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• Multipole moments

– in Newtonian theory.

– in General Relativity.

– in Scalar-Tensor theory.

• Properties of neutron star moments in GR

• Astrophysical observables: Accretion discs and QPOs

• Observables and multipole moments: GR vs Scalar-Tensor theory.

• What next? (Outlook)
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Why multipole moments?

• In order to explore the structure of compact objects or to test gravity,

we need to probe the spacetime around them.

• Multipole moments provide a way of characterising the spacetime as well

as the structure of the compact object.

• Moments can be defined in an invariant way, can be related to the

source1, and can be related to astrophysical observables.

1See for example Gürlebeck, Phys.Rev. D 90 024041 (2014).



Multipole moments: in Newtonian theory 3 /17

Newtonian gravity is described by potential that is the
solution of a Laplace field equation in a flat space

Φ(r) = G

∫
ρ(r′)dV ′

|~r − ~r′|
Multipolar Expansions
(the multipoles characterise the field)
In spherical coordinates:
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Newtonian multipole moments:

Φ(r) = G

(
Q
r

+
Qaxa

r3
+
Qabxaxb

r5
+ ...

)
(1)

where, Q, Qa, Qab, are some integrals on the source

Q =

∫
ρ(r′)d3x′, Qa =

∫
x′aρ(r′)d3x′, Qab =

∫
3

2
(x′ax

′
b −

1

3
r′2δab)ρ(r′)d3x′... (2)

The multipole moments are generally tensorial quantities.

Definition of the moments at infinity:

xa → x̃a = r−2xa: r̃2 = x̃ax̃a = r−2

Φ(r) = r̃
(
Q+Qax̃a +Qabx̃ax̃b + ...

)
(3)

If we define the potential at infinity Φ̃ = r̃−1Φ then the moments are

Pa1...an = D̃anPa1...an−1 = D̃a1...D̃anΦ̃ (4)
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In General Relativity instead of a gravitational field Φ, gravity is described by a metric gab.

Relativistic multipole moments:

• Generalization of the Newtonian moments,

• Defined for asymptotically flat spacetimes at infinity from a ”potential” (that is related
to the metric) by a recursive relation,
Projection formalism: We have a spacetime (M, gµν) that admits a timelike Killing field
ξa.
We can use ξa to project the 4D space time on a 3D space. The EFE can then be writ-
ten as a set of field equations for λ = ξaξa and ωa = εabcdξ

b∇cξd on the 3D space (S, hµν).

D2λ =
1

2
λ−1(Dmλ)(Dmλ)− λ−1ωmωm − 2Rmnξ

mξn, (5)

D[aωb] = −εabmnξmRn
pξ

p, (6)

Daωa =
3

2
λ−1ωmDmλ, (7)

Rab =
1

2
λ−2[ωaωb − habωmωm] +

1

2
λ−1DaDbλ−

1

4
λ−2(Daλ)(Dbλ) + hma h

n
bRmn. (8)

In GR, in vacuum, Rmn = 0 (EFE) and ωa is curl-free. Thus one can define a scalar
twist: ωa = Daω.
Then the 3D Ricci tensor and the field equations for λ, and ω can take the form:2

D̃2λ = λ−1
(
(D̃mλ)(D̃mλ)− (D̃mω)(D̃mω)

)
, (9)

D̃2ω = 2λ−1(D̃mλ)(D̃mω), (10)

R̃ab =
1

2
λ−2

[
(D̃aλ)(D̃bλ) + (D̃aω)(D̃bω)

]
. (11)

2These are the expressions in the conformally related frame h̃ab = (−λ)hab.



Multipole moments: in General Relativity 6 /17

Relativistic multipole moments:

• There are two sets of moments, the Mass moments and the Rotation moments

• For the two sets of moments we have two generating potentials,
Using the scalar quantities λ and ω, one can construct the potentials,

ΦM =
1

4
λ−1(λ2 + ω2 − 1) and ΦJ =

1

2
λ−1ω, (12)

that satisfy the field equation

DaDaΦ− (R/8)Φ = (15/8)κ4Φ. (13)

The properties of this equation ensure that the potentials admit a multipolar expansion.

