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Physical spacetime is a 4-dimensional mani-
fold M endowed with a Lorentzian metric g,
relative to which it is time-oriented. In con-
tinuum mechanics we also have a 3-dimensional
manifold N, the material manifold, each point
of which represents a material particle. The
dynamics is described by a mapping f : M —
N which tells us which particle is at a given
event. The mapping f must satisfy the con-
dition that the inverse image of a pointy € N/
must be a timelike curve in M, as it is to
represent the history of the particle y. Thus
df (x) is subject to the condition that its null
space is a timelike line in T, M. There is
then a unit future-directed timelike vector uy
in T, M whose linear span is the null space of
df (x). The vector ug is the material velocity
at . The assignment of u, at each z €¢ M
then defines a vectorfield on M, the material
velocity. The orthogonal complement, rel-
ative to gz, of the null space of df(x) is a
spacelike hyperplane >, in T, M, the simul-
taneous space at x. The restriction gg;|zx IS a
positive-definite quadratic form on >,. The
restriction df(z)|y-_ is then an isomorphism
of >, onto Tf(x)N.



The material manifold N is in general en-
dowed with a volume form du, the integral
of which over a domain in N represents the
number of particles contained in the domain.
In the case of fluid mechanics there is no
other structure on N. In the case of the me-
chanics of crystalline solids however N is en-
dowed with a richer structure which we shall
presently define. Let us denote by X(N) the
space of C'*° vectorfields on A and by ¢ the
evaluation map X(N) — TyN taking a vec-
torfield to its value at y € V.

Definition: A crystalline structure on N is
a distinguished linear subspace K of X(N)
such that the evaluation map restricted to
K, ey : K — TyN, is an isomorphism for
each y € .

Each element of K generates a 1-parameter
group of diffeomorphisms of N'. These groups
represent physically the continuum limit of
the groups of translations of a crystal lattice.
The parametrization of the group orbits is to
be thought of as proportional to the number
of atoms traversed.



The canonical form associated to a crystalline
structure is the K - valued 1-form v on N de-
fined by:

v(Yy) =&, 1 (Yy) €K

for each Y, € TyN and y € N. The disloca-
tion form is the K - valued 2-form A on N
given by:

A= —dv

If Y1,Y> € K then according to the above
definition A(Y7,Y5) is the following I - valued
function on N:

A(Y1, Y2)(y) = g, *([Y1, Y2 ()

This is a constant function if and only if
[Y1,Y>] € K. 1If this is the case for each
pair Y1,Y> € N then K is a Lie algebra. In
this case, upon choosing an identity element
e € N, N becomes a Lie group so that K is
the space of vectorfields which generate the
right action of the group on itself; K is then,
at the same time, the space of vectorfields
on N which are invariant under left group
multiplications.



The dislocation form is a concept which arises
in the continuum limit when one considers a
distribution of elementary dislocations in a
crystal lattice. An elementary lattice dislo-
cation has the property that if we start at
an atom and move according to one group
of lattice translations a certain number of
atoms p, then move according to a different
group of translations a number of atoms g,
then according to the first —p and finally ac-
cording to the second —q, then on complet-
ing the circuit we arrive at an atom which in
does not coincide with the atom from which
we started, but, provided that the circuit en-
closes a single elementary dislocation, is ar-
rived at in a single step corresponding to a
third lattice translation. The lattice vector
corresponding to this step is called Burgers
vector. The integral of minus v on a closed
curve C in N represents physically the sum
of the Burgers vectors of all the dislocation
lines enclosed by C.



