Ferromagnetic [Mn$_3$] Single-Molecule Magnets and Their Supramolecular Networks

Ross Inglis,A Giannis S. Papaefstathiou,B Wolfgang Wernsdorfer,C and Euan K. BrechinA,D

ASchool of Chemistry, West Mains Road, The University of Edinburgh, Edinburgh, EH9 3JJ, UK.
BLaboratory of Inorganic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 157 71 Zografou, Greece.
CInstitut Néel, CNRS & Université J. Fourier, BP 166, 38042 Grenoble, France.
DCorresponding author. Email: ebrechin@staffmail.ed.ac.uk

The complexes [MnIIIO(Et-sao)$_3$(O$_2$Ph(Cl)$_2$)(MeOH)$_3$(H$_2$O)] (1), [MnIIIO(Et-sao)$_3$(ClO$_4$)(MeOH)$_3$] (2), [MnIIIO(Et-sao)$_3$(O$_2$Ph(C$_2$)$_2$)(EtOH)(H$_2$O)$_3$] (3), and [MnIIIO(Ph-sao)$_3$(O$_2$C-anthra)(MeOH)$_3$] Ph-saoH$_2$ (4 Ph-saoH$_2$) display dominant ferromagnetic exchange interactions leading to molecules with $S=6$ ground states. The molecules are single molecule magnets (SMM) displaying large effective energy barriers for magnetization reversal. In each case their crystal structures reveal multiple intermolecular H-bonding interactions. Single crystal hysteresis loop measurements demonstrate that these interactions are strong enough to cause a clear field bias, but too weak to transform the spin networks into classical antiferromagnets. These three-dimensional networks of exchange coupled SMMs demonstrate that quantum tunnelling magnetization can be controlled using exchange interactions, suggesting supramolecular chemistry can be exploited to modulate the quantum physics of molecular magnets.

Introduction

The potential of using single molecule magnets (SMMs) in applications such as information storage and quantum information processing has fuelled the synthesis and characterization of a plethora of beautiful molecules displaying fascinating physical properties.$^{[1]}$ Supramolecular SMMs, in which exchange coupling between the molecules results in quantum behaviour different from that of the individual molecule, are a sub-class of such species that promise a degree of control in the fine tuning of the quantum properties of the original molecular SMMs if the role/importance of the inter-cluster interaction can be understood and manipulated.$^{[2]}$ Using SMMs as the building blocks in the supramolecular assembly of 1D–3D SMM architectures incorporating covalent or non-covalent interactions is thus an important field of study.$^{[3]}$ Until recently SMM characterization works into classical antiferromagnets. These three-dimensional networks of exchange coupled SMMs demonstrate that quantum tunnelling magnetization can be controlled using exchange interactions, suggesting supramolecular chemistry can be exploited to modulate the quantum physics of molecular magnets.

Results and Discussion

After synthesizing a large family of hexametallic SMMs of general formula [Mn$_6$O$_2$(R-sao)$_6$(X)$_2$(L)$_4$]$^-$ (R = alcohol/H$_2$O molecule, as are all three axial sites at the base of the molecule, completing the distorted octahedral coordination geometry at each Mn(III) centre; the Jahn–Teller axes being

Manuscript received: 23 April 2009.
Manuscript accepted: 16 June 2009.

© CSIRO 2009 10.1071/CH09236 0004-9425/09/091108
approximately perpendicular to the [Mn3] plane, tilted at angles ranging between ~1.7 and 12.5° (Table 2). In 2, the upper triangular face is capped by a ClO4− anion. The effect of the bulky oximes is the generation of relatively ‘puckered’ or ‘twisted’ [Mn3][O4(R-sao)3]+ moieties with Mn–N–O–Mn torsion angles in the range ~33–47°. In each case the central O2− is shifted out of the [Mn3] plane by distances ranging between ~0.18 and 0.26 Å (Table 2).

Despite the similarities of the Mn3 core in all four complexes, the arrangement of the clusters in the crystal lattice is quite different from crystal to crystal due to the differences in the way that the individual molecules interact with each other. Specifically, the molecules in 1 are arranged with their upper faces face-to-face. The water molecule which is attached on the base of the triangle. In a manner similar to that of 1, the clusters of 3 assemble through the coordinated water molecules of the upper face of the Mn3 triangle and a phenolate O-atom to form a hydrogen-bonded dimer [O27−H22···O24 1−x, −y, 2−z] 156.0°, O···O 2.812(4) Å, and H···O 2.060 Å. The dimers assemble via the coordinated water and ethanol molecules of the Mn3 triangle base with the lattice ethanol and water molecules to form a 2D hydrogen-bonded layer that runs parallel to the ab plane (Fig. 3).

