
Estimating the Failures and Silent Errors Rates of
CPUs Across ISAs and Microarchitectures

Dimitris Gizopoulos George Papadimitriou

University of Athens
Department of Informatics and Telecommunications
{dgizop, georgepap, od.chatzopoulos}@di.uoa.gr

Odysseas Chatzopoulos

Abstract—Silent data corruptions (SDCs) pose a significant
challenge to the reliable operation of modern microprocessors.
As the need for enhanced performance and reliability continues
to grow, it becomes essential to gain insight into the potential
malfunctions and the occurrence of unnoticeable errors that
microprocessors might encounter across different Instruction Set
Architectures (ISAs) and microarchitectures. This study delves
into assessing failures and rates of silent data corruptions within
CPUs, shedding light on the variables that impact these rates
and their consequences on system dependability. In this context,
we present a comprehensive comparative investigation of SDC
susceptibilities in CPU hardware structures, mainly targeting
the L1 data cache, L1 instruction cache, physical register file,
and a modern CPU’s primary functional units (FUs). We carry
out this investigation across three prominent CPU architectures:
x86, Arm, and RISC-V. Our aim is to analyze both transient
and permanent faults to evaluate the susceptibility of these
architectures to SDCs.

Index Terms—Reliability, soft errors, transient faults, perma-
nent faults, silent data corruptions, failure rates, instruction set
architectures, x86, Arm, RISC-V, CPU, microarchitecture-level
fault injection

I. INTRODUCTION

As microprocessors become increasingly dominant in criti-
cal computing systems, ensuring their reliability and fault tol-
erance becomes of utmost importance [1]. Silent data corrup-
tions (SDCs) represent a specific class of errors that can lead to
incorrect program execution without triggering any immediate
error notifications [2]–[4]. These errors are particularly insidi-
ous as they can propagate through the computational pipeline,
potentially leading to catastrophic consequences.

Modern microprocessors are composed of intricate struc-
tures, subsystems, and hardware elements that have the poten-
tial to impact both system functionality and performance [5]–
[8]. Evaluating the reliability of these hardware components in
isolation is a challenging task, influenced by numerous factors
related to design, environment, technology, and workloads.
The complexity increases further when considering the entire
system stack and the interaction patterns between software
layers and hardware elements [9]–[11]. Key design attributes,
such as size and complexity, play a pivotal role in determin-
ing the reliability of hardware components. Additionally, the
utilization of a hardware component and its involvement in ex-
ecuting operations are critical parameters affecting reliability
estimation [12], [13]. Components that are frequently used, in

particular, are more susceptible to wear-out effects, leading to
device degradation. Moreover, the interplay of frequency, volt-
age, and temperature conditions is closely tied to a computer
system’s reliability [14]–[17]. Specifically, microprocessors
operating in near-threshold voltage mode (a widely adopted
technique for power consumption reduction) are more prone
to experiencing timing errors, while overclocking and elevated
temperatures can accelerate chip wear-out effects [18]–[25].

When evaluating the reliability threat chain, the concept of
AVF (Architectural Vulnerability Factor) serves as a quan-
tification of the overall susceptibility of a system. This en-
compasses the entire sequence from activation to propagation,
ultimately affecting program output. AVF takes into consid-
eration the combined impact and interplay of both hardware
and software components. To illustrate, if a fault is present
within the physical register file of an out-of-order (OoO) mi-
croprocessor, the hardware might utilize the fault speculatively,
only to discard the result later due to a pipeline flush. In
such instances, the fault does not result in an actual failure.
However, even if the fault is activated and makes its way to
the software level, the software algorithm may not use the
corrupted data (discarding the fault), leading to the same end
result. The SRAM arrays located within CPUs, including the
L1 data cache, L1 instruction cache, and physical register file,
as well as the functional units (FUs) are crucial components
that are susceptible to SDCs. In this paper, our objective is
to investigate and compare the vulnerability of these SRAM
arrays and FUs to both transient and permanent fault types in
three prominent CPU architectures: x86, Arm, and RISC-V. By
identifying the factors contributing to SDC susceptibility, we
can formulate effective strategies for mitigating these risks.

