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Motivation: Why study neutron stars?

Neutron Stars (NSs)
— NS structure
— Rotating NSs: approximate, numerical, and analytic spacetimes

— NS multipole moments and NS spacetimes
A new approximate NS spacetime

Astrophysical applications

— Kerr frequencies.

— Neutron star frequencies.
— Relation to QPOs.

— Equation of state at supranuclear densities

Extension to Scalar-Tensor theories of gravity
— A spacetime in scalar-tensor theory.

— Observables (QPOs) and multipole moments: GR vs Scalar-Tensor theory.

Conclusions and outlook
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CRAB NEBULRA

Neutron stars are the results of stellar evolution.

We can see them in stellar remnants.

A typical example is the Crab nebula that hosts the
Crab pulsar?.

IAPOD 2006 October 26

Very often we find rapidly rotating pulsars at the end
of stellar evolution. The fastest rotating known pulsar
(PSR J1748-2446ad) spins at 716Hz and it is part of
a binary system?.

Low mass X-ray binaries are systems that are com-
prised by a compact object (NS or BH) and a regular
star companion. The main source of the X-rays is the
accretion disk that forms around the compact object.

9J. W. T. Hessels et al., Science 311 1901 (2006)
Interesting astrophysics takes place around NSs that depends on the background spacetime.
Matter in their interior is at very high densities, where the equation of state is unknown.
NSs have strong enough gravitational fields that can test our theories of gravity.
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In low-mass X-ray binaries we can have observables that are related to geodesic motion.

An example of observables that can be related to orbits around neutron stars are the quasi-periodic oscillations
(QPOs) of the spectrum?!® of an accretion disc.

Mechanisms for producing QPOs? from orbital motion Typical X-Ray spectrum3

orbital

periastron
frequency

F ¥ precession

Unknown frequency Monradial g-mode
accretion instability oscillations

Keplerian frequency
reflecting clumps

Special frequency
boundary layer hot spots

Frequency x Power [(rms/mean)?/Hz]
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Keplerian frequency
Keplerian frequency

disk oscillations Frequency (Hz)

Keplerian frequency
cbscuring clumps

Apart from orbiting hot spots and oscillations on the disc, one could also have precessing rings or misaligned
precessing discs, which either themselves have a modulated emission or they are eclipsing the emission from
the central object. Furthermore, the characteristics of the emitted spectrum from the accretion provide even
more observables.

1Stella & Vietri, 1998, ApJ, 492, L59.

2F K. Lamb, Advances in Space Research, 8 (1988) 421.

3Boutloukos et al., 2006, ApJd, 653, 1435-1444.
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Neutron stars: Fluid configurations that are in equilibrium by the action of their self-gravity
and their internal forces.

p Newtonian Stars
y Hydrostatic equilibrium (spherical symmetry):
dP dd
vp=_pve o Lo ¢ m)
dr dr
Mass (spherical symmetry): d—m = 477,07“

Field equations: V2d = 47TG,0,
Equation of state for the fluid: P = P(p).

Relativistic non-rotating Stars
Instead of a gravitational field &, gravity is described by a metric g,,. In spherical symmetry

1
the metric can take the form ds? = —e2®qdt2 + (1 _ 2”"’7(7“)> dr2 4 r2d2.

Field equations: G = 8rGT?,
: : : L dP m(r)+4xr3P
Equation for the metric potential ®: 7= = r(r=2m(r)) "

Definition of the Mass: Cé—m = 47 pr?,
T

Hydro. equilibrium: CCZZ—]; = —(p—|—P)%ﬂD — —%g'a) (1 + %) <1 + 4%57’)3) (1 _ 2’”7;4("“))_

Equation of state for the fluid: P = P(p).
The spacetime outside the star is the Schwarzschild spacetime:

DM oM\ L
ds® = — (1 — —) dt® + (1 — —) dr? + r2dQ°.

