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e Multipole moments
— in Newtonian theory.
— in General Relativity.

— in Scalar-Tensor theory.

e Properties of neutron star moments in GR

e Astrophysical observables: Accretion discs and QPOs

e Observables and multipole moments: GR vs Scalar-Tensor theory.

e What next? (Outlook)
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Why multipole moments?

Multipole moments

e In order to explore the structure of compact objects or to test gravity,
we need to probe the spacetime around them.

e Multipole moments provide a way of characterising the spacetime as well
as the structure of the compact object.

e Moments can be defined in an invariant way, can be related to the
sourcel, and can be related to astrophysical observables.

1See for example Giirlebeck, Phys.Rev. D 90 024041 (2014).
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Multipole moments: in Newtonian theory
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Newtonian gravity is described by potential that is the

i solution of a Laplace field equation in a flat space
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Multipolar Expansions
(the multipoles characterise the field)
In spherical coordinates:
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Newtonian multipole moments:

a an.b
®(r) = G <§ TR AN L ) (1)
T T

ro

where, Q, Q,, Q., are some integrals on the source
3 1
0 = / p(r) a3, Q4 = / 2 p(r) P, Qup = / Gl — Srea)p(Nd ()

The multipole moments are generally tensorial quantities.

Definition of the moments at infinity:

¢ — T = r22% 72 = 3%, = r 2
®(r) =7 (Q + QuZ" + Qup@'3" + ...) (3)
If we define the potential at infinity ® = 7#~1® then the moments are

Pal...an — Da Pal...an . — Da ---Da CT) (4)
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In General Relativity instead of a gravitational field &, gravity is described by a metric gq.
Relativistic multipole moments:

Multipole moments: in General Relativity 5 /17

e Generalization of the Newtonian moments,

e Defined for asymptotically flat spacetimes at infinity from a " potential” (that is related
to the metric) by a recursive relation,
Projection formalism: We have a spacetime (M, g,,,) that admits a timelike Killing field
£
We can use &, to project the 4D space time on a 3D space. The EFE can then be writ-
ten as a set of field equations for A = £%¢, and w, = €4ea€®VE? on the 3D space (S, hy).

D?\ = %A—l(pmx)(DmA)—A—lwmwm—szngmg”, (5)
Diywy = —€abmn§ RyEY, (6)
Dlw, = gx—lmemA, (7)
Ray = 57 2a, — "l + 53 DDA = A 2(DA)(DIA) + A R (8)

In GR, in vacuum, R, = 0 (EFE) and w, is curl-free. Thus one can define a scalar
twist: w, = D,w.
Then the 3D Ricci tensor and the field equations for )\, and w can take the form:2

DA = AL ((D"N) (D)) — (D"w) (Brw)) , (9)
D%w = 2X"HD™N)(D,w), (10)
Ra = 532 (BB + (D) (B)] (11)

2These are the expressions in the conformally related frame h,, = (=) hgp.
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Relativistic multipole moments:

Multipole moments: in General Relativity

e [ here are two sets of moments, the Mass moments and the Rotation moments

e For the two sets of moments we have two generating potentials,
Using the scalar quantities A and w, one can construct the potentials,

1 1
by = ZA_l()\Q +w?—1) and @, = EA_lw, (12)

that satisfy the field equation
DD, d — (R/8)d = (15/8)x* . (13)

The properties of this equation ensure that the potentials admit a multipolar expansion.

e [ he moments are then given by the recursive algorithm:

P b,
P, D,P,

2s—1) ~
S( ° )Ra1a2Pa3--~as+1 9 (14)

Pal...as+1 — C Dalpag...as“ -

The multipole moments for stationary and axisymmetric spacetimes can be reduced from
tensors to scalars, because of the rotation symmetry.
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In Scalar-Tensor theory we can have the same construction as in GR but the EFE are
modified (Einstein frame).

Multipole moments: in Scalar-Tensor theory 7 /17

Scalar-Tensor multipole moments (for a massless scalar):3
e Same as in GR, but Ry = 20,¢00,¢ and ¢®V,Vyp = 0.

e The field equations for A, w, and ¢ in the 3D space are,

DA = AL ((D"N) (D)) — (D"w) (Brw)) , (15)
D%w = 221D\ (D,nw), (16)
D?¢p = 0, (17)
R = 535 (BB + (D) (Di)] + 2(But)(Br). (18)

e [here are 3 sets of moments, the Mass moments, the Rotation moments, and the
Scalar moments.

e [ he generating potentials for the mass moments and the rotation moments are as in
GR, Py, and Py, and the generating potential for the scalar moments is the scalar
field itself. These fields satisfy the field equations

DD, d — (R/8)D = kTP, and D D.p— (R/8)p = kad. (19)

The moments are again given by the same recursive relations as in GR.

