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Neutron stars are the results of stellar evolution.
We can see them in stellar remnants.
A typical example is the Crab nebula that hosts the
Crab pulsara.

aAPOD 2006 October 26

Very often we find rapidly rotating pulsars at the end
of stellar evolution. The fastest rotating known pulsar
(PSR J1748-2446ad) spins at 716Hz and it is part of
a binary systema.

Low mass X-ray binaries are systems that are com-
prised by a compact object (NS or BH) and a regular
star companion. The main source of the X-rays is the
accretion disk that forms around the compact object.

aJ. W. T. Hessels et al., Science 311 1901 (2006)

Interesting astrophysics takes place around NSs that depends on the background spacetime.

Matter in their interior is at very high densities, where the equation of state is unknown.

NSs have strong enough gravitational fields that can test our theories of gravity.
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In low-mass X-ray binaries we can have observables that are related to geodesic motion.

An example of observables that can be related to orbits around neutron stars are the quasi-periodic oscillations
(QPOs) of the spectrum1 of an accretion disc.

Mechanisms for producing QPOs2 from orbital motion Typical X-Ray spectrum3

Apart from orbiting hot spots and oscillations on the disc, one could also have precessing rings or misaligned

precessing discs, which either themselves have a modulated emission or they are eclipsing the emission from

the central object. Furthermore, the characteristics of the emitted spectrum from the accretion provide even

more observables.

1Stella & Vietri, 1998, ApJ, 492, L59.
2F.K. Lamb, Advances in Space Research, 8 (1988) 421.
3Boutloukos et al., 2006, ApJ, 653, 1435-1444.
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Neutron stars: Fluid configurations that are in equilibrium by the action of their self-gravity
and their internal forces.

Newtonian Stars
Hydrostatic equilibrium (spherical symmetry):

∇P = −ρ∇Φ⇒
dP

dr
= −

dΦ

dr
ρ = −G

m(r)

r2
ρ

Mass (spherical symmetry): dm
dr = 4πρr2

Field equations: ∇2Φ = 4πGρ,
Equation of state for the fluid: P = P (ρ).

Relativistic non-rotating Stars
Instead of a gravitational field Φ, gravity is described by a metric gab. In spherical symmetry

the metric can take the form ds2 = −e2Φdt2 +
(

1− 2m(r)
r

)−1
dr2 + r2dΩ2.

Field equations: Gab = 8πGT ab,

Equation for the metric potential Φ: dΦ
dr = m(r)+4πr3P

r(r−2m(r)) ,

Definition of the Mass: dmdr = 4πρr2,

Hydro. equilibrium: dPdr = −(ρ+P )dΦ
dr = −ρm(r)

r2

(
1 + P

ρ

) (
1 + 4πPr3

m(r)

) (
1− 2m(r)

r

)−1
,

Equation of state for the fluid: P = P (ρ).
The spacetime outside the star is the Schwarzschild spacetime:

ds2 = −
(

1−
2M

r

)
dt2 +

(
1−

2M

r

)−1

dr2 + r2dΩ2.
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Realistic equations of state
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∗ SLB1,2 are observationally inferred EoSs

(A.W. Steiner, J.M. Lattimer, and E.F. Brown, Astrophys. J. 722 33 (2010)).
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Slowly Rotating Neutron Stars
The Hartle-Thorne approximation:4

ds2 = −eν̄
(
1 + 2ε2h

)
dt2+eλ

[
1 + 2ε2m/(r − 2M)

]
dr2+r2

[
1 + 2ε2k

] [
dθ2 + sin2 θ(dφ− εωdt)2

]
.

where ε = Ω/Ω∗ is the slow rotation small parameter with respect to Ω∗ = (M/R3)1/2.

Rapidly Rotating Neutron Stars: Numerical
The line element for a stationary and axially symmetric spacetime (the spacetime admits a timelike, ξa, and
a spacelike, ηa, killing field, i.e., it has rotational symmetry and symmetry in translations in time) is 5,

ds2 = −e2νdt2 + r2 sin2 θB2e−2ν(dφ− ωdt)2 + e2(ζ−ν)(dr2 + r2dθ2).

Komatsu, Eriguchi, and Hechisu6 proposed a scheme for integrating the field equations using Green’s func-

tions. This scheme is implemented by the RNS numerical code to calculate rotating neutron stars 7.

Rapidly Rotating Neutron Stars: Analytic
Using the Weyl-Papapetrou line element that describes stationary and axisymmetric vacuum spacetimes,

ds2 = −f (dt− ωdφ)2 + f−1
[
e2γ
(
dρ2 + dz2

)
+ ρ2dφ2

]
.

Ernst8 reformulated the Einstein field equations to take the form, (Re(E))∇2E = ∇E · ∇E , using the

complex potential E(ρ, z) = f(ρ, z) + iψ(ρ, z), where f = ξaξa and ψ is defined by, ∇aψ = εabcd ξ
b∇cξd.