r Tr
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Realistic equations of state
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Polytropic equations of state

newtonian/relativistic polytropes for n=1.5

(newtonian polytropes: M oc Rn—1)
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newtonian/relativistic polytropes for n=1

newtonian/relativistic polytropes for n=0.5

* SLB1,2 are observationally inferred EoSs

(A.W. Steiner, J.M. Lattimer, and E.F. Brown, Astrophys. J. 722 33 (2010)).
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Slowly Rotating Neutron Stars

The Hartle-Thorne approximation:#
ds® = —e” (1 4 2€°h) dt*+e* [1 + 2¢*m/(r — 2M)| dr*4r? [1 + 2€°k] [d6? + sin® 0(d¢ — ewdt)?] .

where e = Q/Q* is the slow rotation small parameter with respect to Q* = (M/R3)1/2.

Rapidly Rotating Neutron Stars: Numerical
The line element for a stationary and axially symmetric spacetime (the spacetime admits a timelike, £, and
a spacelike, n?, killing field, i.e., it has rotational symmetry and symmetry in translations in time) is 2,

ds? = —e??dt? + r?sin? 0B%e 2 (d¢ — wdt)? + 2~V (dr? 4 r2d6?).
Komatsu, Eriguchi, and Hechisu® proposed a scheme for integrating the field equations using Green's func-

tions. This scheme is implemented by the RNS numerical code to calculate rotating neutron stars ’.

Rapidly Rotating Neutron Stars: Analytic

Using the Weyl-Papapetrou line element that describes stationary and axisymmetric vacuum spacetimes,
ds®> = —f (dt —wdg)® + f1 [e* (dp? + d2?) + p?d¢?].

Ernst® reformulated the Einstein field equations to take the form, (Re(E))VQE = V- Vg, using the

complex potential £(p,2) = f(p,2z) + iv(p, z), where f = £%, and v is defined by, V.1 = egpeq EPVEET.

4Hartle J. B., Thorne K. S., ApJ 153, 807 (1968)

SE. M. Butterworth and J. R. Ipser, ApJ 204, 200 (1976).

®H. Komatsu, Y. Eriguchi, and I. Hechisu, MNRAS 237, 355 (1989).

"N. Stergioulas, J.L. Friedman, ApJ, 444, 306 (1995).

8F.J. Ernst, Phys. Rev., 167, 1175 (1968); Phys. Rev., 168, 1415 (1968).



D)

Q

grit .
7% gravitation in técnico w TECNICO LISBOA

Neutron stars: Structure and properties 7 /30

Results from numerical models:

One can use RNS to calculate models of rotating neutron stars for a given equation of
state. For example we show here some models for the APR EOS:

5 10 15 20 25 12 14 16 18 20
0ex10%* Re

The models with the fastest rotation have a spin parameter, j = J/M?, around 0.7 and a ratio of the polar
radius over the equatorial radius, r,/r., around 0.56.

The code, except from the various physical characteristics of the neutron stars, provides
the metric functions in a grid on the coordinates x and p in the whole space (for values
from O to 1 for both variables), where yu = cosf, r = 1= and r¢ is a length scale.

One can also extract from the spacetime the relativistic multipole moments of the NS. In
particular the RNS code can calculates the first non-zero multipole moments, i.e., M, 51 =
J, M>, S3 = Js and M4°. These moments characterise the NS and the spacetime around it.

?G.P. and T. A. Apostolatos, Phys. Rev. Lett. 108 231104 (2012),
K. Yagi, K. Kyutoku, G. P., N. Yunes, and T.A. Apostolatos, Phys.Rev. D 89 124013 (2014).
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Neutron star multipole moments in GR

Black Hole-like behaviour of the momentsiO:

Kerr moments Neutron star moments
Mgy = M, Mgy = M,
Jp, = J=jM? Jp. = jM?,
My = —j°M?>, My = —a(EoS,M)j*M>,
J3 = —j>M* J3 = —B(FEoS, M)j>M*,
My = %M, My = ~(EoS, M)j*M>,
Mo, = (—1)"j%np2ntl Mo, = 7,
Jont1 = ()FTIMEEE | gy = 7

10\W.G. Laarakkers and E. Poisson, Astrophys. J. 512 282 (1999).
G.P. and T. A. Apostolatos, Phys. Rev. Lett. 108 231104 (2012).
K. Yagi, K. Kyutoku, G. P., N. Yunes, and T.A. Apostolatos, Phys.Rev. D 89 124013 (2014).
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Neutron star multipole moments in GR

EoS independent behaviour of the momentsi?! :
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All these are properties that characterise the spacetime around neutron stars as well as the

gravitational aspects of the stars themselves.

