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Slowly Rotating Neutron Stars
The Hartle-Thorne approximation:1

ds2 = −eν̄
(
1 + 2ε2h

)
dt2+eλ

[
1 + 2ε2m/(r − 2M)

]
dr2+r2

[
1 + 2ε2k

] [
dθ2 + sin2 θ(dφ− εωdt)2

]
.

where ε = Ω/Ω∗ is the slow rotation small parameter with respect to Ω∗ = (M/R3)1/2.

Rapidly Rotating Neutron Stars: Numerical
The line element for a stationary and axially symmetric spacetime (the spacetime admits a timelike, ξa, and
a spacelike, ηa, killing field, i.e., it has rotational symmetry and symmetry in translations in time) is 2,

ds2 = −e2νdt2 + r2 sin2 θB2e−2ν(dφ− ωdt)2 + e2(ζ−ν)(dr2 + r2dθ2).

Komatsu, Eriguchi, and Hechisu3 proposed a scheme for integrating the field equations using Green’s func-

tions. This scheme is implemented by the RNS numerical code to calculate rotating neutron stars 4.

Rapidly Rotating Neutron Stars: Analytic
Using the Weyl-Papapetrou line element that describes stationary and axisymmetric vacuum spacetimes,

ds2 = −f (dt− ωdφ)2 + f−1
[
e2γ
(
dρ2 + dz2

)
+ ρ2dφ2

]
.

Ernst5 reformulated the Einstein field equations to take the form, (Re(E))∇2E = ∇E · ∇E , using the

complex potential E(ρ, z) = f(ρ, z) + iψ(ρ, z), where f = ξaξa and ψ is defined by, ∇aψ = εabcd ξ
b∇cξd.

1Hartle J. B., Thorne K. S., ApJ 153, 807 (1968)
2E. M. Butterworth and J. R. Ipser, ApJ 204, 200 (1976).
3H. Komatsu, Y. Eriguchi, and I. Hechisu, MNRAS 237, 355 (1989).
4N. Stergioulas, J.L. Friedman, ApJ, 444, 306 (1995).
5F.J. Ernst, Phys. Rev., 167, 1175 (1968); Phys. Rev., 168, 1415 (1968).
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One can use RNS to calculate models of rotating neutron stars for a given equation of
state. For example we show here some models for the APR EOS:
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The models with the fastest rotation have a spin parameter, j = J/M2, around 0.7 and a ratio of the polar
radius over the equatorial radius, rp/re, around 0.56.

The code, except from the various physical characteristics of the neutron stars, provides
the metric functions in a grid on the coordinates x and µ in the whole space (for values
from 0 to 1 for both variables), where µ = cosθ, r = xre

1−x and re is a length scale.

One can also extract from the spacetime the relativistic multipole moments of the NS. In
particular the RNS code can calculates the first non-zero multipole moments, i.e., M, S1 ≡
J, M2, S3 ≡ J3 and M4

6. These moments characterise the NS and the spacetime arounf it.

6G.P. and T. A. Apostolatos, Phys. Rev. Lett. 108 231104 (2012),
K. Yagi, K. Kyutoku, G. P., N. Yunes, and T.A. Apostolatos, Phys.Rev. D 89 124013 (2014).
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Neutron star multipole moments properties in GR

Black Hole-like behaviour of the moments7:

Kerr moments Neutron star moments

M0 = M,

J1 = J = jM2,

M2 = −j2M3,

J3 = −j3M4,

M4 = j4M5,
...

M2n = (−1)nj2nM2n+1,

J2n+1 = (−1)nj2n+1M2n+2

M0 = M,

J1 = jM2,

M2 = −a(EoS,M)j2M3,

J3 = −β(EoS,M)j3M4,

M4 = γ(EoS,M)j4M5,
...

M2n = ?,

J2n+1 = ?

7W.G. Laarakkers and E. Poisson, Astrophys. J. 512 282 (1999).
G.P. and T. A. Apostolatos, Phys. Rev. Lett. 108 231104 (2012).
K. Yagi, K. Kyutoku, G. P., N. Yunes, and T.A. Apostolatos, Phys.Rev. D 89 124013 (2014).



