Hyperbolic P.D.E. and Lorentzian Geometry

Demetrios Christodoulou

Physical spacetime is a 4-dimensional manifold \mathcal{M} endowed with a Lorentzian metric g, relative to which it is time-oriented. In continuum mechanics we also have a 3-dimensional manifold \mathcal{N}, the material manifold, each point of which represents a material particle. The dynamics is described by a mapping $f: \mathcal{M} \rightarrow$ \mathcal{N} which tells us which particle is at a given event. The mapping f must satisfy the condition that the inverse image of a point $y \in \mathcal{N}$ must be a timelike curve in \mathcal{M}, as it is to represent the history of the particle y. Thus $d f(x)$ is subject to the condition that its null space is a timelike line in $T_{x} \mathcal{M}$. There is then a unit future-directed timelike vector u_{x} in $T_{x} \mathcal{M}$ whose linear span is the null space of $d f(x)$. The vector u_{x} is the material velocity at x. The assignment of u_{x} at each $x \in \mathcal{M}$ then defines a vectorfield on \mathcal{M}, the material velocity. The orthogonal complement, relative to g_{x}, of the null space of $d f(x)$ is a spacelike hyperplane Σ_{x} in $T_{x} \mathcal{M}$, the simultaneous space at x. The restriction $\left.g_{x}\right|_{\Sigma_{x}}$ is a positive-definite quadratic form on Σ_{x}. The restriction $\left.d f(x)\right|_{\Sigma_{x}}$ is then an isomorphism of Σ_{x} onto $T_{f(x)}{ }^{\mathcal{N}}$.

The material manifold \mathcal{N} is in general endowed with a volume form $d \mu_{\omega}$, the integral of which over a domain in \mathcal{N} represents the number of particles contained in the domain. In the case of fluid mechanics there is no other structure on \mathcal{N}. In the case of the mechanics of crystalline solids however \mathcal{N} is endowed with a richer structure which we shall presently define. Let us denote by $\mathcal{X}(\mathcal{N})$ the space of C^{∞} vectorfields on \mathcal{N} and by ε_{y} the evaluation map $\mathcal{X}(\mathcal{N}) \rightarrow T_{y} \mathcal{N}$ taking a vectorfield to its value at $y \in \mathcal{N}$.

Definition: A crystalline structure on \mathcal{N} is a distinguished linear subspace \mathcal{K} of $\mathcal{X}(\mathcal{N})$ such that the evaluation map restricted to $\mathcal{K}, \varepsilon_{y}: \mathcal{K} \rightarrow T_{y} \mathcal{N}$, is an isomorphism for each $y \in \mathcal{N}$.

Each element of \mathcal{K} generates a 1-parameter group of diffeomorphisms of \mathcal{N}. These groups represent physically the continuum limit of the groups of translations of a crystal lattice. The parametrization of the group orbits is to be thought of as proportional to the number of atoms traversed.

The canonical form associated to a crystalline structure is the \mathcal{K} - valued 1 -form ν on \mathcal{N} defined by:

$$
\nu\left(Y_{y}\right)=\varepsilon_{y}^{-1}\left(Y_{y}\right) \in \mathcal{K}
$$

for each $Y_{y} \in T_{y} \mathcal{N}$ and $y \in \mathcal{N}$. The dislocation form is the \mathcal{K} - valued 2 -form λ on \mathcal{N} given by:

$$
\lambda=-d \nu
$$

If $Y_{1}, Y_{2} \in \mathcal{K}$ then according to the above definition $\lambda\left(Y_{1}, Y_{2}\right)$ is the following \mathcal{K} - valued function on \mathcal{N} :

$$
\lambda\left(Y_{1}, Y_{2}\right)(y)=\varepsilon_{y}^{-1}\left(\left[Y_{1}, Y_{2}\right](y)\right)
$$

This is a constant function if and only if $\left[Y_{1}, Y_{2}\right] \in \mathcal{K}$. If this is the case for each pair $Y_{1}, Y_{2} \in \mathcal{N}$ then \mathcal{K} is a Lie algebra. In this case, upon choosing an identity element $e \in \mathcal{N}, \mathcal{N}$ becomes a Lie group so that \mathcal{K} is the space of vectorfields which generate the right action of the group on itself; \mathcal{K} is then, at the same time, the space of vectorfields on \mathcal{N} which are invariant under left group multiplications.

The dislocation form is a concept which arises in the continuum limit when one considers a distribution of elementary dislocations in a crystal lattice. An elementary lattice dislocation has the property that if we start at an atom and move according to one group of lattice translations a certain number of atoms p, then move according to a different group of translations a number of atoms q, then according to the first $-p$ and finally according to the second $-q$, then on completing the circuit we arrive at an atom which in does not coincide with the atom from which we started, but, provided that the circuit encloses a single elementary dislocation, is arrived at in a single step corresponding to a third lattice translation. The lattice vector corresponding to this step is called Burgers vector. The integral of minus ν on a closed curve C in \mathcal{N} represents physically the sum of the Burgers vectors of all the dislocation lines enclosed by C.

