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Abstract—Silent data corruptions (SDCs) pose a significant
challenge to the reliable operation of modern microprocessors.
As the need for enhanced performance and reliability continues
to grow, it becomes essential to gain insight into the potential
malfunctions and the occurrence of unnoticeable errors that
microprocessors might encounter across different Instruction Set
Architectures (ISAs) and microarchitectures. This study delves
into assessing failures and rates of silent data corruptions within
CPUs, shedding light on the variables that impact these rates
and their consequences on system dependability. In this context,
we present a comprehensive comparative investigation of SDC
susceptibilities in CPU hardware structures, mainly targeting
the L1 data cache, L1 instruction cache, physical register file,
and a modern CPU’s primary functional units (FUs). We carry
out this investigation across three prominent CPU architectures:
x86, Arm, and RISC-V. Our aim is to analyze both transient
and permanent faults to evaluate the susceptibility of these
architectures to SDCs.

Index Terms—Reliability, soft errors, transient faults, perma-
nent faults, silent data corruptions, failure rates, instruction set
architectures, x86, Arm, RISC-V, CPU, microarchitecture-level
fault injection

I. INTRODUCTION

As microprocessors become increasingly dominant in criti-
cal computing systems, ensuring their reliability and fault tol-
erance becomes of utmost importance [1]. Silent data corrup-
tions (SDCs) represent a specific class of errors that can lead to
incorrect program execution without triggering any immediate
error notifications [2]–[4]. These errors are particularly insidi-
ous as they can propagate through the computational pipeline,
potentially leading to catastrophic consequences.

Modern microprocessors are composed of intricate struc-
tures, subsystems, and hardware elements that have the poten-
tial to impact both system functionality and performance [5]–
[8]. Evaluating the reliability of these hardware components in
isolation is a challenging task, influenced by numerous factors
related to design, environment, technology, and workloads.
The complexity increases further when considering the entire
system stack and the interaction patterns between software
layers and hardware elements [9]–[11]. Key design attributes,
such as size and complexity, play a pivotal role in determin-
ing the reliability of hardware components. Additionally, the
utilization of a hardware component and its involvement in ex-
ecuting operations are critical parameters affecting reliability
estimation [12], [13]. Components that are frequently used, in

particular, are more susceptible to wear-out effects, leading to
device degradation. Moreover, the interplay of frequency, volt-
age, and temperature conditions is closely tied to a computer
system’s reliability [14]–[17]. Specifically, microprocessors
operating in near-threshold voltage mode (a widely adopted
technique for power consumption reduction) are more prone
to experiencing timing errors, while overclocking and elevated
temperatures can accelerate chip wear-out effects [18]–[25].

When evaluating the reliability threat chain, the concept of
AVF (Architectural Vulnerability Factor) serves as a quan-
tification of the overall susceptibility of a system. This en-
compasses the entire sequence from activation to propagation,
ultimately affecting program output. AVF takes into consid-
eration the combined impact and interplay of both hardware
and software components. To illustrate, if a fault is present
within the physical register file of an out-of-order (OoO) mi-
croprocessor, the hardware might utilize the fault speculatively,
only to discard the result later due to a pipeline flush. In
such instances, the fault does not result in an actual failure.
However, even if the fault is activated and makes its way to
the software level, the software algorithm may not use the
corrupted data (discarding the fault), leading to the same end
result. The SRAM arrays located within CPUs, including the
L1 data cache, L1 instruction cache, and physical register file,
as well as the functional units (FUs) are crucial components
that are susceptible to SDCs. In this paper, our objective is
to investigate and compare the vulnerability of these SRAM
arrays and FUs to both transient and permanent fault types in
three prominent CPU architectures: x86, Arm, and RISC-V. By
identifying the factors contributing to SDC susceptibility, we
can formulate effective strategies for mitigating these risks.

II. BACKGROUND: CONCEPTS & DEFINITIONS

Modern computing systems are expected to provide a high
degree of reliability and accuracy in their operations. However,
the increasing complexity of central processing units (CPUs)
has brought to the forefront a range of challenges related
to failures and silent data corruptions (SDCs). This section
provides an overview of SDCs, introduces the architectural
vulnerability factor (AVF), and outlines the concept of Failures
in Time (FIT) rates, laying the foundation for understanding
the need to estimate these metrics across different instruction
set architectures (ISAs) and microarchitectures.
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Silent Data Corruptions (SDCs): Silent data corruptions
are elusive and potentially catastrophic errors that can occur
within a CPU, leading to incorrect computational results. Un-
like traditional hard faults that cause system crashes or imme-
diate error detection, SDCs stealthily corrupt data without any
apparent signs of a problem. These errors can go undetected
by both hardware and software mechanisms, leading to a
false sense of system integrity. SDCs can result from a wide
range of sources, including electrical noise, manufacturing
defects, and even radiation-induced soft errors. Their insidious
nature makes them particularly challenging to identify and
mitigate, posing a significant threat to the reliability of modern
computing systems.

