
A Graphics Parallel Memory Organization
Exploiting Request Correlations

George Lentaris and Dionysios Reisis

Abstract—Real-time graphics applications require memory organizations featuring parallel pixel access and low-cost implementation.

This work bases on a nonlinear skew mapping scheme and exploits the correlation between consecutive requests for pixels to design

an efficient parallel memory organization. The mapping achieves parallel access, of mn pixels in various shapes, to the memory

organized with mn banks. The proposed design technique combines the mapping properties and the spatial correlations among pixel

requests to eliminate conflicts by spending at most one extra cycle every mn consecutive parallel pixel accesses. Consequently, the

technique ensures that any pixel pattern—among these commonly used in graphics—can be accessed in a single cycle from any

image location. The address computations become straightforward as the numbers of the requested pixels and the banks—apart from

equal—can be powers of 2.

Index Terms—Parallel processing, graphics processors, storage devices, interleaved memories.

Ç

1 INTRODUCTION

INTERNATIONAL bibliography includes a plethora of strate-
gies for organizing parallel memories. Each proposed

parallel memory model has been designed to improve the
speedup of the parallel algorithms, and consequently, the
performance of the corresponding applications. The parallel
memory design evaluation bases on criteria such as the
number of included memory modules, the number of distinct
data sets that can be accessed concurrently, the complexity
of the addressing and the routing circuits involved, and the
storage redundancy of each datum—most often zero. The
design techniques which are considered of greater impor-
tance are those resulting in parameterized models suited to a
relatively wide range of applications. Such techniques
support a variety of different specifications and provide
solutions to categories of problems such as the matrix/vector
operations and the graphics processing.

The applications related to graphics most often require
real-time performance. A solution to real-time requirements
is parallel calculations accommodated by the parallel load
and store of the corresponding pixels. The functionality and
the level of parallelism of the chosen algorithm specify the
subset of the image pixels requested by the process at each
cycle. These access requests involve distinct pixel patterns
(shapes) such as contiguous rows/columns, rectangular
blocks, and even subsampled areas of the image. Subsampled
areas are noncontiguous patterns, where the pixels are
located at constant distances from each other. The majority
of the graphics’ algorithms generate memory requests for
various patterns originating at any possible location on the
image. To accommodate these needs, the memory designers

have introduced solutions to the problems of minimizing the
number of banks, designing effective bank/address calcula-
tion, and routing of the data. A well-known solution is
to include a prime number of banks (e.g., [1], [6]) in the
organization. However, this approach involves prime num-
ber calculations and leads to complicated addressing and
bank selection circuits.

This work introduces a technique for designing parallel
memory organizations with number of banks ranging
from a power of 2 to any number for any application. The
proposed technique avoids any prime number calculations
and leads not only to efficient bank/address computations
but also to straightforward designs for the routing network.
The outcome of the design strategy fulfills the requirements
of the graphics applications. Moreover, it includes and
utilizes a minimum number of memory modules—equal to
the number of requested pixels.

Compared to the hitherto published results, the proposed
technique considers that the majority of the algorithms
perform correlated image accesses. Related research on
parallel memory organization for graphics applications relies
on assumptions regarding only the shapes of the accessed
pixel patterns. This approach is rational for an algorithm
issuing requests assumed to be completely uncorrelated.
However, uncorrelated requests are not usual in graphics
applications. During the graphics processing, each algorithm
follows specific strategies for requesting data. Each request
usually addresses image locations depending on the data
and/or the image locations accessed by the previous request.
Even when the request sequence is not predefined but
depends on calculations taking place during the process, a
notable degree of correlation appears. Examples illustrating
correlated requests can be found in common applications
such as image filtering and video compression. A study of
these examples shows that even the fast motion estimation
algorithm, which is a highly unpredictable procedure,
performs requests on a Macroblock basis.

A parallel memory organization can be significantly
improved if we exploit the correlation of the requests
performed in the course of a graphics application. This

762 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 6, JUNE 2010

. The authors are with the Department of Physics, University of Athens,
Panepistimiopolis Zografou, Physics Bld. IV, Athens 15784, Greece.
E-mail: {glentaris, dreisis}@phys.uoa.gr.

Manuscript received 31 July 2008; revised 20 Mar. 2009; accepted 17 July
2009; published online 11 Feb. 2010.
Recommended for acceptance by N. Ranganathan.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-2008-07-0386.
Digital Object Identifier no. 10.1109/TC.2010.48.

0018-9340/10/$26.00 � 2010 IEEE Published by the IEEE Computer Society

Administrator
Text Box
Copyright © 2010 IEEE. Reprinted from IEEE Transactions on Computers, ISSN: 0018-9340, June 2010, vol: 59 no:6 pp: 762-775, DOI: 10.1109/TC.2010.48,
This material is posted here with permission of the IEEE. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.

work shows that the above statement is valid even for
“generic” correlation assumptions. Such assumptions hold
in many applications either because their algorithms behave
accordingly or because the flow of the algorithms can be
altered to follow the assumption without affecting their
results. Specifically, we assume that the requests cover
progressively a square region of the image/frame. Based on
this, we give a technique for organizing the graphics’
memory. The technique achieves conflict-free access, while
it keeps the number of banks equal to the size of the access
patterns and it avoids storing any redundant information.
The proposed technique is advantageous because it removes
the overhead of one extra memory module [3]. In the worst-
case scenario, it introduces the probability of adding an extra
clock cycle to those cycles required for covering the assumed
square region. This extra cycle may or may not be required
depending on the location of the square region within the
image and on the shape of the access pattern. We consider
this probability of an extra cycle as an improved overhead,
especially if we consider the advantages gained by the
evasion of prime numbers in the organization of the
memory. The proposed organization supports the parallel
access of all the widely used contiguous pixel patterns (rows,
columns, rectangles), and moreover, the parallel access of a
number of sparse patterns used in picture subsampling.

The remainder of the paper is organized as follows:
Section 2 presents a review of the related published results.
Section 3 introduces the proposed memory mapping and the
notation to be used in the paper. Section 4 proves the
accessibility of the proposed scheme. Section 5 describes how
the proposed memory scheme exploits the request correla-
tions in graphics algorithms. Section 6 shows example
implementations of the memory organization and evaluates
its performance in graphics applications. Section 7 analyzes
the advantages of the proposed memory scheme, and finally,
Section 8 concludes the paper.

2 RELATED WORK

Related results to the organization of parallel memories have
been published in the literature during the last four decades:
Budnick and Kuck [1] introduced the skewed schemes, which
perform simple arithmetic/modulo operations on the
address of each array element to map the element to a
memory module. Using modern notation [7], a linear skew
scheme uses a mapping function of the form moduleði; jÞ ¼
ða � iþ b � jÞ mod ðBÞ, where ði; jÞ denotes the position of the
element in the array and B denotes the total number of
memory banks. The term skew was originally used to denote
the displacement (shift) of two consecutive array rows in the
memory, which results in from mapping data onto the banks.
A linear skew scheme applies the same skew for each row/
column of the array (i.e., uniform skew). Such schemes are
isotropic [7], i.e., when two array elements are stored in the
same memory bank, then each pair of their corresponding
neighbors is also stored in the same bank, e.g., if ðip; jpÞ and
ðiq; jqÞ are stored in bank bx, then ðip þ 1; jp þ 1Þwill be stored
in the same bank with ðiq þ 1; jq þ 1Þ (bank by). Besides linear
skew, other similar schemes have been proposed in the
literature. In some cases, the mapping scheme of a basic tile is
repeated throughout the entire image [8]. In other cases,

more complicated skews are applied, including nonlinear
skews [2], [12], and multiskewing techniques [5], which use
distinct linear mappings for different regions of the array.
Tanskanen et al. [7] and Park [6] report and compare several
different techniques for parallel memory organizations.

All the above skewing schemes—either linear or non-
linear—differentiate to each other with respect to the number
of patterns that can be accessed in a single cycle (concur-
rently). These patterns define element sets, namely rows,
columns, diagonals, triangles, squares, etc. In general,
applications supporting large sets of different patterns
require more complicated mapping functions. Moreover,
when there is a requirement for fetching the patterns from
any possible location on the array, they require a greater
number of memory modules than the amount of a single
pattern’s elements (excess of banks): VanVoorhis and Morrin
[2] prove that squares, columns, and rows cannot be accessed
conflict-free whenB ¼ A, whereAdenotes the number of the
pattern’s data and B denotes the number of the memory’s
modules. A well-known solution to this problem is to fix B to
a prime number greater thanA (e.g., [1], [6]). Prime numbers
though yield complicated address/mapping calculations,
which result in great hardware resources overhead [2]. As an
alternative solution, Liu et al. [11] propose a memory
organization with B ¼ 2 � A to avoid the use of prime
numbers and improve the performance of [6]. However,
the extended use of memory banks is not desirable because it
leads to reduced bandwidth utilization and increases the
area of the routing circuit. A consequent question is how to
determine the minimum number of banks in a parallel
memory system, when it is given the set of the required
access patterns and their possible locations on the array.
Chor et al. [3] address the above theoretic question for
graphics applications, where the access patterns constitute
rectangles of variable dimensions and are located at arbitrary
positions on the image. They propose a doubly periodic
assignment function placing the pixels on a Fibonacci lattice.
Their organization guarantees that no conflicts occur when
accessing areas of at most B=

ffiffiffi
5
p

pixels. As an immediate
result of [3] (also reported in other papers, e.g., [2]), only one
extra memory module is required when the pattern set
includes columns, rows, and squares at arbitrary locations on
the image.

