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Slowly Rotating Neutron Stars

The Hartle-Thorne approximation:?!
ds® = —e” (1 4 2€°h) dt*+e* [1 + 2¢*m/(r — 2M)| dr*4r? [1 + 2€°k] [d6? + sin® 0(d¢ — ewdt)?] .

where e = Q/Q* is the slow rotation small parameter with respect to Q* = (M/R3)1/2.

Rapidly Rotating Neutron Stars: Numerical
The line element for a stationary and axially symmetric spacetime (the spacetime admits a timelike, £, and
a spacelike, n?, killing field, i.e., it has rotational symmetry and symmetry in translations in time) is 2,

ds? = —e??dt? + r?sin? 0B%e 2 (d¢ — wdt)? + 2~V (dr? 4 r2d6?).
Komatsu, Eriguchi, and Hechisu3 proposed a scheme for integrating the field equations using Green’s func-

tions. This scheme is implemented by the RNS numerical code to calculate rotating neutron stars #.

Rapidly Rotating Neutron Stars: Analytic

Using the Weyl-Papapetrou line element that describes stationary and axisymmetric vacuum spacetimes,
ds®> = —f (dt —wdg)® + f1 [e* (dp? + d2?) + p?d¢?].

Ernst® reformulated the Einstein field equations to take the form, (Re(E))VQE = V- Vg, using the

complex potential £(p,2) = f(p,2z) + iv(p, z), where f = £%, and v is defined by, V.1 = egpeq EPVEET.

IHartle J. B., Thorne K. S., ApJ 153, 807 (1968)

2E. M. Butterworth and J. R. Ipser, ApJ 204, 200 (1976).

3H. Komatsu, Y. Eriguchi, and I. Hechisu, MNRAS 237, 355 (1989).

4N. Stergioulas, J.L. Friedman, ApJ, 444, 306 (1995).

Sk . Ernst, Phys. Rev., 167, 1175 (1968); Phys. Rev., 168, 1415 (1968).
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One can use RNS to calculate models of rotating neutron stars for a given equation of
state. For example we show here some models for the APR EOS:

[\
T
\S]
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The models with the fastest rotation have a spin parameter, j = J/M?, around 0.7 and a ratio of the polar
radius over the equatorial radius, r,/r., around 0.56.

The code, except from the various physical characteristics of the neutron stars, provides
the metric functions in a grid on the coordinates x and p in the whole space (for values
from 0 to 1 for both variables), where u = cosf), » = #= and r. is a length scale.

One can also extract from the spacetime the relativistic multipole moments of the NS. In
particular the RNS code can calculates the first non-zero multipole moments, i.e., M, 51 =
J, M>, Sz = Jz and M4%. These moments characterise the NS and the spacetime arounf it.

®G.P. and T. A. Apostolatos, Phys. Rev. Lett. 108 231104 (2012),
K. Yagi, K. Kyutoku, G. P., N. Yunes, and T.A. Apostolatos, Phys.Rev. D 89 124013 (2014).



(‘\((/% grit m UNIVERSITY o
Z, gravitation in técnico m
= Introduction - The spacetime around NSs 4 /18 MISSISSIPPI

Neutron star multipole moments properties in GR

Black Hole-like behaviour of the moments’:

Kerr moments Neutron star moments
Mgy = M, Mgy = M,
Jp, = J=jM? Jp. = jM?,
My = —j°M?>, My = —a(EoS,M)j*M>,
J3 = —j>M* J3 = —B(FEoS, M)j>M*,
My = %M, My = ~(EoS, M)j*M>,
Mo, = (—1)"j%np2ntl Mo, = 7,
Jont1 = ()FTIMEEE | gy = 7

"W.G. Laarakkers and E. Poisson, Astrophys. J. 512 282 (1999).
G.P. and T. A. Apostolatos, Phys. Rev. Lett. 108 231104 (2012).
K. Yagi, K. Kyutoku, G. P., N. Yunes, and T.A. Apostolatos, Phys.Rev. D 89 124013 (2014).
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Neutron star multipole moments properties in GR

EoS independent behaviour of the moments® :
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All these are properties that characterize the spacetime around neutron stars as well as the

gravitational aspects of the stars themselves.