In a similar manner, the clusters of 4 assemble through the coordinated water molecules of the upper face of the Mn3 triangle and a phenolate O-atom to form a hydrogen-bonded dimer [O27−H22···O24 1−x, −y, 2−z] 156.0°, O···O 2.812(4) Å, and H···O 2.060 Å. The dimers assemble via the coordinated water and ethanol molecules of the Mn3 triangle base with the lattice ethanol and water molecules to form a 2D hydrogen-bonded layer that runs parallel to the ab plane (Fig. 3).

The presence of the capping ClO4− anion on the upper triangular face of 2 and the absence of solvate molecules forces the Mn3 clusters to self-assemble through the three MeOH molecules, which are attached on the base of the triangle. Each Mn3 is hydrogen-bonded to three neighbours through six

Table 1. Crystallographic data for complexes 1–4

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula</td>
<td>C17H44Cl2Mn3N3O13</td>
<td>C17H44Cl2Mn3N3O14</td>
<td>C19H44Fe3Mn3N3O16</td>
<td>C17H44Mn3N3O15</td>
</tr>
<tr>
<td>Mw</td>
<td>974.46</td>
<td>865.89</td>
<td>1100.63</td>
<td>1377.08</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Triclinic</td>
<td>Trigonal</td>
<td>Triclinic</td>
<td>Triclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P-1</td>
<td>R-3</td>
<td>P-1</td>
<td>P-1</td>
</tr>
<tr>
<td>c [Å]</td>
<td>14.5211(8)</td>
<td>34.0617(12)</td>
<td>15.9295(5)</td>
<td>19.3348(5)</td>
</tr>
<tr>
<td>α [°]</td>
<td>96.836(4)</td>
<td>90</td>
<td>70.223(2)</td>
<td>107.421(2)</td>
</tr>
<tr>
<td>β [°]</td>
<td>99.941(4)</td>
<td>90</td>
<td>107.421(2)</td>
<td>109.451(2)</td>
</tr>
<tr>
<td>γ [°]</td>
<td>106.205(3)</td>
<td>120</td>
<td>66.370(2)</td>
<td>109.451(2)</td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
<td>6</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>T [K]</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>λ [Å]</td>
<td>0.71073</td>
<td>0.71073</td>
<td>0.71073</td>
<td>0.71073</td>
</tr>
<tr>
<td>μ (μm−1)</td>
<td>1.207</td>
<td>1.207</td>
<td>0.883</td>
<td>0.649</td>
</tr>
<tr>
<td>wR2</td>
<td>0.0429</td>
<td>0.0660</td>
<td>0.1577</td>
<td>0.1119</td>
</tr>
<tr>
<td>R1</td>
<td>0.0395</td>
<td>0.0288</td>
<td>0.0666</td>
<td>0.0470</td>
</tr>
<tr>
<td>Goodness of fit on F2</td>
<td>1.1265</td>
<td>0.8547</td>
<td>0.8888</td>
<td>0.8122</td>
</tr>
<tr>
<td>Δρmax/min [e Å−3]</td>
<td>2.06/−0.67</td>
<td>0.62/−0.37</td>
<td>1.85/−1.12</td>
<td>0.86/−0.71</td>
</tr>
</tbody>
</table>

Scheme 1. The R-saoH2 family of pro-ligands: saoH2, R = H; Me-saoH2, R = Me; Et-saoH2, R = Et; Ph-saoH2, R = Ph.

RESEARCH FRONT
complementary hydrogen bonds (one unique) that involve the terminal MeOH molecules and the phenolate O atoms of the Et-sao$^{2-}$ ligands [\angleO15–H1···O8 (1−x, 1−y, 1−z) 168°, O···O 2.734(1) Å, and H···O 1.95 Å]. In this arrangement an undulated 2D hydrogen bonded layer forms that conforms to a (6,3) net and lies parallel to the ab plane (Fig. 4). The Mn$_3$ triangles are arranged with their upper faces above and below the plane of the hydrogen-bonded framework with their mean planes parallel to each other and to the mean plane of the framework. The layers stack in an off-set fashion with the Mn 3 triangles of one layer lying above and below the hexagonal cavities of the two neighbouring frameworks.

