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Physical spacetime is a 4-dimensional mani-
fold M endowed with a Lorentzian metric g,
relative to which it is time-oriented. In con-
tinuum mechanics we also have a 3-dimensional
manifold N , the material manifold, each point
of which represents a material particle. The
dynamics is described by a mapping f : M →
N which tells us which particle is at a given
event. The mapping f must satisfy the con-
dition that the inverse image of a point y ∈ N
must be a timelike curve in M, as it is to
represent the history of the particle y. Thus
df(x) is subject to the condition that its null
space is a timelike line in TxM. There is
then a unit future-directed timelike vector ux
in TxM whose linear span is the null space of
df(x). The vector ux is the material velocity
at x. The assignment of ux at each x ∈ M
then defines a vectorfield on M, the material
velocity. The orthogonal complement, rel-
ative to gx, of the null space of df(x) is a
spacelike hyperplane Σx in TxM, the simul-
taneous space at x. The restriction gx|Σx

is a
positive-definite quadratic form on Σx. The
restriction df(x)|Σx

is then an isomorphism
of Σx onto Tf(x)N .
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The material manifold N is in general en-
dowed with a volume form dµω, the integral
of which over a domain in N represents the
number of particles contained in the domain.
In the case of fluid mechanics there is no
other structure on N . In the case of the me-
chanics of crystalline solids however N is en-
dowed with a richer structure which we shall
presently define. Let us denote by X (N ) the
space of C∞ vectorfields on N and by εy the
evaluation map X (N ) → TyN taking a vec-
torfield to its value at y ∈ N .

Definition: A crystalline structure on N is
a distinguished linear subspace K of X (N )
such that the evaluation map restricted to
K, εy : K → TyN , is an isomorphism for
each y ∈ N .

Each element of K generates a 1-parameter
group of diffeomorphisms of N . These groups
represent physically the continuum limit of
the groups of translations of a crystal lattice.
The parametrization of the group orbits is to
be thought of as proportional to the number
of atoms traversed.
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The canonical form associated to a crystalline
structure is the K - valued 1-form ν on N de-
fined by:

ν(Yy) = ε−1
y (Yy) ∈ K

for each Yy ∈ TyN and y ∈ N . The disloca-
tion form is the K - valued 2-form λ on N
given by:

λ = −dν

If Y1, Y2 ∈ K then according to the above
definition λ(Y1, Y2) is the following K - valued
function on N :

λ(Y1, Y2)(y) = ε−1
y ([Y1, Y2](y))

This is a constant function if and only if
[Y1, Y2] ∈ K. If this is the case for each
pair Y1, Y2 ∈ N then K is a Lie algebra. In
this case, upon choosing an identity element
e ∈ N , N becomes a Lie group so that K is
the space of vectorfields which generate the
right action of the group on itself; K is then,
at the same time, the space of vectorfields
on N which are invariant under left group
multiplications.
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The dislocation form is a concept which arises

in the continuum limit when one considers a

distribution of elementary dislocations in a

crystal lattice. An elementary lattice dislo-

cation has the property that if we start at

an atom and move according to one group

of lattice translations a certain number of

atoms p, then move according to a different

group of translations a number of atoms q,

then according to the first −p and finally ac-

cording to the second −q, then on complet-

ing the circuit we arrive at an atom which in

does not coincide with the atom from which

we started, but, provided that the circuit en-

closes a single elementary dislocation, is ar-

rived at in a single step corresponding to a

third lattice translation. The lattice vector

corresponding to this step is called Burgers

vector. The integral of minus ν on a closed

curve C in N represents physically the sum

of the Burgers vectors of all the dislocation

lines enclosed by C.
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The thermodynamic state space is the space

of local thermodynamic states of a material.

For a fluid this space is R+ × R+, the set

of pairs (τ, σ) where τ ∈ R+ is the volume

per particle and σ ∈ R+ is the entropy per

particle. For a crystalline solid the thermo-

dynamic state space is S+
2 (K) × R+, the set

of pairs (γ, σ), where γ ∈ S+
2 (K), the space of

inner products on K, is the thermodynamic

configuration and σ is, as above, the entropy

per particle. We assume that an orientation

and a volume form ω has been chosen for

K. Then for a crystalline solid the volume

per particle τ is a function on S+
2 (K) defined

as follows: Each γ ∈ S+
2 (K) defines a vol-

ume form ωγ on K by the condition that if

(E1, E2, E3) is a positive basis for K which is

orthonormal relative to γ then:

ωγ(E1, E2, E3) = 1

It follows that there is a positive function τ

on S+
2 (K) such that:

ωγ = τ(γ)ω
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The laws governing the dynamics of a given

kind of material are determined by the spec-

ification of the energy per particle e as a

function on the thermodynamic state space.

