
Int. J. Contemp. Math. Sciences Vol. 3, 2008, no. 22, 1095 - 1102

A Functorial Approach to Group C∗-Algebras

George F. Nassopoulos

University of Athens, Department of Mathematics,
Panepistemiopolis, Athens 157 84, Greece

(E-mail: gnassop@math.uoa.gr)

Abstract

Let A be the category of unital C∗-algebras. A counterexample
is given to show that the unitary group functor U : A −→ Grp (and
hence the composite of the forgetful functor G : Grp −→ Set with U)
although being a faithful right adjoint, fails to be algebraic even in the
commutative case. In so doing, a canonical presentation of any unital
C∗-algebra as a quotient of a free product of copies (i.e., a copower in
A) of C(S1,C) is obtained, leading to an alternative characterization
of compact Hausdorff spaces, as well. Isomorphism questions are also
considered.
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1 Introduction

The study of convolution or group algebras has been, and still is, an area of
active research, as they are the bridge between the structure and the represen-
tation theory of groups and algebras. They are naturally linked by the various
adjunctions involved- and therefore by the corresponding universal properties-
in accordance with the structure considered on the objects. First of all, the
full subcategory Grp of groups is monocoreflective in Mon, the category of
monoids, the coreflector assigning to each monoid M the group Inv(M) of
the invertible elements of it. The construction of the algebra C(M) for a given
monoid M produces a functor left adjoint to the linear structure forgetful func-
tor from the category of unital associative algebras to that of monoids. Now
the composite of the previous adjunction with this one partly utilizes the group
structure.
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In fact, we can lift our discussion to a more meaningful level by considering
an involution. Recall that an involutive monoid M is one possessing an anti-
automorphism of period two. We denote by Mon∗ the category of involutive
monoids and their involution- and unit-preserving homomorphisms. Of course,
every group G may be viewed as such a monoid with inherent involution its
inversion. Besides, unitary elements are well-defined in any involutive monoid
M and, in general, they form a proper subgroup, say U0(M), of Inv(M).
Further observe that Grp is a full monocoreflective subcategory ofMon∗, too,
the coreflector being now the functor U0. On the other hand, the involution of
M gives rise to an algebra involution on C(M) (by a conjugate linearization of it)
and the so resulting functor again provides a left adjoint to the forgetful functor
from the category of involutive and unital associative algebras. Finally, it is
well-known that there exists a bijective correspondence between the unitary
representations of a given group G and the nondegenerate ∗-representations of
the group C∗-algebra C∗(G) for it, acting on the same Hilbert space H (cf. [3]
as a general reference). This situation suggests another refined adjunction, in
a sense an improvement to the last composite adjunction.

Let A stand for the category of unital C∗-algebras and their morphisms
(being automatically non-expansive). In this concern, it is known that the
closed-unit-ball functor O : A −→ Mon∗ −→ Set is quasi monadic (weakly
algebraic) (cf [7], [9], [10]). In this paper, we turn our attention to the study
of the unitary group functor U : A −→ Mon∗ −→ Grp (the composite of
U0 with the corresponding forgetful functor) instead. It is shown that U is a
faithful right adjoint, but fails to be algebraic even in the commutative case, as
attested by a counterexample (misbehaviour of U on regular epimorphisms).
Nevertheless, this approach leads to certain structural properties for unital C∗-
algebras, by simple categorical arguments (compare with [2], Vol. 2, p. 214,
Theorem 4.4.5). Specifically, the function algebra C(S1,C) on the circle group
S1 is a regular generator (alias, separator) in A and (relative) E-projective, so
that any unital C∗-algebra has a canonical representation as a quotient of a
free product of a certain family of copies (viz., a suitable copower) of C(S1,C);
in other words of a free group C∗-algebra. In particular, it gives evidence
of an alternative characterization of compact Hausdorff spaces by utilizing the
Gel’fand duality in the commutative case. Besides, aspects of the isomorphism
problem are considered.