The Mn$_3$ clusters in 4 have assembled with a Ph-saoH$_2$ molecule of crystallization (Fig. 5). The MeOH molecule at the upper face of the Mn$_3$ triangle forms an intra-molecular hydrogen bond with one carboxylate O-atom [\angleO18–H18···O24 162°, O···O 2.876(3) Å, and H···O 2.09 Å]. Two of the three MeOH molecules at the base of the triangle are hydrogen-bonded with themselves [\angleO17–H17···O15 167°, O···O 2.833(3) Å, and H···O 2.02 Å and \angleO15–H15···O16 171°, O···O 2.695(2) Å, and H···O 1.90 Å] with the third being attached to the Ph-saoH$_2$ molecule [\angleO16–H16···N99 163°, O···O 2.751(3) Å, and H···O 1.95 Å]. The salicyl OH group of the Ph-saoH$_2$ molecule forms an intra-molecular hydrogen bond with the oximic O-atom [\angleO19–H19···O109 168°, O···O 2.577(3) Å, and H···O 1.69 Å] while the latter attaches to a phenolate O-atom of the triangle [\angleO109–H109···O103 163°, O···O 2.643(2) Å, and H···O 1.82 Å]. The Mn$_3$·Ph-saoH$_2$ units interact with five neighbouring assemblies through 10 (five unique) C–H···π interactions to create a 3D framework with 4^6.63.bnn topology (Fig. 6).[7]

Direct current (DC) magnetization measurements were carried out on polycrystalline samples of 1–4 in a field of 0.1 T and a temperature range of 5–300 K. These are plotted in Fig. 7. Their room temperature $\chi_M T$ values range from \sim9.5 to 11.0 cm3 mol$^{-1}$ K and are consistent with the expected (spin-only) value for three non-interacting Mn(III) centres (\sim9.0 cm3 mol$^{-1}$ K). All four exhibit dominant ferromagnetic exchange between the Mn(III) ions with the values of $\chi_M T$ increasing with decreasing temperature to maximum values of between \sim13 and 17 cm3 mol$^{-1}$ K at \sim25 K. This is below the value of \sim21 cm3 mol$^{-1}$ K expected for an $S = 6$ ground state. Below this temperature a sharp decrease in $\chi_M T$ is observed in each case that can be attributed to a combination of intermolecular interactions (consistent with their crystal structures) and zero-field splitting effects. A simulation of the ‘high’ temperature (Table 3, Fig. 7) experimental data using the simple 1J model of Eqn (1) and Scheme 2 afforded the parameters
Table 2. Selected bond lengths [Å] and angles [°] for complexes 1–4

<table>
<thead>
<tr>
<th>Complex</th>
<th>Mn-O(µ-O) distance [Å]</th>
<th>Mn-O(µ-O)-Mn angles [°]</th>
<th>Mn plane∥O distance [Å]</th>
<th>J(1) from Mn mean plane [°]</th>
<th>J(2) from Mn mean plane [°]</th>
<th>J(3) from Mn mean plane [°]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mn3O(Etsao)3(O2CPh(Cl)2)(H2O)(MeOH)3(H2O)3(MeOH)4](PhsaoH2)</td>
<td>1.8792(14), 1.8884(13), 1.8738(14)</td>
<td>115.33(7), 120.10(7), 118.71(7)</td>
<td>0.2648(0.0015)</td>
<td>11.4, 5.7, 7.9</td>
<td>2.2036(15), 2.2082(15)</td>
<td>6.7, 1.7, 9.0</td>
</tr>
<tr>
<td>Mn3O(Etsao)3(MeOH)3(H2O)3</td>
<td>1.8770(2), 1.8791(2), 1.8794(3)</td>
<td>119.150(1), 119.022(7), 119.130(8)</td>
<td>0.1792(0.0017)</td>
<td>2.5496(11)</td>
<td>5.9</td>
<td></td>
</tr>
<tr>
<td>[Mn3O(Etsao)3(O2CPh(CF3)2)</td>
<td>1.8803(26), 1.8674(28), 1.8740(26)</td>
<td>115.83(13), 119.96(14), 119.84(14)</td>
<td>0.2274(0.0026)</td>
<td>2.1779(36), 2.3222(28)</td>
<td>6.7, 1.7, 9.0</td>
<td></td>
</tr>
<tr>
<td>(EtOH)(H2O)3</td>
<td>(MeOH)4](PhsaoH2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 2. The hydrogen bonded dimer (top) and the chain (bottom) of 1. Most hydrogen and carbon atoms have been omitted for clarity. Colour code: Mn, purple; O, red; N, blue; C, gold; H, cyan. Symmetry code: a: 1