Thus, in the case of fluid mechanics e =

e(τ, σ) and the derivatives:

p = −
∂e

∂τ
θ =

∂e

∂σ

are the pressure and the temperature respec-

tively. In the case of the mechanics of crys-

talline solids e = e(γ, σ) and the derivative:

∂e

∂γ
= −

1

2
πτ

defines the stress π, which takes values in

(S2(K))∗. The temperature is defined as above.

The number of particles per unit volume n

and the energy density or energy per unit vol-

ume ρ are defined in terms of τ and e by:

n =
1

τ
ρ =

e

τ
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The equations of motion are the Euler-Lagrange

equations for the mapping f , associated to

the Lagrangian to be presently defined. With

x ∈ M, y ∈ N , and f(x) = y, consider the set

of possible values of df(x) = v. This is the

open subset V(x,y) of L(TxM, TyN ) defined

by the condition that the null space of v is a

line in TxM which is timelike relative to gx.

[Here, for finite dimensional vector spaces U

and V we denote by L(U, V ) the space of lin-

ear maps of U into V .] Then L is defined on

the bundle

V =
∪

(x,y)∈M×N
V(x,y)

over M×N and assigns to each v ∈ V(x,y) a

top degree form on TxM. Since here TxM
is already endowed with the top degree form

dµgx, the volume form of gx, we have:

L(v) = L∗(v)dµgx

where L∗ is simply a function on V.
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In the case of fluid mechanics this function
is defined as follows. Consider Σx, the si-
multaneous space at x. Then dµgx induces a
volume form ϵΣx on Σx by:

ϵΣx(X1,x, X2,x, X3,x) = dµgx(ux, X1,x, X2,x, X3,x)

: ∀X1,x, X2,x, X3,x ∈ Σx

where ux is the material velocity at x. Recall
that

v|Σx
: Σx → TyN

is an (orientation-preserving) isomorphism. Thus
there is a positive real number τ(v) such that:

ϵΣx(X1,x, X2,x, X3,x) =

τ(v)dµωy(v ·X1,x, v ·X2,x, v ·X3,x)

: ∀X1,x, X2,x, X3,x ∈ Σx

where dµω is the volume form on N . To
have a pure Lagrangian description, the en-
tropy per particle σ must be given as a pos-
itive function on N . At each v ∈ V(x,y), the
pair (τ(v), σ(y)) ∈ R+ × R+ represents a lo-
cal thermodynamic state of the fluid. The
Lagrangian function L∗ is then defined by:

L∗(v) = ρ(τ(v), σ(y)) : ∀v ∈ V(x,y)
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In the case of the mechanics of crystalline

solids the Lagrangian function is defined as

follows. For each v ∈ V(x,y) we consider the

isomorphism i(v) of K onto Σx given by:

i(v) =
(
v|Σx

)−1
◦ εy

Then γ(v) ∈ S+
2 (K) is defined by:

γ(v) = i∗(v) · gx|Σx

that is:

γ(v)(Y1, Y2) = gx(i(v)·Y1, i(v)·Y2) : ∀Y1, Y2 ∈ K

At each v ∈ V(x,y), the pair (γ(v), σ(y)) ∈
S+
2 (K)×R+ represents a local thermodynamic

state of the crystalline solid. The Lagrangian

function L∗ is then defined by:

L∗(v) = ρ(γ(v), σ(y)) : ∀v ∈ V(x,y)
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The above theories continuum mechanics fit
into the general framework of Lagrangian the-
ories of maps f of an (oriented) differentiable
manifold M into an (oriented) differentiable
manifold N . The Lagrangian is in general
defined on the bundle

V =
∪

(x,y)∈M×N
V(x,y)

over M × N , where V(x,y) is an open subset
of L(TxM, TyN ). In fact, for each (x, y) ∈
M × N , L assigns to each v ∈ V(x,y) an el-
ement of ∧m(TxM), m = dimM, that is, a
top degree form on TxM. Hence given a map
f : M → N , the composition L ◦ df is an
exterior differential form of top degree on M.
The action A(f,Ω) associated to the map f
and to the domain Ω with compact closure
in M, is the integral:∫