2 The adjunction refinement

Universal constructions have been playing an increasingly important role in
the theory of C∗-algebras for a long time, realizing many of them in a natural
and simple way. In principle, they are carried out extrinsically in terms of suit-
able classes of ∗-representations of the involutive algebras under consideration.
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Explicitly, let I be a set of generators and R a set of ”admissible” relations, in
the sense that they must be realizable among bounded operators on a Hilbert
space. One considers the free involutive algebra C(m∗(I)) on the set I by first
forming the free involutive monoid m∗(I) on I and the ∗-representations of it
on Hilbert spaces corresponding to the given relations. If the supremum C∗-
seminorm on C(m∗(I)) so induced exists as a finite number, then a completion
of the quotient algebra of C(m∗(I)) by the nullideal N of this seminorm provides
the universal C∗-algebra C∗(I, R) in question. Sometimes, the correct universal
property is described informally and, of course, this technique is not applicable
beyond C∗-algebras. Regarding the group C∗-algebra, it is constructed with
the relations that each generator (i.e., group element) is a unitary of norm one
(see [1] for instance).

It is more or less evident that the unitary group functor U is well-defined
on any unital associative algebra with an involution (with or without a normed
structure), whenever the morphisms are chosen to be the involution-and-unit-
preserving (resp. continuous) algebras homomorphisms. Among the algebras
of this type, the category A of unital C∗-algebras provides the most convenient
setting.

Definition 2.1 Let G be a (discrete) group. By a group C∗-algebra on G
with respect to U : A −→ Grp we mean a unital C∗-algebra C∗(G) together
with a group homomorphism δ : G −→ UC∗(G) such that, for every group
homomorphism h : G −→ U(A) from G into the unitary group of any unital
C∗-algebra A, there exists a unique morphism h̃ : C∗(G) −→ A of unital C∗-
algebras with h = U(h̃) ◦ δ, as illustrated in the commutative diagram

.

By a standard argument on universal constructions, the algebras in question,
if they exist, are uniquely determined within an (isometric ∗−) isomorphism.
In this case, it is also true that the uniqueness requirement in the universal
property of the group C∗-algebra C∗(G) is equivalent to the fact that the linear
span of the image δ(G) must be dense in C∗(G). For the sake of comprehen-
sion, the rudiments of an elementary construction of group C∗-algebras are
comprised in
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Theorem 2.2 For any given group G, there always exists an essentially
unique group C∗-algebra C∗(G) on G with respect to U .

Proof. The complex-vector space C(G) with the usual basis δs, s ∈ G (Kroneker
delta) is converted into a unital associative algebra by means of the unique
bilinear extension of the multiplication of G to all of C(G), the convolution.
Besides, the group inversion causes a natural algebra involution on C(G) by
putting δ∗s := δs−1 , so that f ∗(s) = f(s−1) for all s ∈ G and f ∈ C(G).
Thus the canonical injection δ does indeed become a homomorphism from G
into the unitary group of C(G). But a completion of C(G) with respect to
the ∗-algebra norm ||f ||1 :=

∑
s∈G |f(s)| is the unital and involutive Banach

algebra l1(G). It consists of all complex-valued functions f on G which have
a countable support and can be uniquely expressed by absolutely convergent
series as f =

∑
s∈G f(s)δs. Finally, the group C∗-algebra C∗(G) is obtained as

the enveloping C∗-algebra of l1(G) ([3], p.40, section 2.7).

To verify that δ is universal from G to U , let (A, h) be any pair with A
a unital C∗-algebra and h : G −→ U(A) a group homomorphism. As l1(G)
realizes the free Banach space on (the underlying set to) G with respect to the
closed-unit-ball functor ([9], p. 30, section 3.3) and, obviously, U(A) is a subset
of this ball of A, there is a unique linear contraction h′ : l1(G) −→ A such
that h = h′ ◦δ. Since h is a group homomorphism, h′ is still multiplicative and
unit-preserving. The crucial point is now that the extension h′ is involution-
preserving as well, if and only if, h is unitary group-valued (i.e., a unitary
group morphism). Hence h′ uniquely factors through the enveloping C∗-algebra
C∗(G) of l1(G) to a unital C∗-algebras morphism h̃ : C∗(G) −→ A with h =
U(h̃) ◦ δ. The uniqueness of such an h̃ is immediate from the fact that the
linear span of δ(G) is dense in C∗(G), and this completes the proof.