11G.P. and T. A. Apostolatos, Phys.Rev.Lett. 112 121101 (2014).
K. Yagi, K. Kyutoku, G. P., N. Yunes, and T.A. Apostolatos, Phys.Rev. D 89 124013 (2014).
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Numerical is ok but...

An analytic neutron star spacetime would be much more useful to do astrophysics
(easier to implement in models, easier to parameterise, easier to solve the inverse problem)

The vacuum region of a stationary and axially symmetric space-time can be described by
the Papapetrou line element!?,

ds® = —f (dt — wdg)® + f 71 |e*7 (dp® + d=°) + p?dg?|,
where f, w, and ~ are functions of the Weyl-Papapetrou coordinates (p, z).

By introducing the complex potential £(p,2) = f(p,2) + i (p,z) 3, the Einstein field equa-
tions take the form,

(Re(E))V2E = VE - VE,
where, f = £%, and v is defined by, V. = egpeq £2V Y.

An algorithm for generating solutions of the Ernst equation was developed by Sibgatullin
and Manko 14. A solution is constructed from a choice of the Ernst potential along the
axis of symmetry in the form of a rational function

P(z)
R(z)’
where P(z), R(z) are polynomials of z of order n with complex coefficients in general.

E(p=0,2) =e(z) =

12 A, Papapetrou, Ann. Phys., 12, 309 (1953).
13F J. Ernst, Phys. Rev., 167, 1175 (1968); Phys. Rev., 168, 1415 (1968).
14y/.S. Manko, N.R. Sibgatullin, Class. Quantum Grav., 10, 1383 (1993).
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An example: The two-soliton analytic spacetime.
This is a 4-parameter analytic spacetime which can be produced if one chooses the Ernst
potential on the axis to have the form:

o(2) = (z— M —ia)(z+1b) — k
(z4+ M —ia)(z+1ib) — k

The parameters a, b, kK of the spacetime can be related to the first non-zero multipole
moments through the equations,

J=aM, M= —(a®—-k)M, Js=—[a’>—(2a—b)k|M
where M is the mass.

One can use the multipole moments M, J, M>, and Jsz of a numerically calculated neutron
star and produce an analytic two-soliton spacetime that reproduces quite accurately the nu-
merically calculated spacetimel®. Instead of using a specific set of values for the moments,
one could reproduce any neutron star spacetime using the universal relation

Vi=A+B: (Vi) +B: (Vi)

Using this, one can have the first higher moments of a general neutron star spacetime
expressed in terms of only three parameters, the mass M, the angular momentum J, and
the quadrupole M5, having thus a universal analytic spacetime.l’

15G. P., and T. A. Apostolatos, MNRAS, 429, 3007 (2013); Other analytic spacetimes have been proposed
in the past, see for eg. E. Berti, and N. Stergioulas, MNRAS, 350, 1416 (2004)

0.65
16G.p. and T. A. Apostolatos, Phys.Rev.Lett. 112 121101 (2014): </J; = —0.36 + 1.48 (\/J\_@)

17GP, MNRAS 454, 4066 (2015)
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But, the usual algorithms for constructing analytic solutions, like the two-soliton, result to
increasingly complicated spacetimes the higher the number of parameters one introduces
to characterise the spacetime (why go higher?).

One could try to evade this difficulty by constructing an approximate spacetime that is
an approximate solution of the Ernst equation. Such a spacetime would still be clearly
parameterised by the multipole moments. The ansatz that one can use to construct the

solution is,

n,k 1 9
=S =t S (o5 s) (i)
- 9 - 1) 9
1+ &(p, 2) \//)2‘|‘22 i,j=0 p? + 22 p? + 22
where the parameters a;; are related to the multipole moments of the spacetime and the
£ expansion is up to the required order.