• The moments are then given by the recursive algorithm:

P = Φ̃,
Pa = D̃aP,

...

Pa1...as+1 = C
[
D̃a1Pa2...as+1 −

s(2s− 1)

2
R̃a1a2Pa3...as+1

]
, (14)

The multipole moments for stationary and axisymmetric spacetimes can be reduced from
tensors to scalars, because of the rotation symmetry.



Multipole moments: in Scalar-Tensor theory 7 /17

In Scalar-Tensor theory we can have the same construction as in GR but the EFE are
modified (Einstein frame).

Scalar-Tensor multipole moments (for a massless scalar):3

• Same as in GR, but Rab = 2∂aφ∂bφ and gab∇a∇bφ = 0.

• The field equations for λ, ω, and φ in the 3D space are,

D̃2λ = λ−1
(
(D̃mλ)(D̃mλ)− (D̃mω)(D̃mω)

)
, (15)

D̃2ω = 2λ−1(D̃mλ)(D̃mω), (16)
D̃2φ = 0, (17)

R̃ab =
1

2λ2

[
(D̃aλ)(D̃bλ) + (D̃aω)(D̃bω)

]
+ 2(D̃aφ)(D̃bφ). (18)

• There are 3 sets of moments, the Mass moments, the Rotation moments, and the
Scalar moments.

• The generating potentials for the mass moments and the rotation moments are as in
GR, ΦM , and ΦJ , and the generating potential for the scalar moments is the scalar
field itself. These fields satisfy the field equations

DaDaΦ− (R/8)Φ = κ4
1Φ, and DaDaφ− (R/8)φ = κ4

2φ. (19)

The moments are again given by the same recursive relations as in GR.

3G P and T P Sotiriou, Phys.Rev. D 91 044011 (2015).
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Axisymmetric Scalar-Tensor multipole moments:

In the axisymmetric case, the field equations in the Einstein frame can be written in terms
of an Ernst potential E = f + iω, as in GR.
Therefore one can define the axisymmetric spacetime moments using the secondary Ernst
potential, ξ = 1−E

1+E (where ξ = ΦM + iΦJ), while the scalar moments are given from the
scalar field.

The moments will be given by the recursive algorithm,

P = ξ̃ for the mass and rotation or
P = φ̃ for the scalar,
Pa = D̄aP, (20)

Pa1...as+1 = C
[
D̄a1Pa2...as+1 −

s

2
(2s− 1)R̄a1a2Pa3...as+1

]
.

Due to the rotational symmetry, the moments will now be some multiples of the symmetric
trace free outer product of the axis vector and correspond to only one component of that
tensor. Hence, they will be scalar quantities,

Pn =
1

n!
P (n)
i1...in

ni1 . . . nin
∣∣∣∣
Λ

=
1

n!
P (n)

2...2

∣∣∣∣
Λ

. (21)

The first few moments (if we also assume equatorial symmetry) are:

P g
0 = m0, P

g
1 = m1, P

g
2 = m2 −

1

3
m0w

2
0, P

g
3 = m3 −

3

5
m1w

2
0, . . .

P φ
0 = w0, P

φ
1 = 0, P φ

2 = w2 −
1

3
w0(m0m

∗
0 + w2

0), P φ
3 = 0, . . .
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Neutron star multipole moments properties in GR

Black Hole-like behaviour of the moments4:

Kerr moments Neutron star moments

M0 = M,

J1 = J = jM2,

M2 = −j2M3,

J3 = −j3M4,

M4 = j4M5,
...

M2n = (−1)nj2nM2n+1,

J2n+1 = (−1)nj2n+1M2n+2

M0 = M,

J1 = jM2,

M2 = −a(EoS,M)j2M3,

J3 = −β(EoS,M)j3M4,

M4 = γ(EoS,M)j4M5,
...

M2n = ?,

J2n+1 = ?

4W.G. Laarakkers and E. Poisson, Astrophys. J. 512 282 (1999).