Scholium. Concerning the range of the validity, it is evident that the proof
is true for the category of involutive and unital associative algebras, as well.
Unfortunately, this is not the case within the (super)category of involutive and
unital Banach algebras and their continuous, unital and ∗-homomorphisms,
because there the above extension h′ need not in general be continuous.

Formally, and especially when the group G is to be stressed, we rather write
δG for the universal morphism δ, and by abuse of notation, the same symbol
is used for the composite homomorphism G −→ l1(G) −→ C∗(G), the latter
being also an injection. Actually, by C∗ : Grp −→ A denoting the group C∗-
algebra functor so resulting, for the unit δ and the counit ε of this adjunction,
one gets

Proposition 2.3 For every group G the component δG : G −→ UC∗(G)
of the unit δ is injective; and for every unital C∗-algebra A the component
εA : C∗U(A) −→ A of the counit ε is surjective.
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Proof. It is well-known that the algebra l1(G) is faithfully represented on the
Hilbert space l2(G) via the left regular representation λ of G on it, induced
by G acting on itself by left translation. Therefore, the respective universal
morphism l1(G) −→ C∗(G) is an injection, but not an isometry ([3], p.255;
13.3.6). On the other hand, the component εA of the counit is the extension of
the identity automorphism of U(A) to the group C∗-algebra C∗U(A), so that
U(A) ⊆ ImεA. Since the unitary group U(A) spans the whole algebra A (e.g.
see [4], p. 42, Proposition 15.1), εA is surjective, in fact a regular epimorphism.

Corollary 2.4 The group C∗-algebra functor C∗ : Grp −→ A is faithful left
adjoint and the unitary group functor U : A −→ Grp is faithful right adjoint.
Moreover, both functors (preserve and) reflect isomorphisms.

Proof. Since epimorphisms in A are surjective [6], both categories Grp and A
are balanced (that is, each morphism which is simultaneously a monomorphism
and an epimorphism is an isomorphism). Besides, faithful functors reflect
monomorphisms and epimorphisms, as well.

Remark 2.5 (a) The adjunction isomorphism

ωGA : homA(C∗(G), A) −→ homGrp(G,U(A))

in particular establishes a bijective correspondence between the unitary rep-
resentations of the group G and the (nondegenerate) ∗-representations of its
group C∗-algebra C∗(G) acting on the same Hilbert space H . By ([4], p. 108,
Theorem 28.2 and p. 238, Theorem 56.1), this is also true of its restriction to
the cyclic and irreducible representations of them, respectively.

(b) The injectivity of the universal morphism δ suggests that from the ab-
stract point of view the theory of groups is coextensive with the theory of unitary
transformation groups, rather than general transformation groups.

(c)Concerning the isomorphism problem, the meaning in non-categorical
terms of (the preservation and) the reflection property is the following: A group
homomorphism h : G −→ G

′
is an isomorphism if and only if its extension

C∗(h) : C∗(G) −→ C∗(G′) is a (surjective isometric ∗-) isomorphism of unital
C∗-algebras; dually, a unital C∗-algebra morphism g : A −→ B is an (isometric
∗-) isomorphism of A onto B if and only if its restriction to the unitary groups
is a bijection.

By the very definition of the character group, the adjunction isomorphism
ωGC : homA(C∗(G),C) −→ homGrp(G,U(C)) for an abelian group G becomes
a homeomorphism with respect to the natural topologies ([3], p. 314; 18.1),
so that one still recaptures the basic functional representation of the group
C∗-algebra on it, as an immediate consequence of the Gel’fand duality.
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Corollary 2.6 The group C∗-algebra C∗(G) on an abelian group G is (iso-
metrically ∗-) isomorphic to the function algebra C(Ĝ,C) on the character
group Ĝ of G. In particular, if G is finite of order n, then C∗(G) is Cn up to
an isomorphism.