Ω⊂M
L ◦ df

and the Euler-Lagrange equations express the
requirement that, for any such domain Ω, the
action A(f,Ω) is stationary with respect to
arbitrary variations of the map f which are
compactly supported in Ω.
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In the framework of continuum mechanics
there is a vectorfield I on M associated to a
map f , the particle current, defined by:

I = nu

where n is the number of particles per unit
volume considered as a function on N , that
is:

n(x) = n(df(x))

Consider the 3-form I∗ which is dual to I with
respect to dµg, that is:

I∗ = dµg(I, ·, ·, ·)
Then according to the above:

I∗ = f∗dµω

It follows that:

dI∗ = 0

identically, which is equivalent to the differ-
ential particle conservation law:

∇ · I = 0

where ∇ is the covariant derivative operator
associated to the metric g.
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Note that in the case of the Lagrangians of
continuum mechanics, for v ∈ V(x,y), L(v) de-
pends on gx only through τ(v) in the case of
fluid mechanics and only through γ(v) in the
case of the mechanics of crystalline solids.
The energy-momentum-stress tensor at x as-
sociated to a map f is the element Tx of
(S2(TxM))∗ defined by:

∂L(df(x))

∂gx
= −

1

2
Txdµgx

The assignment of Tx to each x ∈ M then
defines a symmetric 2-contravariant tensor-
field T on M, the energy-momentum-stress
tensorfield. In the case of fluid mechanics it
is given by:

T = ρu⊗ u+ p(g−1 + u⊗ u)

Here ρ and p are the energy density and pres-
sure considered as functions on M, that is:

ρ(x) = ρ(τ(df(x)), s(x)) p(x) = p(τ(df(x)), s(x))

where s is the entropy per particle as a func-
tion on M, that is:

s(x) = σ(f(x))
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In the case of the mechanics of crystalline

solids T is given by:

T = ρu⊗ u+ S

where ρ is the energy density considered as a

function on M, that is:

ρ(x) = ρ(γ(df(x)), s(x))

and S is the stress tensorfield, given, at each

x ∈ M by:

Sx(ġx) = π(γ(df(x)), s(x)) · (i∗(df(x)) · ġx|Σx
)

: ∀ġx ∈ S2(TxM)

where, as above, for any v ∈ V(x,y),

i∗(v) · ġx|Σx
∈ S2(K) is defined by:

i∗(v) · ġx|Σx
(Y1, Y2) = ġx(i(v) · Y1, i(v) · Y2)

: ∀Y1, Y2 ∈ K
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Under the condition that df is continuous,

the Euler-Lagrange equations are equivalent

to the differential energy-momentum conser-

vation laws:

∇ · T = 0

This equivalence is a consequence of the in-

variance of the action A(f,Ω) under all dif-

feomorphisms of M which coincide with the

identity in the complement of a compact sub-

set of Ω, for all domains Ω with compact

closure in M. According to the above defi-

nition of the entropy function s, the entropy

function is constant along particle histories,

a condition called the adiabatic condition.

The differential energy-momentum conserva-

tion laws with the entropy function s as an

unknown function on M, in addition to the

mapping f : M → N , hold even when con-

tinuity of df is no longer assumed. Then the

adiabatic condition no longer holds, we have

instead a jump in s along each particle his-

tory crossing a hypersurface of discontinuity

of df .
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In the case of fluid mechanics we may elimi-

nate the mapping f and consider as unknowns

the functions n and s and the fluid velocity u.

The energy density ρ is specified as a function

of n and s. The pressure p and the tempera-

ture θ are then given according to the above

by:

p = n
∂ρ

∂n
− ρ θ =

1

n

∂ρ

∂s

The differential particle conservation law to-

gether with the differential energy-momentum

conservation laws then constitute a first or-

der system of partial differential equations for

the unknowns n, s, and u.
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The notions of ellipticity and hyperbolicity
of a system of Euler-Lagrange equations re-
fer to a given solution f0 of the system. Any
other map f : M → N whose graph f :
M → M×N lies in a suitable neighborhood
of f0, the graph of f0, can be viewed as being
a perturbation of f0. Introducing a symmet-
ric connection A in TN , f may obtained by
exponentiating, with respect to A, a section
ḟ of f∗0TN , the pullback by f0 of the tangent
bundle of N . The theory of perturbations of
a given solution f0 is thus a theory of sec-
tions of the vector bundle B = f∗0TN over
domain manifold M, whose fibre over x ∈ M
is