II. BACKGROUND: CONCEPTS & DEFINITIONS

Modern computing systems are expected to provide a high
degree of reliability and accuracy in their operations. However,
the increasing complexity of central processing units (CPUs)
has brought to the forefront a range of challenges related
to failures and silent data corruptions (SDCs). This section
provides an overview of SDCs, introduces the architectural
vulnerability factor (AVF), and outlines the concept of Failures
in Time (FIT) rates, laying the foundation for understanding
the need to estimate these metrics across different instruction
set architectures (ISAs) and microarchitectures.

SLM Workshop



Silent Data Corruptions (SDCs): Silent data corruptions
are elusive and potentially catastrophic errors that can occur
within a CPU, leading to incorrect computational results. Un-
like traditional hard faults that cause system crashes or imme-
diate error detection, SDCs stealthily corrupt data without any
apparent signs of a problem. These errors can go undetected
by both hardware and software mechanisms, leading to a
false sense of system integrity. SDCs can result from a wide
range of sources, including electrical noise, manufacturing
defects, and even radiation-induced soft errors. Their insidious
nature makes them particularly challenging to identify and
mitigate, posing a significant threat to the reliability of modern
computing systems.

Architectural Vulnerability Factor (AVF): Early identifi-
cation of weak hardware structures that are more vulnerable to
faults can prevent system failures and data corruptions, guiding
effective countermeasures. Calculating the Architectural Vul-
nerability Factor (AVF) for each microarchitectural component
is the comprehensive way to assess the vulnerability of the
entire system stack [7], [10], [26], [27]. Two prevailing meth-
ods to estimate the AVF are Architecturally Correct Execution
(ACE) analysis [28] and statistical fault injection (SFI) [26].
While ACE analysis is fast, it can overestimate AVF and
has implementation difficulties. SFI, although slower, provides
accurate results [7], [10]. Still, both methods operate at the
microarchitecture-level and calculate the cross-layer AVF [10]
of the system.

Failures in Time (FIT) Rate: The Failures in Time (FIT)
rate is a fundamental measure of a CPU’s reliability. It
quantifies the expected number of failures (which can include
both hard and soft errors) that a component or system can
experience per billion hours of operation. FIT rates provide
an essential basis for estimating the overall reliability of a
CPU. A lower FIT rate implies a more reliable component,
while a higher FIT rate indicates a greater likelihood of
failures occurring within a given timeframe. FIT rates are
crucial for evaluating the robustness of CPUs in safety-critical
applications

III. EXPERIMENTAL RESULTS & ANALYSIS

A. Fault Injection Methodology

The microarchitecture-level reliability assessment is per-
formed on top of gem5 simulator [29]–[31] using the GeFIN
fault injection framework [9], [32]. GeFIN was used to quan-
tify the Architectural Vulnerability Factor (AVF) [28] of the
system, which expresses the probability for a fault to lead to a
failure. Combined with the raw fault rate, AVF can be used to
estimate the FIT rate of a system. gem5 has been demonstrated
to accurately resemble several microarchitectural configura-
tions. Unlike RTL models, microarchitecture-level simulation
can achieve a faster simulation throughput by two orders of
magnitude, allowing simulation of realistic workloads, both in
bare metal and with an operating system, as well as evaluation
of multiple hardware components [7], [10], [13].

We have configured GeFIN to inject single-event transient
and permanent faults during system simulation in the following

components: L1 Data and Instruction Cache and the Physical
Register File. To achieve a statistical sample of 4% error
margin and 99% confidence level, we have injected 1,000
single bit transient faults and 1,000 single-bit permanent
faults on each of the target components. According to this
methodology, we present in the next sections the SDC AVF
results. Note that we do not present SDC results for permanent
fault on the Physical Register File, since our experiments show
zero probability of SDCs in this component.