Introduction - The spacetime around NSs 5 /18

Neutron star multipole moments properties in GR
EoS independent behaviour of the moments8 : 16
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FIG. 7. (Color online) (Top) S̄3–M̄2 relation with various re-
alistic NS and QS EoSs and spins, together with the fit in
Eq. (90) and the Newtonian relation for the n = 0.5 poly-
tropes in [26]. The meaning of the dotted-dashed vertical line
is the same as in Fig. 1. Observe that the QS relation is al-
most the same as the NS one. (Bottom) Fractional di↵erence
between the data and the fit.

ical values and the � fits. Observe that the slow-rotation
relation to O(�2) is valid to O(1%) for � < 0.3.

Let us now compare the NS and QS Ī–M̄2 relation for
di↵erent EoSs, but with results valid to all orders in spin
(Fig. 6). The blue plane shows the NS relation, which is
consistent with that found in [24]. The red points show
the QS relation at di↵erent points in (Ī , M̄2, �) space.
Observe that the QS points lie on the NS plane. This
proves that the QS relation is almost identical to the NS
one.

Let us now turn our attention to the S̄3–M̄2 relation.
The top panel of Fig. 7 shows this relation, not only
for NSs but also for QSs, and various EoSs and spins.
Observe that the QS relation is again almost identical to
the NS one. Following [24], we fit all these data to the
polynomial

y = A0 + B1x
⌫1 + B2x

⌫2 , (90)

with y = (S̄3)
1/3 and x = M̄2, with fitting parameters

given in Table I. The new fit found here, which includes
both NSs and QSs results, is very similar to the one
found in [24] for NSs. In the bottom panel of Fig. 7, we
present the fractional di↵erence between the data and the
fit. Observe that the relation is approximately universal,
with variability of . O(10%).

C. M̄4–M̄2 and M̄4/S̄3–M̄2 Relations

Let us now study whether higher multipoles satisfy
approximately EoS independent relations for relativistic

stars spinning at di↵erent frequencies. Reference [26] al-
ready found that there exists a universal M̄4–M̄2 relation
to leading-order in a weak-field, Newtonian expansion,
so let us investigate this relation first. The top panel
of Fig. 1 shows the M̄4–M̄2 relation for various realistic
NS and QS EoSs and various spins, computed with the
LORENE and RNS codes, as well as in the slow-rotation
approximation. The bottom panel shows the fractional
di↵erence between the data and the fit of Eq. (90) with
y = (M̄4)

1/4 and x = M̄2 and the coe�cients given in Ta-
ble I. Observe that the EoS-universality is slightly weaker
than the S̄3–M̄2 relation, but still, it holds up to roughly
20%. This larger variation is not an artifact of numeri-
cal error, since our calculations are valid to O(1%). This
indicates that the universality becomes worse as one con-
siders multipole moment relations for higher ` modes, as
first predicted in [26].
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FIG. 8. (Color online) Fractional di↵erence between the M̄4–
M̄2 relation for rapidly-rotating stars with RNS and the one
in the slow-rotation limit for an APR EoS with various spin
parameters.

The 20% variability observed in Fig. 1 has two possi-
ble origins: EoS variability and spin-variability. In order
to determine which of these dominates, Fig. 8 attempts
to assess the spin dependence of the M̄4–M̄2 relation.
This figure shows the fractional di↵erence between M̄4

computed with the RNS code and in the slow-rotation
approximation, as a function of M̄2, clustered in groups
of di↵erent �, using an APR EoS as a characteristic ex-
ample. As expected, the di↵erence becomes larger as one
increases spins, reaching a maximum of 5% accuracy for
the largest � models considered. Comparing this with the
fractional di↵erence in Fig. 1, we conclude that the 20%
variability in the latter is dominated by EoS-variations
and not spin e↵ects. We recall that the multipole mo-
ments have a clear spin dependence if they are expressed
in terms of the stellar compactness (see Fig. 2). Our
results indicate that such spin dependence seems to par-
tially cancel if one expresses one multipole moment in
terms of another. Not surprisingly, one can improve the

