Hyperbolic P.D.E. and Lorentzian Geometry

Demetrios Christodoulou

Physical spacetime is a 4-dimensional manifold \mathcal{M} endowed with a Lorentzian metric q, relative to which it is time-oriented. In continuum mechanics we also have a 3-dimensional manifold \mathcal{N} , the material manifold, each point of which represents a material particle. The dynamics is described by a mapping $f : \mathcal{M} \rightarrow$ \mathcal{N} which tells us which particle is at a given event. The mapping f must satisfy the condition that the inverse image of a point $y \in \mathcal{N}$ must be a timelike curve in \mathcal{M} , as it is to represent the history of the particle y. Thus df(x) is subject to the condition that its null space is a timelike line in $T_x\mathcal{M}$. There is then a unit future-directed timelike vector u_x in $T_x\mathcal{M}$ whose linear span is the null space of df(x). The vector u_x is the material velocity at x. The assignment of u_x at each $x \in \mathcal{M}$ then defines a vectorfield on \mathcal{M} , the material velocity. The orthogonal complement, relative to g_x , of the null space of df(x) is a spacelike hyperplane Σ_x in $T_x\mathcal{M}$, the simultaneous space at x. The restriction $g_x|_{\Sigma_x}$ is a positive-definite quadratic form on Σ_x . The restriction $df(x)|_{\Sigma_x}$ is then an isomorphism of Σ_x onto $T_{f(x)}\mathcal{N}$.

The material manifold \mathcal{N} is in general endowed with a volume form $d\mu_{\omega}$, the integral of which over a domain in \mathcal{N} represents the number of particles contained in the domain. In the case of *fluid mechanics* there is no other structure on \mathcal{N} . In the case of the *mechanics of crystalline solids* however \mathcal{N} is endowed with a richer structure which we shall presently define. Let us denote by $\mathcal{X}(\mathcal{N})$ the space of C^{∞} vectorfields on \mathcal{N} and by ε_y the evaluation map $\mathcal{X}(\mathcal{N}) \to T_y \mathcal{N}$ taking a vectorfield to its value at $y \in \mathcal{N}$.

Definition: A crystalline structure on \mathcal{N} is a distinguished linear subspace \mathcal{K} of $\mathcal{X}(\mathcal{N})$ such that the evaluation map restricted to $\mathcal{K}, \varepsilon_y : \mathcal{K} \to T_y \mathcal{N}$, is an isomorphism for each $y \in \mathcal{N}$.

Each element of \mathcal{K} generates a 1-parameter group of diffeomorphisms of \mathcal{N} . These groups represent physically the continuum limit of the groups of translations of a crystal lattice. The parametrization of the group orbits is to be thought of as proportional to the number of atoms traversed.

The canonical form associated to a crystalline structure is the \mathcal{K} - valued 1-form ν on \mathcal{N} defined by:

$$\nu(Y_y) = \varepsilon_y^{-1}(Y_y) \in \mathcal{K}$$

for each $Y_y \in T_y \mathcal{N}$ and $y \in \mathcal{N}$. The *dislocation form* is the \mathcal{K} - valued 2-form λ on \mathcal{N} given by:

$$\lambda = -d\nu$$

If $Y_1, Y_2 \in \mathcal{K}$ then according to the above definition $\lambda(Y_1, Y_2)$ is the following \mathcal{K} - valued function on \mathcal{N} :

$$\lambda(Y_1, Y_2)(y) = \varepsilon_y^{-1}([Y_1, Y_2](y))$$

This is a constant function if and only if $[Y_1, Y_2] \in \mathcal{K}$. If this is the case for each pair $Y_1, Y_2 \in \mathcal{N}$ then \mathcal{K} is a Lie algebra. In this case, upon choosing an identity element $e \in \mathcal{N}$, \mathcal{N} becomes a Lie group so that \mathcal{K} is the space of vectorfields which generate the right action of the group on itself; \mathcal{K} is then, at the same time, the space of vectorfields on \mathcal{N} which are invariant under left group multiplications.

The dislocation form is a concept which arises in the continuum limit when one considers a distribution of elementary dislocations in a crystal lattice. An elementary lattice dislocation has the property that if we start at an atom and move according to one group of lattice translations a certain number of atoms p, then move according to a different group of translations a number of atoms q_i then according to the first -p and finally according to the second -q, then on completing the circuit we arrive at an atom which in does not coincide with the atom from which we started, but, provided that the circuit encloses a single elementary dislocation, is arrived at in a single step corresponding to a third lattice translation. The lattice vector corresponding to this step is called Burgers *vector*. The integral of minus ν on a closed curve C in \mathcal{N} represents physically the sum of the Burgers vectors of all the dislocation lines enclosed by C.