Out of this Ernst potential one has the functions, f(p,z) = %(5 + £*), and
b(p,z) = 5 (E—E).

Then from the identity f~2Vy = —p~'n x Vw, one can calculate the metric function w(p, z).

Finally, the last metric function ~(p, z) is calculated from the system,

m=ar(5) ()| 5|G) (G| F=sline s
dp  4f2 |\ 9p Oz dp 0z) |7 8z 2|f20pdz p 9pdz
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The approximate M4—metric:18

2M 22 Mo — M?3) p? =2 (M3 + M) 2°
flp,z) = 1-— + 55—+ ( : ) (5/2 2)
Virt+2 Ptz (p% + 22)
_|_222 (_J2+M4+2M2M) — 2M M2p? 4 A(p, 2) B(p, z)
(p? +22)° 28 (p? +22)°% | 14(p? +22)°
wip.z) = — 2Jp? B 2J M p? F(p, z) H(p, 2) G(p, 2)
| (P2 +22)°2  (p2+22)° (02422072 2(p2+22)"  4(p2 42
AP e e ) (P-a)
f)/ p,Z - 4(p2 +22)4 T 2(p2 +z2)27

where,
Alp, 2)=[8p2 (24J°M + 1TM? My + 21Ma) + p* (—10J°M + 7TM® + 32MoM? — 21 My)
+82* (20J°M — TM® — 22M,M? — TMa) | ,
B(p,z)= :,04 (1OJ2M2 + 10MoM3 + 21 MM + 7M22) — 4zt (4OJ2M2 + 14783 — TM® — 30 Mo M3
—14MaM — TM3) — 4p%22 (27J°M? — 21.JS5 +7M® + 48 Mo M + 42Ma M + TM3) |
H(p,2)=|4p?2* (J (M2 — 2M?3) — 3MS3) + p* (JM2 + 3M S3)]|
G(p,2)=[p? (J° (= (p* + 82" — 120%2%)) + JM ((M> 4 2M>) p* — 8 (3M> + 2M>) 2*
+4 (M3 + 10M3) p?22) +M?S3 (3p* — 402* 4 12p°27) )]
F(p,2)=|p* (S3 — JM?) — 4p°2> (JM? + S5)] .

18GP arXiv:1610.05370: This is an approximate vacuum spacetime with Ry, = 0+O(7°), where 7 = (p2+22)~1/2
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As with the two-soliton, one can use the multipole moments M, J, M>, J3, and additionally
this time M4, of a numerically calculated neutron star and produce an analytic Ms-spacetime
that reproduces very accurately the numerically calculated spacetime.

Again, instead of using a specific set of values for the moments, one could reproduce any
neutron star spacetime using universal relations of the form

\/73 A1+ B (@)m + B> (\/E)VQ,
Vil = A2+ B3 (Vik) + Ba (Vik),

Specifically the relations one can use for neutron stars arel®

— — 0.65
VT3 = —0.36 + 1.48 (\/M2> ,
_ __ .\ 1.5146 . 0.22229
/Ma = —4.749 + 0.27613 (\/Mg) 4+ 5.5168 (\/M2>

As before, a general neutron star spacetime is expressed in terms of only three parameters,
the mass M, the angular momentum J, and the quadrupole M5, having in this case as well
a universal spacetime.?°

19M2 = «, J_3 = ﬂ, and M4 =7
20GP arXiv:1610.05370
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Comparison of metric functions:
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Figure 2. Typical relative difference plots for the metric functions on the equatorial plane and along the axis of symmetry. The plots
are made using EoS FPS for a numerical model of M = 1.4M; = 2.0876km rotating with a spin parameter of j = 0.453 and having

o = 4.209.The plots show three curves which correspond to the metric proposed here, the two-soliton spacetime, and the Hartle-Thorne
metric.
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Particle motion in a spacetime with symmetries:
Energy and angular momentum integrals of motion, E =m ( gtt% — gwdf) L=m (gtd,j—j + g¢¢%)