To complete the picture, further consider the forgetful functor G : Grp −→
Set, right adjoint to the free group functor F : Set −→ Grp. The composite
GU : A −→ Set is then right adjoint to the ”free group C∗-algebra” functor
C∗F : Set −→ A. For an illustrative example, the free group C∗-algebra C∗(Z)
on the infinite cyclic group Z of integers, the free (abelian) group on the one
point set is, by Corollary 2.6, isomorphic to the function algebra C(S1,C) of
the circle group S1, the unitary group of C. It follows that GU is representable
by C(S1,C) and, being faithful (Corollary 2.4), C(S1,C) is a generator in A,
in fact a regular one with the following structural property.

Theorem 2.7 Let S1 be the circle group, A a unital C∗-algebra and let I be
a generating subset of the unitary group U(A) of A. Then A is (isometrically
∗-) isomorphic to a quotient algebra of the free group C∗-algebra on I, the I th

copower of the function algebra C(S1,C) in A. Furthermore, if A is commu-
tative, then it is isomorphic to a quotient of the function algebra C((S1)I ,C).

Proof. A left adjoint functor preserves the existing colimits and any set I is the
disjoint union of its elements. Accordingly, the I th copowers IC(S1,C) of the
unital C∗-algebra C(S1,C) exist in the category A and provide the free group
C∗-algebras on the corresponding sets I. But every group G is isomorphic to
a quotient group of the free group on a generating subset I of G. Applying
the left adjoint functor C∗, a canonical presentation of the group C∗-algebra
C∗(G) as a quotient of the free group C∗-algebra IC(S1,C) on I is obtained.
Now taking G = U(A), a composition with the presentation in Proposition
2.3 gives the desired isomorphism. In the full reflective subcategory A′ of
the commutative algebras in A, the presentation is still valid, but now the
respective copower is the I th tensor power of the function algebra C(S1,C)
which, in its turn, is isomorphic to the function algebra C((S1)I ,C) on the
I th-torus (also cf. [5]).

In addition to the classical embeddings, one concludes an alternative char-
acterization of compact Hausdorff spaces (compare with [2], Vol. 1, p. 167,
section 4.7; [8], p. 104; 1.61).

Corollary 2.8 A Hausdorff space is compact if and only if it is homeomor-
phic to a closed subspace of a product of copies of the circle group S1.

Proof. That such a subspace is compact is immediate from the Tychonoff
Theorem. Conversely, let X be the category of Compact Hausdorff spaces
and X in X . An application of the spectral functor Ω : A′ −→ X op on the
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quotient epimorphism p : C((S ′)I ,C) −→ C(X,C), as determined in the above
Theorem, implies that the map Ω(p) : X −→ (S ′)I is a continuous injection.
That is, X is embedded as a closed subspace of (S1)I .

3 A counterexample

In studying faithful right adjoint functors a pertinent question is whether these
are algebraic (regularly monadic). As it is already mentioned, this is for in-
stance the case for the closed-unit-ball functor from the category of unital
C∗-algebras to sets ([7], [9], [10]). The following counterexample answers this
question in the negative regarding the unitary group functor U on A′, and
hence the composite of the forgetful functor G : Grp −→ Set with U ([8], p.182,
Theorem 1.29), because of the misbehaviour of U on regular epimorphisms (be-
ing precisely the surjective morphisms in both categories). In fact, consider the
inclusion i : S1 −→ D of the circle group S1 into the closed unit disc D in the
complex numbers. The C∗-algebra morphism C(i) : C(D,C) −→ C(S1,C) in-
duced by functional composition is onto, by Tietze’s Extension Theorem, and
so a regular epimorphism (as a quotient morphism). But clearly, the unitary
group of a function algebra consists of all S1− valued functions of it. Hence,
the respective restriction UC(i) : C(D,S1) −→ C(S1, S1) to the unitary groups
of them fails to be a surjective group morphism, as S1 is not a retract of D
(according to Brouwer’s Fixed-point Theorem).

On the other hand, the free group C∗-algebras, in particular C(S1,C), are
E-projective relative to the class E of all C∗-algebra (epi)morphisms q for which
GU(q) is a surjection. As GU reflects (regular) epimorphisms, the counterexam-
ple also shows that E is a genuine subclass of the class of regular epimorphisms
in A.

Research of the author partially supported by the Special Re-
search Account of Athens University under grant 70/4/5634.
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