8G.P. and T. A. Apostolatos, Phys.Rev.Lett. 112 121101 (2014).
K. Yagi, K. Kyutoku, G. P., N. Yunes, and T.A. Apostolatos, Phys.Rev. D 89 124013 (2014).
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Two-Soliton analytic spacetime: This is a 4-parameter analytic spacetime which can be
produced if one chooses the Ernst potential on the axis to have the form:

o(2) = (z— M —ia)(z+ 1) — k
(z+ M —ia)(z+1ib) — k

The parameters a, b, k of the spacetime can be related to the first non-zero multipole
moments through the equations,

J=aM, M;=—(a®—k)M, Jz=—[a’>—(2a—b)k|M
where M is the mass.

One can use the multipole moments M, J, M>, and J3 of a numerically calculated neutron
star and produce an analytic two-soliton spacetime that reproduces very accurately the
numerically calculated spacetime®. Instead of using a specific set of values for the moments,
one could reproduce any neutron star spacetime using the universal relations

Vs =A+ B (\/ﬁz)y1 + B> (@)VQ,

Therefore the first higher moments of a general neutron star spacetime can be expressed in
terms of only three parameters, the mass M, the angular momentum J, and the quadrupole
M>,10 having thus a universal analytic spacetime.ll

9G. P, and T. A. Apostolatos, MNRAS, 429, 3007 (2013); Other analytic spacetimes have been proposed
in the past, see for eg. E. Berti, and N. Stergioulas, MNRAS, 350, 1416 (2004)

0.65
10G.p. and T. A. Apostolatos, Phys.Rev.Lett. 112 121101 (2014): </J; = —0.36 + 1.48 (\/J\_@)

11Gp, MNRAS 454, 4066 (2015)



«@

grit i
. gravitation in técnico mUNIVERSITY o
A new approximate spacetime 7 /18 zy MISSISSIPPI

The usual algorithms for constructing analytic solutions, like the Two-Soliton, result to
increasingly complicated spacetimes the higher the number of parameters one introduces
to characterise the spacetime.

One could try to evade this difficulty by constructing an approximate spacetime that is
an approximate solution of the Ernst equation. Such a spacetime would still be clearly
parameterised by the multipole moments. The ansatz that one can use to construct the

solution is,

n,k 1 9
=S =t S (o5 s) (i)
- 9 - 1) 9
1+ &(p, 2) \//)2‘|‘22 i,j=0 p? + 22 p? + 22
where the parameters a;; are related to the multipole moments of the spacetime and the
£ expansion is up to the required order.

Out of this Ernst potential one has the functions, f(p,z) = %(5 + £*), and
b(p,z) = 5 (E—E).

Then from the identity f~2Vy = —p~'n x Vw, one can calculate the metric function w(p, z).

Finally, the last metric function ~(p, z) is calculated from the system,

m=ar(5) ()| 5|G) (G| F=sline s
dp  4f2 |\ 9p Oz dp 0z) |7 8z 2|f20pdz p 9pdz
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The approximate metric:12

oy = 1o My 2 (e M) 2 (M )
VR +2 Ptz (P2 + 22)°?
+2z2 (=J2 + M* + 2M>M) — 2M Mop? N Ap, 2) B(p, 2)
(P2 + 22)° 28 (p2 4 22)77 ' 14 (p? 4+ 22)°
o(p2) = — 2Jp>  2JMp? F(p,z) H(p, 2) G(p, 2) |
(024 22)%2 (24 22)2 (24 22)72  2(p2+22)" 4 (p2 4 22)1/2
p? (72 (p? — 822) + M (M3 + 3M>) (p2 — 422)) M2
v(p,z) = 22 1 2 EEYPe N

