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e Neutron star spacetimes. Analytic spacetimes with appropriate matching parameters.
Comparison between numerical spacetimes and their analytic counterparts.

e Neutron star multipole moments. Calculation from numerical models, range for realistic
neutron stars, and properties and relations between them (universal “3-hair” relations).

e Properties of Neutron star spacetimes and astrophysical applications (neutron star
spacetimes are not Kerr). QPOs and relativistic precession model. Properties of
accretion discs in neutron star spacetimes (spectra, selftrapping c-modes).

e Neutron stars in alternative theories of gravity. Post-TOV formalism, a theory inde-
pendent approach to neutron star properties and structure.

e Characterising spacetimes in alternative theories of gravity. Multipole moments and
geodesics of spacetimes in scalar-tensor theories of gravity.
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Rotating neutron Stars

The line element for a stationary and axially symmetric spacetime (the spacetime admits a timelike, £¢, and

a spacelike, n?, killing field, i.e., it has rotational symmetry and symmetry in translations in time) is !,

ds? = —e2Ydt? + r2sin20B2e 2V (dp — wdt)? + 2(6—) (dr? + 12d62).

Field equations in the frame of the ZAMOSs:

1 1 2
D - (BDv) = _r?sin?0B% *'Dw - Dw + 4w Be* 2 (e 219 )_( uj’ W) 4oyl

(e +pu

D - (r2sin?0B3e " Dw) = —167rsin §B2e2~% o
— U

D - (rsin®DB) = 16xrsin 6 Be>*~?"p,

Komatsu, Eriguchi, and Hechisu? proposed a scheme for integrating the field equations using Green’s func-
tions. This scheme is implemented by the RNS numerical code to calculate rotating neutron stars 3.

Asymptotic expansion of the metric functions:

v =Y v Pa(p), w= wu()Paut1,(p), B= Ba(r)Th*(n),
=0 =0 [=0

1/2

where P, are the Legendre polynomials, u = cos#, and T, are the Gegenbauer polynomials.

LE. M. Butterworth and J. R. Ipser, ApJ 204, 200 (1976).
2H. Komatsu, Y. Eriguchi, and I. Hechisu, MNRAS 237, 355 (1989).
3N. Stergioulas, J.L. Friedman, ApJ, 444, 306 (1995).
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One can use RNS to calculate models of rotating neutron stars for a given equation of
state. For example we show here some models for the APR EOS:

5 10 15 20 25 12 14 16 18 20
oex10t Re

The models with the fastest rotation have a spin parameter, j = J/MQ, around 0.7 and a ratio of the polar
radius over the equatorial radius, r,/r., around 0.56.

The code, except from the various physical characteristics of the neutron stars, provides
the metric functions in a grid on the coordinates = and u in the whole space (for values
from O to 1 for both variables), where u = cosf), r = {#= and r. is a length scale.

But, numerical spacetimes in tabulated form are not very practical. An analytic spacetime
that captures the neutron star spacetime properties would be very useful.

How should we relate the neutron star spacetime to an analytic spacetime?
Relativistic multipole moments characterise stationary axisymmetric spacetimes.
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Multipole moments of numerical spacetimes

The RNS code can calculates the first non-zero multipole moments,

M, S1 = J, Mo, S3 and My*?

MO - M7
ST = jMQ,

14 4bg+3
My = — + §+ 92\ 3

5 b
S, = _3( J + 8jbo 5w2)M4,
10
Y 19 — 1852 + 160bo + 120¢> 4 336b3 + 360bog> — 105g4 — 192bs Ve
4 pr—

105

where j = J/MQ, and the various parameters are given by the integrals,

p2+1 ds' 2! 1 _
Qu = Mgy = / (1_s)2+2 / dp' Poy (') Sy (s', 1),
o d818/2l 1
Wo o= M“"wy > = —— 1_ /)21+2 / du'sin @' Py, (1) Sx(s', 1),
0

~ _lev2 r2l+4 /2 ggs2lH3 . 1/2
By = M*"2by = du' sin ¢/ B2 (i),

21 21 vl ) o= p'sin@'p(s’, u") Be ()

where in the second integral [ > 1, in contrast to the other two integrals where [ > 0.

4G.P. and T. A. Apostolatos, Phys. Rev. Lett. 108 231104 (2012),
K. Yagi, K. Kyutoku, G. P., N. Yunes, and T.A. Apostolatos, Phys.Rev. D 89 124013 (2014).