2

of such no-hair relations for NSs and QSs. A universal
relation between the moment of inertia (directly related
to the current dipole moment) and the mass quadrupole
moment was found in [19, 20], using an unmagnetized,
uniform- and slow-rotation approximation. This result
was immediately confirmed by [21] using di↵erent EoSs.
Haskell et al. [22] extended the analysis of [19, 20] to mag-
netized NSs and found that the universality still holds,
provided that stars spin moderately fast (spin period less
than 0.1s) and the magnetic fields are not too large (less
than 1012G). Such properties are precisely those one ex-
pects millisecond pulsars to have.

Several studies have relaxed the slow-rotation approx-
imation [23–25], leading to a small controversy. Initially,
Doneva et al. [23] constructed NS and QS sequences by
varying the dimensional spin frequency and found that
the EoS-universality of the relation between the moment
of inertia and the quadrupole moment was lost. Shortly
after, Pappas and Apostolatos [24] and Chakrabarti et
al. [25] constructed NS sequences by varying dimen-
sionless combinations of the spin angular moment and
found that the relation remained EoS-universal. More
recently, Stein et al. [26] proved analytically that uni-
versality is preserved to leading (Newtonian) order in a
weak-field expansion, supporting the numerical calcula-
tions of [24, 25].

Recent studies have also considered whether approxi-
mately EoS independent relations exist between higher-
` multipole moments. Reference [24] in fact found
one such relation between the current octupole and the
mass quadrupole moments of NSs. This relation was
not only approximately EoS-universal but also approx-
imately spin-insensitive. The Newtonian results of [26]
analytically confirmed this result. The latter, in fact,
proved that higher-` multipole moments in the non-
relativistic Newtonian limit can be expressed in terms
of just the mass monopole, spin current dipole and mass
quadrupole moments through relations that are approxi-
mately EoS-universal and spin-independent. This univer-
sality, however, was found to deteriorate with increasing
` multipole number.

The existence of approximately universal relations is
not only of academic interest, but it also has practical
applications. For example, if one could measure any two
quantities in a given relation independently, one could
perform an EoS-independent test of GR in the strong-
field regime [19, 20]. Moreover, these relations may play
a critical role when attempting to measure the mass
and radius of NSs with future X-ray telescopes, such as
NICER [27] and LOFT [28, 29]. The pulse and atomic
line profiles of such stars depend not only on the stellar
mass and radius, but also on the moment of inertia, the
quadrupole moment and the stellar eccentricity [30–32].
Universal relations between these quantities [17, 19, 20]
allow one to break parameter degeneracies and measure
the mass and radius [18]. Such measurements, in turn,
would allow for exquisite constraints on the EoS in the
high density regime [33].

In this paper, we study whether approximately EoS-
independent relations among multipole moments exist
up to hexadecapole order in full GR for both NSs and
QSs. To do so, we construct unmagnetized, uniformly-
rotating NS and QS solutions to the Einstein equa-
tions. For rapidly-rotating stars, we extract multipole
moments by numerically constructing stellar solutions
with the LORENE [34, 35] and RNS [36] codes. For
slowly-rotating stars, we extract multipole moments by
solving the Einstein equations in a slow-rotation expan-
sion to quartic order in spin, extending previously-found
quadratic [37, 38] and cubic [39] solutions. Validity of the
quadratic solution is discussed in [40]. Such an extension
allows us to estimate the importance of quartic-order-in-
spin terms in X-ray observations of millisecond pulsars,
which were neglected in [18, 32].
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FIG. 1. (Color online) (Top) The (reduced dimensionless)
hexadecapole (M̄4)–quadrupole (M̄2) moments relation with
various NS and QS EoSs and spins, together with the fit given
by Eq. (90) and the Newtonian relation found in [26]. Observe
the relation approaches the Newtonian one as one increases
M̄2. The Newtonian relation for an n = 0.5 polytrope agrees
with the relativistic fit for various realistic EoSs within 10%
accuracy above the critical M̄2 denoted by the dotted-dashed,
vertical line. (Bottom) Fractional di↵erence between the data
and the fit. Observe the relation is universal to roughly 20%.
This means that the hexadecapole moment can be approxi-
mately expressed in terms of just the stellar mass, spin and
quadrupole moment.

