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An analytical spacetime for the exterior of NS.



When doing Astrophysics around compact objects (accre-

tion disks, jets), we have to specify the geometry of the

space time.

Usual choices for the background geometry:

• Schwarzschild geometry,

• Kerr geometry,

• Approximate Spacetimes (slow rotation)

• Numerical spacetimes.



Choosing an analytical spacetime.

There is a large variety of analytical solutions of axisym-

metric vacuum spacetimes (Ernst, Manko and Sibgatullin).

Such an analytical solution, appropriately matched to a

neutron star, could be used to describe the stationary prop-

erties of the spacetime.

(trajectories, location of ISCO, Ω of circular orbits, epicyclic

frequencies Ωρ, Ωz)



If we decide to use analytical solutions, there are three is-

sues:

• Choosing an analytical solution from the variety,

• Matching the solution to the compact object,

• Comparing the analytical to the numerical spacetime.



Choosing an analytical axisymmetric solution:

The Two Soliton.

The stationary and axisymmetric spacetime in vacuum:

ds2 = −f (dt− ωdφ)2 + f−1
[

e2γ
(

dρ2 + dz2
)

+ ρ2dφ2
]

, (1)

Einsteins field equations in vacuum reduce to the Ernst

equation

Re(E)∇2
E = ∇E · ∇E, (2)

where the Ernst potential is a complex function, E = f+iψ.



We have a general procedure for generating solutions of

the Ernst equation (Manko and Sibgatullin):

First, choose an ansatz for the Ernst potential on the axis

of the form:

E(ρ = 0, z) = e(z) =
P(z)

R(z)
, (3)

where, P(z), R(z) are polynomials of order n in z with com-

plex coefficients. Then the algorithm will generate a solu-

tion that will depend on the parameters and form of the

potentials.



The Two Soliton solution (Manko):

e(z) =
(z −M − ia)(z + ib) − k

(z +M − ia)(z + ib) − k
(4)

M, a are the mass and the reduced angular momentum J
M .

All the parameters are real for equatorial symmetry.

Multipolar structure (Fodor):

M0 = M, M1 = 0, M2 = −(a2 − k)M, M3 = 0,

J0 = 0, J1 = aM, J2 = 0,

J3 = −(a3 − (2a− b)k)M, J4 = 0. (5)



Matching the solution: The multipole moments.

For a numerical spacetime of a neutron star model, it is

possible to evaluate its mass moments M, Q, ... and angu-

lar momentum moments J, S3, ....

These numerically evaluated moments can be used to im-

pose the matching conditions to the analytical spacetime.

The first four nonzero multipole moments of the Two Soli-

ton solution are:

M0 = M, J1 = aM,

M2 = −(a2 − k)M, (6)

J3 = −(a3 − (2a− b)k)M,



Comparing the analytical to the numerical: Criteria.

Criteria that are characteristic of the geometric structure

of the spacetime (metric, geodesics).

Related to properties of the spacetime that could be mea-

sured in astrophysical phenomena.



Criteria:

• How well the components of the analytic and the nu-

merical metric compare,

• Comparison of the innermost stable circular orbit (ISCO),

• Comparison of the rotation frequency of circular orbits

on the equatorial plane,

• Comparison of the epicyclic frequencies Ωρ, Ωz.



Results:
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A few words on multipole moments.



Why Multipole moments?

• Global properties of the spacetime (the multipole struc-

ture determines the geometry),

• Relevant in gravitational wave astronomy (the observ-

ables can be related to the moments),

• Constraining the equation of state for NS (from the

relation between M,S,Q),



Newtonian multipole moments:

Φ(r) =
Q

r
+

Qaxa

r3
+

Qabx
axb

r5
+ ... (7)

where, Q, Qa, Qab, are some integrals on the source

Q =
∫

ρd3x, Qa =
∫

xaρd3x, ... (8)

The multipole moments are generally tensorial quantities.