The *thermodynamic state space* is the space of local thermodynamic states of a material. For a fluid this space is $\mathbb{R}^+ \times \mathbb{R}^+$, the set of pairs (τ, σ) where $\tau \in \mathbb{R}^+$ is the volume per particle and $\sigma \in \mathbb{R}^+$ is the entropy per particle. For a crystalline solid the thermodynamic state space is $S_2^+(\mathcal{K}) \times \mathbb{R}^+$, the set of pairs (γ, σ) , where $\gamma \in \overline{S}_2^+(\mathcal{K})$, the space of inner products on \mathcal{K} , is the *thermodynamic* configuration and σ is, as above, the entropy per particle. We assume that an orientation and a volume form ω has been chosen for \mathcal{K} . Then for a crystalline solid the volume per particle τ is a function on $S_2^+(\mathcal{K})$ defined as follows: Each $\gamma \in S_2^+(\mathcal{K})$ defines a volume form ω_γ on ${\cal K}$ by the condition that if (E_1, E_2, E_3) is a positive basis for \mathcal{K} which is orthonormal relative to γ then:

$\omega_{\gamma}(E_1, E_2, E_3) = 1$

It follows that there is a positive function τ on $S_2^+(\mathcal{K})$ such that:

$$\omega_{\gamma} = \tau(\gamma)\omega$$

The laws governing the dynamics of a given kind of material are determined by the specification of the *energy per particle* e as a function on the thermodynamic state space. Thus, in the case of fluid mechanics $e = e(\tau, \sigma)$ and the derivatives:

$$p = -\frac{\partial e}{\partial \tau} \qquad \theta = \frac{\partial e}{\partial \sigma}$$

are the *pressure* and the *temperature* respectively. In the case of the mechanics of crystalline solids $e = e(\gamma, \sigma)$ and the derivative:

$$\frac{\partial e}{\partial \gamma} = -\frac{1}{2}\pi\tau$$

defines the stress π , which takes values in $(S_2(\mathcal{K}))^*$. The temperature is defined as above. The number of particles per unit volume n and the energy density or energy per unit volume ρ are defined in terms of τ and e by:

$$n = \frac{1}{\tau} \qquad \rho = \frac{e}{\tau}$$

6

The equations of motion are the Euler-Lagrange equations for the mapping f, associated to the Lagrangian to be presently defined. With $x \in \mathcal{M}, y \in \mathcal{N}$, and f(x) = y, consider the set of possible values of df(x) = v. This is the open subset $\mathcal{V}_{(x,y)}$ of $\mathcal{L}(T_x\mathcal{M}, T_y\mathcal{N})$ defined by the condition that the null space of v is a line in $T_x\mathcal{M}$ which is timelike relative to g_x . [Here, for finite dimensional vector spaces Uand V we denote by $\mathcal{L}(U, V)$ the space of linear maps of U into V.] Then L is defined on the bundle

$$\mathcal{V} = \bigcup_{(x,y)\in\mathcal{M}\times\mathcal{N}}\mathcal{V}_{(x,y)}$$

over $\mathcal{M} \times \mathcal{N}$ and assigns to each $v \in \mathcal{V}_{(x,y)}$ a top degree form on $T_x\mathcal{M}$. Since here $T_x\mathcal{M}$ is already endowed with the top degree form $d\mu_{g_x}$, the volume form of g_x , we have:

$$L(v) = L^*(v)d\mu_{g_x}$$

where L^* is simply a function on \mathcal{V} .

In the case of fluid mechanics this function is defined as follows. Consider Σ_x , the simultaneous space at x. Then $d\mu_{g_x}$ induces a volume form ϵ_{Σ_x} on Σ_x by:

$$\epsilon_{\sum_{x}}(X_{1,x}, X_{2,x}, X_{3,x}) = d\mu_{g_x}(u_x, X_{1,x}, X_{2,x}, X_{3,x})$$

: $\forall X_{1,x}, X_{2,x}, X_{3,x} \in \Sigma_x$

where u_x is the material velocity at x. Recall that

$$v|_{\Sigma_x} : \Sigma_x \to T_y \mathcal{N}$$

is an (orientation-preserving) isomorphism. Thus there is a positive real number $\tau(v)$ such that:

$$\epsilon_{\Sigma_x}(X_{1,x}, X_{2,x}, X_{3,x}) = \tau(v)d\mu_{\omega_y}(v \cdot X_{1,x}, v \cdot X_{2,x}, v \cdot X_{3,x})$$