A different type of memory interleaving is achieved with
XOR-based hash functions. XOR-schemes identify the mem-
ory bank storing a specific array element by computing the
exclusive-or (XOR) of a subset of the element’s address
bits—or its ði; jÞ position in the array. Frailong et al. [9]
introduced a general framework for describing a wide range
of XOR-schemes; they also proposed a specific mapping,
which allows conflict-free access to rows, columns, rectan-
gles, and chessboards of a square array when the number of
memory banks is an even power of 2. Since [9], many
architectures have been proposed in the literature making
use of various XOR-schemes in arrays’ processing to
achieve parallel access with specific properties [7]. Vandier-
endonck and De Bosschere [10] studied a simple methodol-
ogy to design/choose the appropriate XOR hash function
for an application. They propose two novel representations,
different from the commonly used matrix representation of

LENTARIS AND REISIS: A GRAPHICS PARALLEL MEMORY ORGANIZATION EXPLOITING REQUEST CORRELATIONS 763

a hash function: the “null space” of the matrix, which
simplifies the task of constructing a function that maps
specific patterns without conflicts, and the “column space,”
which serves more elaborate tasks as, for example, the fan-
in minimization of the XOR gates. Overall, XOR-schemes
perform simple bitwise XOR-AND operations to map the
data on the memory, and thus, they provide low latency
(fast bank/address calculations) compared to the skew
schemes [10]. However, the XOR technique results in
nonisotropic mappings, which complicate the data align-
ment in applications using many access formats. Moreover,
in applications requiring unrestricted access over periodic
basic domains (e.g., graphics applications), the computa-
tion/interconnection circuits of the XOR-schemes deal with
a greater amount of possible permutations compared to the
isotropic mappings [7].

Besides the simple skew and the XOR schemes, other
techniques have been presented in the literature for the
organization of parallel memories, which aimed mainly in
accommodating restricted array accessing. For instance,
Kim and Prasanna [4] propose the use of Latin squares for
the organization of a parallel memory; they introduced a
methodology to construct perfect Latin squares, where no
symbol appears more than once in any row, in any column,
in any diagonal, or in any main subsquare of the array.

Finally, in the multiprocessors’ cache-based hierarchies,
besides the aforementioned techniques, two strategies are
common: either the use of pseudorandom hash functions to
reduce memory contention by uniformly distributing the
bank addresses [13], [14] or the use of multiple hash functions
which change during runtime to accommodate different
access patterns [15]. The cache-based architectures have a
slightly different goal compared to the architectures de-
scribed in the above paragraphs: the noncache-based multi-
processors target the complete elimination of the conflicts so
that predefined patterns can be accessed in a single cycle. The
cache-based target the reduction of the cache misses, which
increase the required access cycles.

A classification of the aforementioned parallel memory
organizations is shown in Table 1 (the characterization
unrestricted/restricted refers to the ability of accessing pixel
patterns from any arbitrary location on the image, or not).
The organization proposed in this paper should be placed at

the bottom row of Table 1 (restricted, A, rcbs, nonlinear).
However, as it will become clear in Section 5, with the loss of
only one cycle every A correlated requests, the proposed
solution can be viewed as an organization permitting
unrestricted access on the image by using only A banks.

3 NOTATION AND SCHEME DESCRIPTION

Throughout the paper, we refer to pixels on the image using
coordinates ðx; yÞ, where x and y are integer numbers
denoting the horizontal and vertical distances, respectively
(alternatively, x represents the column and y the row). The
parallel access of a pixel group assumes the use of a
predefined access format. Let us define four basic formats:
Column, Row, Block, and Sparse-s. Considering that all the
above formats have a size of A pixels, we use m and
n parameters to define the number A as A ¼ m � n. Fig. 1
depicts the four formats. The first three formats, also referred
to as contiguous patterns, are widely used in many research
papers and applications. A Sparse pattern is characterized by
the s parameter, which defines the actual space between the
pattern’s pixels. More specifically, s defines the distance in
image pixels between two neighboring members of Sparse
(when s ¼ 1, we have a contiguous pattern). The Sparse format
can be used to symmetrically subsample an area of the
image. We generalize the notion of subsampling by using the
term s1-s2 Subsample format, where s1 defines the horizontal
distance and s2 defines the vertical distance between two
neighboring members of this format. Each access format can
be referenced from arbitrary positions on the image. We
specify the position of a format on the image plane by
referencing the position of its upper-left pixel on the image:
“formats originate at arbitrary ðx; yÞ.” Finally, babc denotes the
quotient of the integer division a over b, while a mod ðbÞ
denotes the remainder; when the remainder of this division
is zero, we use the notation b j a, i.e., b divides a.

In the proposed organization, the number of memory
banks B is equal to A, A ¼ m � n. We use a function, which
we call �, to map the pixels onto the memory banks. The
input to this function is the location of a pixel on the image,
ðx; yÞ, and the output is the identification number of a
memory bank. The purpose of designing � is to divide the
image in vertical stripes of width m and within each stripe
to get a linear column skew by n. Furthermore, each pair of

764 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 6, JUNE 2010

TABLE 1
Classification of Parallel Memory Organizations

Fig. 1. Four basic access formats: Column, Row, Block, and Sparse-s.

consecutive stripes is linearly skewed by the least possible
factor (i.e., one). The resulting mapping function � is the
composition of the above two linear mappings—one for the
columns and one for the stripes—and the idea of applying
this is to maintain, at a reasonable level, the advantages of
the linear skew schemes.

The proposed memory scheme is defined by the
mapping function �:

�ðx; yÞ ¼ x � nþ yþ x

m

j k� �
mod ðmnÞ: ð1Þ

The above function uses the term ðyÞ mod ðmnÞ to map the
pixels of each column x onto the mn banks. The term ðx � nÞ
mod ðmnÞ gives to the column x a skew of size n with
respect to column x� 1, if both columns x� 1 and x belong
to the same stripe. Finally, the term ðbxmcÞ mod ðmnÞ
provides the skew between consecutive stripes. The use of
the additive part bxmc characterizes � as a nonlinear scheme
and yields some novel properties, which can be used to
improve the processing performance of the graphics
applications. The mapping � adapts to the number of
available memory banks, B. Fig. 2 shows an example
mapping, where we consider a 16-bank memory with
m ¼ n ¼ 4. Fig. 2 also depicts the cases of three specific
patterns featuring conflict-free access (a Block, a Row, and a
Column). We mention here that the authors of [1], [2] among
the mappings they have presented, they have included �
without though exploring its useful properties and the
efficiency of the resulting organization.

4 MEMORY ACCESSIBILITY

As reported in Section 2, Chor et al. [3] prove that the
optimal solution for using any of the three basic contiguous
formats lies in organizations using one extra bank. This
section shows that the proposed organization, with exactly
B ¼ m � n memory modules and B required bandwidth,
minimizes the memory conflicts per memory access. More
specifically, using � in the organization results in a
maximum of one conflict per memory access. We prove
that �, in the case of specific formats, permits conflict-free
access unconditionally on the image. In other cases, �

results in at most one conflict depending on the format’s

location on the image. These format types include both

contiguous and sparse patterns. Moreover, we prove that

when a conflict occurs during the memory access, it

corresponds to a specific pixel of the accessed pattern: the

down-right pixel of the pattern. This additional property of

� simplifies the design of the circuit accommodating the

memory organization.
In the following of this section, we study and show the

accessibility of each basic format separately. The consequent

proofs rely on the properties of a specific equation given in

Lemmas 4.1 and 4.2. Lemma 4.1 focuses on the following

problem: in which cases are two pixels ðx1; y1Þ and ðx2; y2Þ
stored by � in the same bank? The lemma answers by

solving the equation �ðx1; y1Þ � �ðx2; y2Þ ¼ 0. The position

of the pixel ðx2; y2Þ is expressed with coordinates ði � s; j � sÞ
relative to the ðx1; y1Þ. The s parameter is used for the

Sparse-s pattern (in the cases of contiguous patterns s ¼ 1):

Lemma 4.1. For any constant integers x, n > 0, m > 0, and any

integer s with s j m, congruence (2)

i � s � nþ j � sþ xþ i � s
m

� �
� x

m

j k
� 0 ðmod mnÞ ð2Þ

has at most the following two solutions when 0 � i < m and

jjj < n:

ði; jÞ ¼ ð0; 0Þ
and ði; jÞ ¼ ðm� 1; n� 1Þ:

Proof. See the Appendix. tu

Lemma 4.2 is complementary to Lemma 4.1. It examines

the case of the origin ðx1; y1Þ located at specific coordinates

(left border of any vertical stripe of the divided image) and

shows that in this case, a second solution to (2) does not exist.

Lemma 4.2. For any constant integers m > 0, n > 0, s with

s j m, and x with x mod ðmÞ < s, congruence (2) has exactly

one solution when 0 � i < m and jjj < n:

ði; jÞ ¼ ð0; 0Þ:

Proof. See the Appendix. tu

The following theorems make use of Lemma 4.1 to prove

that the proposed memory scheme—using �—permits

access to the four basic formats with at most one conflict.

The corollaries of these theorems make use of Lemma 4.2 to

determine the cases in which these formats can be accessed

without conflicts. The first theorem considers the Block

format:

Theorem 4.1 (Block). Memory scheme � permits access to any

m� n pixel block originating at the arbitrary ðx; yÞ on the

image with at most one conflict. If a conflict occurs, then it will

appear at the down-right pixel of the block.