The thermodynamic state space is the space of local thermodynamic states of a material. For a fluid this space is $\mathbb{R}^{+} \times \mathbb{R}^{+}$, the set of pairs (τ, σ) where $\tau \in \mathbb{R}^{+}$is the volume per particle and $\sigma \in \mathbb{R}^{+}$is the entropy per particle. For a crystalline solid the thermodynamic state space is $S_{2}^{+}(\mathcal{K}) \times \mathbb{R}^{+}$, the set of pairs (γ, σ), where $\gamma \in S_{2}^{+}(\mathcal{K})$, the space of inner products on \mathcal{K}, is the thermodynamic configuration and σ is, as above, the entropy per particle. We assume that an orientation and a volume form ω has been chosen for \mathcal{K}. Then for a crystalline solid the volume per particle τ is a function on $S_{2}^{+}(\mathcal{K})$ defined as follows: Each $\gamma \in S_{2}^{+}(\mathcal{K})$ defines a volume form ω_{γ} on \mathcal{K} by the condition that if $\left(E_{1}, E_{2}, E_{3}\right)$ is a positive basis for \mathcal{K} which is orthonormal relative to γ then:

$$
\omega_{\gamma}\left(E_{1}, E_{2}, E_{3}\right)=1
$$

It follows that there is a positive function τ on $S_{2}^{+}(\mathcal{K})$ such that:

$$
\omega_{\gamma}=\tau(\gamma) \omega
$$

The laws governing the dynamics of a given kind of material are determined by the specification of the energy per particle e as a function on the thermodynamic state space. Thus, in the case of fluid mechanics $e=$ $e(\tau, \sigma)$ and the derivatives:

$$
p=-\frac{\partial e}{\partial \tau} \quad \theta=\frac{\partial e}{\partial \sigma}
$$

are the pressure and the temperature respectively. In the case of the mechanics of crystalline solids $e=e(\gamma, \sigma)$ and the derivative:

$$
\frac{\partial e}{\partial \gamma}=-\frac{1}{2} \pi \tau
$$

defines the stress π, which takes values in $\left(S_{2}(\mathcal{K})\right)^{*}$. The temperature is defined as above. The number of particles per unit volume n and the energy density or energy per unit volume ρ are defined in terms of τ and e by:

$$
n=\frac{1}{\tau} \quad \rho=\frac{e}{\tau}
$$

The equations of motion are the Euler-Lagrange equations for the mapping f, associated to the Lagrangian to be presently defined. With $x \in \mathcal{M}, y \in \mathcal{N}$, and $f(x)=y$, consider the set of possible values of $d f(x)=v$. This is the open subset $\mathcal{V}_{(x, y)}$ of $\mathcal{L}\left(T_{x} \mathcal{M}, T_{y} \mathcal{N}\right)$ defined by the condition that the null space of v is a line in $T_{x} \mathcal{M}$ which is timelike relative to g_{x}. [Here, for finite dimensional vector spaces U and V we denote by $\mathcal{L}(U, V)$ the space of linear maps of U into V.] Then L is defined on the bundle

$$
\mathcal{V}=\bigcup_{(x, y) \in \mathcal{M} \times \mathcal{N}} \mathcal{V}_{(x, y)}
$$

over $\mathcal{M} \times \mathcal{N}$ and assigns to each $v \in \mathcal{V}_{(x, y)}$ a top degree form on $T_{x} \mathcal{M}$. Since here $T_{x} \mathcal{M}$ is already endowed with the top degree form $d \mu_{g_{x}}$, the volume form of g_{x}, we have:

$$
L(v)=L^{*}(v) d \mu_{g_{x}}
$$

where L^{*} is simply a function on \mathcal{V}.

In the case of fluid mechanics this function is defined as follows. Consider Σ_{x}, the simultaneous space at x. Then $d \mu_{g_{x}}$ induces a volume form $\epsilon \Sigma_{x}$ on Σ_{x} by:

$$
\begin{aligned}
& \epsilon_{\Sigma_{x}}\left(X_{1, x}, X_{2, x}, X_{3, x}\right)=d \mu_{g_{x}}\left(u_{x}, X_{1, x}, X_{2, x}, X_{3, x}\right) \\
& : \forall X_{1, x}, X_{2, x}, X_{3, x} \in \Sigma_{x}
\end{aligned}
$$

where u_{x} is the material velocity at x. Recall that

$$
\left.v\right|_{\Sigma_{x}}: \Sigma_{x} \rightarrow T_{y} \mathcal{N}
$$

is an (orientation-preserving) isomorphism. Thus there is a positive real number $\tau(v)$ such that:

$$
\begin{aligned}
& \epsilon_{\Sigma_{x}}\left(X_{1, x}, X_{2, x}, X_{3, x}\right)= \\
& \tau(v) d \mu_{\omega_{y}}\left(v \cdot X_{1, x}, v \cdot X_{2, x}, v \cdot X_{3, x}\right) \\
& : \forall X_{1, x}, X_{2, x}, X_{3, x} \in \Sigma_{x}
\end{aligned}
$$

where $d \mu_{\omega}$ is the volume form on \mathcal{N}. To have a pure Lagrangian description, the entropy per particle σ must be given as a positive function on \mathcal{N}. At each $v \in \mathcal{V}_{(x, y)}$, the pair $(\tau(v), \sigma(y)) \in \mathbb{R}^{+} \times \mathbb{R}^{+}$represents a local thermodynamic state of the fluid. The Lagrangian function L^{*} is then defined by:

$$
L^{*}(v)=\rho(\tau(v), \sigma(y)) \quad: \forall v \in \mathcal{V}_{(x, y)}
$$