Bx = {x} × Tf0(x)N

The original action of f in a domain Ω ⊂ M
then translates to an action for ḟ in Ω. This
action is the integral over Ω of the com-

position with (ḟ , D∗ḟ) of
△
L, the relative La-

grangian with respect to f0. Here D∗ḟ is the
covariant derivative of the section ḟ with re-
spect to the induced connection A∗ on f∗0TN .
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With

Ḃ =
∪

x∈M
Ḃx, Ḃx = L(TxM,Bx)

△
L is defined on the bundle product

B ×M Ḃ =
∪

x∈M
Bx × Ḃx

an element of this in the fibre over x ∈ M
is a pair (Y, V ), where, with y = f0(x), Y ∈
TyN and V ∈ L(TxM, TyN ). Consideration of

infinitesimal perturbations gives rise to L̇, the

linearized Lagrangian at f0. The linearized

Lagrangian is for each x ∈ M a quadratic

form on Bx×Ḃx with values in ∧m(TxM). The

notions of ellipticity and hyperbolicity at x

relative to f0 refer only to the principal part

of the linearized Lagrangian at f0 and x, a

quadratic form on Ḃx with values in ∧m(TxM)

given by:

[L̇](V ) =
1

2

∂2L

∂v2
(df0(x))(V, V ) : ∀V ∈ Ḃx
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Choosing a volume form ϵ on M [the natural

choice in the physical case being dµg] so that

L = L∗ϵ, we can write:

[L̇] =
1

2
h(V, V )ϵ

where

h =
∂2L∗

∂v2
(df0)

is a quadratic form on L(TxM, TyN ), y =

f0(x). In terms of local coordinates (xµ :

µ = 1, ...,m) on M and (ya : a = 1, ..., n) on

N [dimM = m, dimN = n], v ∈ V(x,y) takes

the form:

v = vaµ dxµ|x ⊗
∂

∂ya

∣∣∣∣∣
y

The coefficients (vaµ) of the expansion are

linear coordinates on V(x,y) and we can write:

1

2
h
µν
ab V

a
µ V b

ν =
1

2

∂2L∗

∂vaµ∂v
b
ν
(df0(x))V

a
µ V b

ν
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The notions of ellipticity or of hyperbolic-

ity of a system of Euler-Lagrange equations

at a given solution f0 are notions which re-

fer to the Euler-Lagrange equations corre-

sponding to L̇, the linearized Lagrangian at

f0. Now two different Lagrangians give rise

to the same Euler-Lagrange equations when-

ever their difference is a null Lagrangian. Thus

these notions actually refer not to a given L̇

but rather to the equivalence class obtained

by adding to L̇ an arbitrary quadratic null

Lagrangian. Furthermore these notions con-

cern only the principal part, the quadratic

form on Ḃx, at each x ∈ M. Now the princi-

pal part of a quadratic null Lagrangian is of

the form, in terms of the ϵ - dual,

1

2
n
µν
ab V

a
µ V b

ν

where n is a quadratic form on Ḃx with the

property:

n
µν
ab = −n

νµ
ab = −n

µν
ba

We call such a quadratic form odd.
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In general, if U and V are vector spaces, then

S2(L(U, V )), the space of quadratic forms on

L(U, V ) = U∗ ⊗ V decomposes into:

S2(L(U, V )) = S2+(L(U, V ))⊕ S2−(L(U, V ))

where S2+(L(U, V )) is the space of even quadratic

forms, namely those q ∈ S2(L(U, V )) which

satisfy:

q(α1 ⊗ v1, α2 ⊗ v2) = q(α2 ⊗ v1, α1 ⊗ v2)

= q(α1 ⊗ v2, α2 ⊗ v1)

: ∀α1, α2 ∈ U∗, ∀v1, v2 ∈ V

and S2−(L(U, V )) is the space of odd quadratic

forms, namely those q ∈ S2(L(U, V )) which

satisfy:

q(α1 ⊗ v1, α2 ⊗ V2) = −q(α2 ⊗ v1, α1 ⊗ v2)

= −q(α1 ⊗ v2, α2 ⊗ v1)

: ∀α1, α2 ∈ U∗, ∀v1, v2 ∈ V

Given an arbitrary quadratic form q, we de-

note by q+ and q− its even and odd parts

respectively.
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In view of the above remarks, the notions of
ellipticity or of hyperbolicity of a Lagrangian
at v = df0(x) ∈ V(x,y), y = f0(x), should de-
pend only on the equivalence class:

{h+ n : n ∈ S2−(L(TxM, TyN ))}

or equivalently only on h+, the even part of h.
Remark that if q is an odd quadratic form on
L(U, V ) then q vanishes on all rank 1 elements
of L(U, V ):

q(α⊗ v, α⊗ v) = 0 : ∀α ∈ U∗, ∀v ∈ V

Consequently, the following definitions com-
ply with our requirement.