Proof. Consider an m� n pixel block Axy originating at the

arbitrary ðx; yÞ point on the image. For each pixel ðxp; ypÞ
within Axy, we examine whether the remaining pixels of

LENTARIS AND REISIS: A GRAPHICS PARALLEL MEMORY ORGANIZATION EXPLOITING REQUEST CORRELATIONS 765

Fig. 2. A 16-bank instantiation of the proposed scheme with m ¼ n ¼ 4.

Axy reside in the same memory bank with ðxp; ypÞ. A
pixel ðxq; yqÞ resides in the same bank with ðxp; ypÞ when

�ðxp; ypÞ ¼ �ðxq; yqÞ: ð3Þ

Expressing each ðxq; yqÞ of Axy with coordinates ði; jÞ
relative to ðxp; ypÞ, from (3), we derive the congruence (2)
of Lemma 4.1 with s¼1. Therefore, the solutions to
(2)—besides ði; jÞ ¼ ð0; 0Þ—define the pixels of Axy

stored in the same bank with ðxp; ypÞ. According to
Lemma 4.1, if ðxq; yqÞ is a solution to (3), then this pixel
will be located at distance ði; jÞ ¼ ðm� 1; n� 1Þ from
ðxp; ypÞ. Given the dimensions of Axy, the only ðxp; ypÞ for
which the ðxq; yqÞ solution of (3) corresponds to a pixel
within Axy is ðxp; ypÞ ¼ ðx; yÞ with ðxq; yqÞ ¼ ðxþm� 1;
yþ n� 1Þ. Thus, memory scheme � assures that every
pixel of Axy, with the exception of the last pixel (at the
down-right corner of Axy), is stored in a distinct memory
bank. Note here that during the examination of each
pixel ðxp; ypÞ within Axy, it suffices to check (3) only
against the pixels ðxq; yqÞ of Axy that are located to the
right side, i � 0, of ðxp; ypÞ. When every ðxp; ypÞ within
Axy is examined in this way, then every pixel within Axy

is checked against each other. tu
In certain cases, the Block format can be accessed conflict-

free. As the image has been divided into disjoint vertical
stripes by � (Section 3), consider the case of the Block
residing within a single vertical stripe (as shown, for
example, in Fig. 2). Here, x mod ðmÞ ¼ 0 and Lemma 4.2
will apply with s ¼ 1. In this case, even for the upper-left
pixel of the arbitrary Block, there exists only one solution to
(2). Hence:

Corollary 4.1. Memory scheme � permits conflict-free access to
any m� n pixel block originating at ðx; yÞ on the image when
x mod ðmÞ ¼ 0.

Then, we focus on the access of the Sparse-s format.

Theorem 4.2 (Sparse-s). When s j m, memory scheme �
permits access to any Sparse-s pattern originating at the
arbitrary ðx; yÞ on the image with at most one conflict. If a
conflict occurs, then it will appear at the down-right pixel of
the Sparse-s pattern.

Proof. See the Appendix. tu

The accessing of the Sparse-s format can be performed
conflict-free in certain cases. Whether or not there will be a
conflict in such an access depends on the origin of the
pattern and its sampling distance defined by the s para-
meter. If the origin of the pattern is relatively close to the
left border of a vertical stripe (i.e., x mod ðmÞ < s), then
Lemma 4.2 applies and hence:

Corollary 4.2. When s j m and x mod ðmÞ < s, memory
scheme � permits conflict-free access to any Sparse-s pattern
originating at ðx; yÞ on the image.

A format type which is accessed conflict-free anywhere
(unconditionally) on the image plane is the Sparse-m format.
In this case, s ¼ m and the condition x mod ðmÞ < s of
Lemma 4.2 is always true. Lemma 4.2 applies for any

arbitrary x and the derived congruence equation, for any
pixel of the Subsampled block, has only one solution. Hence:

Corollary 4.3. Memory scheme � permits conflict-free access to
any Sparse-m pattern originating at the arbitrary ðx; yÞ on
the image.

The following two theorems examine the cases of
accessing the Row and Column formats. The Column format
can be accessed conflict-free unconditionally on the image,
due to the direct memory interleaving applied to each
column of the image. Moreover, � skews the columns of the
image to avoid the repetition of the memory banks in the
horizontal direction and permit access to the Row format.
Hence, the following hold:

Theorem 4.3 (Column). Memory scheme � permits conflict-free
access to any column of length mn located at the arbitrary
ðx; yÞ on the image.

Proof. See the Appendix. tu
Theorem 4.4 (Row). Memory scheme � permits conflict-free

access to any row of length mn� 1 originating at the arbitrary
ðx; yÞ on the image.

Proof. See the Appendix. tu

Furthermore, any Row pattern of length mn can be
accessed conflict-free when it originates at the left border of
a vertical stripe of the image (as shown, for example, in Fig. 2).
This is true because when x mod ðmÞ ¼ 0 Lemma 4.2 applies,
and thus, even for the origin pixel of the Row, congruence (2)
has only one solution pointing within the row. Hence:

Corollary 4.4. Memory scheme � permits conflict-free access to
any row of length mn originating at ðx; yÞ on the image when
x mod ðmÞ ¼ 0.

Similar arguments to those used to prove the above theorems
can be used to show the accessibility of the proposed
memory scheme to even more elaborate—and not so widely
used—access patterns. This section concludes by showing
the accessibility of a specific access pattern, which we call
multisquare-r. The importance of studying this pattern will be
shown in the following section, where we will describe a
technique to handle conflicts efficiently.

We define as multisquare-r a pattern consisting of
regularly scattered squares on the image (we consider this
as an auxiliary format to distinguish from the basic). In such a
pattern (Fig. 3), the size of each square is r� r pixels and the
squares are placed on a lattice with basis vectors ba ¼
ðr �m; 0Þ and bb ¼ ð0; r � nÞ, where r j m and r j n. A multi-
square consists of nr � m

r squares so that the total number of its
pixels is n�m. Note that this pattern consists of n�m pixels
instead of m� n, which is the case of the basic patterns.

Theorem 4.5 (Multisquare). A multisquare-r originating at the
arbitrary ðx; yÞ on the image can be accessed conflict-free when
x mod ðmÞ � m� r.

Proof. See the Appendix. tu

We can highlight the correctness of this theorem by
describing the construction of the pattern. Starting from a
conflict-free accessible Block (Corollary 4.1), we divide this

766 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 6, JUNE 2010

Block into subblocks of size r� r each. The idea is to
exchange each subblock, R, of the Block pattern with
another r� r block, R0, at a distant location of the � plane
such that both subblocks R and R0 have their corresponding
pixels mapped to the same banks.

An immediate result of Theorem 4.5 is that the m-n
Subsample of any m � n�m � n pixel region can be conflict-
free accessed unconditionally on the image. Note that the
m-n Subsample pattern is a multisquare with r ¼ 1 (multi-
square-1). For any multisquare-1 pattern, the hypothesis of
Theorem 4.5 is always true (i.e., x mod ðmÞ � m� 1) and:

Corollary 4.5. Memory scheme � permits conflict-free access to
the m-n Subsample of any m � n�m � n pixel region
originating at the arbitrary ðx; yÞ on the image.

5 MULTIPLE-FORMAT CONFLICT-FREE ACCESS TO

MacroSquares

The previous section has presented the efficiency of the
proposed memory scheme �, and showed that � can access
mn pixels at arbitrary locations on the image with either
none or at most one conflict depending on the access format
and its location. This section presents a technique exploiting
�’s properties to avoid the above conflicts and provide
access of the mn pixels in a single cycle. The presented
technique takes into account the correlation between
consecutive pixel requests in graphics applications. The
assumption is that in the course of processing an image/
frame, the algorithm does not access data from positions
which are unrelated to each other, but the sequence of
requests covers progressively a square region of arbitrary
origin. The term generic seems appropriate for this
assumption since it holds for many applications and many
applications can adapt to it.

In the following paragraphs, we will use the above
assumption to work on square regions of W �W pixels. We
show that an efficient solution for accessing such square
regions can be obtained forW ¼ mn. Such anmn�mn pixel
region will be denoted by a MacroSquare originating at the
arbitrary ðx; yÞ on the image. Further, the term scan of a

region will be referring to the sequence of accesses covering

the entire pixel region.
The proposed technique optimizes the cycle count of the

MacroSquare scan process when conflicts occur during the

pattern requests. In such cases, a straightforward applica-

tion of the scan process would take more thanmnþ 1 cycles.

Examples of such cases are depicted in Fig. 4, where we use

two different contiguous formats to scan a MacroSquare in an

8-bank organization with m ¼ 4 and n ¼ 2. We observe that

the conflict pixels (marked here with heavy lines) are stored

in distinct memory banks, and thus, we can access them

concurrently, i.e., in a single cycle. The same holds for the

conflict pixels when we use the Sparse-2 format to scan this

specific MacroSquare (Fig. 5). We refer to the conflict

occurring during an access cycle of a region scan as a local

conflict of that cycle. To each local conflict correspond an

unaccessed pixel of the requested pattern and an unused

memory bank (idle) called hereafter the missing pixel and the

missing bank of the requested pattern.
We will prove that � permits conflict-free access to any

arbitrary MacroSquare on the image in at most mnþ 1 cycles,

using any of the four basic access formats of �. Moreover, we

will show that no extra buffers are required for this operation.