The thermodynamic state space is the space
of local thermodynamic states of a material.
For a fluid this space is RT x RT, the set
of pairs (r,0) where 7 € Rt is the volume
per particle and o € RT is the entropy per
particle. For a crystalline solid the thermo-
dynamic state space is Sé"(lC) x RT, the set
of pairs (v,0), where v € S;(IC), the space of
inner products on KC, is the thermodynamic
configuration and o is, as above, the entropy
per particle. We assume that an orientation
and a volume form w has been chosen for
IC. Then for a crystalline solid the volume
per particle 7 is a function on S;'(IC) defined
as follows: Each ~ € S;(IC) defines a vol-
ume form w~y on K by the condition that if
(E1, E>, E3) is a positive basis for I which is
orthonormal relative to v then:

w’V(E]_) EQ) E3) =1

It follows that there is a positive function T
on S;'(IC) such that:

wy = 7(7)w



The laws governing the dynamics of a given
kind of material are determined by the spec-
ification of the energy per particle e as a
function on the thermodynamic state space.
Thus, in the case of fluid mechanics e =
e(t,0) and the derivatives:

are the pressure and the temperature respec-
tively. In the case of the mechanics of crys-
talline solids e = e(~, o) and the derivative:

Oe 1

— = — 7T

oy 2
defines the stress m, which takes values in
(S>(K))*. The temperature is defined as above.
The number of particles per unit volume n
and the energy density or energy per unit vol-

ume p are defined in terms of 7 and e by:

n = — p =

\]
= N



The equations of motion are the Euler-Lagrange
equations for the mapping f, associated to
the Lagrangian to be presently defined. With
reM,yeN, and f(x) =y, consider the set
of possible values of df(x) = v. This is the
open subset V(, y of L(TzM,TyN’) defined
by the condition that the null space of v is a
line in T): M which is timelike relative to g;.
[Here, for finite dimensional vector spaces U
and V we denote by L(U, V) the space of lin-
ear maps of U into V.] Then L is defined on
the bundle

v= " U Ve
(z,y)EMXN

over M x N and assigns to each v € Vigy) @
top degree form on T, M. Since here T, M
IS already endowed with the top degree form
dug,, the volume form of gz, we have:

L(v) = L*(v)dpg,

where L* is simply a function on V.



In the case of fluid mechanics this function
is defined as follows. Consider >, the si-
multaneous space at x. Then dug, induces a
volume form es_ on 2, by:

e (X1 2, X2 2, X3 z) = dug, (uz, X1 4, X2 2, X3 3)
: VX1,$7X2,$7X3,CB €2y

where u, iS the material velocity at . Recall
that

vy > — TyN

is an (orientation-preserving) isomorphism. Thus
there is a positive real number 7(v) such that:

ey (X1 4, X0 4, X3 2) =
T(v)dpw, (v - X1 4,0 X2 4,0 X3 4)
: VX].,CE7X2,:137X3,:B €2y

where du, is the volume form on N. To
have a pure Lagrangian description, the en-
tropy per particle o must be given as a pos-
itive function on N. At each v € V, ,y, the
pair (7(v),o(y)) € RT x RT represents a lo-
cal thermodynamic state of the fluid. The
Lagrangian function L* is then defined by:

L*(v) = p(r(v),0(y)) : Yo € V()
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In the case of the mechanics of crystalline
solids the Lagrangian function is defined as
follows. For each v € V(. ,y we consider the
isomorphism i(v) of L onto X, given by:

i(v) = (’U|Zw)_1 o gy

Then ~(v) € S;r(lC) is defined by:
y(v) =i (v) - galx,
that is:
y(v)(Y1,Y2) = g2(i(v)-Y1,i(v)-Yo) : VY1,Yo €K

At each v € V(,,), the pair (y(v),0(y)) €

SEI_(/C)XR—I_ represents a local thermodynamic
state of the crystalline solid. The Lagrangian
function L* is then defined by:

L*(v) = p(v(v),0(y)) : Vv eV,



The above theories continuum mechanics fit
into the general framework of Lagrangian the-
ories of maps f of an (oriented) differentiable
manifold M into an (oriented) differentiable
manifold N. The Lagrangian is in general
defined on the bundle