In the case of the mechanics of crystalline solids the Lagrangian function is defined as follows. For each $v \in \mathcal{V}_{(x, y)}$ we consider the isomorphism $i(v)$ of \mathcal{K} onto Σ_{x} given by:

$$
i(v)=\left(\left.v\right|_{\Sigma_{x}}\right)^{-1} \circ \varepsilon_{y}
$$

Then $\gamma(v) \in S_{2}^{+}(\mathcal{K})$ is defined by:

$$
\gamma(v)=\left.i^{*}(v) \cdot g_{x}\right|_{\Sigma_{x}}
$$

that is:
$\gamma(v)\left(Y_{1}, Y_{2}\right)=g_{x}\left(i(v) \cdot Y_{1}, i(v) \cdot Y_{2}\right) \quad: \forall Y_{1}, Y_{2} \in \mathcal{K}$
At each $v \in \mathcal{V}_{(x, y)}$, the pair $(\gamma(v), \sigma(y)) \in$ $S_{2}^{+}(\mathcal{K}) \times \mathbb{R}^{+}$represents a local thermodynamic state of the crystalline solid. The Lagrangian function L^{*} is then defined by:

$$
L^{*}(v)=\rho(\gamma(v), \sigma(y)) \quad: \quad \forall v \in \mathcal{V}_{(x, y)}
$$

The above theories continuum mechanics fit into the general framework of Lagrangian theories of maps f of an (oriented) differentiable manifold \mathcal{M} into an (oriented) differentiable manifold \mathcal{N}. The Lagrangian is in general defined on the bundle

$$
\mathcal{V}=\bigcup_{(x, y) \in \mathcal{M} \times \mathcal{N}} \mathcal{V}_{(x, y)}
$$

over $\mathcal{M} \times \mathcal{N}$, where $\mathcal{V}_{(x, y)}$ is an open subset of $\mathcal{L}\left(T_{x} \mathcal{M}, T_{y} \mathcal{N}\right)$. In fact, for each $(x, y) \in$ $\mathcal{M} \times \mathcal{N}, L$ assigns to each $v \in \mathcal{V}_{(x, y)}$ an element of $\wedge_{m}\left(T_{x} \mathcal{M}\right), m=\operatorname{dim} \mathcal{M}$, that is, a top degree form on $T_{x} \mathcal{M}$. Hence given a map $f: \mathcal{M} \rightarrow \mathcal{N}$, the composition $L \circ d f$ is an exterior differential form of top degree on \mathcal{M}. The action $\mathcal{A}(f, \Omega)$ associated to the map f and to the domain Ω with compact closure in \mathcal{M}, is the integral:

$$
\int_{\Omega \subset \mathcal{M}} L \circ d f
$$

and the Euler-Lagrange equations express the requirement that, for any such domain Ω, the action $\mathcal{A}(f, \Omega)$ is stationary with respect to arbitrary variations of the map f which are compactly supported in Ω.

In the framework of continuum mechanics there is a vectorfield I on \mathcal{M} associated to a map f, the particle current, defined by:

$$
I=n u
$$

where n is the number of particles per unit volume considered as a function on \mathcal{N}, that is:

$$
n(x)=n(d f(x))
$$

Consider the 3-form I^{*} which is dual to I with respect to $d \mu_{g}$, that is:

$$
I^{*}=d \mu_{g}(I, \cdot, \cdot, \cdot)
$$

Then according to the above:

$$
I^{*}=f^{*} d \mu_{\omega}
$$

It follows that:

$$
d I^{*}=0
$$

identically, which is equivalent to the differential particle conservation law:

$$
\nabla \cdot I=0
$$

where ∇ is the covariant derivative operator associated to the metric g.

Note that in the case of the Lagrangians of continuum mechanics, for $v \in \mathcal{V}_{(x, y)}, L(v)$ depends on g_{x} only through $\tau(v)$ in the case of fluid mechanics and only through $\gamma(v)$ in the case of the mechanics of crystalline solids. The energy-momentum-stress tensor at x associated to a map f is the element T_{x} of $\left(S_{2}\left(T_{x} \mathcal{M}\right)\right)^{*}$ defined by:

$$
\frac{\partial L(d f(x))}{\partial g_{x}}=-\frac{1}{2} T_{x} d \mu_{g_{x}}
$$

The assignment of T_{x} to each $x \in \mathcal{M}$ then defines a symmetric 2-contravariant tensorfield T on \mathcal{M}, the energy-momentum-stress tensorfield. In the case of fluid mechanics it is given by:

$$
T=\rho u \otimes u+p\left(g^{-1}+u \otimes u\right)
$$

Here ρ and p are the energy density and pressure considered as functions on \mathcal{M}, that is:
$\rho(x)=\rho(\tau(d f(x)), s(x)) \quad p(x)=p(\tau(d f(x)), s(x))$
where s is the entropy per particle as a function on \mathcal{M}, that is:

$$
s(x)=\sigma(f(x))
$$

In the case of the mechanics of crystalline solids T is given by:

$$
T=\rho u \otimes u+S
$$

where ρ is the energy density considered as a function on \mathcal{M}, that is:

$$
\rho(x)=\rho(\gamma(d f(x)), s(x))
$$

and S is the stress tensorfield, given, at each $x \in \mathcal{M}$ by:

$$
\begin{aligned}
& S_{x}\left(\dot{g}_{x}\right)=\pi(\gamma(d f(x)), s(x)) \cdot\left(\left.i^{*}(d f(x)) \cdot \dot{g}_{x}\right|_{\Sigma_{x}}\right) \\
& : \forall \dot{g}_{x} \in S_{2}\left(T_{x} \mathcal{M}\right)
\end{aligned}
$$

where, as above, for any $v \in \mathcal{V}_{(x, y)}$, $\left.i^{*}(v) \cdot \dot{g}_{x}\right|_{\Sigma_{x}} \in S_{2}(\mathcal{K})$ is defined by:

$$
\begin{aligned}
& \left.i^{*}(v) \cdot \dot{g}_{x}\right|_{x}\left(Y_{1}, Y_{2}\right)=\dot{g}_{x}\left(i(v) \cdot Y_{1}, i(v) \cdot Y_{2}\right) \\
& \quad: \forall Y_{1}, Y_{2} \in \mathcal{K}
\end{aligned}
$$

Under the condition that $d f$ is continuous, the Euler-Lagrange equations are equivalent to the differential energy-momentum conservation laws:

$$
\nabla \cdot T=0
$$

This equivalence is a consequence of the invariance of the action $\mathcal{A}(f, \Omega)$ under all diffeomorphisms of \mathcal{M} which coincide with the identity in the complement of a compact subset of Ω, for all domains Ω with compact closure in \mathcal{M}. According to the above definition of the entropy function s, the entropy function is constant along particle histories, a condition called the adiabatic condition. The differential energy-momentum conservation laws with the entropy function s as an unknown function on \mathcal{M}, in addition to the mapping $f: \mathcal{M} \rightarrow \mathcal{N}$, hold even when continuity of $d f$ is no longer assumed. Then the adiabatic condition no longer holds, we have instead a jump in s along each particle history crossing a hypersurface of discontinuity of $d f$.

In the case of fluid mechanics we may eliminate the mapping f and consider as unknowns the functions n and s and the fluid velocity u. The energy density ρ is specified as a function of n and s. The pressure p and the temperature θ are then given according to the above by:

$$
p=n \frac{\partial \rho}{\partial n}-\rho \quad \theta=\frac{1}{n} \frac{\partial \rho}{\partial s}
$$

The differential particle conservation law together with the differential energy-momentum conservation laws then constitute a first order system of partial differential equations for the unknowns n, s, and u.

The notions of ellipticity and hyperbolicity of a system of Euler-Lagrange equations refer to a given solution f_{0} of the system. Any other $\operatorname{map} f: \mathcal{M} \rightarrow \mathcal{N}$ whose graph \bar{f} : $\mathcal{M} \rightarrow \mathcal{M} \times \mathcal{N}$ lies in a suitable neighborhood of $\overline{f_{0}}$, the graph of f_{0}, can be viewed as being a perturbation of f_{0}. Introducing a symmetric connection A in $T \mathcal{N}, f$ may obtained by exponentiating, with respect to A, a section \dot{f} of $f_{0}^{*} T \mathcal{N}$, the pullback by f_{0} of the tangent bundle of \mathcal{N}. The theory of perturbations of a given solution f_{0} is thus a theory of sections of the vector bundle $\mathcal{B}=f_{0}^{*} T \mathcal{N}$ over domain manifold \mathcal{M}, whose fibre over $x \in \mathcal{M}$ is

$$
\mathcal{B}_{x}=\{x\} \times T_{f_{0}(x)} \mathcal{N}
$$

The original action of f in a domain $\Omega \subset \mathcal{M}$ then translates to an action for \dot{f} in Ω. This action is the integral over Ω of the composition with $\left(\dot{f}, D^{*} \dot{f}\right)$ of $\stackrel{\triangle}{L}$, the relative Lagrangian with respect to f_{0}. Here $D^{*} \dot{f}$ is the covariant derivative of the section \dot{f} with respect to the induced connection A^{*} on $f_{0}^{*} T \mathcal{N}$.