4Hartle J. B., Thorne K. S., ApJ 153, 807 (1968)
5E. M. Butterworth and J. R. Ipser, ApJ 204, 200 (1976).
6H. Komatsu, Y. Eriguchi, and I. Hechisu, MNRAS 237, 355 (1989).
7N. Stergioulas, J.L. Friedman, ApJ, 444, 306 (1995).
8F.J. Ernst, Phys. Rev., 167, 1175 (1968); Phys. Rev., 168, 1415 (1968).
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Results from numerical models:

One can use RNS to calculate models of rotating neutron stars for a given equation of
state. For example we show here some models for the APR EOS:
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The models with the fastest rotation have a spin parameter, j = J/M2, around 0.7 and a ratio of the polar
radius over the equatorial radius, rp/re, around 0.56.

The code, except from the various physical characteristics of the neutron stars, provides
the metric functions in a grid on the coordinates x and µ in the whole space (for values
from 0 to 1 for both variables), where µ = cosθ, r = xre

1−x and re is a length scale.

One can also extract from the spacetime the relativistic multipole moments of the NS. In
particular the RNS code can calculates the first non-zero multipole moments, i.e., M, S1 ≡
J, M2, S3 ≡ J3 and M4

9. These moments characterise the NS and the spacetime around it.

9G.P. and T. A. Apostolatos, Phys. Rev. Lett. 108 231104 (2012),
K. Yagi, K. Kyutoku, G. P., N. Yunes, and T.A. Apostolatos, Phys.Rev. D 89 124013 (2014).
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Neutron star multipole moments in GR

Black Hole-like behaviour of the moments10:

Kerr moments Neutron star moments

M0 = M,

J1 = J = jM2,

M2 = −j2M3,

J3 = −j3M4,

M4 = j4M5,
...

M2n = (−1)nj2nM2n+1,

J2n+1 = (−1)nj2n+1M2n+2

M0 = M,

J1 = jM2,

M2 = −a(EoS,M)j2M3,

J3 = −β(EoS,M)j3M4,

M4 = γ(EoS,M)j4M5,
...

M2n = ?,

J2n+1 = ?

10W.G. Laarakkers and E. Poisson, Astrophys. J. 512 282 (1999).
G.P. and T. A. Apostolatos, Phys. Rev. Lett. 108 231104 (2012).
K. Yagi, K. Kyutoku, G. P., N. Yunes, and T.A. Apostolatos, Phys.Rev. D 89 124013 (2014).
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Neutron star multipole moments in GR
EoS independent behaviour of the moments11 : 16
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FIG. 7. (Color online) (Top) S̄3–M̄2 relation with various re-
alistic NS and QS EoSs and spins, together with the fit in
Eq. (90) and the Newtonian relation for the n = 0.5 poly-
tropes in [26]. The meaning of the dotted-dashed vertical line
is the same as in Fig. 1. Observe that the QS relation is al-
most the same as the NS one. (Bottom) Fractional di↵erence
between the data and the fit.

ical values and the � fits. Observe that the slow-rotation
relation to O(�2) is valid to O(1%) for � < 0.3.

Let us now compare the NS and QS Ī–M̄2 relation for
di↵erent EoSs, but with results valid to all orders in spin
(Fig. 6). The blue plane shows the NS relation, which is
consistent with that found in [24]. The red points show
the QS relation at di↵erent points in (Ī , M̄2, �) space.
Observe that the QS points lie on the NS plane. This
proves that the QS relation is almost identical to the NS
one.

Let us now turn our attention to the S̄3–M̄2 relation.
The top panel of Fig. 7 shows this relation, not only
for NSs but also for QSs, and various EoSs and spins.
Observe that the QS relation is again almost identical to
the NS one. Following [24], we fit all these data to the
polynomial

y = A0 + B1x
⌫1 + B2x

⌫2 , (90)

with y = (S̄3)
1/3 and x = M̄2, with fitting parameters

given in Table I. The new fit found here, which includes
both NSs and QSs results, is very similar to the one
found in [24] for NSs. In the bottom panel of Fig. 7, we
present the fractional di↵erence between the data and the
fit. Observe that the relation is approximately universal,
with variability of . O(10%).

C. M̄4–M̄2 and M̄4/S̄3–M̄2 Relations

Let us now study whether higher multipoles satisfy
approximately EoS independent relations for relativistic

stars spinning at di↵erent frequencies. Reference [26] al-
ready found that there exists a universal M̄4–M̄2 relation
to leading-order in a weak-field, Newtonian expansion,
so let us investigate this relation first. The top panel
of Fig. 1 shows the M̄4–M̄2 relation for various realistic
NS and QS EoSs and various spins, computed with the
LORENE and RNS codes, as well as in the slow-rotation
approximation. The bottom panel shows the fractional
di↵erence between the data and the fit of Eq. (90) with
y = (M̄4)

1/4 and x = M̄2 and the coe�cients given in Ta-
ble I. Observe that the EoS-universality is slightly weaker
than the S̄3–M̄2 relation, but still, it holds up to roughly
20%. This larger variation is not an artifact of numeri-
cal error, since our calculations are valid to O(1%). This
indicates that the universality becomes worse as one con-
siders multipole moment relations for higher ` modes, as
first predicted in [26].
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FIG. 8. (Color online) Fractional di↵erence between the M̄4–
M̄2 relation for rapidly-rotating stars with RNS and the one
in the slow-rotation limit for an APR EoS with various spin
parameters.