This statement can be considered as dual to the statement

derived from the optimal solution presented in [3]: “any

arbitrary n2 � n2 MacroSquare on the image can be accessed

conflict-free in at mostn2 cycles, usingn2 þ 1 memory banks”

(consider m ¼ n for this comparison).
The following lemma determines the missing bank of the

pattern when a local conflict occurs (consider s ¼ 1 for the

contiguous patterns):

LENTARIS AND REISIS: A GRAPHICS PARALLEL MEMORY ORGANIZATION EXPLOITING REQUEST CORRELATIONS 767

Fig. 3. Auxiliary access format: multisquare-r.

Fig. 4. Scanning an 8� 8 MacroSquare with the Row and the Block
formats.

Fig. 5. Scanning an 8� 8 MacroSquare with the Sparse-2 format.

Lemma 5.1. The missing bank of a basic access format
originating at the arbitrary ðx; yÞ on the image is given by
the mapping

mbank ðx; y; sÞ ¼ �
x

m

j k
mþ ðxÞ mod ðsÞ; y

� �
: ð4Þ

Proof. See the Appendix. tu

The above proof uses the idea that in the case of a pattern
request causing a local conflict, there is no pixel of the
pattern mapped by � to the missing bank. In other words, it
shows that mbankðx; y; sÞ 6¼ �ðxq; yqÞ for any pixel ðxq; yqÞ of
the pattern.

Then, we prove that the missing pixels during a scan are
located in distinct banks. We begin by defining as typical
the scan of a region containing a multiple of mn pixels
when: 1) the basic access format does not change during the
scan, 2) each and every pixel of the region is requested
exactly once, and 3) none of the requested pixels lies
outside the region. Note that any contiguous format can be
used for a typical MacroSquare scan process, while the use of
a Sparse-s format is feasible only when s j m and s j n.
Typical MacroSquare scan examples are depicted in Figs. 4
and 5.

Theorem 5.1. For any typical MacroSquare scan which includes
local conflicts, the following hold:

1. Each missing pixel is stored in a distinct memory bank.
2. Each missing bank is unique.

Proof. The Column and the Sparse-m formats never lead to
local conflicts (Theorem 4.3 and Corollary 4.3). We there-
fore study a typical MacroSquare scan with the use of the
remaining basic formats: Row, Block, and Sparse-s with
s 6¼ m. We begin with part 1 of the theorem as follows:

1. Missing pixels
Row: using Theorem 4.4, we deduce that the

missing pixels of a typical MacroSquare scan—using
the Row format—are located at the rightmost
column of the MacroSquare. These pixels constitute
a Column pattern, and therefore, according to
Theorem 4.3, they are always stored in distinct
banks.

Block: using Theorem 4.1, we deduce that the
missing pixels of a typical MacroSquare scan—using
the Block format—are located at distances ðm;nÞ
from each other. These pixels constitute an m-n
Subsample of the MacroSquare, and therefore,
according to Corollary 4.5, they are always stored
in distinct banks.

Sparse-s: in this case, the number of the
MacroSquare’s missing pixels varies from m to
mn, depending on the MacroSquare’s origin on
the image. The down-right pixels of the mn
Sparse-s patterns constitute a multisquare-s. Using
Theorem 4.2, we deduce that the pixels of this
multisquare are the only candidate missing pixels
of the MacroSquare. To determine which of these
pixels are actually missing pixels, we use Cor-
ollary 4.2. More specifically, when a Sparse-s

request originates at ðxreq; yreqÞ on the image,
then the pattern’s down-right pixel is located at
ðxpix; ypixÞ ¼ ðxreq þ s � ðm� 1Þ; yreq þ s � ðn� 1ÞÞ.
Using Corollary 4.2, we deduce that the down-
right pixel of the Sparse-s pattern is a missing
pixel when xpix mod ðmÞ < m� s. To conclude
the Sparse-s case, we examine two different
subcases as imposed by the hypothesis of
Theorem 4.5. In the first subcase, the multisquare
originates at ðxsqr; ysqrÞ with xsqr mod ðmÞ �
m� s. Theorem 4.5 guarantees that all of the
multisquare’s pixels are stored in distinct memory
banks (no need to determine the conflicts in this
subcase). In the second subcase, we divide the
multisquare’s pixels into two sets: Pm and Ph. The
Pm set includes the pixels with the property
xpix mod ðmÞ < m� s, i.e., the missing pixels of
the MacroSquare. The Ph set includes the remain-
ing pixels of the multisquare, i.e., the nonmissing
pixels. We are interested only in the Pm set. Pm
misses certain pixel columns compared to the
multisquare examined. More specifically, each of
the squares constituting the examined multi-
square misses its left vertical stripe of width
ð�xsqrÞ mod ðmÞ, the pixels of which have the
property xpix mod ðmÞ � m� s. Therefore, we
can consider these rectangles to be part of
another distinct multisquare originating at
ðx0sqr; y0sqrÞ ¼ ðbxsqrm cmþm; ysqrÞ. Theorem 4.5
guarantees that no two pixels of the ðx0sqr; y0sqrÞ
multisquare are stored in the same bank.

2. Missing banks
According to Lemma 5.1, if a request originat-

ing at ðx; yÞ on the image leads to a local conflict,
then its missing bank will correspond to the bank
storing the pixel located at ðbxmcmþ ðxÞ mod ðsÞ; yÞ
on the image. We will denote this pixel as the
representative pixel of the request’s missing bank.
We show that the typical MacroSquare scan results
in a set of missing banks whose representative
pixels are stored in distinct memory banks (this is
equivalent to proving the uniqueness of the
missing banks).

Row: for a typical scan using the Row format,
we express the origins of the mn requests with
coordinates ði; jÞ relative to ðx; yÞ, where ðx; yÞ is
the origin of the MacroSquare. The requests’
origins can be referenced by ðx; yþ jÞ, with
j 2 ½0;mn� 1�. According to Lemma 5.1, the
missing banks of these requests store the pixels
located at ðbxmcm; yþ jÞ, with j 2 ½0;mn� 1�.
These pixels form a Column pattern originating
at ðbxmcm; yÞ, and according to Theorem 4.3, they
are stored in distinct memory banks.

Block: using the same argument as above, the
origins of the mn Block requests can be referenced
by ðxþ i �m; yþ j � nÞ, with i 2 ½0; n� 1� and
j 2 ½0;m� 1�. According to Lemma 5.1, the missing
banks of these requests store the pixels located at
ðbxmcmþ i �m; yþ j � nÞ, with i 2 ½0; n� 1� and

768 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 6, JUNE 2010

j 2 ½0;m� 1�. These pixels form a multisquare-1
pattern originating at ðbxmcm; yÞ, and according to
Corollary 4.5, they are stored in distinct memory
banks.

Sparse-s: the origins of the mn Sparse-s requests

can be referenced by ðxþ i0; yþ j0Þ, where i0 ¼
biscsmþ ðiÞ mod ðsÞ and j0 ¼ bjscsnþ ðjÞ mod ðsÞ,
with i 2 ½0; n� 1� and j 2 ½0;m� 1�. As men-

tioned before, in this case, the number of local

conflicts varies with respect to the MacroSquare’s

origin. According to Corollary 4.2, we are inter-

ested only in those Sparse-s requests for which

ðxþ biscsm þ ðiÞ mod ðsÞÞ mod m � s, and hence,

the requests for which

ðx mod mþ i mod sÞmod m � s:

Therefore, we examine only those values of i for

which we have s � x mod mþ i mod s < m. Using

this inequality in the mapping (4), we deduce that

the missing banks of the Sparse-s requests store the

pixels located at ðbxmc mþ bisc smþ ðxþ iÞ mod s,

y þ bjscsnþ j mod sÞ, where j 2 ½0;m� 1� and

0 � i � n� 1. Note that: 1) i might not cover its

entire domain because of the aforementioned

constraint and 2) the above formula describes a

(or part of a) multisquare-s originating at ðbxmcm; yÞ.
Theorem 4.5 guarantees that no two pixels of this

multisquare are stored in the same memory bank.tu
As an immediate result of Theorem 5.1, the proposed

memory scheme permits access to an arbitrary MacroSquare
in at most mnþ 1 cycles. More specifically, when the
selected format can be accessed conflict-free uncondition-
ally on the image (e.g., Column or Sparse-m), then the
MacroSquare scan requires exactly mn cycles. The same
holds for any selected format when the MacroSquare
originates at ðx; yÞ on the image with x mod m ¼ 0, because
no local conflicts occur. When none of the above is the case,
we can scan (read) the MacroSquare in exactly mnþ 1 cycles
as follows: first, we retrieve all of the pixels that correspond
to the forthcoming local conflicts, and afterward, during the
mn accesses, we use them to replace the missing pixels of the
requests. Theorem 5.1 guarantees that we can retrieve all of
the forthcoming missing pixels in a single cycle. Moreover,
Theorem 5.1 guarantees that no temporary buffers are
required to store these missing pixels. Since the missing banks
of a MacroSquare are unique, then in a single cycle, we can
store each missing pixel to the corresponding missing bank of
each future request (e.g., at the last memory address) and
hence, for the remaining mn accesses, we avoid all local
conflicts. Similarly, when the MacroSquare scan refers to
write operations, we use the first cycle to write the
forthcoming conflicts, and during the following mn cycles,
we complete the write access.