B. Transient Faults SDC Rates for 3 ISAs

Transient faults, also known as soft errors or single-event
upsets (SEUs), are temporary and non-destructive errors in a
CPU. They occur when external factors, such as cosmic rays,
electrical noise, or voltage fluctuations, disrupt the normal
operation of the CPU. These faults are often unpredictable
and may result in wrong results after a computation, system
crash, or data corruptions. Transient faults can be mitigated
through error-correcting codes (ECC), e.g., parity or SECDED,
which can detect and/or correct errors in memory arrays, or
by designing fault-tolerant systems that can recover from these
errors.

In this subsection, we present the contribution of Silent Data
Corruptions (SDCs) to the overall AVF regarding transient
faults (i.e., soft errors), considering three major microarchitec-
tural components of an OoO core (i.e., the Physical Register
File, the L1 Instruction Cache, and the L1 Data Cache).

1) Physical Register File: Figure 1 presents the SDC AVF
results for the Integer Physical Register File (RF) across fifteen
benchmarks of the MiBench [33] suite for the three prevailing
ISAs (Arm, x86, RISC-V). As shown in Figure 1, the AVF
varies from 0% to 6.9% for Arm, 0% to 3.7% for x86 and 0.1%
to 9.9% for RISC-V. On average for all benchmarks, RISC-
V ISA shows the highest SDC AVF among all ISAs studied
in this paper (i.e., most benchmarks provide the highest SDC
AVF), while the x86 ISA shows the lowest SDC AVF among
all ISAs.

2) L1 Instruction Cache: Figure 2 presents the SDC AVF
results for the L1 Instruction Cache across fifteen benchmarks
of the MiBench [33] suite for the three ISAs (Arm, x86, RISC-
V). As shown in Figure 2, the AVF varies from 0.3% to 9.9%
for Arm, 0.3% to 4.6% for x86 and 0.2% to 5.7% for RISC-V.

0.0%
1.0%
2.0%
3.0%
4.0%
5.0%
6.0%
7.0%
8.0%
9.0%

10.0%

ad
pc
m
_d
ec

ad
pc
m
_e
nc

ba
sic
m
at
h

bi
tc
ou
nt

bl
ow
fis
h_
de
c

bl
ow
fis
h_
en
c

co
rn
er
s
cr
c3
2

di
jks
tra

ed
ge
s

fft
_in
v

pa
tri
cia

qs
or
t

sh
a

sm
oo
th

SD
C

 A
V

F 
[%

]

Transient Faults (PRF)

Arm x86 RISC-V

Fig. 1. SDC AVF for transient faults of the physical register file (PRF).

SLM Workshop



On average for all benchmarks, Arm ISA shows the highest
SDC AVF among all ISAs studied in this paper (i.e., most
benchmarks provide the highest SDC AVF), while in most of
the benchmarks we can see that the x86 ISA shows the lowest
SDC AVF.

3) L1 Data Cache: Figure 3 presents the SDC AVF results
for the L1 Data Cache across fifteen benchmarks of the
MiBench [33] suite for the three ISAs (Arm, x86, RISC-V).
As shown in Figure 3, the AVF varies from 1.2% to 43% for
Arm, 0.7% to 32.6% for x86 and 0.8% to 40.2% for RISC-V.
On average for all benchmarks, Arm ISA shows the highest
SDC AVF among all ISAs studied in this paper (i.e., most
benchmarks provide the highest SDC AVF), while in most of
the benchmarks we can see that the x86 ISA shows the lowest
SDC AVF. The same observation exists for the L1 Instruction
Cache as well.

Overall, SDCs are much rarer in the Physical Integer
Register File and L1 Instruction Cache than in the L1 Data
Cache, where they are the dominant fault effect. Specifically,
wrong values in registers are very likely to result in illegal
memory accesses, and corrupted blocks in the L1 Instruction
cache will most likely result in an illegal instruction being
executed. Data cache corruptions, on the other hand, are less
likely to cause a crash and can easily propagate to the program
output resulting in an SDC.