= U Vay

over M x N, where V(x,y) IS an open subset
of L(TyM, TyN). In fact, for each (z,y) €
M x N, L assigns to each v € Vi) an el-
ement of A (Tp M), m = dimM, that is, a
top degree form on T, M. Hence given a map
f M — N, the composition L odf is an
exterior differential form of top degree on M.
The action A(f,2) associated to the map f
and to the domain 2 with compact closure
in M, is the integral:

Lod
/QCM /

and the Euler-Lagrange equations express the
requirement that, for any such domain €2, the
action A(f, <) is stationary with respect to
arbitrary variations of the map f which are
compactly supported in €2.
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In the framework of continuum mechanics
there is a vectorfield I on M associated to a
map f , the particle current, defined by:

I = nu

where n is the number of particles per unit
volume considered as a function on N, that
IS:

n(z) = n(df (z))

Consider the 3-form I'* which is dual to I with
respect to dug, that is:

I* =dug(l, -, -, )
Then according to the above:
I" = f*dpw

It follows that:

dI* =0
identically, which is equivalent to the differ-
ential particle conservation law:.

V- I=0

where V is the covariant derivative operator
associated to the metric g.
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Note that in the case of the Lagrangians of
continuum mechanics, for v € V(%y), L(v) de-
pends on g, only through 7(v) in the case of
fluid mechanics and only through ~v(v) in the
case of the mechanics of crystalline solids.
The energy-momentum-stress tensor at x as-
sociated to a map f is the element T, of
(S>(TrM))* defined by:
OL(f (@) _ 1y,
0gyx 2

The assignment of 7T, to each =z € M then
defines a symmetric 2-contravariant tensor-
field T on M, the energy-momentum-stress
tensorfield. In the case of fluid mechanics it
IS given by:

T=pu@u+plg ' +u®u)

Here p and p are the energy density and pres-
sure considered as functions on M, that is:

p(z) = p(7(df(x)),s(z)) p(x) =p(r(df(x)),s(z))
where s is the entropy per particle as a func-
tion on M, that is:

s(z) = o(f(2))
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In the case of the mechanics of crystalline
solids T' is given by:

T=pu®R®u—+S

where p is the energy density considered as a
function on M, that is:

p(z) = p(y(df(x)),s(x))

and S is the stress tensorfield, given, at each
x € M by:

Sz(9z) = m(v(df (%)), s(x)) - (i*(df (x)) - galx,)
. Vgr € So(TyM)

where, as above, for any v € V(x,y),
i*(v) - gzly € S2(K) is defined by:

i (v) - galy, (Y1,Y2) = g2(i(v) - Y1,i(v) - Y2)
. VY1,Yo e K
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Under the condition that df is continuous,
the Euler-Lagrange equations are equivalent
to the differential energy-momentum conser-
vation laws:

V- T=0

This equivalence is a consequence of the in-
variance of the action A(f,<2) under all dif-
feomorphisms of M which coincide with the
identity in the complement of a compact sub-
set of €2, for all domains €2 with compact
closure in M. According to the above defi-
nition of the entropy function s, the entropy
function is constant along particle histories,
a condition called the adiabatic condition.
T he differential energy-momentum conserva-
tion laws with the entropy function s as an
unknown function on M, in addition to the
mapping f : M — N, hold even when con-
tinuity of df is no longer assumed. Then the
adiabatic condition no longer holds, we have
instead a jump in s along each particle his-
tory crossing a hypersurface of discontinuity
of df.
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In the case of fluid mechanics we may elimi-
nate the mapping f and consider as unknowns
the functions n and s and the fluid velocity .
The energy density p is specified as a function
of n and s. The pressure p and the tempera-
ture 0 are then given according to the above
by:
op _10p

—_— n— —  — —
P "an P n os

The differential particle conservation law to-
gether with the differential energy-momentum
conservation laws then constitute a first or-
der system of partial differential equations for
the unknowns n, s, and u.
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The notions of ellipticity and hyperbolicity
of a system of Euler-Lagrange equations re-
fer to a given solution fp of the system. Any
other map f : M — N whose graph f
M — M x N lies in a suitable neighborhood
of fo, the graph of fy, can be viewed as being
a perturbation of fp. Introducing a symmet-
ric connection A in TN, f may obtained by
exponentiating, with respect to A, a section
f of fETN, the pullback by fg of the tangent
bundle of N'. The theory of perturbations of
a given solution fg is thus a theory of sec-
tions of the vector bundle B = f§TN over
domain manifold M, whose fibre over z € M
IS