I.e.,
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Neutron star multipole moments properties in GR

Black Hole-like behaviour of the moments®:

Kerr moments Neutron star moments
My = M, Mg = M,
Jp. = J=jM? J. = jM?
My = —j2M3, Ms = —a(FEoS,M)j*M?3,
J3 = —j>M*, Jz = —B(EoS, M)j3M*,
My = j*M>, My = ~(FoS, M)j*M>,
Mo, = (=1)"j2npm?ntl Mo, = 7,
Jong1 = (1) TIMETE g4 = 7

S\W.G. Laarakkers and E. Poisson, Astrophys. J. 512 282 (1999).
G.P. and T. A. Apostolatos, Phys. Rev. Lett. 108 231104 (2012).
K. Yagi, K. Kyutoku, G. P., N. Yunes, and T.A. Apostolatos, Phys.Rev. D 89 124013 (2014).
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Neutron star multipole moments properties in GR

EoS independent behaviour of the moments® :
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All these are properties that characterize the spacetime around neutron stars as well as the

gravitational aspects of the stars themselves.

5G.P. and T. A. Apostolatos, Phys.Rev.Lett. 112 121101 (2014).
K. Yagi, K. Kyutoku, G. P., N. Yunes, and T.A. Apostolatos, Phys.Rev. D 89 124013 (2014).
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An analytic neutron star spacetime would be very useful to do astrophysics.

The vacuum region of a stationary and axially symmetric space-time can be described by
the Papapetrou line element’,

ds® = —f (dt —wd)® + f~1 [ (dp? + d=°) + p?de? |,

where f, w, and ~ are functions of the Weyl-Papapetrou coordinates (p, z).

By introducing the complex potential £(p, z) = f(p, z)+i(p, 2) 8, the Einstein field equations
take the form,

(Re(£))VZ2E = VE - VE,
where, f = £%, and v is defined by, Vi = egpeq E2V Y.
An algorithm for generating solutions of the Ernst equation was developed by Sibgatullin

and Manko 2. A solution is constructed from a choice of the Ernst potential along the axis
of symmetry in the form of a rational function

P(z)
R(z)’
where P(z), R(z) are polynomials of z of order n with complex coefficients in general.

E(p=0,z) =e(2) =

"A. Papapetrou, Ann. Phys., 12, 309 (1953).
8F.J. Ernst, Phys. Rev., 167, 1175 (1968); Phys. Rev., 168, 1415 (1968).
9V.S. Manko, N.R. Sibgatullin, Class. Quantum Grav., 10, 1383 (1993).
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Two-Soliton spacetime: This is a 4-parameter analytic spacetime which can be produced

if one chooses the Ernst potential on the axis to have the form:

o(2) = (z— M —ia)(z+1b) — k
(z+ M —ia)(z+1ib) — k

The parameters a, b, k of the spacetime can be related to the first non-zero multipole
moments through the equations,

J=aM, M,=—(a®—k)M, Js=—[a’>—(2a—b)k|M

where M is the mass.

One can use the multipole moments M, J, M»>, and J3 of a numerically calculated neutron
star and produce an analytic two-soliton spacetime that reproduces very accurately the
numerically calculated spacetime 10 . Instead of using a specific set of values for the
moments, one could reproduce any neutron star spacetime using the universal relations

JTs = A+ By <\/]\_72>,/ + B, (x/@)y

Therefore the first higher moments of a general neutron star spacetime can be expressed in
terms of only three parameters, the mass M, the angular momentum J, and the quadrupole
Mo, having thus a universal analytic spacetime.

10G, P., and T. A. Apostolatos, MNRAS, 429, 3007 (2013); Other analytic spacetimes have been proposed
in the past, see for eg. E. Berti, and N. Stergioulas, MNRAS, 350, 1416 (2004)

0.65
11G.P. and T. A. Apostolatos, Phys.Rev.Lett. 112 121101 (2014): +/J; = —0.36 + 1.48 (\/Mg)
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‘“‘Scaled” Frequencies for the Kerr spacetime:

299790+/1/7°
T+ (1/r)

Scaled Radial frequency: Mk, = M2 (1 —6(1/r)+ 8j(1/r)3/2 _ 3j2(1/r)2) 1/2
Mk, = MQ (1 — 45(1/r)¥2 4 352(1/r)2) "

Scaled Orbital frequency: M2 =

Orbital, Mvy, and precession, Mv,, “‘scaled frequencies" for Kerr black holes for various j (0.01-0.91).