With

$$
\dot{\mathcal{B}}=\bigcup \dot{\mathcal{B}}_{x}, \quad \dot{\mathcal{B}}_{x}=\mathcal{L}\left(T_{x} \mathcal{M}, \mathcal{B}_{x}\right)
$$

$\stackrel{\triangle}{L}$ is defined on the bundle product

$$
\mathcal{B} \times_{\mathcal{M}} \dot{\mathcal{B}}=\bigcup_{x \in \mathcal{M}} \mathcal{B}_{x} \times \dot{\mathcal{B}}_{x}
$$

an element of this in the fibre over $x \in \mathcal{M}$ is a pair (Y, V), where, with $y=f_{0}(x), Y \in$ $T_{y} \mathcal{N}$ and $V \in \mathcal{L}\left(T_{x} \mathcal{M}, T_{y} \mathcal{N}\right)$. Consideration of infinitesimal perturbations gives rise to \dot{L}, the linearized Lagrangian at f_{0}. The linearized Lagrangian is for each $x \in \mathcal{M}$ a quadratic form on $\mathcal{B}_{x} \times \dot{\mathcal{B}}_{x}$ with values in $\wedge_{m}\left(T_{x} \mathcal{M}\right)$. The notions of ellipticity and hyperbolicity at x relative to f_{0} refer only to the principal part of the linearized Lagrangian at f_{0} and x, a quadratic form on $\dot{\mathcal{B}}_{x}$ with values in $\wedge_{m}\left(T_{x} \mathcal{M}\right)$ given by:

$$
[\dot{L}](V)=\frac{1}{2} \frac{\partial^{2} L}{\partial v^{2}}\left(d f_{0}(x)\right)(V, V) \quad: \forall V \in \dot{\mathcal{B}}_{x}
$$

Choosing a volume form ϵ on \mathcal{M} [the natural choice in the physical case being $d \mu_{g}$] so that $L=L^{*} \epsilon$, we can write:

$$
[\dot{L}]=\frac{1}{2} h(V, V) \epsilon
$$

where

$$
h=\frac{\partial^{2} L^{*}}{\partial v^{2}}\left(d f_{0}\right)
$$

is a quadratic form on $\mathcal{L}\left(T_{x} \mathcal{M}, T_{y} \mathcal{N}\right), y=$ $f_{0}(x)$. In terms of local coordinates $\left(x^{\mu}\right.$: $\mu=1, \ldots, m$) on \mathcal{M} and ($y^{a}: a=1, \ldots, n$) on $\mathcal{N}[\operatorname{dim} \mathcal{M}=m, \operatorname{dim} \mathcal{N}=n], v \in \mathcal{V}_{(x, y)}$ takes the form:

$$
v=\left.\left.v_{\mu}^{a} d x^{\mu}\right|_{x} \otimes \frac{\partial}{\partial y^{a}}\right|_{y}
$$

The coefficients $\left(v_{\mu}^{a}\right)$ of the expansion are linear coordinates on $\mathcal{V}_{(x, y)}$ and we can write:

$$
\frac{1}{2} h_{a b}^{\mu \nu} V_{\mu}^{a} V_{\nu}^{b}=\frac{1}{2} \frac{\partial^{2} L^{*}}{\partial v_{\mu}^{a} \partial v_{\nu}^{b}}\left(d f_{0}(x)\right) V_{\mu}^{a} V_{\nu}^{b}
$$

The notions of ellipticity or of hyperbolicity of a system of Euler-Lagrange equations at a given solution f_{0} are notions which refer to the Euler-Lagrange equations corresponding to \dot{L}, the linearized Lagrangian at f_{0}. Now two different Lagrangians give rise to the same Euler-Lagrange equations whenever their difference is a null Lagrangian. Thus these notions actually refer not to a given \dot{L} but rather to the equivalence class obtained by adding to \dot{L} an arbitrary quadratic null Lagrangian. Furthermore these notions concern only the principal part, the quadratic form on $\dot{\mathcal{B}}_{x}$, at each $x \in \mathcal{M}$. Now the principal part of a quadratic null Lagrangian is of the form, in terms of the ϵ-dual,

$$
\frac{1}{2} n_{a b}^{\mu \nu} V_{\mu}^{a} V_{\nu}^{b}
$$

where n is a quadratic form on $\dot{\mathcal{B}}_{x}$ with the property:

$$
n_{a b}^{\mu \nu}=-n_{a b}^{\nu \mu}=-n_{b a}^{\mu \nu}
$$

We call such a quadratic form odd.

In general, if U and V are vector spaces, then $S_{2}(\mathcal{L}(U, V))$, the space of quadratic forms on $\mathcal{L}(U, V)=U^{*} \otimes V$ decomposes into:

$$
S_{2}(\mathcal{L}(U, V))=S_{2+}(\mathcal{L}(U, V)) \oplus S_{2-}(\mathcal{L}(U, V))
$$

where $S_{2+}(\mathcal{L}(U, V))$ is the space of even quadratic forms, namely those $q \in S_{2}(\mathcal{L}(U, V))$ which satisfy:

$$
\begin{gathered}
q\left(\alpha_{1} \otimes v_{1}, \alpha_{2} \otimes v_{2}\right)=q\left(\alpha_{2} \otimes v_{1}, \alpha_{1} \otimes v_{2}\right) \\
=q\left(\alpha_{1} \otimes v_{2}, \alpha_{2} \otimes v_{1}\right) \\
: \forall \alpha_{1}, \alpha_{2} \in U^{*}, \quad \forall v_{1}, v_{2} \in V
\end{gathered}
$$