*S = 6, g = 2.02, and J = +1.84 cm⁻¹ for 1; S = 6, g = 2.02, and J = +2.80 cm⁻¹ for 2; and S = 6, g = 1.98, and J = +1.52 cm⁻¹ for 3. The same model proved unsuccessful for 4, which required the 2J model of Eqn (2) and Scheme 2, giving S = 6, g = 1.98, J1 = +0.85 cm⁻¹, and J2 = +1.44 cm⁻¹ (Table 3). It is clear from Fig. 7 that intermolecular interactions are playing a very important role in the observed behaviour for all four complexes, with only the data for complex 3 being satisfactorily simulated down to even moderately low temperatures. Thus we add a note of caution to the absolute validity/accuracy of the simulation parameters, although they are well within the range observed for all previously reported (and analogous) salicyaldoxime-bridged [Mn(III)], and [Mn(III)], clusters (Scheme 2).

\[\hat{H} = -2J_1(\hat{S}_1 \cdot \hat{S}_2) + (\hat{S}_2 \cdot \hat{S}_3) + (\hat{S}_3 \cdot \hat{S}_1) \] (1)

\[\hat{H} = -2J_1(\hat{S}_1 \cdot \hat{S}_2) + (\hat{S}_2 \cdot \hat{S}_3) - 2J_2(\hat{S}_1 \cdot \hat{S}_3) \] (2)

In order to confirm the spin ground state and attempt to determine |D|, magnetization data were collected in the ranges 0.5–7.0T and 2–7 K for all four complexes. Representative reduced magnetisation (M/N\beta) versus H/T data for complexes 1 and 3 are given in Fig. 8. In each case the data saturate below M/N\beta = 12 indicative of an S = 6 state with significant |D|. Fitting of the high field, low temperature experimental data (Table 3) with the axial zero field splitting (ZFS) plus Zeeman Hamiltonian of Eqn (3), which assumes only the ground state is populated, afforded S = 6, g = 1.98, and D = −0.59 cm⁻¹ for 1; S = 6, g = 1.98, and D = −0.77 cm⁻¹ for 2; S = 6, g = 1.98, and D = −0.82 cm⁻¹ for 3; and S = 6, g = 1.98, and D = −0.51 cm⁻¹ for 4. Although the fits of Fig. 8 look rather good, an abnormality is immediately present: despite the four complexes being rather similar, the calculated D values span a wide range from ~0.5 cm⁻¹ to 0.8 cm⁻¹, and therefore must be treated with caution. Although one would expect some variation due to the varying Jahn–Teller tilts, it is clear that the strong intermolecular interactions, disorder (in 3)
which causes a distribution in molecular environments, the presence of weak exchange and thus the likely population of excited states in the temperature range studied, and the simplistic model employed, do not allow for an accurate determination of D. Indeed, magnetization and high frequency electron paramagnetic resonance studies of analogous molecules in which there are no intermolecular interactions suggest $|D|$ values $\geq 0.8 \text{ cm}^{-1}$, which would be consistent only with 3. Further proof for this assumption emerges in the analysis of the alternating current (AC) data and single crystal hysteresis loop measurements discussed below.

