Mn4−N−O−Mn5, 38.22° for Mn5−N−O−Mn6, 21.47° for Mn6−N−O−Mn4, 41.83° for Mn7−N−O−Mn8, 12.25° for Mn8−N−O−Mn9 and 30.13° for Mn9−N−O−Mn7. For [Mn6B] the corresponding
Fig. 1 (top) The asymmetric unit of complex 1. (bottom) The hydrogen-bonded chains of complex 1 creating a non-regular 2D framework. Most hydrogen atoms and some carbon atoms of the sao\(^{2-}\) ligands have been omitted for clarity. Colour code: Mn: purple, O: red, N: blue, C: grey, and H: cyan.

The [Mn\(_6\)] clusters and the tma\(^{3+}\) ligands assemble to create a regular 2D network with a (6,3) topology, commonly known as a honeycomb, with the tma\(^{3+}\) ligands serving as 3-connected nodes and the [Mn\(_6\)] clusters as the spacers (Fig. 2).

Previous studies of molecular salicylaldoxime-based [Mn\(^{III}\)] and [Mn\(^{III}\)] clusters have shown that their magnetic behaviour is strongly correlated to small geometrical changes. Specifically, the sign and magnitude of the exchange (J) between neighbouring Mn\(^{III}\) ions is dependent on the Mn–N–O–Mn torsion angle. Unfortunately, the presence of more than one crystallographically independent [Mn\(_6\)] in the crystal structures of both 1 and 2, which possess different geometries, precludes a detailed quantitative analysis of the magnetic behaviour.

Solid state dc magnetic susceptibility data for 1 and 2 were recorded between 275 and 5 K in an applied field of 0.1 T. The plots of \(\chi_M T \text{ versus } T\) for 1 and 2 are shown in Fig. S1\(^*\). The \(\chi_M T\) products at 275 K are 16.54 and 14.95 cm\(^3\) mol\(^{-1}\) K for 1 and 2, respectively, close to the spin-only (g = 2) value of 18 cm\(^3\) mol\(^{-1}\) K expected for a [Mn\(_6\)] unit comprising six high spin Mn\(^{III}\) ions. The \(\chi_M T\) values for both complexes remain approximately constant as the temperature is lowered, before dropping more rapidly at temperatures below 125 K. Thereafter, the \(\chi_M T\) value of complex 1 decreases constantly to reach a value of 9.1 cm\(^3\) mol\(^{-1}\) K at 5 K, while that of complex 2 decreases to a value of \(\approx 8.0\) cm\(^3\) mol\(^{-1}\) K at 20 K and then plateaus to 5 K. The decrease of the \(\chi_M T\) product upon cooling to smaller but non-zero values is consistent with the presence of both antiferromagnetic and ferromagnetic interactions between the Mn\(^{III}\) ions with the...
Fig. 3 Plot of χ'' versus T for complex 1 at the indicated temperature and frequency ranges. Inset: Arrhenius plot constructed from the χ'' data to afford $T_0 = 3.3 \times 10^{-4}$ s and $U_{eq} = 33$ K.

...low-temperature values indicating $S \approx 4$ spin ground states for the [Mn$^{III}_6$] units in both complexes. Indeed we note that the χ_M/T behaviour for 1 and 2 is very similar to that observed for previously reported and magnetically isolated [Mn$^{III}_6$] complexes with $S \approx 4$ spin ground states. For comparison we include in Fig. S3† the data for [Mn$_2$(O$_2$ac)$_2$([ketoacac])$_3$(EtOH)$_2$]$_2$O$^+$(3) and [Mn$_3$(O$_2$ac)$_2$[1-Me-cyclohexy]$_2$(MeOH)$_2$]$_2$(4) from ref. 3b which contain [Mn$_3$] with similar Mn–N–O–Mn torsion angles. In order to investigate the possibility of long range antiferromagnetism we performed zero field cooled (ZFC) and field cooled (FCC) SMM measurements at low temperatures and this would be manifested in a smaller change in frequency Δf for the given change in frequency $\Delta log f$, where $\Delta log f = 1.30$ for both complexes. This provides values of 0.19 and 0.24 for 1 and 2, respectively, which are within the range expected for super-paramagnets and close to those reported for molecular [Mn$_9$] complexes. This suggests that the relaxation is in accordance with SMM behaviour, and is not attributed to long range interactions mediated through the polycarboxylate ligands.

To conclude, we presented two new coordination polymers built from [Mn$_9$] clusters and trisaccharide anions. The first polymer conforms to a non-regular 2D net held by both dative and hydrogen bonds, while the second adopts a regular 2D net held together exclusively by dative bonds. Both polymers consist of magnetically isolated [Mn$_9$] SMMs with $S \approx 4$ ground states. We continue exploiting [Mn$_{3n6}$] SMMs as starting materials for the construction of polymeric magnetic materials with the next stage being the introduction of added functionality through the presence of redox-active or radical linker ligands which might enable [stronger] communication between the cluster building blocks.

Notes and references

† Crystal data for 1: C$_{22}$H$_{33}$Mn$_3$N$_2$O$_2$, $M = 6190.80$, triclinic, $a = 12.5838(4)$, $b = 19.5656(5)$, $c = 25.6050(6)$, $\alpha = 99.792(2)^\circ$, $\beta = 90.436(2)^\circ$, $\gamma = 97.756(2)^\circ$, $V = 6152.5(3)$ A3, $T = 100(2)$ K, space group $P1$, $Z = 1$, 121 reflections measured, 24 independent reflections ($R_{Bref} = 0.1296$). The final R_B values were 0.0674 ($I > 2\sigma(I)$). The final wR_{F}^2 values were 0.1494 ($I > 2\sigma(I)$). The final R_B values were 0.1601 (all data). Crystal data for 2: C$_{33}$H$_{50}$Mn$_3$N$_2$O$_{22}$, $M = 2402.52$, triclinic, $a = 14.7534(4)$, $b = 16.3686(4)$, $c = 22.2898(6)$, $\alpha = 101.659(2)^\circ$, $\beta = 101.396(2)^\circ$, $\gamma = 96.649(2)^\circ$, $V = 5101.3(3)$ A3, $T = 100$ K, space group $P1$, $Z = 2$, 42 reflections measured, 19 independent reflections ($R_{Bref} = 0.055$). The final R_B values were 0.0744 ($I > 2\sigma(I)$). The final wR_{F}^2 values were 0.0126 ($I > 2\sigma(I)$). The final R_B values were 0.1160 (all data). The final wR_{F}^2 values were 0.0128 (all data).