Kerr black hole Kerr black hole
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10 ¢ 10 ¢
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0.001 ¢ 0.001 ¢

Mxv,
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Rcirc/M Mxv, (kmxHz)

Plots of the periastron and the
Plots of the orbital, periastron and N P o )
g o scaled frequencies’ against the
scaled frequencies'.

orbital “scaled frequency'.

The general effect of rotation is to increase the observed frequencies (and reduce the ISCO
radius; for j ~ 1 the horizon and ISCO radii go to 1M).
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Frequencies for the spacetime around neutron stars: The effect of rotation

Orbital frequency, periastron precession frequency and :
Orbital, Mvyg, and precession, Mv,, “scaled frequencies” for neutron star models constructed
with the APR EOS for various j up to the Kepler limit(0-0.7) and the same central density.

pe = 7.36x10', Me{l.2Mo,1.5Mo}, je{0.,0.668}
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Plots of the orbital, periastron and fre- Same plots for p. = 7.3 x
quencies for different rotations for models with p. = 6.3 X 1014g/cm3 (upper) and p, =

10%g/emB. Rotation in the range, f ~ 0.3 — 0.9kHz. 10'°g/em? (lower).
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Appllcatlon Corrugatlon modes in accretlon disks around neutron stars

i j=0.4, a~1.0, ﬁ"“lo 3.0t : j= 04 a~80 6~166 |

radius r [GM/c? ]

Upper: Diskoseismic propagation diagram for a Kerr black hole with spin

parameter j = 0.4 for one-armed waves with m = 1,n = 1. Waves can
propagate in the white regions exterior to rsco, and are evanescent in
the shaded regions between the vertical resonances (VR) and Lindblad
resonances (LR). Inertial modes (g-modes), with m = 1,n = 1, can
become self-trapping due to the turnover of the outer Lindblad resonance,
while lower frequency g-modes are quickly damped by corotation (CR).
Corrugation waves can propagate at high frequencies exterior to the outer
VR, and at low-frequencies interior to the inner VR. Lower: Enlargement

of the propagation diagram at low frequencies.

f [KHz xM_ /M|

\
E@
X
N
= !
S~ —4r ' TNS T'peak y
6 8 10 12 14 16 18 20

radius r [GM/c? ]
Upper: Same plot but for a neutron star spacetime with spin parameter
7 = 0.4, quadrupole rotational deformability a« = 8, and spin-octupole
deformability g ~ 16.6. Waves with frequency f = w/2w can propagate
in the white regions exterior to the NS radius rys (or wherever the disk is
truncated). Wave regions are qualitatively similar to the Kerr black hole,
except for the low-frequency c-mode region, where w < Q2 — 2,. Lower:
At low frequencies c-modes can be self-trapped due to the turnover of
the Lense-Thirring frequency, 2 — 2,, at radius 7., and frequency f,ca,

as a result of the spacetime quadrupole contribution.
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Orbital and precession frequencies: ©-P- MNRAS 454, 4066 (2015)
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Accretion disc properties:

1077
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Some basic scalings:

p=Mp, Q= M1, E=M°E, and L = ML.

Some more involved scalings:

F(p)/Mo= M~2(F(p)/Mo), T = M~Y2(Mo)V*T, ey, = M~Y2(Mo)Y*&,,

and finally, L, = MY2(My)3/*L,, and vL, = (My)vL,.




ﬁUNIVERSITYof
ISSISSIPPI Measuring the moments... 15 /17

Combining the different properties:

10}

N

|,:
F
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Contour plots of the orbital frequency at the orbit Contour plots of the maximum integrated

closest to the stellar surface (dashed black lines), luminosity (solid black lines), the nodal precession

the nodal precession frequency at the same orbit frequency at the orbit closest to the stellar surface

(solid black lines), and the rotation frequency of the (dashed black lines), and the rotation frequency of

star itself (dotted red lines).. the star itself (dotted red lines).
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Identifying the EO0S: Determining the parameters « and 3 and the inde-
pendent knowledge of the mass of the neutron star (assuming for example

that it is known from the binary system observations), one can evaluate the
first three multipole moments.

16 /17

Such a “measurement’12 of the first 3 moments (M, J, M>) could select an
EOS13 out of the realistic EOS candidates.

12G.P. MNRAS 454 4066 (2015),
and for an alternative proposal see, G.P., 2012 MNRAS, 422, 2581-2589.

13G.P. and T. A. Apostolatos, Phys.Rev.Lett. 112 121101 (2014)
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T hank You.