From the measure of the four-momentum, p%, = —m?, we have the equation
dt do dqb) (dp) (dz>
gtt<d7_) + gt¢<d)(d7_)+g¢¢(d7_ ~+ 9o - +g o (1)

2
Circular equatorial orbits: If we define Q2 = dt, then we have the redshift factor (‘fl—;) = — it — 29162 — gp$22,

and the energy, the angular momentum and the orbital frequency for the circular orbits take the form
—Jtpp T \/(9t</>,p)2 — Gtt,p9pé,p 2)
9op,p

gto + 944$2 Q=
\/ git — 2G1p$2 — 9¢>¢>QQ

—git — G1S2 I
\/ git — 2g1S2 — gqbngQ

L
m

~ B
E==
m

More general orbits: Equation (1) can take a more general form in terms of the constants of motion

dp\ 2 dz\ 2 E?g4s + 2ELgis + L?gu
—Gpp | 7 —Gzz | =1- 5 — Veffs (3)
dr dr (9t6)? — 9119
With equation (3) we can study the precession properties from the properties of the effective potential
d(6p)\ d(6z)\% 182V, 162V,
—Ypp (—) — Gzz (—> == fo (5/0)2 + = 62ff (52)27
dr dr 2 0Op 2 0z
- : - - - =2 _ g7 0%Vepr|  Z2 . g7 PV
This equation describes two harmonic oscillators with frequencies, <7 = S| 0 RE T T
rbi ) a — Q_’iay

The differences of these frequencies (corrected with the redshift factor) from the orbital frequency, 2

define the precession frequencies.
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Comparison of astrophysical observbles:
.. 00OLh \
= 6=, :, ‘ 0.01
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Figure 3. Typical relative difference plots for the various geodesic properties of the spacetime between the numerical spacetime and the
corresponding analytic spacetime. The top left plot gives the relative difference of the ISCO for the approximate metric (black circles)
and the Hartle-Thorne metric (red squares). The models are constructed with the FPS EoS and we have plotted all the NS models that
have an ISCO outside the surface of the star and for which the proposed metric has an ISCO (see discussion in the main text). The top
middle plot shows the relative difference in the orbital frequency of circular equatorial orbits, Af), as a function of the circumferential
radius over the mass, between the three analytic metrics and the numerical metric. The top right plot shows the relative difference for the
radial oscillation frequency of radially perturbed orbits and the bottom left plot shows the relative difference for the vertical oscillation
frequency of slightly off-equatorial orbits. The bottom middle plot shows the nodal precession frequency M x (2., for the numerical
and the analytic spacetimes (we remind that Q, = 27v,). Finally the bottom right plot shows the relative difference of AE between
the numerical and the analytic spacetimes. The frequency and AE plots are constructed using the same model as in figure 2, but the
results are similar for all the EoSs. The curves correspond to the metric proposed here (red solid curve), the two-soliton spacetime (blue
dotted curve), and the Hartle-Thorne metric (orange dashed curve). The nodal precession frequency plot (bottom middle) shows also
the numerical frequency (black) which follows the proposed metric curve.
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“‘Scaled” Frequencies for the Kerr spacetime:

2997904/1/7°
1+5(1/r)*?

Scaled Radial frequency: Mf{p = M (1 _ 6(1/r) + 8j(1/fr)3/2 _ 3j2(1/7“)2) 1/2
- Mre = MQ (1 - 45(1/r)¥2 + 377(1/r)?) /2

Scaled Orbital frequency: M2 =

Orbital, Mwvyg, and precession, Mv,, ‘‘scaled frequencies" for Kerr black holes for various j (0.01-0.91).

Kerr black hole Kerr black hole

1000 ¢ 1000 ¢

10 ¢ 10 ¢

(kmxHz)

(kmxHz)

Mxv
, Mxv,

0.001 ¢ E ! 0.001 ¢

Mxv

0.00001 ¢ E 0.00001 ¢

5 10 50 100 500 1000 1 10 100 1000 10000
Rcirc/M Mxv, (kmxHz)

. , Plots of the periastron and the
Plots of the orbital, periastron and g - .
} . scaled frequencies” against the
scaled frequencies'’.

orbital “scaled frequency'.