$$\hat{H} = D(S_z^2 - S(S + 1)/3) + \mu_B g \mathbf{H} \mathbf{S} \quad (3)$$

AC susceptibility studies were carried out on crystalline samples of 1–4 in the 1.8–10.0 K range in a 3.5 G field oscillating at frequencies between 50 and 1000 Hz. Frequency-dependent out-of-phase (χ'') signals suggestive of SMM behaviour were observed for all four complexes with peaks at ~ 4.5–5.0 K at a frequency of 1000 Hz for 1–3, with only the tails of peaks visible for 4. Those for complex 3 are shown in Fig. 9. In each case the AC data were used to construct Arrhenius plots (Fig. 9) from which fitting of the Arrhenius equation gave $U_{\text{eff}} \approx 43.7 \text{ K}$, $\tau_0 = 1.27 \times 10^{-9} \text{ s}$ for 1; $U_{\text{eff}} \approx 57.0 \text{ K}$, $\tau_0 = 1.98 \times 10^{-9} \text{ s}$ for 2; and $U_{\text{eff}} \approx 42.5 \text{ K}$, $\tau_0 = 7.40 \times 10^{-9} \text{ s}$ for 3. These are among the largest effective barriers observed for any low nuclearity SMMs, but they are also larger than the theoretical
Fig. 4. The hydrogen bonded (6,3) layer in 2. Colour code: Mn, purple; O, red; N, blue; Cl, green; C, gold; H, cyan. Most hydrogen and carbon atoms have been omitted for clarity. Symmetry code: a: 1 − x, 1 − y, 1 − z.

Fig. 5. The hydrogen bonded Mn$_3$-Ph-saoH$_2$ assembly in 4. Most hydrogen and carbon atoms have been omitted for clarity. Colour code: Mn, purple; O, red; N, blue; C, gold; H, cyan.
Fig. 6. The 46.64-bnn hydrogen bonded network found in 4. Purple spheres represent the Mn3-Ph-saoH2 assemblies while the gold lines represent the C–H···π interactions.

Fig. 7. Plots of $\chi_M T$ versus T for 1–4. The solid lines represent simulations of the experimental data. See text for full details.

upper limit [$U = S^2 [D]$] calculated using the D values obtained from the powder DC magnetization measurements (≈30 K (1); ≈40 K (2); ≈42 K (3)). Indeed, again only complex 3 has an experimental value close to its theoretical value. This is to be expected for exchange-coupled SMMs because the spin reversal is hindered by the relatively weak intermolecular coupling. For stronger intermolecular exchange coupling one would move away from the biased-SMM regime into a 3D system where the collective modes (domain wall propagation etc.) would reduce the effective barriers. It also points to a possible underestimation in the ZFS parameters obtained from the powder DC measurements, which is confirmed in the single crystal low temperature magnetization studies.

Hysteresis loop and relaxation measurements were carried out on single crystals of 1–4 using a micro-SQUID assembly, with the field applied along the easy axis of magnetization [9]. In each case temperature and sweep rate dependent hysteresis loops were observed, confirming SMM behaviour for all four complexes. Representative examples are shown for complexes 2 and 3 in Fig. 10. In each case the loops display step-like features separated by plateaus. After saturating the magnetization, the first resonance is seen in negative fields. This is indicative of the presence of small and antiferromagnetic intermolecular interactions and was first observed in the complex [Mn4O2Cl4(O2CEt)3(pyr)3], which crystallizes as a supramolecular H-bonded dimer of cubanes ([Mn4]2).[3] The hysteresis
loops show that the collective spins of each [Mn] are coupled antiferromagnetically to its neighbouring molecules, acting as a bias that shifts the quantum tunnelling resonances with respect to the isolated SMM. The majority of the small steps observed in all the loops are due to molecules having one (or several) ‘reversed’ (spin up–spin down) neighbouring molecules – although some may be attributed to multi-body quantum effects. The complexity of the 3D H-bonding networks seen in the crystal structures of 1–4 makes it essentially impossible (or at least extremely difficult) to determine all of the active exchange paths and to identify all of the steps. However, for 3 for example, the field separation between the first and second biggest steps for fast field sweep rates can be estimated as $D \approx 1.1 \text{ cm}^{-1}$ leading to a barrier of $D S^2 = 58 \text{ K}$. This is somewhat larger than the effective barrier from the AC data and consistent with earlier comments regarding the validity of the D values obtained from the fit of the magnetization versus field data, and with previous reports of analogous ‘uncoupled’ [MnII_3] triangles; i.e. the magnitude of D for all four complexes appears to be somewhat underestimated. New clusters with these intermolecular interactions removed will be required to get an accurate representation of the spin Hamiltonian parameters and of the relaxation dynamics.