3G P and T P Sotiriou, Phys.Rev. D 91 044011 (2015).
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AXisymmetric Scalar-Tensor multipole moments:

Multipole moments: in Scalar-Tensor theory 8 /17

In the axisymmetric case, the field equations in the Einstein frame can be written in terms
of an Ernst potential £ = f + ww, as in GR.

Therefore one can define the axisymmetric spacetime moments using the secondary Ernst
potential, ¢ = 1=£ (where ¢ = &y, + idy), while the scalar moments are given from the

_ 1+&
scalar field.

The moments will be given by the recursive algorithm,

P = £ for the mass and rotation or

P = ¢ for the scalar,

P, = D,P, (20)
Pal...as+1 — C Dalpag...aerl - %(28 - 1)Ra1a2Pa3...as+1] .

Due to the rotational symmetry, the moments will now be some multiples of the symmetric
trace free outer product of the axis vector and correspond to only one component of that
tensor. Hence, they will be scalar quantities,

1 ) )
P, = —pM pi g
n! 11...7p

_1pm
A nl 2.2

(21)

A
The first few moments (if we also assume equatorial symmetry) are:

1 3
— —_ —_ 2 — 2
Pg = mo, P{ =m1, P§ =mo — §m0w07 Pg = m3 — gmlfwo,

1
szwo, be =0, Pg’ = wo —gwo(momg—l—wg), Pg =0, ...
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Properties of neutron star moments in GR

Neutron star multipole moments properties in GR

Black Hole-like behaviour of the moments?:

Kerr moments Neutron star moments
My = M, My = M,
Jp = J=jM? Jp = jM?
My, = —j°M?3, My = —a(EoS,M)j*M>,

J3 = —j>M*, J3 = —B(FEoS, M)j3M*,
My = %M, My = ~(EoS,M)j*M>,
Mo, = (—1)"j%npm2ntl Mo, = 7,
Jont1 = (L)ETIMEEZE | gy = 7

“W.G. Laarakkers and E. Poisson, Astrophys. J. 512 282 (1999).
G.P. and T. A. Apostolatos, Phys. Rev. Lett. 108 231104 (2012).
K. Yagi, K. Kyutoku, G. P., N. Yunes, and T.A. Apostolatos, Phys.Rev. D 89 124013 (2014).
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Properties of neutron star moments in GR

Neutron star multipole moments properties in GR

EoS independent behaviour of the moments® (more on that in Kent's talk):
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We need to explore this sort of relations in alternative theories of gravity as
well. Scalar-Tensor theory would be the obvious next step.

°G.P. and T. A. Apostolatos, Phys.Rev.Lett. 112 121101 (2014).
K. Yagi, K. Kyutoku, G. P., N. Yunes, and T.A. Apostolatos, Phys.Rev. D 89 124013 (2014).
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Astrophysical observables 11 /17

In astrophysical systems we don't observe multipole moments. We can have observables
though that are related to geodesics and consequently to multipole moments.

An example of observables that can be related to orbits around neutron stars are the
quasi-periodic oscillations (QPOs) of the spectrum® of an accretion disc.

Mechanisms for producing QPOs’ from orbital motion

Unknown frequency Monradial g-mode
accretion instability oscillations

Special frequency
boundary layer hot spots

Keplerian frequency
reflecting clumps

Frequency x Power [(rms/mean)?/Hz]

Keplerian frequency
cbscuring clumps

Keplerian frequency

. otiend
Keplerian frequency orbiting hot spots

disk oscillations

SStella & Vietri, 1998, ApJ, 492, L59.

"F.K. Lamb, Advances in Space Research, 8 (1988) 421.

8Boutloukos et al., 2006, Apd, 653, 1435-1444.
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Particle motion in a spacetime with symmetries:

Astrophysical observables: Geodesics and relativistic precession

Symmetry in time translations is associated to an integral of motion, energy FE

dt d
E = —p." = —p = —gup' — giop® = m <—gtt— - gt¢—¢) (22)
dr dr
Symmetry in rotations is again associated to an integral of motion, angular momentum L
dt do
L = pan® = ps = gisp’ + gpep® = m (gt¢d + 9o ) (23)
From the measure of the four-momentum, p%p, = —m?, we have the equation,
: i)+ (F) +om (E) +o= (F)
-1 = — 2 | — 24
gt (dT) + 290 (d ) (d’r Y00\ gr) T \Gr) T2\ 4 (24)

i i T i d dr\? _
Circular equatorial orbits: If we define Q2 = df, then we have the redshift factor (E) = —gu— 291652 — 922,

and the energy and the angular momentum for the circular orbits take the form,

—3gtt — 9t¢>Q 7= L/m = gto + 9¢>¢Q

E=E/m= '
\/ git — 29682 — 9¢¢Q \/_gtt = 2652 — 9poS2®

(25)