C. Permanent Faults SDC Rates for 3 ISAs

Permanent faults, also known as hard errors, are long-lasting
or permanent defects in the CPU’s hardware or hardware
structures, such as SRAM arrays. These faults typically result
from manufacturing defects, physical damage (e.g., from over-
heating or electrical overloads), or wear and tear over time.
Permanent faults are persistent and usually require hardware
repair or replacement to resolve. Permanent faults may have
serious consequences for CPU operation, potentially resulting
in system instability, data corruption, or even severe system
failures, depending on their severity and frequency.

In this subsection, we present the contribution of Silent Data
Corruptions (SDCs) to the overall AVF regarding permanent
faults (i.e., hard errors), considering two major microarchi-
tectural components of an OoO core (i.e., the L1 Instruction
Cache, and the L1 Data Cache).

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

ad
pc
m
_d
ec

ad
pc
m
_e
nc

ba
sic
m
at
h

bi
tc
ou
nt

bl
ow
fis
h_
de
c

bl
ow
fis
h_
en
c

co
rn
er
s
cr
c3
2

di
jks
tra

ed
ge
s

fft
_in
v

pa
tri
cia

qs
or
t

sh
a

sm
oo
th

SD
C

 A
V

F 
[%

]

Transient Faults (L1I Cache)

Arm x86 RISC-V

Fig. 2. SDC AVF for transient faults of the L1 instruction cache.

0.0%
5.0%

10.0%
15.0%
20.0%
25.0%
30.0%
35.0%
40.0%
45.0%

ad
pc
m
_d
ec

ad
pc
m
_e
nc

ba
sic
m
at
h

bi
tc
ou
nt

bl
ow
fis
h_
de
c

bl
ow
fis
h_
en
c

co
rn
er
s
cr
c3
2

di
jks
tra

ed
ge
s

fft
_in
v

pa
tri
cia

qs
or
t

sh
a

sm
oo
th

SD
C

 A
V

F 
[%

]

Transient Faults (L1D Cache)

Arm x86 RISC-V

Fig. 3. SDC AVF for transient faults of the L1 data cache.

1) L1 Instruction Cache: Figure 4 presents the SDC AVF
results for permanent faults in the L1 Instruction Cache across
fifteen benchmarks of the MiBench [33] suite for the three
ISAs (Arm, x86, RISC-V). As shown in Figure 4, the AVF
varies from 0.1% to 2.3% for Arm, 0.1% to 1.3% for x86 and
0.3% to 2.7% for RISC-V. On average for all benchmarks,
x86 ISA shows the lowest SDC AVF among all ISAs studied
in this paper (i.e., most benchmarks provide the lowest SDC
AVF), while in most of the benchmarks we can see that the
RISC-V ISA shows the highest SDC AVF.

2) L1 Data Cache: Figure 5 presents the SDC AVF results
for permanent faults in the L1 Data Cache across fifteen
benchmarks of the MiBench [33] suite for the three ISAs
(Arm, x86, RISC-V). As shown in Figure 5, the AVF varies
from 5.1% to 53.3% for Arm, 4.4% to 64.7% for x86 and
4.4% to 70.8% for RISC-V. On average for all benchmarks,
the RISC-V ISA shows the highest SDC AVF among all ISAs
studied in this paper (i.e., most benchmarks provide the highest
SDC AVF).

Overall, the RISC-V ISA exhibits a significantly higher
probability of SDCs due to permanent faults compared to the
other ISAs, namely Arm and x86.