The 20% variability observed in Fig. 1 has two possi-
ble origins: EoS variability and spin-variability. In order
to determine which of these dominates, Fig. 8 attempts
to assess the spin dependence of the M̄4–M̄2 relation.
This figure shows the fractional di↵erence between M̄4

computed with the RNS code and in the slow-rotation
approximation, as a function of M̄2, clustered in groups
of di↵erent �, using an APR EoS as a characteristic ex-
ample. As expected, the di↵erence becomes larger as one
increases spins, reaching a maximum of 5% accuracy for
the largest � models considered. Comparing this with the
fractional di↵erence in Fig. 1, we conclude that the 20%
variability in the latter is dominated by EoS-variations
and not spin e↵ects. We recall that the multipole mo-
ments have a clear spin dependence if they are expressed
in terms of the stellar compactness (see Fig. 2). Our
results indicate that such spin dependence seems to par-
tially cancel if one expresses one multipole moment in
terms of another. Not surprisingly, one can improve the

2

of such no-hair relations for NSs and QSs. A universal
relation between the moment of inertia (directly related
to the current dipole moment) and the mass quadrupole
moment was found in [19, 20], using an unmagnetized,
uniform- and slow-rotation approximation. This result
was immediately confirmed by [21] using di↵erent EoSs.
Haskell et al. [22] extended the analysis of [19, 20] to mag-
netized NSs and found that the universality still holds,
provided that stars spin moderately fast (spin period less
than 0.1s) and the magnetic fields are not too large (less
than 1012G). Such properties are precisely those one ex-
pects millisecond pulsars to have.

Several studies have relaxed the slow-rotation approx-
imation [23–25], leading to a small controversy. Initially,
Doneva et al. [23] constructed NS and QS sequences by
varying the dimensional spin frequency and found that
the EoS-universality of the relation between the moment
of inertia and the quadrupole moment was lost. Shortly
after, Pappas and Apostolatos [24] and Chakrabarti et
al. [25] constructed NS sequences by varying dimen-
sionless combinations of the spin angular moment and
found that the relation remained EoS-universal. More
recently, Stein et al. [26] proved analytically that uni-
versality is preserved to leading (Newtonian) order in a
weak-field expansion, supporting the numerical calcula-
tions of [24, 25].

Recent studies have also considered whether approxi-
mately EoS independent relations exist between higher-
` multipole moments. Reference [24] in fact found
one such relation between the current octupole and the
mass quadrupole moments of NSs. This relation was
not only approximately EoS-universal but also approx-
imately spin-insensitive. The Newtonian results of [26]
analytically confirmed this result. The latter, in fact,
proved that higher-` multipole moments in the non-
relativistic Newtonian limit can be expressed in terms
of just the mass monopole, spin current dipole and mass
quadrupole moments through relations that are approxi-
mately EoS-universal and spin-independent. This univer-
sality, however, was found to deteriorate with increasing
` multipole number.

The existence of approximately universal relations is
not only of academic interest, but it also has practical
applications. For example, if one could measure any two
quantities in a given relation independently, one could
perform an EoS-independent test of GR in the strong-
field regime [19, 20]. Moreover, these relations may play
a critical role when attempting to measure the mass
and radius of NSs with future X-ray telescopes, such as
NICER [27] and LOFT [28, 29]. The pulse and atomic
line profiles of such stars depend not only on the stellar
mass and radius, but also on the moment of inertia, the
quadrupole moment and the stellar eccentricity [30–32].
Universal relations between these quantities [17, 19, 20]
allow one to break parameter degeneracies and measure
the mass and radius [18]. Such measurements, in turn,
would allow for exquisite constraints on the EoS in the
high density regime [33].

In this paper, we study whether approximately EoS-
independent relations among multipole moments exist
up to hexadecapole order in full GR for both NSs and
QSs. To do so, we construct unmagnetized, uniformly-
rotating NS and QS solutions to the Einstein equa-
tions. For rapidly-rotating stars, we extract multipole
moments by numerically constructing stellar solutions
with the LORENE [34, 35] and RNS [36] codes. For
slowly-rotating stars, we extract multipole moments by
solving the Einstein equations in a slow-rotation expan-
sion to quartic order in spin, extending previously-found
quadratic [37, 38] and cubic [39] solutions. Validity of the
quadratic solution is discussed in [40]. Such an extension
allows us to estimate the importance of quartic-order-in-
spin terms in X-ray observations of millisecond pulsars,
which were neglected in [18, 32].
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FIG. 1. (Color online) (Top) The (reduced dimensionless)
hexadecapole (M̄4)–quadrupole (M̄2) moments relation with
various NS and QS EoSs and spins, together with the fit given
by Eq. (90) and the Newtonian relation found in [26]. Observe
the relation approaches the Newtonian one as one increases
M̄2. The Newtonian relation for an n = 0.5 polytrope agrees
with the relativistic fit for various realistic EoSs within 10%
accuracy above the critical M̄2 denoted by the dotted-dashed,
vertical line. (Bottom) Fractional di↵erence between the data
and the fit. Observe the relation is universal to roughly 20%.
This means that the hexadecapole moment can be approxi-
mately expressed in terms of just the stellar mass, spin and
quadrupole moment.