G.P. and T. A. Apostolatos, Phys. Rev. Lett. 108 231104 (2012).

K. Yagi, K. Kyutoku, G. P., N. Yunes, and T.A. Apostolatos, Phys.Rev. D 89 124013 (2014).
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Neutron star multipole moments properties in GR

EoS independent behaviour of the moments5 (more on that in Kent’s talk): 16
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FIG. 7. (Color online) (Top) S̄3–M̄2 relation with various re-
alistic NS and QS EoSs and spins, together with the fit in
Eq. (90) and the Newtonian relation for the n = 0.5 poly-
tropes in [26]. The meaning of the dotted-dashed vertical line
is the same as in Fig. 1. Observe that the QS relation is al-
most the same as the NS one. (Bottom) Fractional di↵erence
between the data and the fit.

ical values and the � fits. Observe that the slow-rotation
relation to O(�2) is valid to O(1%) for � < 0.3.

Let us now compare the NS and QS Ī–M̄2 relation for
di↵erent EoSs, but with results valid to all orders in spin
(Fig. 6). The blue plane shows the NS relation, which is
consistent with that found in [24]. The red points show
the QS relation at di↵erent points in (Ī , M̄2, �) space.
Observe that the QS points lie on the NS plane. This
proves that the QS relation is almost identical to the NS
one.

Let us now turn our attention to the S̄3–M̄2 relation.
The top panel of Fig. 7 shows this relation, not only
for NSs but also for QSs, and various EoSs and spins.
Observe that the QS relation is again almost identical to
the NS one. Following [24], we fit all these data to the
polynomial

y = A0 + B1x
⌫1 + B2x

⌫2 , (90)

with y = (S̄3)
1/3 and x = M̄2, with fitting parameters

given in Table I. The new fit found here, which includes
both NSs and QSs results, is very similar to the one
found in [24] for NSs. In the bottom panel of Fig. 7, we
present the fractional di↵erence between the data and the
fit. Observe that the relation is approximately universal,
with variability of . O(10%).

C. M̄4–M̄2 and M̄4/S̄3–M̄2 Relations

Let us now study whether higher multipoles satisfy
approximately EoS independent relations for relativistic

stars spinning at di↵erent frequencies. Reference [26] al-
ready found that there exists a universal M̄4–M̄2 relation
to leading-order in a weak-field, Newtonian expansion,
so let us investigate this relation first. The top panel
of Fig. 1 shows the M̄4–M̄2 relation for various realistic
NS and QS EoSs and various spins, computed with the
LORENE and RNS codes, as well as in the slow-rotation
approximation. The bottom panel shows the fractional
di↵erence between the data and the fit of Eq. (90) with
y = (M̄4)

1/4 and x = M̄2 and the coe�cients given in Ta-
ble I. Observe that the EoS-universality is slightly weaker
than the S̄3–M̄2 relation, but still, it holds up to roughly
20%. This larger variation is not an artifact of numeri-
cal error, since our calculations are valid to O(1%). This
indicates that the universality becomes worse as one con-
siders multipole moment relations for higher ` modes, as
first predicted in [26].
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FIG. 8. (Color online) Fractional di↵erence between the M̄4–
M̄2 relation for rapidly-rotating stars with RNS and the one
in the slow-rotation limit for an APR EoS with various spin
parameters.

The 20% variability observed in Fig. 1 has two possi-
ble origins: EoS variability and spin-variability. In order
to determine which of these dominates, Fig. 8 attempts
to assess the spin dependence of the M̄4–M̄2 relation.
This figure shows the fractional di↵erence between M̄4

computed with the RNS code and in the slow-rotation
approximation, as a function of M̄2, clustered in groups
of di↵erent �, using an APR EoS as a characteristic ex-
ample. As expected, the di↵erence becomes larger as one
increases spins, reaching a maximum of 5% accuracy for
the largest � models considered. Comparing this with the
fractional di↵erence in Fig. 1, we conclude that the 20%
variability in the latter is dominated by EoS-variations
and not spin e↵ects. We recall that the multipole mo-
ments have a clear spin dependence if they are expressed
in terms of the stellar compactness (see Fig. 2). Our
results indicate that such spin dependence seems to par-
tially cancel if one expresses one multipole moment in
terms of another. Not surprisingly, one can improve the