The statements of Theorem 5.1 hold even when the access
format changes during the MacroSquare scan. Such a format
change can be envisaged as a composition of two (or more)
distinct, nonoverlapping, typical region scans. For each of
these scans separately, the statements of Theorem 5.1 hold
because they constitute parts of typical MacroSquare scans.
To show that the composition of the two nonoverlapping

scans does not result in duplicate missing banks or duplicate
banks storing the missing pixels, we use the following idea:
assume that we perform two typical scans of an arbitrary
pixel region (less than or equal to a MacroSquare) using two
distinct basic access formats, namely F 1 and F 2. Employing
the ideas used in the above proofs, we can show that the
F 1 missing pixels are stored in the same set of memory banks
storing the F 2 missing pixels. More specifically, we reference
these missing pixels with coordinates relative to the origin of
the scanned region and we apply mapping � to them. This
process results in two bank sets, S1 and S2, which define the
banks storing the F 1 and F 2 missing pixels, respectively. At
this point, it is straightforward to show with isomorphisms
that S1 ¼ S2 (or, in the case of the format F 1 leading to less
conflicts than F 2, S1 	 S2). Furthermore, by applying
mapping (4) instead of mapping �, we can show that the
missing banks are also the same for the two region scans.
Consequently, the typical scan of a region results in the same
conflict banks for any selected access format; this fact allows
the change of the format during the MacroSquare scan
without violating the statements of Theorem 5.1.

To conclude this section, we mention that a MacroSquare
can be accessed in exactly mn cycles using an access format
different from the four basic. Such an example is the
multisquare-1 format, which, according to Corollary 4.5,
leads unconditionally to no local conflicts. Furthermore, we
note that the square region request correlation is not the only
case where � maintains its missing pixels property. Consider,
for example, the typical scan of an m2n� n horizontal stripe
with the Block and the Row formats: it is straightforward to
show, first, that the missing pixels of the Block requests are
located at horizontal distances m from each other. Thus, the
additive factor bxmc of � guarantees that these pixels are
stored in distinct memory banks. Second, the missing pixels
of the Row requests form columns of depth n located at
distances mn from each other. Given the distance between
them, the additive factor bxmc of � guarantees that these
columns are linearly shifted to each other exactly by n, and
thus, they involve distinct memory banks. In other exam-
ples, the missing pixels’ property holds for � even when the
scan is nontypical: consider mn successive vertical Block
requests which are offset by only one pixel (e.g., a scan used
in 2D image filtering). In this case, the missing pixels form an
mn Column pattern, and thus, they are stored in distinct
memory banks.

6 APPLICATIONS WITH � AND PERFORMANCE

EVALUATION

This section shows example applications of the � memory
organization. Further, it presents simulation results with
respect to the number of access cycles required when � is
used in real-world applications. In the following of the
section, we include examples showing certain cases in
which � features the same performance with the hitherto
published solutions utilizing an extra [3], [2], a prime [1],
[6], or a double number of banks [11]. We also present
applications involving memory conflicts in which we
measure the cycle overhead imposed by the correction
technique of Section 5. The demonstration examples fall
into two major categories of graphics applications, namely
video compression and image filtering.

LENTARIS AND REISIS: A GRAPHICS PARALLEL MEMORY ORGANIZATION EXPLOITING REQUEST CORRELATIONS 769

6.1 Application in Real-Time Motion Estimation

In a video encoder, the subsystem performing the most
intensive computations is the Motion Estimation (ME)
processor. During the ME process, each macroblock (a
fixed square of 16� 16 pixels) of the current frame is
subtracted from various regions of the reference frame. The
sequence of these operations is controlled by a “fast motion
estimation algorithm,” which matches the frame blocks
according to their similarities. A common practice in real-
time implementations of the ME process is the use of a
memory buffer storing the macroblock and its correspond-
ing search area [16]. The use of this buffer accelerates the
searching procedure by allowing parallel access to the
pixels of interest. The proposed mapping � can be
efficiently utilized to serve the above purpose. For proof
of concept, let us examine the case of an H.264 application
with specified memory bandwidth of 8 pixels per cycle.
Also, assume that this example application makes use of
almost every H.264 feature: multiple reference frames,
macroblock partitions, and half-pixel interpolations. We
will demonstrate how � supports such functionality with-
out delaying the algorithm, i.e., performing as the time-
efficient solution [3] to the memory organization problem.

We organize the 8-bank buffer using � with m ¼ 4 and
n ¼ 2 (Fig. 4). This scheme permits conflict-free access
(Section 4) unconditionally on the image to the Sparse-4 and
the 4-2 Subsample (i.e., multisquare-1) formats. We can scan
any 16� 16 pixel region of the search area in 32 clock cycles
by using the Sparse-4 format: we sequentially access 8-tuples
of distinct pixels until the entire 16� 16 region is covered.
Similarly, using the 4-2 Subsample format, we can scan any
8� 8 region in 8 clock cycles. Therefore, regardless of the
algorithm’s choices on candidate targets and partitioning
techniques, � can serve the pixel requests efficiently
(100 percent bandwidth utilization). It is worth mentioning
here that scanning a region with a sparse format has a twofold
advantage over the contiguous format scans. First, it allows
the algorithm to use only a subsampled part of the frame
during the search process (e.g., chessboard). Second, the use
of scattered samples instead of solid blocks leads to more
accurate estimations of the region’s final metric value during
the subtraction procedure. These estimations are important
to techniques such as the “early termination” and the
“speculative execution” [16], which speed up the algorithm
in real-time applications. To complete the example, we
examine the stage of the ME process, where the algorithm
requests half-pixels from the buffer. The H.264 standard
defines a 6-tap FIR filter for pixel interpolations [17]. To
support this function, we use the Row and Column formats:
the Row format for generating horizontal displacements and
the Column format for generating vertical displacements. It is
noteworthy that � imposes the same number of access cycles
with the time-efficient 9-bank organization (a linear skew
by 5) [3]. More specifically, to generate an entire interpolated
row/column of a 16� 16 region, the FIR filters will use 2þ
16þ 3 ¼ 21 distinct pixels. These pixels can be accessed in
exactly three cycles by using the 9-bank organization. The
same holds for � because it permits parallel access to at least
seven pixels of the Row/Column format from anywhere on the
frame (Section 4). Similarly, for an 8� 8 region interpolation,
the FIR filters operate on 2þ 8þ 3 ¼ 13 distinct pixels per
row/column of the region. In this case, both � and the 9-bank
organization lead to two access cycles per row/column of the

interpolated region. To conclude, in this example application,
we can make use of �’s properties to construct a more cost-
effective memory organization than those proposed in the
literature, without cutting back on the performance of the
algorithm. In the following sections, we describe two
example applications leading to conflicts and we measure
the cycle overhead imposed by the conflict handling
technique described in Section 5.

6.2 Application in High-Definition Real-Time Motion
Estimation

In this example application, we extend the use of the above
ME module to high-definition video encoders. Here, the
required memory bandwidth is 16 pixels per cycle (double
than the previous example) and we organize the 16-bank
buffer using � with m ¼ n ¼ 4 (Fig. 2). For simulation
purpose, the stages of the block matching algorithm have
been determined as follows: first, the algorithm performs a
“Three-Step Search” to find an integer pixel matching for
the entire 16� 16 macroblock. Second, it refines the result of
the first stage by partitioning the macroblock and searching
for further displacements of its submacroblocks. Specifi-
cally, for each 8� 8 partition, it performs a “Diamond
Search” starting from the motion vector of the first stage.
Third, it refines the results of the second stage by using half-
pixel interpolations: for each submacroblock, it performs a
local search in the vicinity of the motion vector of the
second stage (when no submacroblock displacements are
found in the second stage, it performs a half-pixel search for
the entire macroblock).

When m ¼ n ¼ 4, � permits conflict-free access to the
Sparse-4 format unconditionally on the frame (Section 4).
Therefore, during the first stage of the algorithm, we use the
Sparse-4 format to scan any requested 16� 16 region in
16 cycles without delaying the process. During the second
stage of the algorithm, we use the Sparse-2 format to scan
any requested 8� 8 pixel region in four cycles. However,
when these requests originate at positions ðx; yÞ with
x mod 4 6¼ 0, we must use one extra cycle to retrieve the
forthcoming conflicts of the scan process (as described in
Section 5). During the third stage of the algorithm, we use
the Column and Row formats to feed the 6-tap FIR filters
generating the requested half-pixels. For the same reason
described in the previous ME example, the use of � in the
third stage of the algorithm does not result in more access
cycles than the use of a time-efficient 17-bank organization
[3]: for the generation of 16 half-pixels (an interpolated
row/column), two access cycles are required, while for the
generation of 8 half-pixels, one access cycle is required.