A. Executive Summary

Given the length of the paper, let us here present a
brief summary of the main results. First, we confirm
that the LORENE and RNS codes lead to numerically
extracted multipole moments up to hexadecapole order
that are not only consistent with each other, but also con-

M̄2n = |M2n/(j2nM2n+1)|, J̄2n+1 = |J2n+1/(j2n+1M2n+2)|

All these are properties that characterise the spacetime around neutron stars as well as the

gravitational aspects of the stars themselves.

11G.P. and T. A. Apostolatos, Phys.Rev.Lett. 112 121101 (2014).
K. Yagi, K. Kyutoku, G. P., N. Yunes, and T.A. Apostolatos, Phys.Rev. D 89 124013 (2014).
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Numerical is ok but...

An analytic neutron star spacetime would be much more useful to do astrophysics
(easier to implement in models, easier to parameterise, easier to solve the inverse problem)

The vacuum region of a stationary and axially symmetric space-time can be described by

the Papapetrou line element12,

ds2 = −f (dt− wdφ)2 + f−1
[
e2γ

(
dρ2 + dz2

)
+ ρ2dφ2

]
,

where f, w, and γ are functions of the Weyl-Papapetrou coordinates (ρ, z).

By introducing the complex potential E(ρ, z) = f(ρ, z) + iψ(ρ, z) 13, the Einstein field equa-

tions take the form,

(Re(E))∇2E = ∇E · ∇E ,
where, f = ξaξa and ψ is defined by, ∇aψ = εabcd ξ

b∇cξd.

An algorithm for generating solutions of the Ernst equation was developed by Sibgatullin
and Manko 14. A solution is constructed from a choice of the Ernst potential along the
axis of symmetry in the form of a rational function

E(ρ = 0, z) = e(z) =
P (z)

R(z)
,

where P (z), R(z) are polynomials of z of order n with complex coefficients in general.
12A. Papapetrou, Ann. Phys., 12, 309 (1953).
13F.J. Ernst, Phys. Rev., 167, 1175 (1968); Phys. Rev., 168, 1415 (1968).
14V.S. Manko, N.R. Sibgatullin, Class. Quantum Grav., 10, 1383 (1993).
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An example: The two-soliton analytic spacetime.
This is a 4-parameter analytic spacetime which can be produced if one chooses the Ernst

potential on the axis to have the form:

e(z) =
(z −M − ia)(z + ib)− k
(z +M − ia)(z + ib)− k

The parameters a, b, k of the spacetime can be related to the first non-zero multipole
moments through the equations,

J = aM, M2 = −(a2 − k)M, J3 = −
[
a3 − (2a− b)k

]
M,

where M is the mass.

One can use the multipole moments M, J, M2, and J3 of a numerically calculated neutron
star and produce an analytic two-soliton spacetime that reproduces quite accurately the nu-
merically calculated spacetime15. Instead of using a specific set of values for the moments,
one could reproduce any neutron star spacetime using the universal relation

3
√
J̄3 = A+B1

(√
M̄2

)ν1

+B2

(√
M̄2

)ν2

.

Using this, one can have the first higher moments of a general neutron star spacetime
expressed in terms of only three parameters, the mass M , the angular momentum J, and
the quadrupole M2,16 having thus a universal analytic spacetime.17

15G. P., and T. A. Apostolatos, MNRAS, 429, 3007 (2013); Other analytic spacetimes have been proposed
in the past, see for eg. E. Berti, and N. Stergioulas, MNRAS, 350, 1416 (2004)

16G.P. and T. A. Apostolatos, Phys.Rev.Lett. 112 121101 (2014): 3
√
J̄3 = −0.36 + 1.48

(√
M̄2

)0.65

17GP, MNRAS 454, 4066 (2015)
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But, the usual algorithms for constructing analytic solutions, like the two-soliton, result to
increasingly complicated spacetimes the higher the number of parameters one introduces
to characterise the spacetime (why go higher?).

One could try to evade this difficulty by constructing an approximate spacetime that is

an approximate solution of the Ernst equation. Such a spacetime would still be clearly

parameterised by the multipole moments. The ansatz that one can use to construct the

solution is,

E =
1− ξ(ρ, z)

1 + ξ(ρ, z)
, ξ =

1√
ρ2 + z2

n,k∑
i,j=0

aij

(
ρ

ρ2 + z2

)i(
z

ρ2 + z2

)j
,

where the parameters aij are related to the multipole moments of the spacetime and the
ξ expansion is up to the required order.

Out of this Ernst potential one has the functions, f(ρ, z) = 1
2 (E + E∗) , and

ψ(ρ, z) = 1
2i (E − E∗) .

Then from the identity f−2∇ψ = −ρ−1n̂×∇ω, one can calculate the metric function ω(ρ, z).

