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In this lecture I shall discuss the ideas of my

monograph “The Formation of Shocks in 3-

Dimensonal Fluids”. The monograph studies

the relativistic Euler equations in 3 space di-

mensions for a perfect fluid with an arbitrary

equation of state.

The mechanics of a perfect fluid are described

in the framework of special relativity by a

future-directed timelike vectorfield u of unit

magnitude relative to the Minkowski met-

ric g, the fluid 4-velocity, and two positive

functions n and s, the number of particles

per unit volume and the entropy per particle.

The mechanical properties of a perfect fluid

are determined once we give an equation of

state, which expresses the mass-energy den-

sity ρ as a function of n and s:

ρ = ρ(n, s) (1)
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According to the laws of thermodynamics,

the pressure p and the temperature θ are then

given by:

p = n
∂ρ

∂n
− ρ, θ =

1

n

∂ρ

∂s
(2)

The particle current is the vectorfield I given

by:

Iµ = nuµ (3)

The energy-momentum-stress tensor is the

symmetric 2-contravariant tensorfield T given

by:

Tµν = (ρ+ p)uµuν + p(g−1)µν (4)

and the equations of motion are the differ-

ential conservation laws:

∇µI
µ = 0, ∇νT

µν = 0 (5)
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There is a substantial gain in geometric in-

sight in working with the relativistic equa-

tions because of the spacetime geometry view-

point of special relativity. As an example con-

sider the equation:

iuω = −θds (6)

Here ω is the vorticity 2-form:

ω = dβ (7)

β being the 1-form defined by:

βµ = −
√
σuµ, uµ = gµνu

ν (8)

with
√
σ the relativistic enthalpy per particle:

√
σ =

ρ+ p

n
(9)
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In 6 iu denotes contraction on the left by

the vectorfield u. Equation 6 is equivalent to

the differential energy-momentum conserva-

tion laws and is arguably the simplest explicit

form of these equations.

At each point p in the spacetime manifold

M , Hp, the local simultaneous space of the

fluid at p, is the g-orthogonal complement of

the linear span of up, the fluid velocity at p,

in TpM . The obstruction to integrability of

the distribution of local simultaneous spaces

is the vorticity vector ϖ given by:

ϖµ =
1

2
(ϵ−1)µαβγuαωβγ (10)

where ϵ−1 is the reciprocal volume form of

(M, g), or volume form in T ∗
pM at each p ∈ M .
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The 1-form β plays a fundamental role in

my monograph. In the irrotational case it

is given by β = dϕ, where ϕ is the wave func-

tion. In this case, the equations of motion 5

reduce to a nonlinear wave equation:

∇µ(G∂µϕ) = 0, ∂µϕ = (g−1)µν∂νϕ (11)

where

G =
n
√
σ
= G(σ), σ = −(g−1)µν∂µϕ∂νϕ

(12)

Equation 11 derives from the Lagrangian

L = p = L(σ) (13)

the pressure as a function of the squared en-

thalpy.
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Returning to the general case, the sound speed

η is defined by: (
dp

dρ

)
s

= η2 (14)

it being assumed that the left hand side is

positive. The causality condition:

0 < η < 1 (15)

is imposed, the right inequality meaning that

the sound speed is less than the universal

constant represented by the speed of light in

vacuum.
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The acoustical metric h is another Lorentzian

metric on M such that at each p ∈ M the

simultaneous space Hp is also h- orthogonal

to up, h agrees with g on Hp, and h assigns

magnitude η to u. In terms of a formula:

hµν = gµν + (1− η2)uµuν, uµ = gµνu
ν (16)

The null cones of h are called sound cones.

By the right inequality above, they are con-

tained within the null cones of g, namely the

light cones. What is important from the

physical point of view is the conformal geom-

etry induced by h on the underlying manifold.

It determines the acoustical causal structure.

That is, given any event p ∈ M it deter-

mines J+(p) the acoustical causal future of

p, the set of events which are acoustically in-

fluenced by p, and J−(p) the causal past of p,

the set of events which acoustically influence

p.

7



Choosing a time function t in Minkowski space-

time, equal to the coordinate x0 of some

rectangular coordinate system, we denote by

Σt an arbitrary level set of the function t.

The Σt are parallel spacelike hyperplanes rel-

ative to the Minkowski metric g.