Conclusions

[Mn(III)_3] triangles can be synthesized using a combination of bulky derivatized salicylaldoximes (R-saoH$_2$) and bulky carboxylates in alcohol. Steric considerations result in ‘non-planar’ or ‘puckered’ trimetallic units with the terminally bonded water or alcohols H-bonding to nearest neighbours creating supramolecular networks with various dimensionalities. Magnetic studies reveal dominant ferromagnetic exchange between the metal centres resulting in the observation of single-molecule magnetism behaviour. The multi-dimensional networks formed in the crystal show that exchange coupled SMMs do not suppress quantum tunnelling of the magnetization (QTM). The intermolecular interactions are strong enough to cause a clear field bias, but too weak to transform the spin network into a classical antiferromagnet. Such networks of exchange coupled SMMs demonstrate that QTM can potentially be controlled using exchange interactions and this opens up new perspectives for the use of supramolecular chemistry in the modulation of the quantum physics of molecular nanomagnets. By the same token these intermolecular interactions make derivation of the intra-triangle exchange parameters extremely difficult and accurate representation can only be obtained through the synthesis of ‘magnetically isolated’ family members; i.e. the terminal alcohol molecules must be replaced with non-H-bonding substituents.
and the disorder must be removed. Simple SMMs in which the influence of intermolecular interactions and excited states are negligible at low temperatures potentially represent an exciting discovery because it will give us access to simple molecules containing only three metal ions that display SMM behaviour and tunnel effects, and thus potential model systems with which to go beyond the giant spin approximation to yield much fruitful physical information.

Experimental

All manipulations were performed under aerobic conditions, using materials as received. CAUTION! Although no problems were encountered in this work, care should be taken when using the potentially explosive perchlorate anion.

Variable temperature, solid-state DC and AC magnetic susceptibility data down to 1.8 K were collected on a Quantum Design MPMS-XL SQUID magnetometer equipped with a 7 T DC magnet. Diamagnetic corrections were applied to the observed paramagnetic susceptibilities using Pascal’s constants. Magnetic studies below 1.8 K were carried out on single crystals using a micro-SQUID apparatus operating down to 40 mK.

Diffraction data were collected at 150 K on a Bruker Smart Apex CCDC diffractometer, equipped with an Oxford Cryosystems LT device, using Mo radiation. See Table 1 for full details. CCDC-667576 (1), CCDC-694669 (2), CCDC-667575 (3), CCDC-667577 (4) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Fig. 8. Plot of reduced magnetization ($M/N\beta$) versus H/T for complexes 1 (left) and 3 (right). The solid lines represent fits to the experimental data. See text and Table 3 for best fit parameters and comments.

Fig. 9. Out-of-phase (χ'') AC susceptibility versus temperature for complex 3 (left) and the Arrhenius plots [ln(1/τ) versus 1/T] for 1–3 (right). See text and Table 3 for best fit parameters and comments.
yield after 3 days. Microanalysis: calc. for C\textsubscript{38}H\textsubscript{44}N\textsubscript{3}O\textsubscript{14}F\textsubscript{6}Mn\textsubscript{3}Cl\textsubscript{3} O\textsubscript{4}(Et-sao)\textsubscript{3}ClO\textsubscript{4} M\textsubscript{n}II(ClO\textsubscript{4})\textsubscript{2} C\textsubscript{71}H\textsubscript{63}N\textsubscript{4}O\textsubscript{15}Mn\textsubscript{3}: C 61.93, H 4.61, N 4.07; found: C 61.92, H 4.53, N 4.13.

...After stirring for 1 h, the resulting dark green solution was filtered and left for slow evaporation. X-ray quality crystals of 12 were obtained from the mother liquor over the course of 1 week. Elemental analysis [%]: calc. for C\textsubscript{71}H\textsubscript{44}Cl\textsubscript{2}N\textsubscript{3}O\textsubscript{14}Mn\textsubscript{3}: C 61.92, H 4.61, N 4.07; found: C 61.92, H 4.53, N 4.13.