A. Executive Summary

Given the length of the paper, let us here present a
brief summary of the main results. First, we confirm
that the LORENE and RNS codes lead to numerically
extracted multipole moments up to hexadecapole order
that are not only consistent with each other, but also con-

M̄2n = |M2n/(j2nM2n+1)|, J̄2n+1 = |J2n+1/(j2n+1M2n+2)|

All these are properties that characterize the spacetime around neutron stars as well as the

gravitational aspects of the stars themselves.

8G.P. and T. A. Apostolatos, Phys.Rev.Lett. 112 121101 (2014).
K. Yagi, K. Kyutoku, G. P., N. Yunes, and T.A. Apostolatos, Phys.Rev. D 89 124013 (2014).
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Two-Soliton analytic spacetime: This is a 4-parameter analytic spacetime which can be

produced if one chooses the Ernst potential on the axis to have the form:

e(z) =
(z −M − ia)(z + ib)− k
(z +M − ia)(z + ib)− k

The parameters a, b, k of the spacetime can be related to the first non-zero multipole
moments through the equations,

J = aM, M2 = −(a2 − k)M, J3 = −
[
a3 − (2a− b)k

]
M,

where M is the mass.

One can use the multipole moments M, J, M2, and J3 of a numerically calculated neutron
star and produce an analytic two-soliton spacetime that reproduces very accurately the
numerically calculated spacetime9. Instead of using a specific set of values for the moments,
one could reproduce any neutron star spacetime using the universal relations

3
√
J̄3 = A+B1

(√
M̄2

)ν1

+B2

(√
M̄2

)ν2

,

Therefore the first higher moments of a general neutron star spacetime can be expressed in
terms of only three parameters, the mass M , the angular momentum J, and the quadrupole
M2,10 having thus a universal analytic spacetime.11

9G. P., and T. A. Apostolatos, MNRAS, 429, 3007 (2013); Other analytic spacetimes have been proposed
in the past, see for eg. E. Berti, and N. Stergioulas, MNRAS, 350, 1416 (2004)

10G.P. and T. A. Apostolatos, Phys.Rev.Lett. 112 121101 (2014): 3
√
J̄3 = −0.36 + 1.48

(√
M̄2

)0.65

11GP, MNRAS 454, 4066 (2015)
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The usual algorithms for constructing analytic solutions, like the Two-Soliton, result to
increasingly complicated spacetimes the higher the number of parameters one introduces
to characterise the spacetime.

One could try to evade this difficulty by constructing an approximate spacetime that is

an approximate solution of the Ernst equation. Such a spacetime would still be clearly

parameterised by the multipole moments. The ansatz that one can use to construct the

solution is,

E =
1− ξ(ρ, z)

1 + ξ(ρ, z)
, ξ =

1√
ρ2 + z2

n,k∑
i,j=0

aij

(
ρ

ρ2 + z2

)i(
z

ρ2 + z2

)j
,

where the parameters aij are related to the multipole moments of the spacetime and the
ξ expansion is up to the required order.

Out of this Ernst potential one has the functions, f(ρ, z) = 1
2 (E + E∗) , and

ψ(ρ, z) = 1
2i (E − E∗) .

Then from the identity f−2∇ψ = −ρ−1n̂×∇ω, one can calculate the metric function ω(ρ, z).