Finally, the last metric function γ(ρ, z) is calculated from the system,

∂γ

∂ρ
=

ρ

4f2

[(
∂f

∂ρ

)2

−
(
∂f

∂z

)2
]
−
f2

4ρ

[(
∂ω

∂ρ

)2

−
(
∂ω

∂z

)2
]
,

∂γ

∂z
=

1

2

[
ρ

f2

∂f

∂ρ

∂f

∂z
−
f2

ρ

∂ω

∂ρ

∂ω

∂z

]
.
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The approximate M4-metric:18

f(ρ, z) = 1−
2M√
ρ2 + z2

+
2M2

ρ2 + z2
+

(
M2 −M3

)
ρ2 − 2

(
M3 +M2

)
z2

(ρ2 + z2)5/2

+
2z2
(
−J2 +M4 + 2M2M

)
− 2MM2ρ2

(ρ2 + z2)3
+

A(ρ, z)

28 (ρ2 + z2)9/2
+

B(ρ, z)

14 (ρ2 + z2)5
,

ω(ρ, z) = −
2Jρ2

(ρ2 + z2)3/2
−

2JMρ2

(ρ2 + z2)2
+

F (ρ, z)

(ρ2 + z2)7/2
+

H(ρ, z)

2 (ρ2 + z2)4
+

G(ρ, z)

4 (ρ2 + z2)11/2
,

γ(ρ, z) =
ρ2
(
J2
(
ρ2 − 8z2

)
+M

(
M3 + 3M2

) (
ρ2 − 4z2

))
4 (ρ2 + z2)4

−
M2ρ2

2 (ρ2 + z2)2
,

where,

A(ρ, z)=
[
8ρ2z2

(
24J2M + 17M2M2 + 21M4

)
+ ρ4

(
−10J2M + 7M5 + 32M2M

2 − 21M4

)
+8z4

(
20J2M − 7M5 − 22M2M

2 − 7M4

)]
,

B(ρ, z)=
[
ρ4
(

10J2M2 + 10M2M
3 + 21M4M + 7M2

2

)
− 4z4

(
40J2M2 + 14JS3 − 7M6 − 30M2M

3

−14M4M − 7M2
2

)
− 4ρ2z2

(
27J2M2 − 21JS3 +7M6 + 48M2M

3 + 42M4M + 7M2
2

)]
,

H(ρ, z)=
[
4ρ2z2

(
J
(
M2 − 2M3

)
− 3MS3

)
+ ρ4 (JM2 + 3MS3)

]
G(ρ, z)=

[
ρ2
(
J3
(
−
(
ρ4 + 8z4 − 12ρ2z2

))
+ JM

((
M3 + 2M2

)
ρ4 − 8

(
3M3 + 2M2

)
z4

+4
(
M3 + 10M2

)
ρ2z2

)
+M2S3

(
3ρ4 − 40z4 + 12ρ2z2

))]
F (ρ, z)=

[
ρ4
(
S3 − JM2

)
− 4ρ2z2

(
JM2 + S3

)]
.

18GP arXiv:1610.05370: This is an approximate vacuum spacetime with Rab = 0+O(r̄6), where r̄ = (ρ2+z2)−1/2
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As with the two-soliton, one can use the multipole moments M, J, M2, J3, and additionally
this time M4, of a numerically calculated neutron star and produce an analytic M4-spacetime
that reproduces very accurately the numerically calculated spacetime.

Again, instead of using a specific set of values for the moments, one could reproduce any
neutron star spacetime using universal relations of the form

3
√
J̄3 = A1 +B1

(√
M̄2

)ν1

+B2

(√
M̄2

)ν2

,

4
√
M̄4 = A2 +B3

(√
M̄2

)ν3

+B4

(√
M̄2

)ν4

,

Specifically the relations one can use for neutron stars are19

3
√
J̄3 = −0.36 + 1.48

(√
M̄2

)0.65
,

4
√
M̄4 = −4.749 + 0.27613

(√
M̄2

)1.5146
+ 5.5168

(√
M̄2

)0.22229

As before, a general neutron star spacetime is expressed in terms of only three parameters,
the mass M , the angular momentum J, and the quadrupole M2, having in this case as well
a universal spacetime.20

19M̄2 ≡ α, J̄3 ≡ β, and M̄4 ≡ γ
20GP arXiv:1610.05370
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Comparison of metric functions:



Astrophysical observables: Geodesics and precession 16 /30

Particle motion in a spacetime with symmetries:

Energy and angular momentum integrals of motion, E = m
(
−gtt dtdτ − gtφ

dφ
dτ

)
, L = m

(
gtφ

dt
dτ

+ gφφ
dφ
dτ

)
From the measure of the four-momentum, papa = −m2, we have the equation,

−1 = gtt

(
dt

dτ

)2

+ 2gtφ

(
dt

dτ

)(
dφ

dτ

)
+ gφφ

(
dφ

dτ

)2

+ gρρ

(
dρ

dτ

)2

+ gzz

(
dz

dτ

)2

(1)

Circular equatorial orbits: If we define Ω ≡ dφ
dt
, then we have the redshift factor

(
dτ
dt

)2
= −gtt−2gtφΩ−gφφΩ2,

and the energy, the angular momentum and the orbital frequency for the circular orbits take the form,

Ẽ ≡
E

m
=

−gtt − gtφΩ√
−gtt − 2gtφΩ− gφφΩ2

, L̃ ≡
L

m
=

gtφ + gφφΩ√
−gtt − 2gtφΩ− gφφΩ2

, Ω =
−gtφ,ρ +

√
(gtφ,ρ)2 − gtt,ρgφφ,ρ
gφφ,ρ

(2)

More general orbits: Equation (1) can take a more general form in terms of the constants of motion,

−gρρ
(
dρ

dτ

)2

− gzz
(
dz

dτ

)2

= 1−
Ẽ2gφφ + 2ẼL̃gtφ + L̃2gtt

(gtφ)2 − gttgφφ
= Veff , (3)

With equation (3) we can study the precession properties from the properties of the effective potential.