and $S_{2-}(\mathcal{L}(U, V))$ is the space of odd quadratic forms, namely those $q \in S_{2}(\mathcal{L}(U, V))$ which satisfy:

$$
\begin{gathered}
q\left(\alpha_{1} \otimes v_{1}, \alpha_{2} \otimes V_{2}\right)=-q\left(\alpha_{2} \otimes v_{1}, \alpha_{1} \otimes v_{2}\right) \\
=-q\left(\alpha_{1} \otimes v_{2}, \alpha_{2} \otimes v_{1}\right) \\
: \forall \alpha_{1}, \alpha_{2} \in U^{*}, \quad \forall v_{1}, v_{2} \in V
\end{gathered}
$$

Given an arbitrary quadratic form q, we denote by q_{+}and q_{-}its even and odd parts respectively.

In view of the above remarks, the notions of ellipticity or of hyperbolicity of a Lagrangian at $v=d f_{0}(x) \in \mathcal{V}_{(x, y)}, y=f_{0}(x)$, should depend only on the equivalence class:

$$
\left\{h+n: n \in S_{2-}\left(\mathcal{L}\left(T_{x} \mathcal{M}, T_{y} \mathcal{N}\right)\right)\right\}
$$

or equivalently only on h_{+}, the even part of h. Remark that if q is an odd quadratic form on $\mathcal{L}(U, V)$ then q vanishes on all rank 1 elements of $\mathcal{L}(U, V)$:

$$
q(\alpha \otimes v, \alpha \otimes v)=0 \quad: \forall \alpha \in U^{*}, \forall v \in V
$$

Consequently, the following definitions comply with our requirement.

Definition: A Lagrangian L is called regularly elliptic at $v \in \mathcal{V}_{(x, y)}$ if $h=\left(\partial^{2} L^{*} / \partial v^{2}\right)(v)$ is positive-definite on the set

$$
\left\{\xi \otimes Y: \xi \in T_{x}^{*} \mathcal{M}, \quad Y \in T_{y} \mathcal{N}\right\}
$$

of all rank 1 elements of $\mathcal{L}\left(T_{x} \mathcal{M}, T_{y} \mathcal{N}\right)$.

Regular ellipticity is known as the LegendreHadamard condition in the calculus of variations.

Definition: A Lagrangian L is regularly hyperbolic at $v \in \mathcal{V}_{(x, y)}$ if there exists a pair $(X, \xi) \in T_{x} \mathcal{M} \times T_{x}^{*} \mathcal{M}$ such that the restriction of $h=\left(\partial^{2} L^{*} / \partial v^{2}\right)(v)$ to

$$
L_{\xi}=\left\{\xi \otimes Y: Y \in T_{y} \mathcal{N}\right\}
$$

is negative-definite, while the restriction of h to Σ_{X}^{1}, the set of rank 1 elements of

$$
\Sigma_{X}=\left\{V \in \mathcal{L}\left(T_{x} \mathcal{M}, T_{y} \mathcal{N}\right): V(X)=0\right\}
$$

is positive-definite. [Note that this implies $\xi \cdot X \neq 0$.]

Suppose that h is a regularly hyperbolic quadratic form on $\mathcal{L}\left(T_{x} \mathcal{M}, T_{y} \mathcal{N}\right)$. We define $\mathcal{J}_{x} \subset T_{x} \mathcal{M}$ to be the set of all vectors $X \in T_{x} \mathcal{M}$ such that the restriction of h to Σ_{X}^{1} is positivedefinite. Then $0 \notin \mathcal{J}_{x}$ and \mathcal{J}_{x} is the disjoint union of \mathcal{J}_{x}^{+}and \mathcal{J}_{x}^{-}, where \mathcal{J}_{x}^{-}is the set of opposites of elements in \mathcal{J}_{x}^{+}. Similarly, we define $\mathcal{I}_{x}^{*} \subset T_{x}^{*} \mathcal{M}$ to be the set of all covectors $\xi \in T_{x}^{*} \mathcal{M}$ such that the restriction of h to L_{ξ} is negative-definite. Then $0 \notin \mathcal{I}_{x}^{*}$ and \mathcal{I}_{x}^{*} is the disjoint union of \mathcal{I}_{x}^{*+} and \mathcal{I}_{x}^{*-}, where \mathcal{I}_{x}^{*-} is the set of opposites of elements in \mathcal{I}_{x}^{*+}. Once a choice of positive component \mathcal{J}_{x}^{+}has been made for \mathcal{J}_{x}, the positive component \mathcal{I}_{x}^{*+} of \mathcal{I}_{x}^{*} is distinguished by

$$
\xi \cdot X>0 \quad: \forall(X, \xi) \in \mathcal{J}_{x}^{+} \times \mathcal{I}_{x}^{*+}
$$

Proposition: The sets $\mathcal{J}_{x}^{+}, \mathcal{J}_{x}^{-}, \mathcal{I}_{x}^{*+}, \mathcal{I}_{x}^{*-}$ are convex.