The original action of f in a domain Q2 C M
then translates to an action for f in Q. This
action is the integral over 2 of the com-

. . A
position with (f, D*f) of L, the relative La-
grangian with respect to fy. Here D*f is the

covariant derivative of the section f with re-
spect to the induced connection A* on fiTN.
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With

reM

A
L is defined on the bundle product

BxyB= ) Bzx By
reM

an element of this in the fibre over x €¢ M
is a pair (Y,V), where, with y = fp(z), Y €
TyN and V € L(TxM, TyN). Consideration of
infinitesimal perturbations gives rise to L, the
linearized Lagrangian at fp. The linearized
Lagrangian is for each x € M a quadratic
form on By x B, with values in Ay (TxM). The
notions of ellipticity and hyperbolicity at =z
relative to fg refer only to the principal part
of the linearized Lagrangian at fp and z, a
quadratic form on B; with values in Am(TeM)
given by:

192L

LI(V) = S5 5 (@do@)(V,V) WV € By
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Choosing a volume form € on M [the natural
choice in the physical case being dug] so that
L = L*e, we can write:

1] = %h(\/, Ve

where
82L*

h = ——=-(dfo)

is a quadratic form on L(T:M, TyN), y =
fo(x). In terms of local coordinates (x*
pw=1,...m)on Mand (y* : a=1,...,n) On
N [dimM = m, dimN = n], v € Viz,y) takes
the form:

0

oy?

—_ ,,a
v = v, dz"|, ®

The coefficients (vj;) of the expansion are
linear coordinates on V(, .y and we can write:

1 92L*
2 v av b

lh“’/V“Vb
2

(dfo(z))VIVE
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The notions of ellipticity or of hyperbolic-
ity of a system of Euler-Lagrange equations
at a given solution fp are notions which re-
fer to the Euler-Lagrange equations corre-
sponding to L, the linearized Lagrangian at
fo. Now two different Lagrangians give rise
to the same Euler-Lagrange equations when-
ever their difference is a null Lagrangian. Thus
these notions actually refer not to a given L
but rather to the equivalence class obtained
by adding to L an arbitrary quadratic null
LLagrangian. Furthermore these notions con-
cern only the principal part, the quadratic
form on B;, at each z € M. Now the princi-
pal part of a quadratic null Lagrangian is of
the form, in terms of the ¢ - dual,

1 b
by ViV,

where n is a quadratic form on B, with the
property:

e T T
ab — " Tab — g

We call such a quadratic form odd.
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In general, if U and V are vector spaces, then
S>(L(U,V)), the space of quadratic forms on
LU, V)=U*® V decomposes into:

where So4 (L(U,V))) is the space of even quadratic
forms, namely those ¢ € S>(L(U,V)) which
satisfy:

q(a1 ®v1, a0 @ v2) = q(an ® vy, 01 @ V2)
= q(o1 ® v2, a0 @ v1)
Vaqi,a0 € U*, Yvi,vo €V
and So_(L(U,V)) is the space of odd quadratic

forms, namely those ¢ € S>(L(U,V)) which
satisfy:

(a1 ®v1, a0 ® Vo) = —q(an @ vy, a1 @ vo)
= —q(a1 ® v, 00 ® V1)
Vaq,ap € U*, Yvi,v0 €V

Given an arbitrary quadratic form g, we de-
note by g4 and ¢— its even and odd parts
respectively.
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In view of the above remarks, the notions of
ellipticity or of hyperbolicity of a Lagrangian
at v = dfp(x) € V(:r;,y)' y = fo(x), should de-
pend only on the equivalence class:

{h+n : neSo_(L(TeM, TyN))}

or equivalently only on A, the even part of h.
Remark that if ¢ is an odd quadratic form on
L(U,V) then q vanishes on all rank 1 elements
of LIU,V):

gla®@v,a®v)=0 : YVacU* YveV

Consequently, the following definitions com-
ply with our requirement.