Initial data for the equations of motion 5

is given on a domain in the hyperplane Σ0,

which may be the whole of Σ0. It consists

in the specification of the triplet (n, s, u) on

this domain. In the irrotational case, where

we have the nonlinear wave equation 11, ini-

tial data consists in the specification of the

pair (ϕ, ∂tϕ) on such a domain. To any given

initial data set there corresponds a unique

maximal classical solution of the equations of

motion 5, or of the nonlinear wave equation

11 in the irrotational case. The notion of

maximal classical solution or maximal devel-

opment of an initial data set is the following.
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Given an initial data set, the local existence

theorem asserts the existence of a develop-

ment of this set, namely of a domain D in

Minkowski spacetime, whose past boundary

is the domain of the initial data, and of a so-

lution defined in D and taking the given data

at the past boundary, such that the follow-

ing condition holds. If we consider any point

p ∈ D and any curve issuing at p with the

property that its tangent vector at any point

q belongs to the interior or the boundary of

the past component of the sound cone at q,

then the curve terminates at a point of the

domain of the initial data. [Drawing 1].
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The local uniqueness theorem asserts that

if (D1, (n1, s1, u1)) and (D2, (n2, s2, u2)) are

two developments of the same initial data

[(D1, ϕ1) and (D2, ϕ2) in the irrotational case],

then (n1, s1, u1) coincides with (n2, s2, u2) in

D1
∩
D2 [ϕ1 coincides with ϕ2 in D1

∩
D2 in

the irrotational case]. It follows that the

union of all developments of a given initial

data set is itself a development, the unique

maximal development of the initial data set.
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In the monograph I consider regular initial

data on Σ0 which outside a sphere coincide

with the data corresponding to a constant

state. That is, outside that sphere n and s

are constant and u coincides with the future-

directed unit normal to Σ0. Under a suitable

restriction on the size of the departure of

the initial data from those of the constant

state, I prove certain theorems which give a

complete description of the maximal classi-

cal development. In particular, the theorems

give a detailed description of the geometry of

the boundary of the domain of the maximal

classical development and a detailed analysis

of the behavior of the solution at this bound-

ary. A complete picture of shock formation

in 3-dimensional fluids is thereby obtained.
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I shall confine myself in this talk to the case

that the initial data are irrotational hence so

is the maximal classical development.

Let H be the function defined by:

1− η2 = σH (17)

where η is the sound speed. I denote by ℓ

the value of (dH/dσ)s in the surrounding con-

stant state. This constant determines the

character of the shocks for small initial depar-

tures from the constant state. In particular

when ℓ = 0, no shocks form and the domain

of the maximal classical solution is complete.
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Consider the function (dH/dσ)s as a func-

tion of the thermodynamic variables p and s.

Suppose that we have an equation of state

such that at some value s0 of s the func-

tion (dH/dσ)s vanishes everywhere along the

adiabat s = s0. In this case the irrotational

fluid equations corresponding to the value s0
of the entropy are equivalent to the minimal

surface equation, the wave function ϕ defin-

ing a minimal graph in a Minkowski space-

time of one more spatial dimension. In fact

in this case the Lagrangian 13 is:

L = 1−
√
1− σ (18)

and the action associated to a domain is the

area of the domain minus the area of the

graph over the domain.
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Let O be the center of the sphere S0,0 in Σ0

outside which we have the constant state.

Let us confine ourselves to the maximal de-

velopment of the restriction of the initial data

to Σ0 \O. Let u be a smooth function with-

out critical points in Σ0 \ O such that the

the restriction of u to the exterior of S0,0 is

equal to minus the Euclidean distance from

S0,0. We extend u to the spacetime manifold

by the condition that its level sets are outgo-

ing null hypersurfaces relative to the acous-

tical metric h. Then u satisfies the h-eikonal

equation:

(h−1)µν∂µu∂νu = 0 (19)

We call u an acoustical function and we de-

note by Cu an arbitary level set of u.
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Each Cu being a null hypersurface is gener-

ated by null geodesics of h. Let L be the tan-

gent vectorfield to these geodesic generators

parametrized not affinely but by t. We then

define the wave fronts St,u to be the surfaces

of intersection Cu
∩
Σt. Finally we define the

vectorfield T to be tangential to the Σt and

so that the flow generated by T on each Σt

is the normal, relative to the induced on Σt

acoustical metric h, flow of the foliation of

Σt by the surfaces St,u. This flow takes each

wave front onto another wave front. [Draw-

ing 2].
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The structure introduced on the spacetime

manifold by an acoustical function u, or, what

is the same, the geometry of a foliation of

spacetime by outgoing null hypersurfaces Cu,

the level sets of u, plays a fundamental role in

the problem. The most important geometric

property of this foliation from the point of

view of the study of shock formation is the

density of the packing of its leaves Cu. One

measure of this density is the inverse spatial

density of the wave fronts, that is, the in-

verse density of the foliation of each spatial

hyperplane Σt by the surfaces St,u. This is

the function κ, given in arbitrary coordinates

on Σt by:

κ−2 = (h
−1

)ij∂iu∂ju (20)

where hij is the induced acoustical metric on

Σt. An equivalent definition of κ is that it

is the magnitude of the vectorfield T with

respect to h. [Drawing 3].
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Another measure is the inverse temporal den-

sity of the wave fronts, the function µ, given

in arbitrary coordinates in spacetime by:

1

µ
= −(h−1)µν∂µt∂νu (21)

The two measures are related by:

µ = ακ (22)

where α is the inverse density, with respect

to the acoustical metric, of the foliation of

spacetime by the hyperplanes Σt. [This in-

verse density is of course 1 when refered to

the Minkowski metric.] The function α is

given in arbitrary coordinates in spacetime

by:

α−2 = −(h−1)µν∂µt∂νt (23)
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It is expressed directly in terms of the 1-form

β = dϕ. It turns out moreover, that it is

bounded above and below by positive con-

stants. Consequently µ and κ are equivalent

measures of the density of the packing of the

leaves of the foliation of spacetime by the Cu.

Shock formation is characterized by the blow

up of this density or equivalently by the van-

ishing of κ or µ.
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The maximal development being a domain in

Minkowski spacetime, which by a choice of

rectangular coordinates is identified with R4,

inherits the subset topology and the standard

differential structure induced by the rectan-

gular coordinates xα. Choosing an acousti-

cal function u we introduce acoustical coor-

dinates (t, u, ϑ), ϑ ∈ S2, the coordinate lines

corresponding to a given value of u and to

constant values of ϑ being the generators

of the null hypersurface Cu. The rectangu-

lar coordinates xα are smooth functions of

the acoustical coordinates (t, u, ϑ) and the

Jacobian of the transformation is, up to a

multiplicative factor which is bounded above

and below by positive constants, the inverse

temporal density function µ. The acoustical

coordinates induce another differential struc-

ture on the same underlying topological man-

ifold. However since µ > 0 in the interior of

the maximal development, the two differen-

tial structures coincide in the interior of the

maximal development.
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The main theorem of the monograph asserts

that relative to the differential structure in-

duced by the acoustical coordinates the max-

imal classical solution extends smoothly to

the boundary of its domain. This bound-

ary contains however a singular part B where

the function µ vanishes. The rectagular co-

ordinates themselves extend smoothly to the

boundary but the Jacobian vanishes on the

singular part of the boundary. The map-

ping from acoustical to rectangular coordi-

nates has a continuous but not differentiable

inverse at B. As a result, the two differen-

tial structures no longer coincide when the

singular boundary B is included.

With respect to the standard differential struc-

ture the solution is continuous but not differ-

entiable at B, the derivative T̂µT̂ ν∂µ∂νϕ blow-

ing up as we approach B. Here T̂ = κ−1T ,

is the vectorfield of unit magnitude with re-

spect to h corresponding to T .
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With respect to the standard differential struc-

ture, the acoustical metric h is everywhere

in the closure of the domain of the maxi-

mal solution non-degenerate and continuous,

but it is not differentiable at B, while with

respect to the differential structure induced

by the acoustical coordinates h is everywhere

smooth, but it is degenerate at B.

After the proof of the main theorem, I es-

tablish a general theorem which gives sharp

sufficient conditions on the initial data for

the formation of a shock in the evolution.