2

of such no-hair relations for NSs and QSs. A universal
relation between the moment of inertia (directly related
to the current dipole moment) and the mass quadrupole
moment was found in [19, 20], using an unmagnetized,
uniform- and slow-rotation approximation. This result
was immediately confirmed by [21] using di↵erent EoSs.
Haskell et al. [22] extended the analysis of [19, 20] to mag-
netized NSs and found that the universality still holds,
provided that stars spin moderately fast (spin period less
than 0.1s) and the magnetic fields are not too large (less
than 1012G). Such properties are precisely those one ex-
pects millisecond pulsars to have.

Several studies have relaxed the slow-rotation approx-
imation [23–25], leading to a small controversy. Initially,
Doneva et al. [23] constructed NS and QS sequences by
varying the dimensional spin frequency and found that
the EoS-universality of the relation between the moment
of inertia and the quadrupole moment was lost. Shortly
after, Pappas and Apostolatos [24] and Chakrabarti et
al. [25] constructed NS sequences by varying dimen-
sionless combinations of the spin angular moment and
found that the relation remained EoS-universal. More
recently, Stein et al. [26] proved analytically that uni-
versality is preserved to leading (Newtonian) order in a
weak-field expansion, supporting the numerical calcula-
tions of [24, 25].

Recent studies have also considered whether approxi-
mately EoS independent relations exist between higher-
` multipole moments. Reference [24] in fact found
one such relation between the current octupole and the
mass quadrupole moments of NSs. This relation was
not only approximately EoS-universal but also approx-
imately spin-insensitive. The Newtonian results of [26]
analytically confirmed this result. The latter, in fact,
proved that higher-` multipole moments in the non-
relativistic Newtonian limit can be expressed in terms
of just the mass monopole, spin current dipole and mass
quadrupole moments through relations that are approxi-
mately EoS-universal and spin-independent. This univer-
sality, however, was found to deteriorate with increasing
` multipole number.

The existence of approximately universal relations is
not only of academic interest, but it also has practical
applications. For example, if one could measure any two
quantities in a given relation independently, one could
perform an EoS-independent test of GR in the strong-
field regime [19, 20]. Moreover, these relations may play
a critical role when attempting to measure the mass
and radius of NSs with future X-ray telescopes, such as
NICER [27] and LOFT [28, 29]. The pulse and atomic
line profiles of such stars depend not only on the stellar
mass and radius, but also on the moment of inertia, the
quadrupole moment and the stellar eccentricity [30–32].
Universal relations between these quantities [17, 19, 20]
allow one to break parameter degeneracies and measure
the mass and radius [18]. Such measurements, in turn,
would allow for exquisite constraints on the EoS in the
high density regime [33].

In this paper, we study whether approximately EoS-
independent relations among multipole moments exist
up to hexadecapole order in full GR for both NSs and
QSs. To do so, we construct unmagnetized, uniformly-
rotating NS and QS solutions to the Einstein equa-
tions. For rapidly-rotating stars, we extract multipole
moments by numerically constructing stellar solutions
with the LORENE [34, 35] and RNS [36] codes. For
slowly-rotating stars, we extract multipole moments by
solving the Einstein equations in a slow-rotation expan-
sion to quartic order in spin, extending previously-found
quadratic [37, 38] and cubic [39] solutions. Validity of the
quadratic solution is discussed in [40]. Such an extension
allows us to estimate the importance of quartic-order-in-
spin terms in X-ray observations of millisecond pulsars,
which were neglected in [18, 32].
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FIG. 1. (Color online) (Top) The (reduced dimensionless)
hexadecapole (M̄4)–quadrupole (M̄2) moments relation with
various NS and QS EoSs and spins, together with the fit given
by Eq. (90) and the Newtonian relation found in [26]. Observe
the relation approaches the Newtonian one as one increases
M̄2. The Newtonian relation for an n = 0.5 polytrope agrees
with the relativistic fit for various realistic EoSs within 10%
accuracy above the critical M̄2 denoted by the dotted-dashed,
vertical line. (Bottom) Fractional di↵erence between the data
and the fit. Observe the relation is universal to roughly 20%.
This means that the hexadecapole moment can be approxi-
mately expressed in terms of just the stellar mass, spin and
quadrupole moment.