Definition: A Lagrangian L is called regu-
larly elliptic at v ∈ V(x,y) if h = (∂2L∗/∂v2)(v)
is positive-definite on the set

{ξ ⊗ Y : ξ ∈ T ∗
xM, Y ∈ TyN}

of all rank 1 elements of L(TxM, TyN ).

Regular ellipticity is known as the Legendre-
Hadamard condition in the calculus of varia-
tions.
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Definition: A Lagrangian L is regularly hy-

perbolic at v ∈ V(x,y) if there exists a pair

(X, ξ) ∈ TxM×T ∗
xM such that the restriction

of h = (∂2L∗/∂v2)(v) to

Lξ = {ξ ⊗ Y : Y ∈ TyN}

is negative-definite, while the restriction of h

to Σ1
X, the set of rank 1 elements of

ΣX = {V ∈ L(TxM, TyN ) : V (X) = 0}

is positive-definite. [Note that this implies

ξ ·X ̸= 0.]
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Suppose that h is a regularly hyperbolic quadratic

form on L(TxM, TyN ). We define Jx ⊂ TxM
to be the set of all vectors X ∈ TxM such

that the restriction of h to Σ1
X is positive-

definite. Then 0 /∈ Jx and Jx is the disjoint

union of J+
x and J−

x , where J−
x is the set of

opposites of elements in J+
x . Similarly, we

define I∗
x ⊂ T ∗

xM to be the set of all covec-

tors ξ ∈ T ∗
xM such that the restriction of h to

Lξ is negative-definite. Then 0 /∈ I∗
x and I∗

x

is the disjoint union of I∗+
x and I∗−

x , where

I∗−
x is the set of opposites of elements in

I∗+
x . Once a choice of positive component

J+
x has been made for Jx, the positive com-

ponent I∗+
x of I∗

x is distinguished by

ξ ·X > 0 : ∀(X, ξ) ∈ J+
x × I∗+

x

Proposition: The sets J+
x , J−

x , I∗+
x , I∗−

x

are convex.
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The notions of ellipticity and hyperbolicity

are related as follows. Given a vectorfield X

on M we can consider those maps of M into

N which are invariant under the 1 parameter

group of diffeomorphisms of M onto itself

generated by X. This leads to a reduced

Lagrangian whose associated quadratic form

at v ∈ V(x,y) is the restriction of the original

quadratic form to ΣX, those linear maps of

TxM into TyN which annihilate X(x). We

then ask the following question: what is the

set of values of X at x such that the reduced

quadratic form on ΣX is regularly elliptic?

The answer is the set Jx.
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At each ξ ∈ T ∗
xM we define the characteristic

form χ(ξ), a quadratic form on TyN , by:

χ(ξ) · (Y, Y ) = h(ξ ⊗ Y, ξ ⊗ Y ) : ∀Y ∈ TyN

In terms of local coordinates,

χab(ξ) = h
µν
ab ξµξν

The characteristic subset C∗x of T ∗
xM is de-

fined by:

C∗x = {ξ ̸= 0 ∈ T ∗
xM : χ(ξ) is degenerate}

If a volume form on N is chosen we can de-

fine:

H(ξ) = detχ(ξ)

Then C∗x is the zero level set of H on T ∗
xM. As

x is an arbitrary point of M, this defines H as

a function on T ∗M. This is the Hamiltonian

function.
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The associated canonical equations,

dxµ

dτ
=

∂H

∂ξµ
,

dξµ

dτ
= −

∂H

∂xµ

(in local coordinates), define the bi-characteristic

flow on the zero level set of H in T ∗M. A bi-

characteristic is a path on the zero level set

of H in T ∗M which corresponds to a solu-

tion of the canonical equations. The Hamil-

tonian function is in fact only defined up to a

transformation of the form H 7→ ΩH where Ω

is a function on M which nowhere vanishes.

Such a transformation preserves the paths,

changing only the parametrization.
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Denoting by N(χ(ξ)) the null space of χ(ξ)

as a linear map of TyN into T ∗
yN , for ξ be-

longing to a component of C∗x, N(χ(ξ)) is a

non-trivial subspace of TyM. We call this the

degrees of freedom, or waves, carried by that

component.