The theorem also gives a sharp upper bound

on the time interval required for the onset of

shock formation.
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The last part of the work is concerned with

the structure of the boundary of the domain

of the maximal classical solution and the be-

havior of the solution at this boundary. The

boundary of the maximal development con-

sists of a regular part C and a singular part

B. Each component of C is a regular incom-

ing acoustically null hypersurface with a sin-

gular past boundary which coincides with the

past boundary of an associated component of

B. The union of these singular past bound-

aries we denote by ∂−B. [Drawing 4]. Each

component of B is a hypersurface which is

smooth relative to both differential structures

and has the intrinsic geometry of a regular

null hypersurface in a regular spacetime and,

like the latter, is ruled by invariant curves of

vanishing arc length. [Drawing 5].
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On the other hand, the extrinsic geometry

of each component of B is that of an acous-

tically spacelike hypersurface which becomes

acoustically null at its past boundary, an as-

sociated component of ∂−B. This means

that at each point q ∈ B the past null geodesic

conoid of q does not intersect B. Each com-

ponent of ∂−B is an acoustically spacelike

surface which is smooth relative to both dif-

ferential structures.
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The main result of the last part of the work

is the trichotomy theorem. This theorem

shows that for each point q of the singular

boundary, the intersection of the past null

geodesic conoid of q with any Σt in the past

of q splits into three parts, the parts corre-

sponding to the outgoing and to the incom-

ings sets of null geodesics ending at q being

embedded discs with a common boundary, an

embedded circle, which corresponds to the

set of the remaining null geodesics ending

at q. All outgoing null geodesics ending at q

have the same tangent vector at q. This vec-

tor is then an invariant null vector associated

to the singular point q. [Drawing 6].
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This striking result is in fact the reason why

the considerable freedom in the choice of

the acoustical function does not matter in

the end. For, considering the transformation

from one acoustical function to another, I

show that the foliations corresponding to dif-

ferent families of outgoing null hypersurfaces

have equivalent geometric properties and de-

generate in precisely the same way on the

same singular boundary.
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Now, the components of ∂−B are physically

the surfaces where shocks begin to form. The

maximal classical solution is the physical so-

lution of the problem up to C
∪
∂−B, but not

up to B. In the epilogue of the monograph

the problem of the physical continuation of

the solution is set up as the shock develop-

ment problem. This is a free-boundary prob-

lem associated to each component of ∂−B.

In this problem it is required to construct a

hypersurface of discontinuity K, the shock

hypersurface, lying in the past of the asso-

ciated component of B but having the same

past boundary as the latter, namely the given

component of ∂−B, the tangent hyperplanes

to K and B coinciding along ∂−B.
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Moreover, it is required to construct a solu-

tion of the differential conservation laws 5 in

the domain in Minkowski spacetime bounded

in the past by C
∪
K, agreeing with the max-

imal classical solution on C
∪
∂−B, while hav-

ing jumps across K relative to the data in-

duced on K by the maximal classical solution,

jumps satisfying the jump conditions which

follow from the integral form of the conserva-

tion laws. Finally K is required to be acous-

tically spacelike with respect to the acous-

tical metric induced by the maximal classi-

cal solution, and timelike with respect to the

acoustical metric induced by the new solu-

tion, which holds in the future of K. The

maximal classical solution thus provides the

boundary conditions on C
∪
∂−B as well as a

barrier at B. [Drawing 7].
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Note that a component of ∂−B is a surface

which is acoustically spacelike but not nec-

essarily spacelike relative to the Minkowski

metric g. The intersection Σt
∩
K represents

the instantaneous shock surface in the Lorentz

frame defined by the time function t and the

intersection Σt
∩
∂−B represents the bound-

ary curve of the instantaneous shock surface.
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Let me close with a formula for the jump

in vorticity across K which shows that even

though the flow before the shock may be ir-

rotational the flow acquires vorticity immedi-

ately after. By virtue of the last condition of

the shock development problem K is a time-

like hypersurface relative to the Minkowski

metric g. Let N be its unit normal relative to

g, pointing to the future of K. Let u0 be the

fluid velocity at K induced by the past solu-

tion, u1 be the fluid velocity at K induced by

the future solution. Then by the jump con-

ditions at each point p ∈ K the three vectors

N,u0, u1 lie in the same timelike plane. Let

Πp be the g- orthogonal complement of this

plane.
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Consider the restriction to Πp of the differ-

ential of [s], the jump in entropy across K.

Let us denote this restriction by d/[s] and the

corresponding (through g) vector, element of

Πp, by d/[s]♯. Then the vorticity vector at p

induced by the future solution is given by:

ϖ1 =
θ1
u⊥1

∗d/[s]♯ (24)

Here θ1 and u⊥1 are, respectively, the tem-

perature and the normal component of the

fluid velocity at K induced by the future so-

lution [ u⊥0 and u⊥1 are both positive and

related by n0u⊥0
= n1u⊥1]. Also, for any

V ∈ Πp we denote by ∗V the result of rotat-

ing V counterclockwise by a right angle.
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