A. Executive Summary

Given the length of the paper, let us here present a
brief summary of the main results. First, we confirm
that the LORENE and RNS codes lead to numerically
extracted multipole moments up to hexadecapole order
that are not only consistent with each other, but also con-

M̄2n = |M2n/(j2nM2n+1)|, J̄2n+1 = |J2n+1/(j2n+1M2n+2)|

We need to explore this sort of relations in alternative theories of gravity as

well. Scalar-Tensor theory would be the obvious next step.

5G.P. and T. A. Apostolatos, Phys.Rev.Lett. 112 121101 (2014).

K. Yagi, K. Kyutoku, G. P., N. Yunes, and T.A. Apostolatos, Phys.Rev. D 89 124013 (2014).
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In astrophysical systems we don’t observe multipole moments. We can have observables
though that are related to geodesics and consequently to multipole moments.

An example of observables that can be related to orbits around neutron stars are the
quasi-periodic oscillations (QPOs) of the spectrum6 of an accretion disc.

Mechanisms for producing QPOs7 from orbital motion Typical X-Ray spectrum8

6Stella & Vietri, 1998, ApJ, 492, L59.

7F.K. Lamb, Advances in Space Research, 8 (1988) 421.

8Boutloukos et al., 2006, ApJ, 653, 1435-1444.
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Particle motion in a spacetime with symmetries:

Symmetry in time translations is associated to an integral of motion, energy E

E = −paξa = −pt = −gttpt − gtφpφ = m

(
−gtt

dt

dτ
− gtφ

dφ

dτ

)
(22)

Symmetry in rotations is again associated to an integral of motion, angular momentum L

L = paη
a = pφ = gtφp

t + gφφp
φ = m

(
gtφ

dt

dτ
+ gφφ

dφ

dτ

)
(23)

From the measure of the four-momentum, papa = −m2, we have the equation,

−1 = gtt

(
dt

dτ

)2

+ 2gtφ

(
dt

dτ

)(
dφ

dτ

)
+ gφφ

(
dφ

dτ

)2

+ gρρ

(
dρ

dτ

)2

+ gzz

(
dz

dτ

)2

(24)

Circular equatorial orbits: If we define Ω ≡ dφ
dt

, then we have the redshift factor
(
dτ
dt

)2
= −gtt−2gtφΩ−gφφΩ2,

and the energy and the angular momentum for the circular orbits take the form,

Ẽ ≡ E/m =
−gtt − gtφΩ√

−gtt − 2gtφΩ− gφφΩ2
, L̃ ≡ L/m =

gtφ + gφφΩ√
−gtt − 2gtφΩ− gφφΩ2

. (25)

From the conditions, dρ
dt

= 0, d
2ρ
dt2

= 0 and dz
dt

= 0, and the equations of motion obtained assuming the

Lagrangian, L = 1
2
gabẋ

aẋb, the angular velocity can be calculated to be,

Ω =
−gtφ,ρ +

√
(gtφ,ρ)2 − gtt,ρgφφ,ρ
gφφ,ρ

. (26)

This is the orbital frequency of a particle in a circular orbit on the equatorial plane.
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More general orbits:

Equation (24) can take a more general form in terms of the constants of motion,

−gρρ
(
dρ

dτ

)2

− gzz
(
dz

dτ

)2

= 1−
Ẽ2gφφ + 2ẼL̃gtφ + L̃2gtt

(gtφ)2 − gttgφφ
= Veff , (27)

With equation (27) we can study the general properties of the motion of a particle from
the properties of the effective potential.