We developed a bit accurate model of the above ME
processor and measured the number of memory accesses in
12 test sequences. The test sequences involved four well-
known videos (namely Pedestrian, Rush Hour, Blue Sky, and
River Bed, with 100 frames each) in three distinct frame
resolutions: 720� 576, 1;280� 720, and 1;920� 1;088. To
determine the access overhead imposed by the conflict
handling technique, we also measured the number of
memory accesses assuming a 17-bank organization [3] for
the processor’s memory. More specifically, we calculate the
cycle overhead of � as the percentage C��CO

C�
, where C� and

CO denote the access cycles imposed by the proposed 16-bank
and the time-efficient 17-bank organizations, respectively.
Table 2 presents the simulation results separately for each

770 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 6, JUNE 2010

frame resolution (table rows). The fourth and fifth columns of
Table 2 present the statistics of the memory accesses with
respect to the entire execution period of the algorithm
(accesses per frame and accessing overhead of �). The third
column presents the accessing overhead of � during the
second stage of the algorithm (i.e., during the macroblock
partitioning), where the proposed organization requires
more access cycles than the extra bank organization [3] (as
described above, we consider no overhead during the first
and third stages of the algorithm). The second column shows
the average number of cycles required for a typical 8� 8
region scan of the search area, taking into account the
commonly used “early termination” technique (stop scan-
ning when the accumulation of the metric value exceeds a
lower bound). The “early termination” technique leads to less
than 4 cycles per scan, and therefore, it increases the expected
cycle overhead of the conflict handling technique: the
correction cycle accounts for less than every 4þ 1 cycles.
However, note that this increase is counterbalanced by the
following fact. The percentage of the requested 8� 8 regions,
which require conflict handling, is less than the expected 3=4
due to the zero biased nature of the block matching
algorithms (approximately, this percentage is equal to
69 percent). Table 2 shows that the overhead decreases as
the video resolution increases primarily due to the increase of
the scan cycles, which indicates a higher correlation between
successive pixel requests. This is because the “early termina-
tion” technique becomes less efficient in high-definition
videos, where the pixels feature greater spatial correlations
with each other. The overall evaluation of the memory
performance showed that � features a notable degree of
overhead improvement when compared to the bank over-
heads of the hitherto published solutions. Table 2 shows that
� features an overall cycle overhead of less than 3.83 percent,
while [1], [2], [3], and [6] feature a bank overhead of 1=17, i.e.,
5.9 percent ([11] features an even greater bank overhead of
50 percent).

6.3 Application in Image Filtering

In the last example, we consider a well-known field of
graphics applications, namely the Image Filtering. Images
are filtered in the spatial or in the frequency domain [21],
depending on the purposes and the processing power of
each application. When filtering in the spatial domain, a
2D array of coefficients (K �K filter kernel, for K ¼
3; 5; . . .) slides across the image, determining the operations
to be performed on the pixels of each region. When filtering
in the frequency domain, the image is forward transformed,
multiplied by the frequency response of the filter, and
finally, inverse transformed to generate the filtered output.

The 2D transformation of a W �H image is most often
performed by H þW consecutive 1D transformations in the
following order: first, H row transformations are performed
on the image pixels, and afterward, W column transforma-
tions are performed on the transformed rows. Let us
assume an application implementing various filtering
techniques in both domains—spatial and frequency. A
parallelization for this application would require memory
access to three distinct formats: 1) Blocks from anywhere on
the image, 2) nonoverlapping Rows, and 3) nonoverlapping
Columns. The Blocks will be used during the sliding of the
spatial kernel to fetch the pixels participating in the local
filtering process. The Rows/Columns will be used to collect
the entire row/column of the image, which, in turn, will be
forwarded to the 1D transformation module. We organize
the memory of this application using � with m ¼ n ¼ K,
i.e., using a number of banks equal to the size of the
application’s filter kernel. During the frequency filtering, no
conflicts occur because the nonoverlapping Row/Column
requests are located at distances mn from each other (with
x mod m ¼ 0). During the spatial filtering, we will slide the
Block format in antiraster scan order (note that for a raster
scan, we can use a transposed version of �, obtained by
exchanging x with y in the expression of the � function).
Therefore, the down-right pixels (potential missing pixels)
of mn consecutive Block requests will constitute a Column
pattern. Based on this fact, we will use one cycle every
mn requests to access the forthcoming missing pixels of the
mn Blocks—when x mod m 6¼ 0.

Next, we describe the simulation results of the above
operations. We use � to organize the memory and we
measure the total number of access cycles, C�, required to
complete the filtering procedures. Also, we measure the
cycles, CO, required in the case of using the time-efficient
solution [3]. Based on the results, we calculate the cycle
overhead of � as the percentage C��CO

C�
. Fig. 6 depicts the

cycle overhead of � versus the number of required pixels per
cycle (the size of the filter’s kernel in different applications).
This figure depicts the following curves: the solid line (ii)
represents the mean value of the cycle overhead over the
spatial and frequency domain procedures. Curve (iii)
represents the cycle overhead when filtering in the spatial
domain. Curve (iv) represents the cycle overhead when
filtering in the frequency domain. We have to mention here
that even though there are no conflicts when filtering in the
frequency domain with the � organization, we consider a
cycle overhead due to the ability of [3] to accessmnþ 1 pixels
per Row/Column. The simulations showed that the variation
of the � overhead is limited (it approaches 0) with respect to
the size of the image, and thus, we do not include such

LENTARIS AND REISIS: A GRAPHICS PARALLEL MEMORY ORGANIZATION EXPLOITING REQUEST CORRELATIONS 771

TABLE 2
Performance of the Proposed Memory organization (m ¼ n ¼ 4) in Motion Estimation Applications

information here. Fig. 6 also depicts curve (i), which
represents the bank overhead of [3] (one extra bank) as an
indication of the hardware resource savings of �. Note that
the � overhead is always less than the extra bank overhead of
the time-efficient solution presented in [3] (and also less than
the prime bank overheads of [1], [6], which, in turn, are
greater than or equal to [3]).

7 ADVANTAGES OF THE PROPOSED ORGANIZATION

� fulfills the requirements of graphics applications and at the
same time keeps the number of banks equal to the number
of pixels accessed at each cycle. Compared to the hitherto
published techniques, which involve a number of banks
either prime or double than the accessed pixels, � improves
the complexity of the memory organization. The minimal
number of banks, being possibly a power of 2, proves the
proposed organization advantageous with respect to the
bandwidth utilization, the efficiency of the addressing
realization, the bank selection, and the routing circuits.

In memory organizations with skewing schemes, the
addressing and the bank selection calculations strongly
depend on the number of the memory banks B. This is
because they require modulo and division operations with
respect to B. The proposed memory organization provides
efficient solutions to the circuit design problem because it
avoids the use of prime numbers, and moreover, because it
allows B to be a power of 2. Regarding the bank selection,
mapping �ðx; yÞ requires only the following shift-add
operations: left-shift x by log2n bits, right-shift x by
log2m bits, and addition of these values to y. Since m and
n are predefined and constant values, the resulting hard-
ware is a small depth-two adder tree. Regarding the
address calculations, many mappings can be applied to
accommodate the proposed organization. For example, if
we denote by M the image width and form a constant
const ¼ dMme, then a straightforward mapping is

addrðx; yÞ ¼ x

m

j k
þ y

n

j k
� const: ð5Þ

Choosing the const to be a power of 2 leads to the
implementation of (5) with a single addition of the bit-shifted
values of x and y.

In most applications, the data accessed (read) from the
parallel memory must be rearranged to conform with a
predefined order before they are loaded into the processing
units (e.g., raster scan). Therefore, the outputs of the
memory banks must be routed to the output of the memory
by using permutation networks, which reorder the data
according to the application specifications. In graphics
applications, the number of required permutations increases
with the number of supported access patterns and with the
number of possible access locations on the image. Such
routing circuits can be quite subtle to design or/and quite
costly to implement in hardware. Focusing on improving
the interconnection networks for graphics applications, this
work has concentrated on exploiting the advantages of the
linear skewing schemes. More specifically, the proposed
mapping uses a simple composition of two linear skews: a
linear column skew within each image stripe and a linear
skew for the stripes (Section 3). Consequently, the organiza-
tion maintains the isotropic property within each stripe and
relatively at the stripe boundaries. Therefore, for intercon-
nection, we can employ widely used designs such as the
barrel shifters. Moreover, when B is a power of 2, the
implementation of a dlog2Be stage interconnection prevails
over the complicated hardware realization imposed by the
peculiarities of a prime B.

To estimate the memory bandwidth utilization, we
assume that the application performs correlated requests,
i.e., scanning MacroSquares. We use a statistical analysis
because the utilization depends on the origin of each request
(Section 4). We assume a uniform distribution of the requests
for MacroSquares on the image and we exclude the Column
and the Sparse-m access formats because these formats lead
unconditionally to 100 percent bandwidth utilization.

The scan of a MacroSquare originating at ðx; yÞ on the
image, with x mod ðmÞ ¼ 0, has no local conflicts for any
selected access format. Such MacroSquares are requested
with probability 1

m and result in 100 percent utilization of
the memory. For the scan of any other MacroSquare, we use
one extra cycle—as presented in Section 5—to avoid the
local conflicts during the mn requests. The latter Macro-
Squares are requested with probability m�1

m and their access
leads to mn

mnþ1 bandwidth utilization. Therefore, the average
bandwidth utilization of the proposed memory organiza-
tion when accessing arbitrary MacroSquares with any basic
access format (besides Column and Sparse-m) is

AUMS ¼
m2nþ 1

m2nþm ¼
B þ 1=m

B þ 1
:

This utilization is better than that derived from [3] by a
factor of

Bþ 1
m

B .

8 CONCLUSION

This paper introduces a technique for designing efficient
parallel memory organizations for graphics applications.
The technique bases on a mapping � leading to a memory
structure parameterized respectfully to the number of
modules, allowing the number of modules to range from
a power of 2 to any number and for any application. The
results of this work prove that the efficiency of parallel
accessing pixels in various patterns can be significantly
improved by using the mapping �. These patterns, either
contiguous or sparse, include the most often utilized shapes

772 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 6, JUNE 2010

Fig. 6. Comparing the cycle overhead of � to the bank overhead of [3] in
filtering applications.

in image/video algorithms. Moreover, this work assumes a
generic correlation among consecutive accesses in image/
video algorithms in order to propose a strategy for avoiding
the conflicts. The strategy retrieves the forthcoming
conflicts by introducing the probability of utilizing at most
one extra cycle every mn accesses depending on the access
pattern used and its origin on the image.