Finally, the last metric function γ(ρ, z) is calculated from the system,

∂γ

∂ρ
=

ρ

4f2

[(
∂f

∂ρ

)2

−
(
∂f

∂z

)2
]
−
f2

4ρ

[(
∂ω

∂ρ

)2

−
(
∂ω

∂z

)2
]
,

∂γ

∂z
=

1

2

[
ρ

f2

∂f

∂ρ

∂f

∂z
−
f2

ρ

∂ω

∂ρ

∂ω

∂z

]
.
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The approximate metric:12

f(ρ, z) = 1−
2M√
ρ2 + z2

+
2M2

ρ2 + z2
+

(
M2 −M3

)
ρ2 − 2

(
M3 +M2

)
z2

(ρ2 + z2)5/2

+
2z2
(
−J2 +M4 + 2M2M

)
− 2MM2ρ2

(ρ2 + z2)3
+

A(ρ, z)

28 (ρ2 + z2)9/2
+

B(ρ, z)

14 (ρ2 + z2)5
,

ω(ρ, z) = −
2Jρ2

(ρ2 + z2)3/2
−

2JMρ2

(ρ2 + z2)2
+

F (ρ, z)

(ρ2 + z2)7/2
+

H(ρ, z)

2 (ρ2 + z2)4
+

G(ρ, z)

4 (ρ2 + z2)11/2
,

γ(ρ, z) =
ρ2
(
J2
(
ρ2 − 8z2

)
+M

(
M3 + 3M2

) (
ρ2 − 4z2

))
4 (ρ2 + z2)4

−
M2ρ2

2 (ρ2 + z2)2
,

where,

A(ρ, z)=
[
8ρ2z2

(
24J2M + 17M2M2 + 21M4

)
+ ρ4

(
−10J2M + 7M5 + 32M2M

2 − 21M4

)
+8z4

(
20J2M − 7M5 − 22M2M

2 − 7M4

)]
,

B(ρ, z)=
[
ρ4
(

10J2M2 + 10M2M
3 + 21M4M + 7M2

2

)
− 4z4

(
40J2M2 + 14JS3 − 7M6 − 30M2M

3

−14M4M − 7M2
2

)
− 4ρ2z2

(
27J2M2 − 21JS3 +7M6 + 48M2M

3 + 42M4M + 7M2
2

)]
,

H(ρ, z)=
[
4ρ2z2

(
J
(
M2 − 2M3

)
− 3MS3

)
+ ρ4 (JM2 + 3MS3)

]
G(ρ, z)=

[
ρ2
(
J3
(
−
(
ρ4 + 8z4 − 12ρ2z2

))
+ JM

((
M3 + 2M2

)
ρ4 − 8

(
3M3 + 2M2

)
z4

+4
(
M3 + 10M2

)
ρ2z2

)
+M2S3

(
3ρ4 − 40z4 + 12ρ2z2

))]
F (ρ, z)=

[
ρ4
(
S3 − JM2

)
− 4ρ2z2

(
JM2 + S3

)]
.

12GP in preparation: This is an approximate vacuum spacetime with Rab = 0 + O(r̄6), where r̄ = (ρ2 + z2)−1/2
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As with the Two-Soliton, one can use the multipole moments M, J, M2, J3, and additionally
this time M4, of a numerically calculated neutron star and produce an analytic two-soliton
spacetime that reproduces very accurately the numerically calculated spacetime.

Again, instead of using a specific set of values for the moments, one could reproduce any
neutron star spacetime using universal relations of the form

3
√
J̄3 = A1 +B1

(√
M̄2

)ν1

+B2

(√
M̄2

)ν2

,

4
√
M̄4 = A2 +B3

(√
M̄2

)ν3

+B4

(√
M̄2

)ν4

,

Specifically the relations one can use for neutron stars are13

3
√
J̄3 = −0.36 + 1.48

(√
M̄2

)0.65
,

4
√
M̄4 = −4.749 + 0.27613

(√
M̄2

)1.5146
+ 5.5168

(√
M̄2

)0.22229

As before, a general neutron star spacetime is expressed in terms of only three parameters,
the mass M , the angular momentum J, and the quadrupole M2, having in this case as well
a universal spacetime.14

13M̄2 ≡ α, J̄3 ≡ β, and M̄4 ≡ γ
14GP in preparation
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Possible issues and good behaviour of the spacetime:
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Comparison of metric functions:
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Comparison of astrophysical observbles:
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C-modes in accretion disks around neutron stars.D. Tsang, G.P., ApJ, 818, L11 (2016)