The notions of ellipticity and hyperbolicity are related as follows. Given a vectorfield X on \mathcal{M} we can consider those maps of \mathcal{M} into \mathcal{N} which are invariant under the 1 parameter group of diffeomorphisms of \mathcal{M} onto itself generated by X. This leads to a reduced Lagrangian whose associated quadratic form at $v \in \mathcal{V}_{(x, y)}$ is the restriction of the original quadratic form to Σ_{X}, those linear maps of $T_{x} \mathcal{M}$ into $T_{y} \mathcal{N}$ which annihilate $X(x)$. We then ask the following question: what is the set of values of X at x such that the reduced quadratic form on Σ_{X} is regularly elliptic? The answer is the set \mathcal{J}_{x}.

At each $\xi \in T_{x}^{*} \mathcal{M}$ we define the characteristic form $\chi(\xi)$, a quadratic form on $T_{y} \mathcal{N}$, by:
$\chi(\xi) \cdot(Y, Y)=h(\xi \otimes Y, \xi \otimes Y) \quad: \forall Y \in T_{y} \mathcal{N}$
In terms of local coordinates,

$$
\chi_{a b}(\xi)=h_{a b}^{\mu \nu} \xi_{\mu} \xi_{\nu}
$$

The characteristic subset \mathcal{C}_{x}^{*} of $T_{x}^{*} \mathcal{M}$ is defined by:

$$
\mathcal{C}_{x}^{*}=\left\{\xi \neq 0 \in T_{x}^{*} \mathcal{M}: \chi(\xi) \text { is degenerate }\right\}
$$

If a volume form on \mathcal{N} is chosen we can define:

$$
H(\xi)=\operatorname{det} \chi(\xi)
$$

Then \mathcal{C}_{x}^{*} is the zero level set of H on $T_{x}^{*} \mathcal{M}$. As x is an arbitrary point of \mathcal{M}, this defines H as a function on $T^{*} \mathcal{M}$. This is the Hamiltonian function.

The associated canonical equations,

$$
\frac{d x^{\mu}}{d \tau}=\frac{\partial H}{\partial \xi_{\mu}}, \quad \frac{d \xi_{\mu}}{d \tau}=-\frac{\partial H}{\partial x^{\mu}}
$$

(in local coordinates), define the bi-characteristic flow on the zero level set of H in $T^{*} \mathcal{M}$. A bicharacteristic is a path on the zero level set of H in $T^{*} \mathcal{M}$ which corresponds to a solution of the canonical equations. The Hamiltonian function is in fact only defined up to a transformation of the form $H \mapsto \Omega H$ where Ω is a function on \mathcal{M} which nowhere vanishes. Such a transformation preserves the paths, changing only the parametrization.

Denoting by $N(\chi(\xi))$ the null space of $\chi(\xi)$ as a linear map of $T_{y} \mathcal{N}$ into $T_{y}^{*} \mathcal{N}$, for ξ belonging to a component of $\mathcal{C}_{x}^{*}, N(\chi(\xi))$ is a non-trivial subspace of $T_{y} \mathcal{M}$. We call this the degrees of freedom, or waves, carried by that component.

At any given point $x \in \mathcal{M}, H$ is a homogeneous polynomial of degree $2 n$ in ξ. Such a homogeneous polynomial is in general irreducible, that is it cannot be decomposed into factors of lower degree.

However in the case of fluid mechanics ($n=$ $3), H$ is given by:

$$
H=A^{4} B
$$

where A is linear in ξ and B quadratic:

$$
A=u^{\mu} \xi_{\mu} \quad B=\left(h^{-1}\right)^{\mu \nu} \xi_{\mu} \xi_{\nu}
$$

Here,

$$
h^{-1}=g^{-1}+\left(1-\frac{1}{\eta^{2}}\right) u \otimes u
$$

is a quadratic form of index 1 on $T_{x}^{*} \mathcal{M}$, at each $x \in \mathcal{M}$, the reciprocal of h, a Lorentzian metric on \mathcal{M}, the acoustical metric, given in local coordinates by:

$$
h_{\mu \nu}=g_{\mu \nu}+\left(1-\eta^{2}\right) u_{\mu} u_{\nu}, \quad u_{\mu}=g_{\mu \nu} u^{\nu}
$$

In the above, $\eta>0$ is the sound speed, defined by:

$$
\eta^{2}=\left(\frac{d p}{d \rho}\right)_{s}
$$

it being assumed that the right hand side is positive.

The component of \mathcal{C}_{x}^{*} corresponding to $A=0$ carries the vorticity waves, while the component corresponding to $B=0$ carries the sound waves. In the case of solid mechanics H is irreducible except in the case of very special energy per particle functions e.

In the case that $n=1, H$ is quadratic in ξ hence

$$
\dot{x}=\left.\frac{\partial H}{\partial \xi_{\mu}} \frac{\partial}{\partial x^{\mu}}\right|_{x} \in T_{x} \mathcal{M}
$$

is linear in ξ. Upon substituting ξ in terms of \dot{x} in H we obtain a quadratic form of index 1 in $T_{x} \mathcal{M}$, for each $x \in \mathcal{M}$, that is a Lorentzian metric on \mathcal{M}. However in the general case where H is of degree $2 n$ in ξ, \dot{x} is of degree $2 n-1$ in ξ and we have a generalization of the standard Lorentzian geometry.