Definition: A Lagrangian L is called regu-
larly elliptic at v € V(, ,y if h = (82L*/9v?) (v)
is positive-definite on the set

{£QRY : £€eTM, Y e TyuN}
of all rank 1 elements of L(TxM,TyN').

Regular ellipticity is known as the Legendre-
Hadamard condition in the calculus of varia-
tions.
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Definition: A Lagrangian L is regularly hy-
perbolic at v € V(. ,y If there exists a pair
(X,€&) € Ty M xTFM such that the restriction
of h = (82L*/0v?)(v) to

IS negative-definite, while the restriction of h
to =%, the set of rank 1 elements of

Sy ={V € L(TuM,T,N) : V(X) =0}

is positive-definite. [Note that this implies

£€-X #0.]
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Suppose that h is a regularly hyperbolic quadratic
form on L(TxM,TyN). We define J; C T M
to be the set of all vectors X € T, M such
that the restriction of h to X% is positive-
definite. Then 0 ¢ J, and J; is the disjoint
union of J;~ and J. , where J,. is the set of
opposites of elements in jf,}". Similarly, we
define Z; C T;M to be the set of all covec-
tors £ € T M such that the restriction of h to
L¢ is negative-definite. Then 0 ¢ Z7 and I3
is the disjoint union of Z:T and Tr~, where
Z¥~ is the set of opposites of elements in
I;ﬁ"'. Once a choice of positive component
jq}" has been made for J,, the positive com-
ponent Z:1 of T* is distinguished by

£-X>0 VX, &) egrxzt

Proposition: The sets 7,7, J,, Z;T, T~
are convex.
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The notions of ellipticity and hyperbolicity
are related as follows. Given a vectorfield X
on M we can consider those maps of M into
N which are invariant under the 1 parameter
group of diffeomorphisms of M onto itself
generated by X. This leads to a reduced
Lagrangian whose associated quadratic form
at v € V(. ,) is the restriction of the original
quadratic form to 2 x, those linear maps of
Ty M into TyN which annihilate X(z). We
then ask the following question: what is the
set of values of X at x such that the reduced
quadratic form on 2 x is regularly elliptic?
The answer is the set 7.
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At each & € T M we define the characteristic
form x (&), a quadratic form on TN, by:

X(€) - YY) =h{lRY,ERY) @ VY eTyN

In terms of local coordinates,

Xab(G) — hgbyg,ufv
The characteristic subset C; of TiM is de-
fined by:

Cr={£#£0ecT M : x(& is degenerate}

If a volume form on N is chosen we can de-
fine:

H(§) = detx(g)

Then C} is the zero level set of H on Ty M. As
x IS an arbitrary point of M, this defines H as
a function on T* M. This is the Hamiltonian
function.
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The associated canonical equations,

drt  OH a§,  OH

dar T o, dr | oak
(in local coordinates), define the bi-characteristic
flow on the zero level set of H in T* M. A bi-
characteristic is a path on the zero level set
of H in T*M which corresponds to a solu-
tion of the canonical equations. The Hamil-
tonian function is in fact only defined up to a
transformation of the form H — Q2H where 2
is a function on M which nowhere vanishes.
Such a transformation preserves the paths,
changing only the parametrization.
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Denoting by N(x(£)) the null space of x(§)
as a linear map of Ty into T?;"N, for £ be-
longing to a component of C}, N(x(&)) is a
non-trivial subspace of TyM. We call this the
degrees of freedom, or waves, carried by that
component.