Small perturbations from circular equatorial orbits:

If we assume small deviations from the circular equatorial orbits of the form, ρ = ρc + δρ
and z = δz, then we obtain the perturbed form of (27),

−gρρ
(
d(δρ)

dτ

)2

− gzz
(
d(δz)

dτ

)2

=
1

2

∂2Veff

∂ρ2
(δρ)2 +

1

2

∂2Veff

∂z2
(δz)2,

This equation describes two harmonic oscillators with frequencies,

κ̄2
ρ =

gρρ

2

∂2Veff

∂ρ2

∣∣∣∣
c

, κ̄2
z =

gzz

2

∂2Veff

∂z2

∣∣∣∣
c

,

The differences of these frequencies (corrected with the redshift factor) from the orbital

frequency, Ωa = Ω− κa, define the precession frequencies.
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The observables related to the orbits in a spacetime can be associated to its multipole moments.

The energy change per logarithmic frequency interval and the precession frequencies are related to the
multipole moments,
in GR:

∆Ẽ = −
U

3

dẼ

dU
=

1

3
U2 −

1

2
U4 +

20J1

9M2
U5 + . . .

Ωρ

Ω
= 3U2 − 4

J1

M2
U3 +

(
9

2
−

3M2

2M3

)
U4 − 10

J1

M2
U5 +

(
27

2
− 2

J2
1

M4
−

21M2

2M3

)
U6 + ...

Ωz

Ω
= 2

J1

M2
U3 +

3M2

2M3
U4 +

(
7
J2

1

M4
+ 3

M2

M3

)
U6 +

(
11
J1M2

M5
− 6

S3

M4

)
U7 + ...

where U = (MΩ)1/3. The Orbital frequency gives the Keplerian mass: Ω = (M/r3)1/2(1 +O(r−1/2).

in Scalar-Tensor theory:9

∆Ẽ =
1

3
U2 +

(
2β0W 2

0

9M̄2
−

8α0W0

9M̄
−

1

2

)
U4 +

20J1

9M̄2
U5 + . . .

Ωρ

Ω
=

(
3−

W0

(
β0W0 − 8α0M̄

)
2M̄2

)
U2 −

4J1

M̄2
U3 + . . .

Ωz

Ω
=

2J1

M̄2
U3+

3(M2−α0W2)

2M̄3
U4 −

2J1W0

(
β0W0 − α0M̄

)
M̄4

U5 + . . .

where U = (M̄Ω)1/3. The calculations are done in the Jordan frame. Again the orbital frequency gives the
Keplerian mass: Ω = (M̄/r3)1/2(1 +O(r−1/2), but this time the Keplerian mass is M̄ = M −W0α0.

W0 ≡ P φ
0 is the scalar charge, W2 ≡ P φ

2 is the scalar quadrupole and α ≡ (d lnA)/dφ, β ≡ dα/dφ.

These observables can distinguish between GR and Scalar-Tensor theory.

9G.P. and TP Sotiriou arXiv:1505.02882
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Identifying the EoS: Assuming GR, a “measurement”10 of the first 3 mo-

ments (M,J,M2) could select an EoS11 out of the realistic EOS candidates.

1
2

3
4

5 M HkmL

0.2 0.3 0.4 0.5 0.6

j

1

2

3

4

Α

Testing GR and scalarization: If we were to “measure”10 the

coefficients of the expansions and have an independent measurement of

the Keplerian mass, then we could test if the compact object is scalarized

since the coefficients would be different than in GR.

10G.P., 2012 MNRAS, 422, 2581-2589.
11G.P. and T. A. Apostolatos, Phys.Rev.Lett. 112 121101 (2014)
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• Investigate the behaviour of multipole moments for scalarized neutron

stars.

• Are there 3-hair multipole relations like those found in GR and is there

a degeneracy between theories as the one found for I-Love-Q relations?

• Extend the definition of multipole moments to a wider class of theories,

if possible...

• ... or identify other quantities that can play a similar part as the moments

have.

• A more thorough astrophysical modeling of possible sources where these

expressions can be applied.
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Thank You.