: $\forall X_{1,x}, X_{2,x}, X_{3,x} \in \Sigma_x$

where $d\mu_{\omega}$ is the volume form on \mathcal{N} . To have a pure Lagrangian description, the entropy per particle σ must be given as a positive function on \mathcal{N} . At each $v \in \mathcal{V}_{(x,y)}$, the pair $(\tau(v), \sigma(y)) \in \mathbb{R}^+ \times \mathbb{R}^+$ represents a *local thermodynamic state* of the fluid. The Lagrangian function L^* is then defined by:

$$L^*(v) = \rho(\tau(v), \sigma(y)) \quad : \quad \forall v \in \mathcal{V}_{(x,y)}$$

In the case of the mechanics of crystalline solids the Lagrangian function is defined as follows. For each $v \in \mathcal{V}_{(x,y)}$ we consider the isomorphism i(v) of \mathcal{K} onto Σ_x given by:

$$i(v) = \left(v|_{\Sigma_x}\right)^{-1} \circ \varepsilon_y$$

Then $\gamma(v) \in S_2^+(\mathcal{K})$ is defined by:

$$\gamma(v) = i^*(v) \cdot g_x|_{\Sigma_x}$$

that is:

 $\gamma(v)(Y_1, Y_2) = g_x(i(v) \cdot Y_1, i(v) \cdot Y_2)$: $\forall Y_1, Y_2 \in \mathcal{K}$ At each $v \in \mathcal{V}_{(x,y)}$, the pair $(\gamma(v), \sigma(y)) \in S_2^+(\mathcal{K}) \times \mathbb{R}^+$ represents a local thermodynamic state of the crystalline solid. The Lagrangian function L^* is then defined by:

$$L^*(v) = \rho(\gamma(v), \sigma(y)) \quad : \quad \forall v \in \mathcal{V}_{(x,y)}$$

9

The above theories continuum mechanics fit into the general framework of Lagrangian theories of maps f of an (oriented) differentiable manifold \mathcal{M} into an (oriented) differentiable manifold \mathcal{N} . The Lagrangian is in general defined on the bundle

$$\mathcal{V} = \bigcup_{(x,y)\in\mathcal{M}\times\mathcal{N}}\mathcal{V}_{(x,y)}$$

over $\mathcal{M} \times \mathcal{N}$, where $\mathcal{V}_{(x,y)}$ is an open subset of $\mathcal{L}(T_x\mathcal{M}, T_y\mathcal{N})$. In fact, for each $(x, y) \in$ $\mathcal{M} \times \mathcal{N}$, L assigns to each $v \in \mathcal{V}_{(x,y)}$ an element of $\wedge_m(T_x\mathcal{M})$, $m = \dim \mathcal{M}$, that is, a top degree form on $T_x\mathcal{M}$. Hence given a map $f : \mathcal{M} \to \mathcal{N}$, the composition $L \circ df$ is an exterior differential form of top degree on \mathcal{M} . The action $\mathcal{A}(f, \Omega)$ associated to the map fand to the domain Ω with compact closure in \mathcal{M} , is the integral:

$$\int_{\Omega \subset \mathcal{M}} L \circ df$$

and the Euler-Lagrange equations express the requirement that, for any such domain Ω , the action $\mathcal{A}(f,\Omega)$ is stationary with respect to arbitrary variations of the map f which are compactly supported in Ω .

In the framework of continuum mechanics there is a vectorfield I on \mathcal{M} associated to a map f, the *particle current*, defined by:

$$I = nu$$

where n is the number of particles per unit volume considered as a function on $\mathcal{N},$ that is:

$$n(x) = n(df(x))$$

Consider the 3-form I^* which is dual to I with respect to $d\mu_g$, that is:

$$I^* = d\mu_g(I, \cdot, \cdot, \cdot)$$

Then according to the above:

$$I^* = f^* d\mu_{\omega}$$

It follows that:

$$dI^* = 0$$

identically, which is equivalent to the *differential particle conservation law*:

$$\nabla \cdot I = 0$$

where ∇ is the covariant derivative operator associated to the metric g.