The general effect of rotation is to increase the observed frequencies (and reduce the ISCO
radius; for 5 ~ 1 the horizon and ISCO radii go to 1M).
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Frequencies for the spacetime around neutron stars

Orbital frequency and
Orbital, Mvyg, and precession, Mv,, “scaled frequencnes” for neutron star models constructed

with 3 different values of a for various 5 up to the Kepler limit(~ 0.7).

104+ e — e — 10000 —o0u ]
: — 100 |
1000; < E 1(1)7 ]
E 10 I3
—z : X
X 1 1=
N
E 10 20 50 100200 5001000
>>< R/M
> 1000\
_ 100, |
E 10 ]
X 1 ’
10 20 50 100200 5001000 =
>
R/M
10 20 50 100200 5001000
Plots of the orbital and frequencies for dif- RM

ferent rotations for models with o« = 8. Rotation in the Same plots for a = 4 (upper)
range, 7 ~ 0.01 — 0.66. This value of a corresponds to NSs and a = 2 (lower).
with M ~ 1 — 1.3M; depending on the EOS.
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Frequencies for the spacetime around neutron stars

Nodal precession frequency and the importance of the higher moments (M4 matters):

Nodal precession, MS2,, ‘'scaled frequencies’ for neutron star models constructed with 3
different values of a using 3 different models for the spacetime, i.e., the two-soliton (blue),
the exterior Hartle-Thorne (orange), and the Ms-metric.
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Nodal precession frequencies for a = 8 and 57 = 0.45.
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C-modes in accretion disks around neutron stars.D- Tsang, G.P., ApJ, 818, L11 (2016)

4 j=0.4, a~1.0, 3~1.0 I

radius r [GM/c? ]

Upper: Diskoseismic propagation diagram for a Kerr black hole with spin

parameter j = 0.4 for one-armed waves with m = 1,n = 1. Waves can
propagate in the white regions exterior to rsco, and are evanescent in
the shaded regions between the vertical resonances (VR) and Lindblad
resonances (LR). Inertial modes (g-modes), with m = 1,n = 1, can
become self-trapping due to the turnover of the outer Lindblad resonance,
while lower frequency g-modes are quickly damped by corotation (CR).
Corrugation waves can propagate at high frequencies exterior to the outer
VR, and at low-frequencies interior to the inner VR. Lower: Enlargement

of the propagation diagram at low frequencies.

T T T

3.0f : j=0.4, «~8.0, 3~16.6
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Upper: Same plot but for a neutron star spacetime with spin parameter
j = 0.4, quadrupole rotational deformability o« = 8, and spin-octupole
deformability g ~ 16.6. Waves with frequency f = w/2w can propagate
in the white regions exterior to the NS radius rys (or wherever the disk is
truncated). Wave regions are qualitatively similar to the Kerr black hole,
except for the low-frequency c-mode region, where w < 2 — 2,. Lower:
At low frequencies c-modes can be self-trapped due to the turnover of
the Lense-Thirring frequency, 2 — €2,, at radius 7., and frequency f,ca,

as a result of the spacetime quadrupole contribution.
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Application of the analytic spacetime (solving the inverse problem)
Orbital and precession frequencies:?!

10

=90

80 \
o |
160
24—
/— 420- -

02 04 05 06 ‘
j

03 0.7

(3]
T

40
0.1
M x l/}?ax & M X fns M x (v.)r1sco M x (v2)inn

With a 3-parameter (Mass, angular momentum, quadrupole) NS spacetime we can have
contour plots of mass reduced quantities in terms of the spin parameter j = J/M? and the
quadrupolar deformability o = M/ (52M3).

Here we can see some contour plots of M x v, at the orbit closest to the stellar surface,
M x v, at the same orbit and at the ISCO, and M X fns.