Definition of the moments at infinity:

xa → x̃a = r−2xa: r̃2 = x̃ax̃a = r−2

Φ(r) = r̃
(

Q + Qax
a + Qabx

axb + ...
)

(9)

If we define the potential at infinity Φ̃ = r̃−1Φ then the

moments are

Pa1...an = D̃anPa1...an−1 = D̃a1...D̃anΦ̃ (10)



Relativistic multipole moments:

• Generalization of the Newtonian moments,

• Defined for asymptotically flat spacetimes at infinity

from a ”potential” by a recursive relation,

• There are two sets of moments, the Mass moments

and the Rotation moments,

• For the two sets of moments we have two generating

potentials, ΦM , ΦJ ,



Multipole moments for stationary and axisymmetric space-

times:

• An axisymmetric vacuum spacetime is described by the

Ernst potential E,

• The two generating potentials are given as the real

(mass) an imaginary (rotation) part of the potential

ξ = 1−E
1+E

,

• Because of the rotation symmetry, the moments can

be reduced from tensors to scalars,

• The generating potential at infinity that produces the

moments from the appropriate recursive relation is

ξ̃ = r̃−1ξ



Using the multipole moments to construct a space-

time.

As we have seen from the Newtonian case, the multipole

moments are like the coefficients of a series expansion of

the potential ξ̃.

Thus they can be used to construct the potential ξ̃

ξ̃ =
∞
∑

i,j=0

aijρ̃
iz̃j (11)

where the coefficients aij are functions of the moments.

From the ξ̃ we can construct the Ernst potential and from

the Ernst potential the metric.



Using QPOs to constrain the EOS.



Low Mass X-ray Binaries (LMXBs)

Binary systems where a compact object (Black Hole or

Neutron Star) has an accretion disk with X-ray emission.

These systems have demonstrated quasi-periodic variabil-

ity in their X-ray flux (QPOs).

Boutloukos et al. (2006)



There have been proposed various models for the observed

variability

We will be interested in the relativistic precession model.



In the relativistic precession model, the observed frequen-

cies could be related to:

• The orbital frequency on the equatorial plane

Ω =
−gtφ,ρ +

√

(gtφ,ρ)
2 − gtt,ρgφφ,ρ

gφφ,ρ
,

• The precession frequencies of the periastron and of the
orbital plane

Ωα = Ω−

[

−
gαα

2

(

(gtt + gtφΩ)2

(

gφφ

ρ2

)

,αα

− 2(gtt + gtφΩ)(gtφ + gφφΩ)

(

gtφ

ρ2

)

,αα

+(gtφ + gφφΩ)2

(

gtt

ρ2

)

,αα

)]1/2

,

• Or the respective oscillation frequencies of the orbits
(radial and vertical oscillations).



The orbital frequency and the precession frequencies can

be related to the multipole moments of the spacetime.

The potential ξ̃ contains information about the moments.

From that we can construct the metric functions,

which enter the calculation of the orbital frequency, so we

can have Ω expressed as

Ω = (M/ρ3)1/2(1 + series in ρ−1/2). (12)

That expression can be inverted to give

1/ρ = (Ω2/M)1/3(1 + series in Ω1/3). (13)

Since we are on the equatorial plane z = 0.



In the same way Ωρ and Ωz can be expressed as series in

1/ρ with the coefficients depending on the moments.

If we replace the 1/ρ dependence in the precession frequen-
cies, we get the following expressions relating the preces-
sion frequencies with the orbital frequency (Ryan, 1995)

Ωρ

Ω
= 3υ2−4

S1

M2
υ3+(

9

2
−

3M2

2M3
)υ4−10

S1

M2
υ5+(

27

2
−2

S2
1

M4
−

21M2

2M3
)υ6+...

Ωz

Ω
= 2

S1

M2
υ3 +

3M2

2M3
υ4 + (7

S2
1

M4
+ 3

M2

M3
)υ6 + (11

S1M2

M5
− 6

S3

M4
)υ7 + ...

where υ = (MΩ)1/3 is the orbital velocity in the newtonian

limit.

Thus we have related the two precession frequencies to

the orbital frequency.



In the QPO sources we observe at the same time several

frequencies in the range from 0.01 up to 1000 Hz. Some

sources also present the effect of twin kHz QPOs.

In the literature authors suggest that some of these fre-

quencies could be identified with the orbital and precession

frequencies (Stella and Vietri 1998,1999)

Our suggestion is that if we can identify these QPO fre-

quencies with the orbital and precession frequencies, then

from several observations from a particular source that

cover various radii, we can use the previews expressions

to estimate the multipole moments.