Note that in the case of the Lagrangians of continuum mechanics, for $v \in \mathcal{V}_{(x,y)}$, L(v) depends on g_x only through $\tau(v)$ in the case of fluid mechanics and only through $\gamma(v)$ in the case of the mechanics of crystalline solids. The *energy-momentum-stress* tensor at x associated to a map f is the element T_x of $(S_2(T_x\mathcal{M}))^*$ defined by:

$$\frac{\partial L(df(x))}{\partial g_x} = -\frac{1}{2}T_x d\mu_{g_x}$$

The assignment of T_x to each $x \in \mathcal{M}$ then defines a symmetric 2-contravariant tensorfield T on \mathcal{M} , the *energy-momentum-stress* tensorfield. In the case of fluid mechanics it is given by:

$$T = \rho u \otimes u + p(g^{-1} + u \otimes u)$$

Here ρ and p are the energy density and pressure considered as functions on \mathcal{M} , that is:

$$\rho(x) = \rho(\tau(df(x)), s(x)) \quad p(x) = p(\tau(df(x)), s(x))$$

where s is the entropy per particle as a function on \mathcal{M} , that is:

$$s(x) = \sigma(f(x))$$

In the case of the mechanics of crystalline solids T is given by:

$$T = \rho u \otimes u + S$$

where ρ is the energy density considered as a function on \mathcal{M} , that is:

$$\rho(x) = \rho(\gamma(df(x)), s(x))$$

and S is the stress tensorfield, given, at each $x \in \mathcal{M}$ by:

 $S_x(\dot{g}_x) = \pi(\gamma(df(x)), s(x)) \cdot (i^*(df(x)) \cdot \dot{g}_x|_{\Sigma_x})$: $\forall \dot{g}_x \in S_2(T_x\mathcal{M})$

where, as above, for any $v \in \mathcal{V}_{(x,y)}$, $i^*(v) \cdot \dot{g}_x|_{\Sigma_x} \in S_2(\mathcal{K})$ is defined by:

$$i^*(v) \cdot \dot{g}_x|_{\Sigma_x} (Y_1, Y_2) = \dot{g}_x(i(v) \cdot Y_1, i(v) \cdot Y_2)$$

: $\forall Y_1, Y_2 \in \mathcal{K}$

Under the condition that *df* is continuous, the Euler-Lagrange equations are equivalent to the *differential energy-momentum conser-vation laws*:

$\nabla \cdot T = 0$

This equivalence is a consequence of the invariance of the action $\mathcal{A}(f,\Omega)$ under all diffeomorphisms of \mathcal{M} which coincide with the identity in the complement of a compact subset of Ω , for all domains Ω with compact closure in \mathcal{M} . According to the above definition of the entropy function s, the entropy function is constant along particle histories, a condition called the adiabatic condition. The differential energy-momentum conservation laws with the entropy function s as an unknown function on \mathcal{M} , in addition to the mapping $f : \mathcal{M} \to \mathcal{N}$, hold even when continuity of df is no longer assumed. Then the adiabatic condition no longer holds, we have instead a jump in s along each particle history crossing a hypersurface of discontinuity of df.

In the case of fluid mechanics we may eliminate the mapping f and consider as unknowns the functions n and s and the fluid velocity u. The energy density ρ is specified as a function of n and s. The pressure p and the temperature θ are then given according to the above by:

$$p = n \frac{\partial \rho}{\partial n} - \rho \qquad \theta = \frac{1}{n} \frac{\partial \rho}{\partial s}$$

The differential particle conservation law together with the differential energy-momentum conservation laws then constitute a first order system of partial differential equations for the unknowns n, s, and u. The notions of ellipticity and hyperbolicity of a system of Euler-Lagrange equations refer to a given solution f_0 of the system. Any other map $f : \mathcal{M} \to \mathcal{N}$ whose graph $\overline{f} :$ $\mathcal{M} \to \mathcal{M} \times \mathcal{N}$ lies in a suitable neighborhood of $\overline{f_0}$, the graph of f_0 , can be viewed as being a perturbation of f_0 . Introducing a symmetric connection A in $T\mathcal{N}$, f may obtained by exponentiating, with respect to A, a section \dot{f} of $f_0^*T\mathcal{N}$, the pullback by f_0 of the tangent bundle of \mathcal{N} . The theory of perturbations of a given solution f_0 is thus a theory of sections of the vector bundle $\mathcal{B} = f_0^*T\mathcal{N}$ over domain manifold \mathcal{M} , whose fibre over $x \in \mathcal{M}$ is

$$\mathcal{B}_x = \{x\} \times T_{f_0(x)}\mathcal{N}$$

The original action of f in a domain $\Omega \subset \mathcal{M}$ then translates to an action for \dot{f} in Ω . This action is the integral over Ω of the composition with $(\dot{f}, D^*\dot{f})$ of $\overset{\triangle}{L}$, the *relative Lagrangian* with respect to f_0 . Here $D^*\dot{f}$ is the covariant derivative of the section \dot{f} with respect to the induced connection A^* on $f_0^*T\mathcal{N}$. With

$$\dot{\mathcal{B}} = \bigcup_{x \in \mathcal{M}} \dot{\mathcal{B}}_x, \qquad \dot{\mathcal{B}}_x = \mathcal{L}(T_x \mathcal{M}, \mathcal{B}_x)$$