At any given point x € M, H is a homoge-
neous polynomial of degree 2n in & Such
a homogeneous polynomial is in general irre-
ducible, that is it cannot be decomposed into
factors of lower degree.
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However in the case of fluid mechanics (n =
3), H is given by:
H=A"B
where A is linear in £ and B quadratic:
A=utg, B=(h"H)"eu8
Here,

1
h_1=g_1—|- (1—n—2>u®u

is a quadratic form of index 1 on T;M, at
each x € M, the reciprocal of h, a Lorentzian
metric on M, the acoustical metric, given in
local coordinates by:

h/'uJ]/ — gluy _|_ (1 — nQ)UMuV, 'U;,u, — glu,]/ul/

In the above, n > 0 is the sound speed, de-

fined by:
dp
dp/

it being assumed that the right hand side is
positive.
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The component of C correspondingto A =0
carries the vorticity waves, while the com-
ponent corresponding to B = 0 carries the
sound waves. In the case of solid mechan-
ics H is irreducible except in the case of very
special energy per particle functions e.

In the case that n = 1, H is quadratic in &
hence

. OH 0

xr = c

O&y OxH iy

is linear in £&. Upon substituting £ in terms of
x in H we obtain a quadratic form of index 1
in T, M, for each x € M, that is a Lorentzian
metric on M. However in the general case
where H is of degree 2n in &, x is of degree
2n — 1 in £ and we have a generalization of
the standard Lorentzian geometry.

Ty M
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Remark that to each non-zero vector X &
T,M there corresponds a hyperplane M(X)
in TyM:

N(X)={ecTiM : ¢-X =0}

The characteristic subset C, of T, M is the
set of all non-zero vectors X € T, M such
that the corresponding hyperplane M(X) is
tangent to C;.

Proposition : 77 is the interior of the in-
nermost component of C;, the inner charac-
teristic core in T;M, and J, is the interior
of the innermost component of C., the inner
characteristic core in Ty M.
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The causal subset T, of T, M is defined to be
the set of all X € T»x M such that £- X #0
V¢ € ZX. The boundary of Z, is then the set
of all X € T, such that 3¢ € 07 : £€-X = 0.
Thus if X € 9Z,, each component of I lies
to one side of the hyperplane MN(X), for, £- X
has one sign in each component, and 07Z*,
intersects M(X) at a line through the ori-
gin. Consequently, MN(X) is tangent to 0Z}.
Hence 0Z, corresponds to that component of
Cz which is dual to the component 9Z;; of C;.
We thus have:

Ze D Tz
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We conclude with a formulation of the do-
main of dependence theorem. Let L be a
C°° Lagrangian in the general theory of maps
of a manifold M into a manifold N. Let fj
be a C?2 solution of the Euler-Lagrange equa-
tions corresponding to L, defined in a domain
2 C M, such that L is regularly hyperbolic
at dfg(x), for each x € 2. Consider a hy-
persurface ‘H in €2 such that for each x €¢ ‘H
the double ray Rz (#H) in T;M defined by T H
according to:

Re(H)={6#£0eT M| &X =0 @ VX € TuH}

is contained in Z7;, as determined by the even
part of (82L/0v2)(dfo(z)). We call such a
hypersurface spacelike relative to L and fp.
A curve v in 2 is called causal relative to
L and fy if its tangent vector 4(t) at each
point v(¢) belongs to the causal subset T N0
of 1! NG )/\/l as determined by the even part of
(82L/8v2)(dfo(fy(t)) We then define D(H),
the domain of dependence of ‘H relative to L
and fp to be the set of all points x € £2 such
that each causal curve ~v through z, v(0) = z,
intersects H at a single point v(t«).
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Theorem: Under the above hypotheses, let
f1, a C1 map of Q into N, be another solu-
tion of the Euler-Lagrange equations corre-
sponding to L, such that

filz) = fo(z), dfi(z) =dfo(z) : VzeH

Then f1 coincides with fo on D(#H), the do-
main of dependence of H relative to L and

fo-

The above material in contained in my mono-
graph “The Action Principle and Partial Dif-
ferential Equations’ .
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