The probability of using an extra cycle every mn access
cycles, in the course of the algorithm, is an improved
overhead comparing to the extra memory module(s)
involved in related organizations. The simulation of
graphics applications verifies that in certain cases, the
performance of the proposed organization is equivalent to
that of techniques utilizing greater number of banks. In
other cases, the cycle overhead introduced by � is lesser
than the bank overhead of the hitherto published techni-
ques. The proposed design strategy leads to improved
bandwidth utilization, and furthermore, due to the
majority of graphics applications involving accesses of
dimensions equal to powers of 2, it reduces the cost of
realizing the bank/address computations and it provides a
straightforward design for the routing network. The key
advantage of the design technique is fulfilling the require-
ments of the graphics applications, though including a
minimal number of memory modules—equal to the
number of requested pixels.

APPENDIX

PROOFS

Proof of Lemma 4.1. Using integer arithmetic properties
[18], [19]:

xþ i � s
m

� �
� x

m

j k
¼ i � s

m

� �
þ x mod ðmÞ þ ði � sÞ mod ðmÞ

m

� �

¼ i � s
m

� �
þ "xi;

where "xi is clearly either 0 or 1.
Further, using modulo properties [18], [19] and the

fact that sjm (i.e., m ¼ s �m0), we get the following:

i � s � nþ j � sþ i � s
m

� �
þ "xi

� �
mod ðmnÞ

¼ i � s � nþ j � sþ i � s
m

� �
þ "xi �

i � s
m

� �
�m � n

� �
mod ðmnÞ

¼ i � s � nþ j � sþ i

m0

� �
þ "xi �

i

m0

� �
�m0 � s � n

� �
mod ðmnÞ

¼ s � n � ði� i

m0

� �
�m0Þ þ j � sþ i

m0

� �
þ "xi

� �
mod ðmnÞ

¼ n � s � ðiÞ mod ðm0Þ þ j � sþ i

m0

� �
þ "xi

� �
mod ðmnÞ:

Therefore, congruence (2) can be written as

�ði; jÞ þ "xi � 0 ðmod mnÞ; ð6Þ

where �ði; jÞ ¼ ðiÞ mod ðm0Þ � nsþ j � sþ b im0c.
Case 1. 0 � i < m and 0 � j < n.
In this case, the search for solutions ði; jÞ is constrained

within NNm �NNn, where NNl ¼ ½0; l� 1�. The mapping
�ði; jÞ: NNm �NNn ! NNmn is isomorphic. To show its

monomorphism, note that �ði; jÞ can be viewed as a
finite mixed-radix numeral system [20] of the simple form

ð�2 � �1�0 þ �1 � �0 þ �0Þ; 0 � �0 � �0 � 1;

0 � �1 � �1 � 1;

with �1 ¼ n, �0 ¼ s, �2 ¼ i mod ðm0Þ, �1 ¼ j, and
�0 ¼ b im0c. Each number is represented uniquely in such
a system as �2�1�0. Further, note that each ði; jÞ
corresponds to a distinct triplet �2�1�0 (each j corre-
sponds to a distinct �1 and each i corresponds to a
distinct �2�0). Combining these two facts, we conclude
that each ði; jÞ results in a distinct �ði; jÞ. Regarding the
epimorphism of �ði; jÞ, it is straightforward to show that
0 � �ði; jÞ � mn� 1. Therefore, � maps n �m elements
to a set with n �m elements. Since each mapping is
distinct (as shown above), � covers its entire range NNmn.

Since "xi � 1, we have �ði; jÞ þ "xi 6> mn in NNm �NNn,
and thus, (6) has a solution only when �ði; jÞ þ "xi ¼ 0,
or when �ði; jÞ þ "xi ¼ mn. Because �ði; jÞ is isomorphic,
there is only one point for which �ði; jÞ ¼ 0. It is
straightforward to show that this point is ði; jÞ ¼ ð0; 0Þ
and that it is always a solution to (6). Further, iff "xi ¼ 1
when � obtains its maximum value, then there exists a
second solution to (6). This solution must be an ði; jÞ for
which �ði; jÞ ¼ mn� 1. Because �ði; jÞ is isomorphic,
there is only one such point: ði; jÞ ¼ ðm� 1; n� 1Þ.

Case 2. 0 � i < m and �n < j < 0.
In this case, (6) has no solutions. It is straightforward

to show that �mn < �ði; jÞ þ "xi < mn. Also, it can be
proved, by contradiction, that �ði; jÞ þ "xi 6¼ 0: suppose
that there exists a pair ðir; jrÞ that results in zero, and
therefore,

ns � ðir mod m0Þ þ irs

m

� �
þ x mod mþ ðirsÞ mod m

m

� �
¼ jjrjs

) s < ns � ðir mod m0Þ þ x mod mþ irs
m

� �
< ns;

which is an immediate result of the j constraint. Observe
that the value ir mod m0 must be zero, or else the
expression will not evaluate to an integer less than ns.
Consequently, ir must be a multiple of m0, i.e.,
ir ¼ i0r �m0. Substituting ir to the above expression, we
conclude that the existence of the ðir; jrÞ pair implies the
correctness of the inequality s < i0r < ns. This inequality
cannot be true because ir < m (lemma hypothesis), and
therefore, i0r < s. tu

Proof of Lemma 4.2. The difference from the proof of
Lemma 4.1 lies in the fact that when i ¼ m� 1 and
x mod ðmÞ < s, we have

"xi ¼
x mod ðmÞ þ ði � sÞ mod ðmÞ

m

� �

¼ x mod ðmÞ � sþm
m

� �
¼ 0

because x mod ðmÞ � sþm < m.
Since "xi is zero when �ði; jÞ obtains its maximum

value mn�1, there can be no ði; jÞ such that �ði; jÞ þ
"xi ¼ mn. Therefore, the only solution to (2) is the one for
which �ði; jÞ þ "xi ¼ 0, i.e., ði; jÞ ¼ ð0; 0Þ. tu

LENTARIS AND REISIS: A GRAPHICS PARALLEL MEMORY ORGANIZATION EXPLOITING REQUEST CORRELATIONS 773

Proof of Theorem 4.2. The pixels of an s-s Subsampled area
m � s� n � s (i.e., a Sparse-s pattern) can be referenced
using relative coordinates i0 ¼ i � s and j0 ¼ j � s, where
i 2 ½0;m� 1� a n d j 2 ½0; n� 1�. F r o m �ðxp; ypÞ ¼
�ðxp þ i0; yp þ j0Þ, we derive (2). Because sjm, we can
use Lemma 4.1 and the arguments used in the proof of
Theorem 4.1 to conclude this proof. tu

Proof of Theorem 4.3. Two pixels ðxp; ypÞ and ðxq; yqÞwithin
the arbitrary column reside in the same memory bank
when �ðxp; ypÞ ¼ �ðxq; yqÞ. Using relative coordinates,
that is, when �ðxp; ypÞ ¼ �ðxp; yp þ jÞ, j 2 ½1;mn� 1�.
The derived congruence equation j � 0 mod mn has no
solution when 0 < j < mn, and thus, �ðxp; ypÞ ¼ �ðxq; yqÞ
never holds. tu

Proof of Theorem 4.4. When using relative coordinates for
two pixels within an arbitrary row of length mn, from
�ðxp; ypÞ ¼ �ðxp þ i0; ypÞ, i0 2 ½0;mn� 1�, we derive the
following equation:

i0 � nþ xp þ i0
m

� �
� xp

m

j k
� 0 ðmod mnÞ:

Substituting i0 with j �mþ i, where j 2 ½0; n� 1� and
i 2 ½0;m� 1� (it is straightforward to show that this is
an isomorphic mapping), we derive the equivalent
congruence:

i � nþ jþ xp þ i
m

� �
� xp

m

j k
� 0 ðmod mnÞ;

which is the equation studied in Lemma 4.1 with s ¼ 1.
Therefore, the proof of Theorem 4.4 is reduced to the proof
of Theorem 4.1. Using the same arguments, the only pixel
for which (2) might have more than one solution within
the row is the origin pixel of the row. The second solution
in this case cannot be other than ði; jÞ ¼ ðm� 1; n� 1Þ,
corresponding to i0 ¼ mn� 1. Therefore, any arbitrary
row of length mn� 1 can be conflict-free accessed. tu

Proof of Theorem 4.5. The pixels of the multisquare can be

referenced with coordinates ðxþ i0; yþ j0Þ, where i0 ¼
bircr �mþ ðiÞ mod ðrÞ and j0 ¼ bjrcr � nþ ðjÞ mod ðrÞ, with

i 2 ½0; n� 1� and j 2 ½0;m� 1�. To show that these pixels

are stored in distinct memory banks, we show that the

mapping �0ði; jÞ ¼ �ðxþ i0; yþ j0Þ : NNn �NNm ! NNnm is

isomorphic. Substituting i0 and j0 with i0 ¼ i �m�
ðiÞ mod ðrÞ � ðm� 1Þ and j0 ¼ j � n� ðjÞ mod ðrÞ � ðn� 1Þ
in �, we get (using integer arithmetic and modulo

properties [18], [19]):