 $\stackrel{ riangle}{L}$ is defined on the bundle product

$$\mathcal{B} \times_{\mathcal{M}} \dot{\mathcal{B}} = \bigcup_{x \in \mathcal{M}} \mathcal{B}_x \times \dot{\mathcal{B}}_x$$

an element of this in the fibre over $x \in \mathcal{M}$ is a pair (Y,V), where, with $y = f_0(x)$, $Y \in T_y\mathcal{N}$ and $V \in \mathcal{L}(T_x\mathcal{M}, T_y\mathcal{N})$. Consideration of infinitesimal perturbations gives rise to \dot{L} , the *linearized Lagrangian* at f_0 . The linearized Lagrangian is for each $x \in \mathcal{M}$ a quadratic form on $\mathcal{B}_x \times \dot{\mathcal{B}}_x$ with values in $\wedge_m(T_x\mathcal{M})$. The notions of ellipticity and hyperbolicity at xrelative to f_0 refer only to the principal part of the linearized Lagrangian at f_0 and x, a quadratic form on $\dot{\mathcal{B}}_x$ with values in $\wedge_m(T_x\mathcal{M})$ given by:

$$[\dot{L}](V) = \frac{1}{2} \frac{\partial^2 L}{\partial v^2} (df_0(x))(V, V) \quad : \quad \forall V \in \dot{\mathcal{B}}_x$$

Choosing a volume form ϵ on \mathcal{M} [the natural choice in the physical case being $d\mu_g$] so that $L = L^* \epsilon$, we can write:

$$[\dot{L}] = \frac{1}{2}h(V, V)\epsilon$$

where

$$h = \frac{\partial^2 L^*}{\partial v^2} (df_0)$$

is a quadratic form on $\mathcal{L}(T_x\mathcal{M}, T_y\mathcal{N})$, $y = f_0(x)$. In terms of local coordinates $(x^{\mu} : \mu = 1, ..., m)$ on \mathcal{M} and $(y^a : a = 1, ..., n)$ on \mathcal{N} [dim $\mathcal{M} = m$, dim $\mathcal{N} = n$], $v \in \mathcal{V}_{(x,y)}$ takes the form:

$$v = v^a_\mu \, dx^\mu|_x \otimes \frac{\partial}{\partial y^a}\Big|_y$$

The coefficients (v_{μ}^{a}) of the expansion are linear coordinates on $\mathcal{V}_{(x,y)}$ and we can write:

$$\frac{1}{2}h^{\mu\nu}_{ab}V^a_{\mu}V^b_{\nu} = \frac{1}{2}\frac{\partial^2 L^*}{\partial v^a_{\mu}\partial v^b_{\nu}}(df_0(x))V^a_{\mu}V^b_{\nu}$$

The notions of ellipticity or of hyperbolicity of a system of Euler-Lagrange equations at a given solution f_0 are notions which re-

fer to the Euler-Lagrange equations corresponding to \dot{L} , the linearized Lagrangian at f_0 . Now two different Lagrangians give rise to the same Euler-Lagrange equations whenever their difference is a *null Lagrangian*. Thus these notions actually refer not to a given \dot{L} but rather to the equivalence class obtained by adding to \dot{L} an arbitrary quadratic null Lagrangian. Furthermore these notions concern only the principal part, the quadratic form on $\dot{\mathcal{B}}_x$, at each $x \in \mathcal{M}$. Now the principal part of a quadratic null Lagrangian is of the form, in terms of the ϵ - dual,

$$\frac{1}{2}n^{\mu\nu}_{ab}V^a_\mu V^b_\nu$$

where n is a quadratic form on $\dot{\mathcal{B}}_x$ with the property:

$$n_{ab}^{\mu\nu} = -n_{ab}^{\nu\mu} = -n_{ba}^{\mu\nu}$$

We call such a quadratic form *odd*.

In general, if U and V are vector spaces, then $S_2(\mathcal{L}(U,V))$, the space of quadratic forms on $\mathcal{L}(U,V) = U^* \otimes V$ decomposes into:

 $S_2(\mathcal{L}(U,V)) = S_{2+}(\mathcal{L}(U,V)) \oplus S_{2-}(\mathcal{L}(U,V))$

where $S_{2+}(\mathcal{L}(U, V))$ is the space of *even* quadratic forms, namely those $q \in S_2(\mathcal{L}(U, V))$ which satisfy:

$$q(\alpha_1 \otimes v_1, \alpha_2 \otimes v_2) = q(\alpha_2 \otimes v_1, \alpha_1 \otimes v_2)$$
$$= q(\alpha_1 \otimes v_2, \alpha_2 \otimes v_1)$$
$$: \forall \alpha_1, \alpha_2 \in U^*, \quad \forall v_1, v_2 \in V$$

and $S_{2-}(\mathcal{L}(U, V))$ is the space of *odd* quadratic forms, namely those $q \in S_2(\mathcal{L}(U, V))$ which satisfy:

$$q(\alpha_1 \otimes v_1, \alpha_2 \otimes V_2) = -q(\alpha_2 \otimes v_1, \alpha_1 \otimes v_2)$$

= $-q(\alpha_1 \otimes v_2, \alpha_2 \otimes v_1)$
: $\forall \alpha_1, \alpha_2 \in U^*, \quad \forall v_1, v_2 \in V$

Given an arbitrary quadratic form q, we denote by q_+ and q_- its even and odd parts respectively.

In view of the above remarks, the notions of ellipticity or of hyperbolicity of a Lagrangian at $v = df_0(x) \in \mathcal{V}_{(x,y)}$, $y = f_0(x)$, should depend only on the equivalence class:

$$\{h+n : n \in S_{2-}(\mathcal{L}(T_x\mathcal{M}, T_y\mathcal{N}))\}$$

or equivalently only on h_+ , the even part of h. Remark that if q is an odd quadratic form on $\mathcal{L}(U, V)$ then q vanishes on all rank 1 elements of $\mathcal{L}(U, V)$:

 $q(\alpha \otimes v, \alpha \otimes v) = 0 \quad : \forall \alpha \in U^*, \forall v \in V$

Consequently, the following definitions comply with our requirement.

Definition: A Lagrangian L is called *regularly elliptic* at $v \in \mathcal{V}_{(x,y)}$ if $h = (\partial^2 L^* / \partial v^2)(v)$ is positive-definite on the set

 $\{\xi \otimes Y : \xi \in T_x^* \mathcal{M}, Y \in T_y \mathcal{N}\}$

of all rank 1 elements of $\mathcal{L}(T_x\mathcal{M}, T_y\mathcal{N})$.

Regular ellipticity is known as the *Legendre-Hadamard* condition in the calculus of variations. **Definition:** A Lagrangian L is regularly hyperbolic at $v \in \mathcal{V}_{(x,y)}$ if there exists a pair $(X,\xi) \in T_x \mathcal{M} \times T_x^* \mathcal{M}$ such that the restriction of $h = (\partial^2 L^* / \partial v^2)(v)$ to

$$L_{\xi} = \{ \xi \otimes Y : Y \in T_y \mathcal{N} \}$$

is negative-definite, while the restriction of h to Σ^1_X , the set of rank 1 elements of

 $\Sigma_X = \{ V \in \mathcal{L}(T_x \mathcal{M}, T_y \mathcal{N}) : V(X) = 0 \}$

is positive-definite. [Note that this implies $\xi \cdot X \neq 0$.]

Suppose that *h* is a regularly hyperbolic quadratic form on $\mathcal{L}(T_x\mathcal{M}, T_y\mathcal{N})$. We define $\mathcal{J}_x \subset T_x\mathcal{M}$ to be the set of all vectors $X \in T_x\mathcal{M}$ such that the restriction of *h* to Σ_X^1 is positivedefinite. Then $0 \notin \mathcal{J}_x$ and \mathcal{J}_x is the disjoint union of \mathcal{J}_x^+ and \mathcal{J}_x^- , where \mathcal{J}_x^- is the set of opposites of elements in \mathcal{J}_x^+ . Similarly, we define $\mathcal{I}_x^* \subset T_x^*\mathcal{M}$ to be the set of all covectors $\xi \in T_x^*\mathcal{M}$ such that the restriction of *h* to L_{ξ} is negative-definite. Then $0 \notin \mathcal{I}_x^*$ and \mathcal{I}_x^* is the disjoint union of \mathcal{I}_x^{*+} and \mathcal{I}_x^{*-} , where \mathcal{I}_x^{*-} is the set of opposites of elements in \mathcal{I}_x^{*+} . Once a choice of positive component \mathcal{J}_x^+ has been made for \mathcal{J}_x , the positive component \mathcal{I}_x^{*+} of \mathcal{I}_x^* is distinguished by

$$\xi \cdot X > 0$$
 : $\forall (X,\xi) \in \mathcal{J}_x^+ \times \mathcal{I}_x^{*+}$

Proposition: The sets \mathcal{J}_x^+ , \mathcal{J}_x^- , \mathcal{I}_x^{*+} , \mathcal{I}_x^{*-} are convex.