−gρρ
(
d(δρ)

dτ

)2

− gzz
(
d(δz)

dτ

)2

=
1

2

∂2Veff

∂ρ2
(δρ)2 +

1

2

∂2Veff

∂z2
(δz)2,

This equation describes two harmonic oscillators with frequencies, κ̄2
ρ = gρρ

2
∂2Veff
∂ρ2

∣∣∣
c

, κ̄2
z = gzz

2
∂2Veff
∂z2

∣∣∣
c

.

The differences of these frequencies (corrected with the redshift factor) from the orbital frequency, Ωa = Ω−κa,
define the precession frequencies.
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Comparison of astrophysical observbles:
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“Scaled” Frequencies for the Kerr spacetime:

Scaled Orbital frequency: MΩ =
299790

√
1/r3

1+j(1/r)3/2

Scaled Radial frequency: Mκρ = MΩ
(
1− 6(1/r) + 8j(1/r)3/2 − 3j2(1/r)2

)1/2

Scaled Vertical frequency: Mκz = MΩ
(
1− 4j(1/r)3/2 + 3j2(1/r)2

)1/2

Orbital, Mνφ, and precession, Mνa, “scaled frequencies” for Kerr black holes for various j (0.01-0.91).
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Plots of the orbital, periastron and nodal
precession “scaled frequencies”.

Plots of the periastron and the nodal pre-
cession “scaled frequencies” against the
orbital “scaled frequency”.

The general effect of rotation is to increase the observed frequencies (and reduce the ISCO

radius; for j ∼ 1 the horizon and ISCO radii go to 1M).
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Frequencies for the spacetime around neutron stars

Orbital frequency and nodal precession frequency:
Orbital, Mνφ, and precession, Mνz, “scaled frequencies” for neutron star models constructed
with 3 different values of α for various j up to the Kepler limit(∼ 0.7).
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Plots of the orbital and nodal precession frequencies for dif-
ferent rotations for models with α = 8. Rotation in the
range, j ∼ 0.01 − 0.66. This value of α corresponds to NSs
with M ∼ 1− 1.3M� depending on the EOS.

Same plots for α = 4 (upper)
and α = 2 (lower).
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Frequencies for the spacetime around neutron stars

Nodal precession frequency and the importance of the higher moments (M4 matters):
Nodal precession, MΩz, “scaled frequencies” for neutron star models constructed with 3
different values of α using 3 different models for the spacetime, i.e., the two-soliton (blue),
the exterior Hartle-Thorne (orange), and the M4-metric.
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Nodal precession frequencies for α = 8 and j = 0.45. Same plots for α = 10, j = 0.6 (upper)
and α = 3, j = 0.4 (lower).
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C-modes in accretion disks around neutron stars.D. Tsang, G.P., ApJ, 818, L11 (2016)

Upper: Diskoseismic propagation diagram for a Kerr black hole with spin

parameter j = 0.4 for one-armed waves with m = 1, n = 1. Waves can

propagate in the white regions exterior to rISCO, and are evanescent in

the shaded regions between the vertical resonances (VR) and Lindblad

resonances (LR). Inertial modes (g-modes), with m = 1, n = 1, can

become self-trapping due to the turnover of the outer Lindblad resonance,

while lower frequency g-modes are quickly damped by corotation (CR).

Corrugation waves can propagate at high frequencies exterior to the outer

VR, and at low-frequencies interior to the inner VR. Lower: Enlargement

of the propagation diagram at low frequencies.

Upper: Same plot but for a neutron star spacetime with spin parameter

j = 0.4, quadrupole rotational deformability α = 8, and spin-octupole

deformability β ' 16.6. Waves with frequency f = ω/2π can propagate

in the white regions exterior to the NS radius rNS (or wherever the disk is

truncated). Wave regions are qualitatively similar to the Kerr black hole,

except for the low-frequency c-mode region, where ω < Ω−Ω⊥. Lower:

At low frequencies c-modes can be self-trapped due to the turnover of

the Lense-Thirring frequency, Ω−Ω⊥, at radius rpeak, and frequency fpeak,

as a result of the spacetime quadrupole contribution.
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Application of the analytic spacetime (solving the inverse problem)
Orbital and precession frequencies:21
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With a 3-parameter (Mass, angular momentum, quadrupole) NS spacetime we can have
contour plots of mass reduced quantities in terms of the spin parameter j = J/M2 and the
quadrupolar deformability α = M2/(j2M3).