Architectural Vulnerability Factor (AVF): Early identifi-
cation of weak hardware structures that are more vulnerable to
faults can prevent system failures and data corruptions, guiding
effective countermeasures. Calculating the Architectural Vul-
nerability Factor (AVF) for each microarchitectural component
is the comprehensive way to assess the vulnerability of the
entire system stack [7], [10], [26], [27]. Two prevailing meth-
ods to estimate the AVF are Architecturally Correct Execution
(ACE) analysis [28] and statistical fault injection (SFI) [26].
While ACE analysis is fast, it can overestimate AVF and
has implementation difficulties. SFI, although slower, provides
accurate results [7], [10]. Still, both methods operate at the
microarchitecture-level and calculate the cross-layer AVF [10]
of the system.

Failures in Time (FIT) Rate: The Failures in Time (FIT)
rate is a fundamental measure of a CPU’s reliability. It
quantifies the expected number of failures (which can include
both hard and soft errors) that a component or system can
experience per billion hours of operation. FIT rates provide
an essential basis for estimating the overall reliability of a
CPU. A lower FIT rate implies a more reliable component,
while a higher FIT rate indicates a greater likelihood of
failures occurring within a given timeframe. FIT rates are
crucial for evaluating the robustness of CPUs in safety-critical
applications

III. EXPERIMENTAL RESULTS & ANALYSIS

A. Fault Injection Methodology

The microarchitecture-level reliability assessment is per-
formed on top of gem5 simulator [29]–[31] using the GeFIN
fault injection framework [9], [32]. GeFIN was used to quan-
tify the Architectural Vulnerability Factor (AVF) [28] of the
system, which expresses the probability for a fault to lead to a
failure. Combined with the raw fault rate, AVF can be used to
estimate the FIT rate of a system. gem5 has been demonstrated
to accurately resemble several microarchitectural configura-
tions. Unlike RTL models, microarchitecture-level simulation
can achieve a faster simulation throughput by two orders of
magnitude, allowing simulation of realistic workloads, both in
bare metal and with an operating system, as well as evaluation
of multiple hardware components [7], [10], [13].

We have configured GeFIN to inject single-event transient
and permanent faults during system simulation in the following

components: L1 Data and Instruction Cache and the Physical
Register File. To achieve a statistical sample of 4% error
margin and 99% confidence level, we have injected 1,000
single bit transient faults and 1,000 single-bit permanent
faults on each of the target components. According to this
methodology, we present in the next sections the SDC AVF
results. Note that we do not present SDC results for permanent
fault on the Physical Register File, since our experiments show
zero probability of SDCs in this component.

B. Transient Faults SDC Rates for 3 ISAs

Transient faults, also known as soft errors or single-event
upsets (SEUs), are temporary and non-destructive errors in a
CPU. They occur when external factors, such as cosmic rays,
electrical noise, or voltage fluctuations, disrupt the normal
operation of the CPU. These faults are often unpredictable
and may result in wrong results after a computation, system
crash, or data corruptions. Transient faults can be mitigated
through error-correcting codes (ECC), e.g., parity or SECDED,
which can detect and/or correct errors in memory arrays, or
by designing fault-tolerant systems that can recover from these
errors.

In this subsection, we present the contribution of Silent Data
Corruptions (SDCs) to the overall AVF regarding transient
faults (i.e., soft errors), considering three major microarchitec-
tural components of an OoO core (i.e., the Physical Register
File, the L1 Instruction Cache, and the L1 Data Cache).

1) Physical Register File: Figure 1 presents the SDC AVF
results for the Integer Physical Register File (RF) across fifteen
benchmarks of the MiBench [33] suite for the three prevailing
ISAs (Arm, x86, RISC-V). As shown in Figure 1, the AVF
varies from 0% to 6.9% for Arm, 0% to 3.7% for x86 and 0.1%
to 9.9% for RISC-V. On average for all benchmarks, RISC-
V ISA shows the highest SDC AVF among all ISAs studied
in this paper (i.e., most benchmarks provide the highest SDC
AVF), while the x86 ISA shows the lowest SDC AVF among
all ISAs.

2) L1 Instruction Cache: Figure 2 presents the SDC AVF
results for the L1 Instruction Cache across fifteen benchmarks
of the MiBench [33] suite for the three ISAs (Arm, x86, RISC-
V). As shown in Figure 2, the AVF varies from 0.3% to 9.9%
for Arm, 0.3% to 4.6% for x86 and 0.2% to 5.7% for RISC-V.
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Fig. 1. SDC AVF for transient faults of the physical register file (PRF).
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On average for all benchmarks, Arm ISA shows the highest
SDC AVF among all ISAs studied in this paper (i.e., most
benchmarks provide the highest SDC AVF), while in most of
the benchmarks we can see that the x86 ISA shows the lowest
SDC AVF.