Remark that to each non-zero vector $X \in$ $T_{x} \mathcal{M}$ there corresponds a hyperplane $\Pi(X)$ in $T_{x}^{*} \mathcal{M}$:

$$
\Pi(X)=\left\{\xi \in T_{x}^{*} \mathcal{M}: \xi \cdot X=0\right\}
$$

The characteristic subset \mathcal{C}_{x} of $T_{x} \mathcal{M}$ is the set of all non-zero vectors $X \in T_{x} \mathcal{M}$ such that the corresponding hyperplane $\Pi(X)$ is tangent to \mathcal{C}_{x}^{*}.

Proposition : \mathcal{I}_{x}^{*} is the interior of the innermost component of \mathcal{C}_{x}^{*}, the inner characteristic core in $T_{x}^{*} \mathcal{M}$, and \mathcal{J}_{x} is the interior of the innermost component of \mathcal{C}_{x}, the inner characteristic core in $T_{x} \mathcal{M}$.

The causal subset $\overline{\mathcal{I}}_{x}$ of $T_{x} \mathcal{M}$ is defined to be the set of all $X \in T_{x} \mathcal{M}$ such that $\xi \cdot X \neq 0$: $\forall \xi \in \mathcal{I}_{x}^{*}$. The boundary of $\overline{\mathcal{I}}_{x}$ is then the set of all $X \in \overline{\mathcal{I}}_{x}$ such that $\exists \xi \in \partial \mathcal{I}_{x}^{*}: \xi \cdot X=0$. Thus if $X \in \partial \overline{\mathcal{I}}_{x}$, each component of \mathcal{I}_{x}^{*} lies to one side of the hyperplane $\Pi(X)$, for, $\xi \cdot X$ has one sign in each component, and $\partial \mathcal{I}^{*}{ }_{x}$ intersects $\Pi(X)$ at a line through the origin. Consequently, $\Pi(X)$ is tangent to $\partial \mathcal{I}_{x}^{*}$. Hence $\partial \overline{\mathcal{I}}_{x}$ corresponds to that component of \mathcal{C}_{x} which is dual to the component $\partial \mathcal{I}_{x}^{*}$ of \mathcal{C}_{x}^{*}. We thus have:

$$
\overline{\mathcal{I}}_{x} \supset \mathcal{J}_{x}
$$

We conclude with a formulation of the domain of dependence theorem. Let L be a C^{∞} Lagrangian in the general theory of maps of a manifold \mathcal{M} into a manifold \mathcal{N}. Let f_{0} be a C^{2} solution of the Euler-Lagrange equations corresponding to L, defined in a domain $\Omega \subset \mathcal{M}$, such that L is regularly hyperbolic at $d f_{0}(x)$, for each $x \in \Omega$. Consider a hypersurface \mathcal{H} in Ω such that for each $x \in \mathcal{H}$ the double ray $R_{x}(\mathcal{H})$ in $T_{x}^{*} \mathcal{M}$ defined by $T_{x} \mathcal{H}$ according to:

$$
R_{x}(\mathcal{H})=\left\{\xi \neq 0 \in T_{x}^{*} \mathcal{M} \mid \xi \cdot X=0: \forall X \in T_{x} \mathcal{H}\right\}
$$

is contained in \mathcal{I}_{x}^{*}, as determined by the even part of $\left(\partial^{2} L / \partial v^{2}\right)\left(d f_{0}(x)\right)$. We call such a hypersurface spacelike relative to L and f_{0}. A curve γ in Ω is called causal relative to L and f_{0} if its tangent vector $\dot{\gamma}(t)$ at each point $\gamma(t)$ belongs to the causal subset $\overline{\mathcal{I}}_{\gamma(t)}$ of $T_{\gamma(t)} \mathcal{M}$ as determined by the even part of $\left(\partial^{2} L / \partial v^{2}\right)\left(d f_{0}(\gamma(t))\right.$. We then define $\mathcal{D}(\mathcal{H})$, the domain of dependence of \mathcal{H} relative to L and f_{0} to be the set of all points $x \in \Omega$ such that each causal curve γ through $x, \gamma(0)=x$, intersects \mathcal{H} at a single point $\gamma\left(t_{*}\right)$.

Theorem: Under the above hypotheses, let f_{1}, a C^{1} map of Ω into \mathcal{N}, be another solution of the Euler-Lagrange equations corresponding to L, such that
$f_{1}(x)=f_{0}(x), \quad d f_{1}(x)=d f_{0}(x) \quad: \quad \forall x \in \mathcal{H}$
Then f_{1} coincides with f_{0} on $\mathcal{D}(\mathcal{H})$, the domain of dependence of \mathcal{H} relative to L and f_{0}.

The above material in contained in my monograph "The Action Principle and Partial Differential Equations".