�ðxþ i0; yþ j0Þ

¼ �ði; jÞ þ yþ xnþ xþ i mod ðrÞ
m

� �� �
mod ðmnÞ

¼ �ði; jÞ þ x mod ðmÞ þ i mod ðrÞ
m

� �
þ const

� �
mod ðmnÞ;

where

�ði; jÞ ¼ i mod ðrÞ þ j

r

� �
r

� �
� nþ j mod ðrÞ þ i

r

� �
r

� �
:

Since x mod ðmÞ � m� r, we have that

x mod ðmÞ þ i mod ðrÞ
m

� �
¼ 0:

Therefore, to complete the proof, it suffices to show that

the mapping �ði; jÞ: NNn �NNm ! NNnm is isomorphic. We

use a similar argument with that used in the proof of

Lemma 4.1; note that �ði; jÞ can be viewed as a finite

numeral system of the form

ð�1 � �0 þ �0Þ; 0 � �0 � �0 � 1;

with �1 ¼ ði mod ðrÞ þ bjrcrÞ and �0 ¼ ðj mod ðrÞ þ bircrÞ.
Further, note that �1 and �0 can be viewed individually

as numeral systems of the above form. It is straightfor-

ward to show that distinct ði; jÞ pairs result in distinct

representations �1�0 and that 0 � �ði; jÞ � mn� 1. It

follows that �ði; jÞ is an isomorphic mapping, as is

�0ði; jÞ, and thus, � does not map two distinct pixels of

multisquare in the same memory bank. tu
Proof of Lemma 5.1. In cases with local conflicts, we assume

that bxmod ðmÞ
s c � 1 and the access format is not a Column

(corollaries of Section 4). Also s ¼ 1 for the contiguous

patterns and sjm in case of sparse patterns. To prove the

lemma, we show that mbankðx; y; sÞ 6¼ �ðxq; yqÞ for each

pixel ðxq; yqÞ of the format, which leads to the local

conflict. To do so, we express the pixels of the format with

coordinates ði; jÞ relative to ðx; yÞ and show that the

equation �ðxþ i; yþ jÞ ¼ mbankðx; y; sÞ has no solutions

ði; jÞ pointing at a pixel of the format under examination.

Following this procedure for any access format, we

derive the generic congruence equation (for the Row

format we use the coordinate transformation used in the

proof of Theorem 4.4):

n � x mod ðmÞ
s

� �
� sþ "xi þ�ði; jÞ � 0 ðmod mnÞ; ð7Þ

where i 2 ½0;m� 1�; j 2 ½0; n� 1�, and �ði; jÞ is the

isomorphic mapping, NNm �NNn ! NNmn, used in the proof

of Lemma 4.1. The integer at the left-hand side of (7)

cannot be greater than or equal to 2mn because

�ði; jÞ < mn, "xi � 1, and bx mod ðmÞ
s c � s � m� 1, and it

cannot be zero because bx mod ðmÞ
s c � 1 (lemma hypoth-

esis). Therefore, (7) has a solution only when the above-

mentioned integer equalsmn, i.e., when �ði; jÞ þ "xi ¼ K,

where K ¼ n � ðm� bx mod ðmÞ
s csÞ. We show that �ði; jÞ þ

"xi 6¼ K because when �ðio; joÞ ¼ K, we have "xio¼ 1, and

when �ðiu; juÞ ¼ K � 1, we have "xiu¼ 0 ("xi can be either

0 or 1). Since �ði; jÞ is isomorphic, we have exactly one

ðio; joÞ and exactly one ðiu; juÞ:

ðio; joÞ ¼ m0 � x mod ðmÞ
s

� �
; 0

� �
;

ðiu; juÞ ¼ m� x mod ðmÞ
s

� �
� 1; n� 1

� �
:

In the first case, we get "xio ¼ b
mþðx mod mÞ mod ðsÞ

m c ¼ 1, and

in the second case, "xiu ¼ b
mþðx mod mÞmod ðsÞ�s

m c ¼ 0. tu

774 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 6, JUNE 2010

REFERENCES

[1] P. Budnick and D.J. Kuck, “Organization and Use of Parallel
Memories,” IEEE Trans. Computers, vol. 20, no. 12, pp. 1565-1569,
Dec. 1971.

[2] D.C. VanVoorhis and T.H. Morrin, “Memory Systems for Image
Processing,” IEEE Trans. Computers, vol. 27, no. 2, pp. 113-125, Feb.
1978.

[3] B. Chor, C.E. Leiserson, R.L. Rivest, and J.B. Shearer, “An
Application of Number Theory to the Organization of Raster-
Graphics Memory,” J. ACM, vol. 33, no. 1, pp. 86-104, Jan. 1986.

[4] K. Kim and V.K. Prasanna, “Latin Squares for Parallel Array
Access,” IEEE Trans. Parallel and Distributed Systems, vol. 4, no. 4,
pp. 361-370, Apr. 1993.

[5] A. Deb, “Multiskewing—a Novel Technique for Optimal Parallel
Memory Access,” IEEE Trans. Parallel and Distributed Systems,
vol. 7, no. 6, pp. 595-604, June 1996.

[6] J.W. Park, “Multiaccess Memory System for Attached SIMD
Computer,” IEEE Trans. Computers, vol. 53, no. 4, pp. 439-452, Apr.
2004.

[7] J.K. Tanskanen, R. Creutzburg, and J.T. Niittylahti, “On Design of
Parallel Memory Access Schemes for Video Coding,” J. VLSI
Signal Processing Systems, vol. 40, no. 2, pp. 215-237, June 2005.

[8] R.F. Sproull, I.E. Sutherland, A. Thompson, S. Gupta, and C.
Minter, “The 8 by 8 Display,” ACM Trans. Graphics, vol. 2, no. 1,
pp. 32-56, Jan. 1983.

[9] J.M. Frailong, W. Jalby, and J. Lenfant, “XOR-Schemes: A Flexible
Data Organization in Parallel Memories,” Proc. 1985 Int’l Conf.
Parallel Processing, pp. 276-283, Aug. 1985.

[10] H. Vandierendonck and K. De Bosschere, “XOR-Based Hash
Functions,” IEEE Trans. Computers, vol. 54, no. 7, pp. 800-812, July
2005.

[11] C. Liu, X. Yan, and X. Qin, “An Optimized Linear Skewing
Interleave Scheme for On-Chip Multi-Access Memory Systems,”
Proc. 17th Great Lakes Symp. VLSI, pp. 8-13, Mar. 2007.

[12] J. Tanskanen, T. Sihvo, J. Niittylahti, J. Takala, and R. Creutzburg,
“Parallel Memory Access Schemes for H.263 Encoder,” Proc. IEEE
Int’l Symp. Circuits and Systems, vol. 1, pp. 691-694, May 2000.

[13] R. Raghavan and J.P. Hayes, “On Randomly Interleaved Mem-
ories,” Proc. 1990 ACM/IEEE Conf. Supercomputing, pp. 49-58, Nov.
1990.

[14] N. Topham and A. Gonzalez, “Randomized Cache Placement
for Eliminating Conflicts,” IEEE Trans. Computers, vol. 48, no. 2,
pp. 185-192, Feb. 1999.

[15] A. Vitkovski, G. Kuzmanov, and G. Gaydadjiev, “Memory
Organization with Multi-Pattern Parallel Accesses,” Proc. Conf.
Design, Automation and Test in Europe, pp. 1414-1419, Mar. 2008.

[16] K. Babionitakis, G. Lentaris, K. Nakos, N. Vlassopoulos, D. Reisis,
G. Doumenis, G. Georgakarakos, and I. Sifnaios, “A Real-Time
Motion Estimation FPGA Architecture,” J. Real-Time Image
Processing, vol. 3, nos. 1/2, pp. 3-20, Mar. 2008.

[17] “H.264 Advanced Video Coding for Generic Audiovisual Servi-
ces,”ITU-T, May 2003.

[18] T.M. Apostol, Introduction to Analytic Number Theory. Springer-
Verlag, 1976.

[19] V. Shoup, A Computational Introduction to Number Theory and
Algebra. Cambridge Univ. Press, 2005.

[20] D.E. Knuth, Art of Computer Programming, Volume 2: Seminumerical
Algorithms, chapter 4. Addison-Wesley, 1981.

[21] R.C. Gonzalez and R.E. Woods, Digital Image Processing. Prentice-
Hall, 2002.

George Lentaris received the degree in physics
and the MSc degree in electronic automation
from the National Kapodistrian University of
Athens (NKUA) in 2004 and 2006, respectively.
He is currently working toward the PhD degree
in the Electronics Laboratory at the Department
of Physics, NKUA. His research interests in-
clude algorithms and parallel architectures for
applications in signal processing and image/
video processing.

Dionysios Reisis received the ptychion degree
in electrical engineering from the University of
Patras, Greece, in 1983, and the MSc and PhD
degrees in computer engineering from the
Department of Electrical and Computer Engi-
neering at the University of Southern California
in 1989. In 1990, he joined the Telecommunica-
tions Lab of the Division of Computer Science at
the National Technical University of Athens
(NTUA) as a research associate. In 1991, he

became a lecturer. Since 1996, he has been an assistant professor in
the Electronics Laboratory of the Department of Physics at the
University of Athens (NKUA). His research interests include parallel
architectures and algorithms for image and graph signal processing with
applications in VLSI environment, as well as real-time hardware design
and efficient algorithms design for telecommunication systems support.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

LENTARIS AND REISIS: A GRAPHICS PARALLEL MEMORY ORGANIZATION EXPLOITING REQUEST CORRELATIONS 775