where,
Alp, 2)=[8p2 (24J°M + 1TM? My + 21Ma) + p* (—10J°M + 7TM® + 32MoM? — 21 My)
+82* (20J°M — TM® — 22M,M? — TMa) | ,
B(p,z)= :,04 (1OJ2M2 + 10MoM3 + 21 MM + 7M22) — 4zt (4OJ2M2 + 14783 — TM® — 30 Mo M3
—14MaM — TM3) — 4p%22 (27J°M? — 21.JS5 +7M® + 48 Mo M + 42Ma M + TM3) |
H(p,2)=|4p?2* (J (M2 — 2M?3) — 3MS3) + p* (JM2 + 3M S3)]|
G(p,2)=[p? (J° (= (p* + 82" — 120%2%)) + JM ((M> 4 2M>) p* — 8 (3M> + 2M>) 2*
+4 (M3 + 10M3) p?22) +M?S3 (3p* — 402* 4 12p°27) )]
F(p,2)=|p* (S3 — JM?) — 4p°2> (JM? + S5)] .

12Gp in preparation: This is an approximate vacuum spacetime with R,, = 0+ O(7°), where 7 = (p2 4 22)~1/2
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As with the Two-Soliton, one can use the multipole moments M, J, M>, J3, and additionally
this time M4, of a numerically calculated neutron star and produce an analytic two-soliton
spacetime that reproduces very accurately the numerically calculated spacetime.

Again, instead of using a specific set of values for the moments, one could reproduce any
neutron star spacetime using universal relations of the form

\/73 A1+ B (\/ﬁz)y1 + B> (@)w,
Vil = A2+ B3 (Vik) + Ba (Vik),

Specifically the relations one can use for neutron stars arel3

— — 0.65
VT3 = —0.36 + 1.48 (\/M2> ,
_ __ .\ 1.5146 . 0.22229
/Ma = —4.749 + 0.27613 (\/Mg) 4+ 5.5168 (\/M2>

As before, a general neutron star spacetime is expressed in terms of only three parameters,
the mass M, the angular momentum J, and the quadrupole M5, having in this case as well
a universal spacetime.l4

13M2 = «, J_3 Eﬂ, and ]\_445’}/

14GP in preparation
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Possible issues and good behaviour of the spacetime:
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Figure 1. Typical plots of the behaviour of the metric functions g« (top row), gop (middle row), and gep (bottom row), for different
values of the spin parameter j and the quadrupolar deformability e (j = 0.5, a = 8 for the left column, j = 0.25, @ = 5 for the middle
column, and j = 0.125, &« = 3 for the right column). The red lines indicate the locations where the metric functions are zero. The regions
where the functions are negative are with dark colour, while the region where the functions are positive are with cream colour. Finally

the blank regions indicate regions where the functions have singular behaviour.
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Comparison of metric functions:
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Figure 2. Typical relative difference plots for the metric functions on the equatorial plane and along the axis of symmetry. The plots
are made using EoS FPS for a numerical model of M = 1.4M; = 2.0876km rotating with a spin parameter of j = 0.453 and having
o = 4.209.The plots show three curves which correspond to the metric proposed here, the two-soliton spacetime, and the Hartle-Thorne
metric.
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Comparison of astrophysical observbles:
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Figure 3. Typical relative difference plots for the various geodesic properties of the spacetime between the numerical spacetime and the
corresponding approximate spacetime and the Hartle-Thorne spacetime. The top left plot gives the relative difference of the ISCO for
the approximate metric (black circles) and the Hartle-Thorne metric (red squares). The models are constructed with the FPS EoS and
we have plotted all the NS models that have an ISCO outside the surface of the star and for which the proposed metric has an ISCO
(see discussion in the main text). The top middle plot shows the relative difference in the orbital frequency of circular equatorial orbits,
Af), as a function of the circumferential radius over the mass, between the three analytic metrics and the numerical metric. The top
right plot shows the relative difference for the radial oscillation frequency of radially perturbed orbits and the bottom left plot shows the
same for the vertical oscillation frequency of slightly off-equatorial orbits, as the previous plot. The bottom middle plot shows the nodal
precession frequency for the numerical and the analytical spacetimes. Finally the bottom right plot shows the relative difference of AE
between the numerical and the analytic spacetimes. The frequency and AFE plots are constructed using the same model as in figure 2,
but the results are similar for all The EoSs.
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C-modes in accretion disks around neutron stars.D- Tsang, G.P., ApJ, 818, L11 (2016)