Here we can see some contour plots of M × νφ at the orbit closest to the stellar surface,
M × νz at the same orbit and at the ISCO, and M × fNS.

21G.P., 2012 MNRAS, 422, 2581-2589.
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Combining the different properties to measure the moments...
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Contour plots of M × νφ at the orbit closest to the stellar surface

(dashed black lines), M × νz at the same orbit (solid black lines),

and M × fNS (dotted red lines).
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...and constrain the EOS:
Determining the parameters α and j and the independent knowledge of
the mass of the neutron star (assuming for example that it is known from
the binary system observations), one can evaluate the first three multipole
moments.

Such a “measurement”22 of the first 3 moments (M,J,M2) could select an
EOS23 out of the realistic EOS candidates.

1
2
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4

5 M HkmL
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Α

22G.P. MNRAS 454 4066 (2015),
and for an alternative proposal see, G.P., 2012 MNRAS, 422, 2581-2589.

23G.P. and T. A. Apostolatos, Phys.Rev.Lett. 112 121101 (2014)
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In the case of Scalar-Tensor theories with a massless scalar field,

S =
1

16πG

∫
d4x
√
−g̃
(
R̃− 2∇̃µφ∇̃µφ

)
+ Sm(gµν, ψ) ,

the field equations in the Einstein frame take the form,

R̃ab = 2∂aφ∂bφ,

g̃ab∇̃a∇̃bφ = 0

which can admit an Ernst formulation,24

(Re(E))∇2E = ∇E · ∇E ,
with the addition of a Laplace equation for the scalar field ∇2φ = 0, and the γ function
being given by the equations

∂γ

∂ρ
=

(
∂γ

∂ρ

)
GR

+ ρ

[(
∂φ

∂ρ

)2

−
(
∂φ

∂z

)2
]
,

∂γ

∂z
=

(
∂γ

∂z

)
GR

+ 2ρ

(
∂φ

∂ρ

)(
∂φ

∂z

)
.

One can thus extend the previous GR solution to a Scalar-Tensor solution by introducing
the additional terms in γ and an appropriate scalar field. The Jordan (physical) frame
metric can then be given by the conformal transformation gµν = A2(φ)g̃µν. This metric can
be used to do astrophysics in the same way as in the GR case.25

24GP, T.P. Sotiriou, Phys. Rev. D91, 044011 (2015)
25GP, T.P. Sotiriou, MNRAS 454, 4066 (2015); GP arXiv:1610.05370
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The approximate M4-metric in scalar-tensor theory (Einstein frame):26

f(ρ, z)=1−
2M√
ρ2 + z2

+
2M2

ρ2 + z2
+

CST(ρ, z)

3 (ρ2 + z2)5/2
+

DST(ρ, z)

3 (ρ2 + z2)3
+

AST(ρ, z)

420 (ρ2 + z2)9/2
+

BST(ρ, z)

630 (ρ2 + z2)5
,

ω(ρ, z)=−
2Jρ2

(ρ2 + z2)3/2
−

2JMρ2

(ρ2 + z2)2
+

F ST(ρ, z)

5 (ρ2 + z2)7/2
+

HST(ρ, z)

30 (ρ2 + z2)4
+

GST(ρ, z)

60 (ρ2 + z2)11/2
,

γ(ρ, z)=
ρ2

4 (ρ2 + z2)4

[
ρ2
(
J2 +M4

)
− 4z2

(
2J2 +M4

)
−
(
W0

(
2M2W0 +W 3

0 + 3W2

)
+ 3MM2

)
(4z2 − ρ2)

]
−
ρ2
(
M2 +W 2

0

)
2 (ρ2 + z2)2

,

where,

CST(ρ, z)=
[
ρ2
(

3(M2 −M3) +MW 2
0

)
− 2z2

(
3
(
M3 +M2

)
+MW 2

0

)]
,

DST(ρ, z)=
[
2z2
(
M
(

3M3 + 2MW 2
0 + 6M2

)
− 3J2

)
− 2Mρ2

(
MW 2

0 + 3M2

)]
,

AST(ρ, z)=
[
8ρ2z2

(
360J2M + 91M3W 2

0 + 255M2M2 + 63MW 4
0 + 270M2W

2
0 + 90MW2W0 + 315M4

)
−ρ4

(
150J2M − 105M5 − 154M3W 2

0 − 480M2M
2 + 63MW 4

0 + 90MW0W2

+270M2W
2
0 + 315M4

)
− 8z4

(
−300J2M + 105M5 + 112M3W 2

0 + 330M2M
2 + 21MW 4

0

+30MW0W2 + 90M2W
2
0 + 105M4

)]
,

BST(ρ, z)=
[
ρ4
(
M
(

2M
(

225J2 + 84M2W 2
0 + 112W 4

0 + 135W2W0

)
+ 945M4

)
+ 30M2

(
15M3 + 34MW 2

0

)
+315M2

2

)
+ 4z4

(
−18

(
J
(

100JM2 + 21JW0 + 35S3

)
− 35MM4

)
+ 150M2

(
9M3 + 5MW 2

0

)
+M2

(
315M4 + 462M2W 2

0 + 161W 4
0 + 180W0W2

)
+ 315M2

2

)
− 4ρ2z2

(
27
(
J
(

45JM2 − 21JW0

−35S3) + 70MM4) + 30M2

(
72M3 + 61MW 2

0

)
+M2

(
315M4 + 756M2W 2

0 + 413W 4
0 + 540W0W2

)
+315M2

2

)]
,

26GP arXiv:1610.05370
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The approximate M4-metric in scalar-tensor theory (Einstein frame):