The notions of ellipticity and hyperbolicity are related as follows. Given a vectorfield Xon \mathcal{M} we can consider those maps of \mathcal{M} into \mathcal{N} which are invariant under the 1 parameter group of diffeomorphisms of \mathcal{M} onto itself generated by X. This leads to a reduced Lagrangian whose associated quadratic form at $v \in \mathcal{V}_{(x,y)}$ is the restriction of the original quadratic form to Σ_X , those linear maps of $T_x\mathcal{M}$ into $T_y\mathcal{N}$ which annihilate X(x). We then ask the following question: what is the set of values of X at x such that the reduced quadratic form on Σ_X is regularly elliptic? The answer is the set \mathcal{J}_x . At each $\xi \in T_x^* \mathcal{M}$ we define the *characteristic* form $\chi(\xi)$, a quadratic form on $T_y \mathcal{N}$, by:

 $\chi(\xi) \cdot (Y, Y) = h(\xi \otimes Y, \xi \otimes Y) \quad : \quad \forall Y \in T_y \mathcal{N}$ In terms of local coordinates,

$$\chi_{ab}(\xi) = h_{ab}^{\mu\nu} \xi_{\mu} \xi_{\nu}$$

The characteristic subset \mathcal{C}_x^* of $T_x^*\mathcal{M}$ is defined by:

 $C_x^* = \{ \xi \neq 0 \in T_x^* \mathcal{M} : \chi(\xi) \text{ is degenerate} \}$ If a volume form on \mathcal{N} is chosen we can define:

 $H(\xi) = \det \chi(\xi)$

Then C_x^* is the zero level set of H on $T_x^*\mathcal{M}$. As x is an arbitrary point of \mathcal{M} , this defines H as a function on $T^*\mathcal{M}$. This is the Hamiltonian function.

The associated canonical equations,

dx^{μ} _	∂H	$d\xi_{\mu}$	∂H
$\overline{d au}$ -	$-\overline{\partial\xi_{\mu}},$	$\overline{d au}$ –	$-\overline{\partial x^{\mu}}$

(in local coordinates), define the *bi-characteristic* flow on the zero level set of H in $T^*\mathcal{M}$. A bicharacteristic is a path on the zero level set of H in $T^*\mathcal{M}$ which corresponds to a solution of the canonical equations. The Hamiltonian function is in fact only defined up to a transformation of the form $H \mapsto \Omega H$ where Ω is a function on \mathcal{M} which nowhere vanishes. Such a transformation preserves the paths, changing only the parametrization. Denoting by $N(\chi(\xi))$ the null space of $\chi(\xi)$ as a linear map of $T_y\mathcal{N}$ into $T_y^*\mathcal{N}$, for ξ belonging to a component of \mathcal{C}_x^* , $N(\chi(\xi))$ is a non-trivial subspace of $T_y\mathcal{M}$. We call this the *degrees of freedom*, or *waves*, carried by that component.

At any given point $x \in \mathcal{M}$, H is a homogeneous polynomial of degree 2n in ξ . Such a homogeneous polynomial is in general *irre-ducible*, that is it cannot be decomposed into factors of lower degree.

However in the case of fluid mechanics (n = 3), H is given by:

$$H = A^4 B$$

where A is linear in ξ and B quadratic:

$$A = u^{\mu}\xi_{\mu} \quad B = (h^{-1})^{\mu\nu}\xi_{\mu}\xi_{\nu}$$

Here,

$$h^{-1} = g^{-1} + \left(1 - \frac{1}{\eta^2}\right)u \otimes u$$

is a quadratic form of index 1 on $T_x^*\mathcal{M}$, at each $x \in \mathcal{M}$, the reciprocal of h, a Lorentzian metric on \mathcal{M} , the *acoustical metric*, given in local coordinates by:

$$h_{\mu\nu} = g_{\mu\nu} + (1 - \eta^2) u_{\mu} u_{\nu}, \quad u_{\mu} = g_{\mu\nu} u^{\nu}$$

In the above, $\eta > 0$ is the *sound speed*, defined by:

$$\eta^2 = \left(\frac{dp}{d\rho}\right)_s$$

it being assumed that the right hand side is positive.

The component of C_x^* corresponding to A = 0 carries the *vorticity waves*, while the component corresponding to B = 0 carries the *sound waves*. In the case of solid mechanics H is irreducible except in the case of very special energy per particle functions e.