4 j=0.4, a~1.0, 3~1.0 I
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Upper: Diskoseismic propagation diagram for a Kerr black hole with spin

parameter j = 0.4 for one-armed waves with m = 1,n = 1. Waves can
propagate in the white regions exterior to rsco, and are evanescent in
the shaded regions between the vertical resonances (VR) and Lindblad
resonances (LR). Inertial modes (g-modes), with m = 1,n = 1, can
become self-trapping due to the turnover of the outer Lindblad resonance,
while lower frequency g-modes are quickly damped by corotation (CR).
Corrugation waves can propagate at high frequencies exterior to the outer
VR, and at low-frequencies interior to the inner VR. Lower: Enlargement

of the propagation diagram at low frequencies.
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Upper: Same plot but for a neutron star spacetime with spin parameter
j = 0.4, quadrupole rotational deformability o« = 8, and spin-octupole
deformability g ~ 16.6. Waves with frequency f = w/2w can propagate
in the white regions exterior to the NS radius rys (or wherever the disk is
truncated). Wave regions are qualitatively similar to the Kerr black hole,
except for the low-frequency c-mode region, where w < 2 — 2,. Lower:
At low frequencies c-modes can be self-trapped due to the turnover of
the Lense-Thirring frequency, 2 — €2,, at radius 7., and frequency f,ca,

as a result of the spacetime quadrupole contribution.
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Orbital and precession frequencies: G.P. MNRAS 454, 4066 (2015)
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Combining the different properties to measure the moments:

10F 10F
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Contour plots of the orbital frequency at the orbit Contour plots of the maximum integrated
closest to the stellar surface (dashed black lines), luminosity (solid black lines), the nodal precession
the nodal precession frequency at the same orbit frequency at the orbit closest to the stellar surface

(solid black lines), and the rotation frequency of the  (dashed black lines), and the rotation frequency of

star itself (dotted red lines).. the star itself (dotted red lines).
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...and constrain the EOS: Determining the parameters « and 5 and the
independent knowledge of the mass of the neutron star (assuming for exam-
ple that it is known from the binary system observations), one can evaluate
the first three multipole moments.

Such a “measurement”!® of the first 3 moments (M, J, M>) could select an
EOS16 out of the realistic EOS candidates.

]
0203 04 o5

15G.P. MNRAS 454 4066 (2015),
and for an alternative proposal see, G.P., 2012 MNRAS, 422, 2581-2589.

16G.P. and T. A. Apostolatos, Phys.Rev.Lett. 112 121101 (2014)
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In the case of Scalar-Tensor theories with a massless scalar field,
1 4 — - - _
5= Torc /d vV =G (R = 2V"$V,) + Sm(gpm, )

the field equations in the Einstein frame take the form,

~

Rab — 28a¢8b¢a
gabﬁaﬁbqb =0
which can admit an Ernst formulation,!’
(Re(E))V2E = VE - VE,

with the addition of a Laplace equation for the scalar field V2¢ = 0, and the ~ function
being given by the equations

= (), G- (3]

o o 0 0

0z 0z ) ap Op 0z
One can thus extend the previous GR solution to a Scalar-Tensor solution by introducing
the additional terms in v and an appropriate scalar field. The Jordan (physical) frame

metric can then be given by the conformal transformation g,, = A?($)gu.. This metric can
be used to do astrophysics in the same way as in the GR case.!8

17Gp, T.P. Sotiriou, Phys. Rev. D91, 044011 (2015)
18GP, T.P. Sotiriou, MNRAS 454, 4066 (2015); GP in preparation
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T hank You.