HST(ρ, z)=
[
ρ2
(
M
(
−120JM2z2 + JW0

(
5W0

(
ρ2 + 4z2

)
+ 27

(
ρ2 − 4z2

))
+ 45S3

(
ρ2 − 4z2

))
+ 15JM2

(
ρ2 + 4z2

))]
,

GST(ρ, z)=
[
ρ2
(

15J
(
ρ4
(
M4 − J2

)
− 8z4

(
J2 + 3M4

)
+ 4ρ2z2

(
3J2 +M4

))
+M2

(
JW0

(
10W0

(
ρ4 − 8z4 + 20ρ2z2

)
+9
(

3ρ4 − 40z4 + 12ρ2z2
))

+ 15S3

(
3ρ4 − 40z4 + 12ρ2z2

))
+ 30JM2M

(
ρ4 − 8z4 + 20ρ2z2

))]
,

F ST(ρ, z)=
[
ρ2
(
−5JM2

(
ρ2 + 4z2

)
−
(

4z2 − ρ2
)

(3JW0 + 5S3)
)]
.

and the scalar field is,

φ(ρ, z) =
W0√
ρ2 + z2

[
1−

(
M2W0 +W 3

0 + 3W2

) (
r2 − 2z2

)
6W0 (r2 + z2)2

]
,

where W0 is the scalar charge and W2 is the scalar quadrupole, while the mass and angular momentum
moments are given by their definition in scalar-tensor theory27 where they get contributions from the scalar
field as well.

And as we have mentioned, the Jordan (physical) frame metric will be given by the conformal transformation

gµν = A2(φ)g̃µν.

27GP, T.P. Sotiriou, Phys. Rev. D91, 044011 (2015)
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The observables related to the orbits in a spacetime can be more immediately associated to its multipole
moments.

The energy change per logarithmic frequency interval and the precession frequencies are related to the
multipole moments (Ryan, 1995),
in GR:

∆Ẽ = −
U

3

dẼ

dU
=

1

3
U2 −

1

2
U4 +

20J1

9M2
U5 + . . .

Ωρ

Ω
= 3U2 − 4

J1

M2
U3 +

(
9

2
−

3M2

2M3

)
U4 − 10

J1

M2
U5 +

(
27

2
− 2

J2
1

M4
−

21M2

2M3

)
U6 + ...

Ωz

Ω
= 2

J1

M2
U3 +

3M2

2M3
U4 +

(
7
J2

1

M4
+ 3

M2

M3

)
U6 +

(
11
J1M2

M5
− 6

S3

M4

)
U7 + ...

where U = (MΩ)1/3. The Orbital frequency gives the Keplerian mass: Ω = (M/r3)1/2(1 +O(r−1/2).

in Scalar-Tensor theory:28

∆Ẽ =
1

3
U2 +

(
2β0W 2

0

9M̄2
−

8α0W0

9M̄
−

1

2

)
U4 +

20J1

9M̄2
U5 + . . .

Ωρ

Ω
=

(
3−

W0

(
β0W0 − 8α0M̄

)
2M̄2

)
U2 −

4J1

M̄2
U3 + . . .

Ωz

Ω
=

2J1

M̄2
U3+

3(M2−α0W2)

2M̄3
U4 −

2J1W0

(
β0W0 − α0M̄

)
M̄4

U5 + . . .

where U = (M̄Ω)1/3. The calculations are done in the Jordan frame. Again the orbital frequency gives the
Keplerian mass: Ω = (M̄/r3)1/2(1 +O(r−1/2), but this time the Keplerian mass is M̄ = M −W0α0.
W0 is the scalar charge, W2 is the scalar quadrupole and α ≡ (d lnA)/dφ, β ≡ dα/dφ.

These observables could in principle distinguish between GR and Scalar-Tensor theory.

28GP, T.P. Sotiriou, MNRAS 454, 4066 (2015)
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• Neutron stars exhibit some black hole-like behaviour with respect to their moments
structure

• The geometry of the spacetime around rotating neutron stars is essentially different
from the geometry of Kerr Black Holes.

• The difference is evident in the properties of the geodesics and especially the precession
frequencies of perturbed circular equatorial orbits.

• The differences come from the fact that the quadrupole and higher order moments of
a Neutron Star are larger than their BH counterparts (neutron stars are more oblate).

• An interesting result is that the nodal precession changes sign as one moves from the
exterior region of the spacetime towards the innermost stable circular orbit.

• These effects related to orbital dynamics can be of relevance to the study of accretion
discs and quasi periodic oscillations (QPOs) and should be taken into account in
modelling the NS environment.

• Geodesic properties such as orbital and precession frequencies could distinguish between
different theories of gravity such as GR and scalar-tensor theory.

• There is work to be done in the last two directions.
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Thank You.