21G.P., 2012 MNRAS, 422, 2581-2589.
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Combining the different properties to measure the moments...
I Y
8
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4 |
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Contour plots of M x v, at the orbit closest to the stellar surface
(dashed black lines), M x v, at the same orbit (solid black lines),

and M x fnys (dotted red lines).
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...and constrain the EOS:
Determining the parameters a and 53 and the independent knowledge of

the mass of the neutron star (assuming for example that it is known from
the binary system observations), one can evaluate the first three multipole

moments.

Such a “measurement”?? of the first 3 moments (M, J, M>) could select an
EOS23 out of the realistic EOS candidates.

22G.P. MNRAS 454 4066 (2015),
and for an alternative proposal see, G.P., 2012 MNRAS, 422, 2581-2589.

23G.P. and T. A. Apostolatos, Phys.Rev.Lett. 112 121101 (2014)
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In the case of Scalar-Tensor theories with a massless scalar field,

1 o
5= Tenc / d*z/~g (R = 2V"$V,u¢) + Sm(guv, ¥) ,

the field equations in the Einstein frame take the form,

~

Rab — 28a¢8b¢a
gabﬁaﬁbqb =0
which can admit an Ernst formulation,?4
(Re(E))V2E = VE - VE,

with the addition of a Laplace equation for the scalar field V2¢ = 0, and the ~ function
being given by the equations

= (), G- (3]

o o 0 0

0z 0z ) ap Op 0z
One can thus extend the previous GR solution to a Scalar-Tensor solution by introducing
the additional terms in v and an appropriate scalar field. The Jordan (physical) frame

metric can then be given by the conformal transformation g, = A?($)gu.. This metric can
be used to do astrophysics in the same way as in the GR case.?°

24GP, T.P. Sotiriou, Phys. Rev. D91, 044011 (2015)
25GP, T.P. Sotiriou, MNRAS 454, 4066 (2015); GP arXiv:1610.05370
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The approximate M,-metric in scalar-tensor theory (Einstein frame):2°

2M 2M? CT(p, 2) D>T(p, z) AT (p, 2) B5T(p, z)
flp,z)=1~— + + 3 5
ViR 2 P2 3024227 3(i2 4227 420(p2 +22)%7 0 630 (p? + 22)
w(p,2)= 2Jp>  2JMp? F57(p, z) H5T(p, z) G (p, 2)
’ (02 + 22)%2  (p2 + 22)2 5 (02 4+ 22)72 30 (p2+22)* 60 (p2+ Z2)11/2’
2
v(p,z) = Z (p2p+ oy (07 (72 4+ M*) — 422 (272 + M*) — (Wo (2M2Wo + W + 3W2) + 3MMz) (422 — p?)]
p2 (M2 + WOQ)
2(p?+22)%
where,

O, )= [ (3002 = M%) + MW3) — 2:% (3 (M 4 Mz) + MWG)]
D (p, z) =222 (M (3M3 + 2MW§ + 6Mz) — 3J°) — 2Mp? (MW§ + 3M>)]

AT (p, 2) = |8p°2” (360J°M + 91M3W§ + 255 M> My + 63M W3 + 270M>W§ + 90MWoWo + 315Ma)
—p* (150J2M — 105M° — 154M3W§ — 480MoM? + 63MW5 + 90 MWoW>
+270M W5 + 315M4) —8z* (—300J2M + 105M° + 112M3*WZ + 330MaM? + 21 MW§
+30MWoW> + 90MoW§ + 105Ma) |,

B (p,z)=[p* (M (2M (225J° + 84M>W§ + 112W3 + 135W2Wo ) + 945Ma) + 30M> (15M> + 34 M W)
+315M3) + 42* (—18 (J (1007 M? + 21JWo + 35S3) — 35M Ma) + 150M5 (9M> + 5MWE)
+M? (315M* + 462M>W§ + 161W3 + 180WoWa) + 315M3) — 4p°2> (27 (J (45 M? — 21T W
—35S53) + 70MMa) 4 30M> (72M> + 61MW3 ) + M? (315M* 4 756 M*W§ + 413W; + 540WoW>)
—|—315M22>] ,

26GP arXiv:1610.05370
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The approximate M ;-metric in scalar-tensor theory (Einstein frame):