From the conditions, fl’t) = 0, ‘fltﬁ = 0 and £ = 0, and the equations of motion obtained assuming the

Lagrangian, L = anbx zb, the angular velocity can be calculated to be,

~Gi60 + \/ (916.0)% — Git.0966.
9ob,p

Q= (26)

This is the orbital frequency of a particle in a circular orbit on the equatorial plane.
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More general orbits:

Astrophysical observables: Geodesics and relativistic precession 13 /17

Equation (24) can take a more general form in terms of the constants of motion,

dop\° dz\ E2 2ET, 72
—9Ypp (_p> — Jzz (_Z> =1- Jo0 * > 9o L — Veff, (27)
dr dr (9t6)? — GttGse

With equation (27) we can study the general properties of the motion of a particle from
the properties of the effective potential.

Small perturbations from circular equatorial orbits:

If we assume small deviations from the circular equatorial orbits of the form, p = p. 4 dp
and z = 6z, then we obtain the perturbed form of (27),

d(6p)\* d(62)\°  102Vip . o 10%Vis, o o
—gop | —— ) — 9= = = 5 ———(62)7,
gpp< dr ) g dr 2 0p? (9p)"+ 2 02 (92)

This equation describes two harmonic oscillators with frequencies,
o _ g0V o _ 97OV
K- = =
P 2 8/02

B 2 022 |
The differences of these frequencies (corrected with the redshift factor) from the orbital

(& &

frequency, 2, = 2 — k., define the precession frequencies.



The University of

Nottingham

) g

The observables related to the orbits in a spacetime can be associated to its multipole moments.

Observables and multipole moments 14 /17 |

The energy change per logarithmic frequency interval and the precession frequencies are related to the
multipole moments,

in GR:

Q, 5 Ji 3 (9 3M> > 4 J1 . 27 J? 21M> )\ | ¢
“ P =3U°-4—U =~ - U*—10—U — -2 U
Q AR w2’ T2 M*  2M3 T

J? Mo J1M> S3
=2_U3 U4 7L +3 U® (11 —6 >U7
Q M?2 +2M3 T ( M4+ M3) T M?> M4 T
where U = (MQ)'/3. The Orbital frequency gives the Keplerian mass: Q = (M /r3)Y/2(1 + O(r~1/?).

in Scalar-Tensor theory:°

~ 1 2[301/1/2 BagWy 1 20J;
AR = ZU? ~ 9 _ Ut 4 Ty 4.
3 T ( OM?2 oM 2 T OM? T
Q Wo (BoWo — 8o M 4
2ep — 3 _ ( _ ) U2 1U3 _|_
Q 2M?2 M?2

Q. 24 _|_3(M2—aoW2)U4 2J1Wo (50Wo — OéoM) s 4+
_ Q M2 203 M*
where U = (MQ)1/3. The calculations are done in the Jordan frame. Again the oEbitaI frequency gives the
. Q= (M /r3)/2(1 4+ O(r~/?), but this time the Keplerian mass is M = M — Wyao.

Wo = Péb is the scalar charge, W) = Pg) is the scalar quadrupole and a = (dIn A)/d¢, B = da/d¢.
These observables can distinguish between GR and Scalar-Tensor theory.

9G.P. and TP Sotiriou arXiv:1505.02882
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Identifying the EoS: Assuming GR, a “measurement” 19 of the first 3 mo-
ments (M, J, M>5) could select an EoS1l out of the realistic EOS candidates.

Observables and multipole moments

Testing GR and scalarization: If we were to “measure” 10 the
coefficients of the expansions and have an independent measurement of
the Keplerian mass, then we could test if the compact object is scalarized
since the coefficients would be different than in GR.

10G.P., 2012 MNRAS, 422, 2581-2589.
11G.P. and T. A. Apostolatos, Phys.Rev.Lett. 112 121101 (2014)
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Investigate the behaviour of multipole moments for scalarized neutron
stars.

Are there 3-hair multipole relations like those found in GR and is there
a degeneracy between theories as the one found for I-Love-Q relations?

Extend the definition of multipole moments to a wider class of theories,
if possible...

. or identify other quantities that can play a similar part as the moments
have.

A more thorough astrophysical modeling of possible sources where these
expressions can be applied.
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