...Magnetization versus field hysteresis loops, measured along the easy-axis of magnetisation, for a single crystal of 2 (left) and 3 (right) at the indicated temperatures and field sweep rates. M is normalized to its saturation value.

\[
\text{[Mn}^3\text{I}O(Et-sao)\textsubscript{3}(\mu_3-O_2CPhCl\textsubscript{2})(MeOH)\textsubscript{3}(H_2O)\textsubscript{3]} \quad (1)
\]
\[
\text{Mn}^3\text{I}(\text{ClO}_4)\textsubscript{2} \cdot 6H_2O \ (0.25 \ g, \ 0.98 \ mmol), \text{-}saoH_2 \ (0.17 \ g, \ 1 \ mmol), \text{C}_4H_6COOH \ (0.39 \ g, \ 2 \ mmol), \text{and NaOMe} \ (0.16 \ g, \ 3 \ mmol) \ were \ dissolved \ in 25 \ mL \ of \ MeOH. \ After \ stirring \ for \ 1 \ h, \ the \ resulting \ dark \ green \ solution \ was \ filtered \ and \ left \ for \ slow \ evaporation. \ X-ray \ quality \ crystals \ of 12 \ were \ obtained \ from \ the \ mother \ liquor \ over \ the \ course \ of \ 1 \ week. \ Elemental \ analysis [%]: \ calc. \ for \ C\textsubscript{71}H\textsubscript{44}Cl\textsubscript{2}N\textsubscript{3}O\textsubscript{14}Mn\textsubscript{3}: C 61.92, H 4.61, N 4.07; found: C 61.92, H 4.53, N 4.13.

References

(b) D. Gatteschi, R. Sessoli, J. Villain, Molecular Nanomagnets. 2006 (Oxford University Press), and references therein.

...Magnetization versus field hysteresis loops, measured along the easy-axis of magnetisation, for a single crystal of 2 (left) and 3 (right) at the indicated temperatures and field sweep rates. M is normalized to its saturation value.

\[
\text{[Mn}^3\text{I}O(Et-sao)\textsubscript{3}(\mu_3-O_2CPhCl\textsubscript{2})(MeOH)\textsubscript{3}(H_2O)\textsubscript{3]} \quad (1)
\]
\[
\text{Mn}^3\text{I}(\text{ClO}_4)\textsubscript{2} \cdot 6H_2O \ (0.25 \ g, \ 0.98 \ mmol), \text{-}saoH_2 \ (0.17 \ g, \ 1 \ mmol), \text{and a 1.0 M aqueous solution of NEt}_4OH (2 \ mL) were dissolved in 25 \ mL \ of \ MeOH. \ After \ stirring \ for \ 1 \ h, \ the \ resulting \ dark \ green \ solution \ was \ filtered \ and \ left \ for \ slow \ evaporation. \ X-ray \ quality \ crystals \ of 12 \ were \ obtained \ from \ the \ mother \ liquor \ over \ the \ course \ of \ 1 \ week. \ Elemental \ analysis [%]: \ calc. \ for \ C\textsubscript{71}H\textsubscript{44}Cl\textsubscript{2}N\textsubscript{3}O\textsubscript{14}Mn\textsubscript{3}: C 61.92, H 4.61, N 4.07; found: C 61.92, H 4.53, N 4.13.

References

(b) D. Gatteschi, R. Sessoli, J. Villain, Molecular Nanomagnets. 2006 (Oxford University Press), and references therein.

...Magnetization versus field hysteresis loops, measured along the easy-axis of magnetisation, for a single crystal of 2 (left) and 3 (right) at the indicated temperatures and field sweep rates. M is normalized to its saturation value.

\[
\text{[Mn}^3\text{I}O(Et-sao)\textsubscript{3}(\mu_3-O_2CPhCl\textsubscript{2})(MeOH)\textsubscript{3}(H_2O)\textsubscript{3]} \quad (1)
\]
\[
\text{Mn}^3\text{I}(\text{ClO}_4)\textsubscript{2} \cdot 6H_2O \ (0.25 \ g, \ 0.98 \ mmol), \text{-}saoH_2 \ (0.17 \ g, \ 1 \ mmol), \text{and a 1.0 M aqueous solution of NEt}_4OH (2 \ mL) were dissolved in 25 \ mL \ of \ MeOH. \ After \ stirring \ for \ 1 \ h, \ the \ resulting \ dark \ green \ solution \ was \ filtered \ and \ left \ for \ slow \ evaporation. \ X-ray \ quality \ crystals \ of 12 \ were \ obtained \ from \ the \ mother \ liquor \ over \ the \ course \ of \ 1 \ week. \ Elemental \ analysis [%]: \ calc. \ for \ C\textsubscript{71}H\textsubscript{44}Cl\textsubscript{2}N\textsubscript{3}O\textsubscript{14}Mn\textsubscript{3}: C 61.92, H 4.61, N 4.07; found: C 61.92, H 4.53, N 4.13.