At any given point x ∈ M, H is a homoge-

neous polynomial of degree 2n in ξ. Such

a homogeneous polynomial is in general irre-

ducible, that is it cannot be decomposed into

factors of lower degree.
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However in the case of fluid mechanics (n =

3), H is given by:

H = A4B

where A is linear in ξ and B quadratic:

A = uµξµ B = (h−1)µνξµξν

Here,

h−1 = g−1 +

(
1−

1

η2

)
u⊗ u

is a quadratic form of index 1 on T ∗
xM, at

each x ∈ M, the reciprocal of h, a Lorentzian

metric on M, the acoustical metric, given in

local coordinates by:

hµν = gµν + (1− η2)uµuν, uµ = gµνu
ν

In the above, η > 0 is the sound speed, de-

fined by:

η2 =

(
dp

dρ

)
s

it being assumed that the right hand side is

positive.
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The component of C∗x corresponding to A = 0

carries the vorticity waves, while the com-

ponent corresponding to B = 0 carries the

sound waves. In the case of solid mechan-

ics H is irreducible except in the case of very

special energy per particle functions e.

In the case that n = 1, H is quadratic in ξ

hence

ẋ =
∂H

∂ξµ

∂

∂xµ

∣∣∣∣
x
∈ TxM

is linear in ξ. Upon substituting ξ in terms of

ẋ in H we obtain a quadratic form of index 1

in TxM, for each x ∈ M, that is a Lorentzian

metric on M. However in the general case

where H is of degree 2n in ξ, ẋ is of degree

2n − 1 in ξ and we have a generalization of

the standard Lorentzian geometry.
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Remark that to each non-zero vector X ∈
TxM there corresponds a hyperplane Π(X)

in T ∗
xM:

Π(X) = {ξ ∈ T ∗
xM : ξ ·X = 0}

The characteristic subset Cx of TxM is the

set of all non-zero vectors X ∈ TxM such

that the corresponding hyperplane Π(X) is

tangent to C∗x.

Proposition : I∗
x is the interior of the in-

nermost component of C∗x, the inner charac-

teristic core in T ∗
xM, and Jx is the interior

of the innermost component of Cx, the inner

characteristic core in TxM.
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The causal subset Ix of TxM is defined to be

the set of all X ∈ TxM such that ξ ·X ̸= 0 :

∀ξ ∈ I∗
x. The boundary of Ix is then the set

of all X ∈ Ix such that ∃ξ ∈ ∂I∗
x : ξ ·X = 0.

Thus if X ∈ ∂Ix, each component of I∗
x lies

to one side of the hyperplane Π(X), for, ξ ·X
has one sign in each component, and ∂I∗

x

intersects Π(X) at a line through the ori-

gin. Consequently, Π(X) is tangent to ∂I∗
x.

Hence ∂Ix corresponds to that component of

Cx which is dual to the component ∂I∗
x of C∗x.

We thus have:

Ix ⊃ Jx
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We conclude with a formulation of the do-
main of dependence theorem. Let L be a
C∞ Lagrangian in the general theory of maps
of a manifold M into a manifold N . Let f0
be a C2 solution of the Euler-Lagrange equa-
tions corresponding to L, defined in a domain
Ω ⊂ M, such that L is regularly hyperbolic
at df0(x), for each x ∈ Ω. Consider a hy-
persurface H in Ω such that for each x ∈ H
the double ray Rx(H) in T ∗

xM defined by TxH
according to:

Rx(H) = {ξ ̸= 0 ∈ T ∗
xM | ξ·X = 0 : ∀X ∈ TxH}

is contained in I∗
x, as determined by the even

part of (∂2L/∂v2)(df0(x)). We call such a
hypersurface spacelike relative to L and f0.
A curve γ in Ω is called causal relative to
L and f0 if its tangent vector γ̇(t) at each
point γ(t) belongs to the causal subset Iγ(t)
of Tγ(t)M as determined by the even part of
(∂2L/∂v2)(df0(γ(t)). We then define D(H),
the domain of dependence of H relative to L

and f0 to be the set of all points x ∈ Ω such
that each causal curve γ through x, γ(0) = x,
intersects H at a single point γ(t∗).
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Theorem: Under the above hypotheses, let

f1, a C1 map of Ω into N , be another solu-

tion of the Euler-Lagrange equations corre-

sponding to L, such that

f1(x) = f0(x), df1(x) = df0(x) : ∀x ∈ H

Then f1 coincides with f0 on D(H), the do-

main of dependence of H relative to L and

f0.

The above material in contained in my mono-

graph “The Action Principle and Partial Dif-

ferential Equations”.
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