3) L1 Data Cache: Figure 3 presents the SDC AVF results
for the L1 Data Cache across fifteen benchmarks of the
MiBench [33] suite for the three ISAs (Arm, x86, RISC-V).
As shown in Figure 3, the AVF varies from 1.2% to 43% for
Arm, 0.7% to 32.6% for x86 and 0.8% to 40.2% for RISC-V.
On average for all benchmarks, Arm ISA shows the highest
SDC AVF among all ISAs studied in this paper (i.e., most
benchmarks provide the highest SDC AVF), while in most of
the benchmarks we can see that the x86 ISA shows the lowest
SDC AVF. The same observation exists for the L1 Instruction
Cache as well.

Overall, SDCs are much rarer in the Physical Integer
Register File and L1 Instruction Cache than in the L1 Data
Cache, where they are the dominant fault effect. Specifically,
wrong values in registers are very likely to result in illegal
memory accesses, and corrupted blocks in the L1 Instruction
cache will most likely result in an illegal instruction being
executed. Data cache corruptions, on the other hand, are less
likely to cause a crash and can easily propagate to the program
output resulting in an SDC.

C. Permanent Faults SDC Rates for 3 ISAs

Permanent faults, also known as hard errors, are long-lasting
or permanent defects in the CPU’s hardware or hardware
structures, such as SRAM arrays. These faults typically result
from manufacturing defects, physical damage (e.g., from over-
heating or electrical overloads), or wear and tear over time.
Permanent faults are persistent and usually require hardware
repair or replacement to resolve. Permanent faults may have
serious consequences for CPU operation, potentially resulting
in system instability, data corruption, or even severe system
failures, depending on their severity and frequency.

In this subsection, we present the contribution of Silent Data
Corruptions (SDCs) to the overall AVF regarding permanent
faults (i.e., hard errors), considering two major microarchi-
tectural components of an OoO core (i.e., the L1 Instruction
Cache, and the L1 Data Cache).
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Fig. 2. SDC AVF for transient faults of the L1 instruction cache.
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Fig. 3. SDC AVF for transient faults of the L1 data cache.

1) L1 Instruction Cache: Figure 4 presents the SDC AVF
results for permanent faults in the L1 Instruction Cache across
fifteen benchmarks of the MiBench [33] suite for the three
ISAs (Arm, x86, RISC-V). As shown in Figure 4, the AVF
varies from 0.1% to 2.3% for Arm, 0.1% to 1.3% for x86 and
0.3% to 2.7% for RISC-V. On average for all benchmarks,
x86 ISA shows the lowest SDC AVF among all ISAs studied
in this paper (i.e., most benchmarks provide the lowest SDC
AVF), while in most of the benchmarks we can see that the
RISC-V ISA shows the highest SDC AVF.

2) L1 Data Cache: Figure 5 presents the SDC AVF results
for permanent faults in the L1 Data Cache across fifteen
benchmarks of the MiBench [33] suite for the three ISAs
(Arm, x86, RISC-V). As shown in Figure 5, the AVF varies
from 5.1% to 53.3% for Arm, 4.4% to 64.7% for x86 and
4.4% to 70.8% for RISC-V. On average for all benchmarks,
the RISC-V ISA shows the highest SDC AVF among all ISAs
studied in this paper (i.e., most benchmarks provide the highest
SDC AVF).

Overall, the RISC-V ISA exhibits a significantly higher
probability of SDCs due to permanent faults compared to the
other ISAs, namely Arm and x86.

D. Functional Unit SDC Rates for x86 and RISC-V

Functional units in modern OoO microprocessors are also
a source of SDCs. In order to model permanent gate-level
faults in these units, we create statistical models describing the

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

ad
pc
m
_d
ec

ad
pc
m
_e
nc

ba
sic
m
at
h

bi
tc
ou
nt

bl
ow
fis
h_
de
c

bl
ow
fis
h_
en
c

co
rn
er
s
cr
c3
2

di
jks
tra

ed
ge
s

fft
_in
v

pa
tri
cia

qs
or
t

sh
a

sm
oo
th

SD
C

 A
V

F 
[%

]

Permanent Faults (L1I Cache)

Arm x86 RISC-V

Fig. 4. SDC AVF for permanent faults of the L1 instruction cache.
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Fig. 5. SDC AVF for permanent faults of the L1 data cache.

propagation of these faults from the faulty gate to the output.
In their simplest form these models constitute of a frequency
at which a functional unit presents a corruption of its output
(stuck-at-0, stuck-at-1 or bit-flip). In this section we present
the SDC AVF of the first of six integer adders1 in our OoO
core for fifteen different benchmarks. For these experiments
the output error frequency has been set to 1 output error per
100,000 operations and the output corruption model is set to
bit-flip.