We use the Two Soliton analytical solution to produce

mock frequencies and test how well the expansions

Ωρ

Ω
=

∞
∑

n=2

Rnυ
n

Ωz

Ω
=

∞
∑

n=3

Znυ
n.

estimate the mass, the spin and the quadrupole (M, S1, M2).
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The results of the fits are:

1st sequence of constant rest mass

ǫc M j = S1

M 2 q = M2

M 3 s3 = S3

M 4

∆M
M

∆j
j

∆q
q

(1015g/cm3) (km)
0.4326 2.08 0 0 0 0.0007 - -
0.4266 2.071 0.194 -0.307 -0.122 0.0004 0.021 0.19
0.4188 2.076 0.325 -0.833 -0.559 0.0004 0.013 0.07
0.4111 2.08 0.417 -1.345 -1.162 0.0005 0.011 0.04
0.4045 2.083 0.483 -1.775 -1.779 0.0005 0.01 0.04
0.3980 2.087 0.543 -2.209 -2.494 0.0006 0.01 0.03
0.3916 2.09 0.598 -2.639 -3.286 0.0007 0.01 0.03
0.3853 2.095 0.65 -3.076 -4.172 0.0007 0.01 0.03
0.3800 2.096 0.69 -3.442 -4.968 0.0008 0.01 0.03
0.3790 2.098 0.699 -3.516 -5.138 0.0008 0.009 0.03



2nd sequence of constant rest mass

ǫc M j = S1

M 2 q = M2

M 3 s3 = S3

M 4

∆M
M

∆j
j

∆q
q

(1015g/cm3) (km)
1.4700 3.99 0 0 0 0.014 - -
1.2010 4.01 0.178 -0.052 -0.014 0.006 0.25 9.1
1.0639 4.03 0.28 -0.133 -0.058 0.004 0.097 2.17
0.9552 4.05 0.376 -0.249 -0.148 0.002 0.046 0.73
0.8692 4.07 0.458 -0.385 -0.285 0.0015 0.024 0.29
0.8017 4.1 0.529 -0.529 -0.458 0.001 0.013 0.13
0.7495 4.12 0.588 -0.672 -0.657 0.0007 0.008 0.06
0.7101 4.14 0.635 -0.803 -0.859 0.0005 0.005 0.03
0.6729 4.16 0.682 -0.95 -1.108 0.0003 0.002 0.005
0.6600 4.168 0.7 -1.00 -1.211 0.0002 0.001 0.003



3rd sequence of constant rest mass

ǫc M j = S1

M 2 q = M2

M 3 s3 = S3

M 4

∆M
M

∆j
j

∆q
q

(1015g/cm3) (km)
1.3847 4.321 0.478 -0.306 -0.206 0.0013 0.017 0.27
1.3199 4.321 0.479 -0.312 -0.212 0.0013 0.018 0.27
1.2500 4.324 0.484 -0.326 -0.226 0.0013 0.017 0.26
1.1992 4.326 0.489 -0.339 -0.240 0.0012 0.016 0.24
1.1160 4.333 0.505 -0.373 -0.277 0.0011 0.014 0.19
0.9665 4.355 0.556 -0.480 -0.405 0.0008 0.009 0.09
0.8781 4.377 0.602 -0.588 -0.551 0.0005 0.005 0.04
0.8172 4.396 0.641 -0.690 -0.702 0.0002 0.002 0.03
0.7604 4.419 0.685 -0.816 -0.903 0.00009 0.0003 0.02
0.7580 4.420 0.687 -0.822 -0.913 0.00006 0.0006 0.02

The fit is good as long as we stay in a frequency range

where the series expansion is a good approximation and

when the estimated quantities are not very small.



Except for fitting the data with the series expansions, one

could use the curves
Ωρ
Ω = f(Ω) or Ωz

Ω = g(Ω) that can be

produced with the Two-Soliton metric and try to fit them

to the observed frequencies.

Various families of such curves could be produced by using

the relation that the higher multipole moments (quadrupole,

S3) have with the spin parameter, the mass and the EOS

(Laarakkers and Poisson, 1999).
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Conclusions

• The Two-Soliton is an analytical solution in closed form that can
represent the exterior of a NS well,

• Orbital and precession frequencies are observables that are not
only relevant for GW astronomy,

• One could use them for some X-ray sources to estimate the first
few moments (M,S,Q),

• The Two-Soliton could provide templates for these frequencies,

• The first 3 moments can be used to constrain the EOS of the
NS,

• The Two-Soliton could also be used to perform dynamical analysis
on orbits around a NS and identify resonances.



Thank you!!!