H (p,2)=[p? (M (—120JM?22 4+ JWo (5Wo (p? + 427) + 27 (p? — 427) ) + 4585 (p* — 42%) ) + 157 M> (p° 4 427)) |
G (p,2)=[p? (157 (p* (M* — J?) — 82" (J? 4+ 3M*) + 4p%2” (3J° + M*)) + M? (JWo (10Wo (p* — 82" + 20p°27)

+9 (3p" — 402" 4+ 12p°2%) ) + 1593 (3p* — 402" 4 12p°2%) ) + 30JM>M (p* — 82" 4 20p°2) ) |,
FST(p,2)=|p? (—5JM? (p 4 42%) — (42% — p?) (3JWo + 5S3)) | .

and the scalar field is,

b(p2) = —0 |y _ (M2Wo 4 W3 + 3W2) (12 — 222)

/2 4 22 6Wo (12 + 22)? ’

where Wy is the scalar charge and W» is the scalar quadrupole, while the mass and angular momentum
moments are given by their definition in scalar-tensor theory?’” where they get contributions from the scalar
field as well.

And as we have mentioned, the Jordan (physical) frame metric will be given by the conformal transformation

Juv — A2(¢)§uv-

27GP, T.P. Sotiriou, Phys. Rev. D91, 044011 (2015)
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The observables related to the orbits in a spacetime can be more immediately associated to its multipole
moments.

The energy change per logarithmic frequency interval and the precession frequencies are related to the
multipole moments (Ryan, 1995),

in GR:

1 20J;

1
—U? - ZUH =0+ ..
3dU 3 2V Toart T

Q J 9 3M J 27 J2  21M
20— 3p2? - 4—1U3—|—(—— 2>U“—10—1U5+ =2 2 ) Ut + ...
Q M 2 M?

2 M4 2M3

2
2 _ 5 gsy 3M2y, —|—<7J1—|—3M)U6—|—(11J1M2—6S3>U7—|—...

Q M 2M3 M4 M3 M> M4
where U = (MQ)'/3. The Orbital frequency gives the Keplerian mass: Q = (M /r3)Y/2(1 + O(r~—1/?).

in Scalar-Tensor theory:28

- 1 2B0W2  8agWy 1 20J;
AE = ZU? -0 | Ut4 U+ ...
3 T ( OM?2 oM 2 T OM?2 T
N Wo ( BoWo — 8&0M 4]
Q 2M?2 M2

Q. _ 2015, 3(Ma—aoWa) , 21 W0 (BoWo — aol) n
_ Q M2 2M3 M4 B
where U = (MQ)'/3. The calculations are done in the Jordan frame. Again the orbital frequency gives the
- Q= (M /r3)2(1 + O(r~1/2), but this time the Keplerian mass is M = M — Woao.
Wy is the scalar charge, W5 is the scalar quadrupole and a = (dIn A)/d¢, 8 = da/d¢.

These observables could in principle distinguish between GR and Scalar-Tensor theory.

28GP, T.P. Sotiriou, MNRAS 454, 4066 (2015)
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Neutron stars exhibit some black hole-like behaviour with respect to their moments
structure

The geometry of the spacetime around rotating neutron stars is essentially different
from the geometry of Kerr Black Holes.

The difference is evident in the properties of the geodesics and especially the precession
frequencies of perturbed circular equatorial orbits.

The differences come from the fact that the quadrupole and higher order moments of
a Neutron Star are larger than their BH counterparts (neutron stars are more oblate).

An interesting result is that the nodal precession changes sign as one moves from the
exterior region of the spacetime towards the innermost stable circular orbit.

These effects related to orbital dynamics can be of relevance to the study of accretion
discs and quasi periodic oscillations (QPOs) and should be taken into account in
modelling the NS environment.

Geodesic properties such as orbital and precession frequencies could distinguish between
different theories of gravity such as GR and scalar-tensor theory.

There is work to be done in the last two directions.



)

O

N

g
g

rit' o '
ravitation in técnico

30 /30

w TECNICO LISBOA

T hank You.