Figure 6 presents the SDC AVF results for the afore-
mentioned fault model in integer adder #1 across fifteen
benchmarks of the MiBench [33] suite for x86 and RISC-
V. As shown in Figure 6, the AVF varies from 0% to 19.2%
for x86 and 0% to 30.4% for RISC-V. We notice significant
workload variability between the benchmarks, with sha and
bitcount having the largest AVFs. Several benchmarks have an
SDC AVF that is either very small or even zero. However, the
total AVF is substantially high, and it is mainly attributed to
Crashes. This means that in such units the microarchitectural
and software masking effects are significantly low.

IV. RELATED WORK

Numerous methodologies exist for estimating, predicting,
or measuring system reliability, each differing in terms of
their level of detail, accuracy, estimation time, and availability
during various stages of the design and product lifecycle.

In situations where silicon prototypes become available,
typically in the later stages of design and production, one of
the quickest and most efficient reliability assessment methods
is accelerated particle beaming. Particle accelerators have a
long history of use in studying device and application relia-
bility [34], [35]. During this process, the device is exposed to
a particle beam while being monitored for operational anoma-
lies. In references [36]–[39], authors provide experimental data
on beam testing of embedded ARM Cortex-A9 processors,
propose solutions for enhancing reliability, and discuss the
influence of operating systems on application and device
reliability. While particle beaming yields precise system-level
FIT rates because it targets the actual chip and introduces

1load/store address generation and branch target calculation is performed
in separate functional units
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Fig. 6. SDC AVF for permanent faults in an integer adder.

the actual particles responsible for flips, it only offers coarse-
grain system-level observations and does not uncover the root
causes of failures. Furthermore, it becomes available late in
the design cycle, close to the final product stage, making its
results more suitable for design validation than for making
critical design decisions. Substantial chip design revisions are
nearly impossible (or prohibitively expensive) at this stage.
However, one significant advantage of assessing physical chips
is the ability to operate them at native speeds.

Software-level fault injection tools are also widely em-
ployed to assess systems at native speeds [40]–[47]. Despite
their capacity to evaluate systems under realistic workloads,
they fall short in capturing hardware vulnerabilities since they
start with a corrupted instruction, not a hardware structure,
and provide limited information on the Hardware Vulnerability
Factor (PVF). It should be noted that PVF, while valuable for
enhancing software-side reliability, should be used cautiously
as it can provide misleading insights into the AVF estimation
of a system.

FPGAs have also been utilized for prototyping and relia-
bility analysis [48]–[52]. FPGA-based reliability assessment
offers high throughput and accuracy levels. However, it re-
quires a complete design, which is only available in the late
design stages. When dealing with early design stages where
only models are accessible, two abstraction levels of micro-
processor design can be used for reliability evaluation: RTL
(Register Transfer Level) and performance (microarchitecture
level) models. The RTL model provides detailed hardware
representation, while the microarchitecture-level model offers
a more abstract implementation. Both models provide high
observability and are available during the design cycle, with
microarchitecture-level models being accessible early in the
design process and RTL models available just before design
signoff. These models help overcome the limitations associated
with silicon prototypes, such as the lack of observability.
However, early design stage models may suffer from limited
throughput and potential inaccuracies, with these drawbacks
being inversely proportional—greater accuracy comes at the
expense of throughput, and vice versa. The following sections
provide a detailed analysis of the methodologies applicable at
these two abstraction levels.
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Microprocessor reliability evaluation is a broad and complex
endeavor, involving various methodologies across different
abstraction levels and stages of system design and lifetime.
Each approach has its advantages and disadvantages, and no
single method can cover all aspects of reliability estimation
trade-offs. These methodologies complement each other and
can contribute to different extents in guiding sound design
decisions. However, it remains challenging to determine which
of these techniques is closest to the ground truth and how
they interrelate due to the complexity involved. Therefore, the
aim of this dissertation is to enhance the overall assessment of
reliability at the microarchitecture level and provide additional
insights to refine the taxonomy of the reliability evaluation
ecosystem.

V. CONCLUSION

This paper provides a comprehensive analysis of silent data
corruptions in CPU hardware structures, specifically focusing
on the L1 data cache, L1 instruction cache, physical register
file, and functional units, across the three prevailing CPU ar-
chitectures: x86, Arm, and RISC-V. This research contributes
to our understanding of SDC risks in modern microprocessors
and guides future efforts in designing more robust and reliable
CPU architectures.
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