In the case that n = 1, H is quadratic in ξ hence

$$\dot{x} = \frac{\partial H}{\partial \xi_{\mu}} \frac{\partial}{\partial x^{\mu}} \Big|_{x} \in T_{x} \mathcal{M}$$

is linear in ξ . Upon substituting ξ in terms of \dot{x} in H we obtain a quadratic form of index 1 in $T_x \mathcal{M}$, for each $x \in \mathcal{M}$, that is a Lorentzian metric on \mathcal{M} . However in the general case where H is of degree 2n in ξ , \dot{x} is of degree 2n - 1 in ξ and we have a generalization of the standard Lorentzian geometry.

Remark that to each non-zero vector $X \in T_x \mathcal{M}$ there corresponds a hyperplane $\Pi(X)$ in $T_x^* \mathcal{M}$:

$$\Pi(X) = \{ \xi \in T_x^* \mathcal{M} : \xi \cdot X = 0 \}$$

The characteristic subset C_x of $T_x\mathcal{M}$ is the set of all non-zero vectors $X \in T_x\mathcal{M}$ such that the corresponding hyperplane $\Pi(X)$ is tangent to C_x^* .

Proposition : \mathcal{I}_x^* is the interior of the innermost component of \mathcal{C}_x^* , the *inner characteristic core* in $T_x^*\mathcal{M}$, and \mathcal{J}_x is the interior of the innermost component of \mathcal{C}_x , the *inner characteristic core* in $T_x\mathcal{M}$. The causal subset $\overline{\mathcal{I}}_x$ of $T_x\mathcal{M}$ is defined to be the set of all $X \in T_x\mathcal{M}$ such that $\xi \cdot X \neq 0$: $\forall \xi \in \mathcal{I}_x^*$. The boundary of $\overline{\mathcal{I}}_x$ is then the set of all $X \in \overline{\mathcal{I}}_x$ such that $\exists \xi \in \partial \mathcal{I}_x^*$: $\xi \cdot X = 0$. Thus if $X \in \partial \overline{\mathcal{I}}_x$, each component of \mathcal{I}_x^* lies to one side of the hyperplane $\Pi(X)$, for, $\xi \cdot X$ has one sign in each component, and $\partial \mathcal{I}_x^*$. has one sign in each component the origin. Consequently, $\Pi(X)$ is tangent to $\partial \mathcal{I}_x^*$. Hence $\partial \overline{\mathcal{I}}_x$ corresponds to that component of \mathcal{C}_x which is dual to the component $\partial \mathcal{I}_x^*$ of \mathcal{C}_x^* . We thus have:

 $\overline{\mathcal{I}}_x \supset \mathcal{J}_x$

We conclude with a formulation of the domain of dependence theorem. Let L be a C^{∞} Lagrangian in the general theory of maps of a manifold \mathcal{M} into a manifold \mathcal{N} . Let f_0 be a C^2 solution of the Euler-Lagrange equations corresponding to L, defined in a domain $\Omega \subset \mathcal{M}$, such that L is regularly hyperbolic at $df_0(x)$, for each $x \in \Omega$. Consider a hypersurface \mathcal{H} in Ω such that for each $x \in \mathcal{H}$ the double ray $R_x(\mathcal{H})$ in $T_x^*\mathcal{M}$ defined by $T_x\mathcal{H}$ according to:

$R_x(\mathcal{H}) = \{ \xi \neq 0 \in T_x^* \mathcal{M} \mid \xi \cdot X = 0 : \forall X \in T_x \mathcal{H} \}$

is contained in \mathcal{I}_x^* , as determined by the even part of $(\partial^2 L/\partial v^2)(df_0(x))$. We call such a hypersurface *spacelike* relative to L and f_0 . A curve γ in Ω is called *causal* relative to L and f_0 if its tangent vector $\dot{\gamma}(t)$ at each point $\gamma(t)$ belongs to the causal subset $\overline{\mathcal{I}}_{\gamma(t)}$ of $T_{\gamma(t)}\mathcal{M}$ as determined by the even part of $(\partial^2 L/\partial v^2)(df_0(\gamma(t)))$. We then define $\mathcal{D}(\mathcal{H})$, the *domain of dependence* of \mathcal{H} relative to Land f_0 to be the set of all points $x \in \Omega$ such that each causal curve γ through $x, \gamma(0) = x$, intersects \mathcal{H} at a single point $\gamma(t_*)$. **Theorem:** Under the above hypotheses, let f_1 , a C^1 map of Ω into \mathcal{N} , be another solution of the Euler-Lagrange equations corresponding to L, such that

 $f_1(x) = f_0(x), \quad df_1(x) = df_0(x) \quad : \; \forall x \in \mathcal{H}$ Then f_1 coincides with f_0 on $\mathcal{D}(\mathcal{H})$, the domain of dependence of \mathcal{H} relative to L and f_0 .

The above material in contained in my monograph "The Action Principle and Partial Differential Equations".