Upper: Diskoseismic propagation diagram for a Kerr black hole with spin

parameter j = 0.4 for one-armed waves with m = 1, n = 1. Waves can

propagate in the white regions exterior to rISCO, and are evanescent in

the shaded regions between the vertical resonances (VR) and Lindblad

resonances (LR). Inertial modes (g-modes), with m = 1, n = 1, can

become self-trapping due to the turnover of the outer Lindblad resonance,

while lower frequency g-modes are quickly damped by corotation (CR).

Corrugation waves can propagate at high frequencies exterior to the outer

VR, and at low-frequencies interior to the inner VR. Lower: Enlargement

of the propagation diagram at low frequencies.

Upper: Same plot but for a neutron star spacetime with spin parameter

j = 0.4, quadrupole rotational deformability α = 8, and spin-octupole

deformability β ' 16.6. Waves with frequency f = ω/2π can propagate

in the white regions exterior to the NS radius rNS (or wherever the disk is

truncated). Wave regions are qualitatively similar to the Kerr black hole,

except for the low-frequency c-mode region, where ω < Ω−Ω⊥. Lower:

At low frequencies c-modes can be self-trapped due to the turnover of

the Lense-Thirring frequency, Ω−Ω⊥, at radius rpeak, and frequency fpeak,

as a result of the spacetime quadrupole contribution.
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Orbital and precession frequencies: G.P. MNRAS 454, 4066 (2015)
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Combining the different properties to measure the moments:
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Contour plots of the orbital frequency at the orbit

closest to the stellar surface (dashed black lines),

the nodal precession frequency at the same orbit

(solid black lines), and the rotation frequency of the

star itself (dotted red lines)..
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Contour plots of the maximum integrated

luminosity (solid black lines), the nodal precession

frequency at the orbit closest to the stellar surface

(dashed black lines), and the rotation frequency of

the star itself (dotted red lines).
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...and constrain the EOS: Determining the parameters α and j and the
independent knowledge of the mass of the neutron star (assuming for exam-
ple that it is known from the binary system observations), one can evaluate
the first three multipole moments.

Such a “measurement”15 of the first 3 moments (M,J,M2) could select an
EOS16 out of the realistic EOS candidates.
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15G.P. MNRAS 454 4066 (2015),
and for an alternative proposal see, G.P., 2012 MNRAS, 422, 2581-2589.

16G.P. and T. A. Apostolatos, Phys.Rev.Lett. 112 121101 (2014)
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In the case of Scalar-Tensor theories with a massless scalar field,

S =
1

16πG

∫
d4x
√
−g̃
(
R̃− 2∇̃µφ∇̃µφ

)
+ Sm(gµν, ψ) ,

the field equations in the Einstein frame take the form,

R̃ab = 2∂aφ∂bφ,

g̃ab∇̃a∇̃bφ = 0

which can admit an Ernst formulation,17

(Re(E))∇2E = ∇E · ∇E ,
with the addition of a Laplace equation for the scalar field ∇2φ = 0, and the γ function
being given by the equations

∂γ

∂ρ
=

(
∂γ

∂ρ

)
GR

+ ρ

[(
∂φ

∂ρ

)2

−
(
∂φ

∂z

)2
]
,

∂γ

∂z
=

(
∂γ

∂z

)
GR

+ 2ρ

(
∂φ

∂ρ

)(
∂φ

∂z

)
.

One can thus extend the previous GR solution to a Scalar-Tensor solution by introducing
the additional terms in γ and an appropriate scalar field. The Jordan (physical) frame
metric can then be given by the conformal transformation gµν = A2(φ)g̃µν. This metric can
be used to do astrophysics in the same way as in the GR case.18

17GP, T.P. Sotiriou, Phys. Rev. D91, 044011 (2015)
18GP, T.P. Sotiriou, MNRAS 454, 4066 (2015); GP in preparation
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Thank You.