D. Functional Unit SDC Rates for x86 and RISC-V

Functional units in modern OoO microprocessors are also
a source of SDCs. In order to model permanent gate-level
faults in these units, we create statistical models describing the

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

ad
pc
m
_d
ec

ad
pc
m
_e
nc

ba
sic
m
at
h

bi
tc
ou
nt

bl
ow
fis
h_
de
c

bl
ow
fis
h_
en
c

co
rn
er
s
cr
c3
2

di
jks
tra

ed
ge
s

fft
_in
v

pa
tri
cia

qs
or
t

sh
a

sm
oo
th

SD
C

 A
V

F 
[%

]

Permanent Faults (L1I Cache)

Arm x86 RISC-V

Fig. 4. SDC AVF for permanent faults of the L1 instruction cache.

SLM Workshop



0.0%
10.0%
20.0%
30.0%
40.0%
50.0%
60.0%
70.0%
80.0%

ad
pc
m
_d
ec

ad
pc
m
_e
nc

ba
sic
m
at
h

bi
tc
ou
nt

bl
ow
fis
h_
de
c

bl
ow
fis
h_
en
c

co
rn
er
s
cr
c3
2

di
jks
tra

ed
ge
s

fft
_in
v

pa
tri
cia

qs
or
t

sh
a

sm
oo
th

SD
C

 A
V

F 
[%

]
Permanent Faults (L1D Cache)

Arm x86 RISC-V

Fig. 5. SDC AVF for permanent faults of the L1 data cache.

propagation of these faults from the faulty gate to the output.
In their simplest form these models constitute of a frequency
at which a functional unit presents a corruption of its output
(stuck-at-0, stuck-at-1 or bit-flip). In this section we present
the SDC AVF of the first of six integer adders1 in our OoO
core for fifteen different benchmarks. For these experiments
the output error frequency has been set to 1 output error per
100,000 operations and the output corruption model is set to
bit-flip.

Figure 6 presents the SDC AVF results for the afore-
mentioned fault model in integer adder #1 across fifteen
benchmarks of the MiBench [33] suite for x86 and RISC-
V. As shown in Figure 6, the AVF varies from 0% to 19.2%
for x86 and 0% to 30.4% for RISC-V. We notice significant
workload variability between the benchmarks, with sha and
bitcount having the largest AVFs. Several benchmarks have an
SDC AVF that is either very small or even zero. However, the
total AVF is substantially high, and it is mainly attributed to
Crashes. This means that in such units the microarchitectural
and software masking effects are significantly low.

IV. RELATED WORK

Numerous methodologies exist for estimating, predicting,
or measuring system reliability, each differing in terms of
their level of detail, accuracy, estimation time, and availability
during various stages of the design and product lifecycle.

In situations where silicon prototypes become available,
typically in the later stages of design and production, one of
the quickest and most efficient reliability assessment methods
is accelerated particle beaming. Particle accelerators have a
long history of use in studying device and application relia-
bility [34], [35]. During this process, the device is exposed to
a particle beam while being monitored for operational anoma-
lies. In references [36]–[39], authors provide experimental data
on beam testing of embedded ARM Cortex-A9 processors,
propose solutions for enhancing reliability, and discuss the
influence of operating systems on application and device
reliability. While particle beaming yields precise system-level
FIT rates because it targets the actual chip and introduces

1load/store address generation and branch target calculation is performed
in separate functional units

0%

5%

10%

15%

20%

25%

30%

ad
pc
m
_d
ec

ad
pc
m
_e
nc

ba
sic
m
at
h

bi
tc
ou
nt

bl
ow
fis
h_
de
c

bl
ow
fis
h_
en
c

co
rn
er
s
cr
c3
2

di
jks
tra

ed
ge
s

fft
_in
v

pa
tri
cia
qs
or
t

sh
a

sm
oo
th

SD
C

 A
V

F 
[%

]

Integer Functional Units

RISC-V x86

Fig. 6. SDC AVF for permanent faults in an integer adder.

the actual particles responsible for flips, it only offers coarse-
grain system-level observations and does not uncover the root
causes of failures. Furthermore, it becomes available late in
the design cycle, close to the final product stage, making its
results more suitable for design validation than for making
critical design decisions. Substantial chip design revisions are
nearly impossible (or prohibitively expensive) at this stage.
However, one significant advantage of assessing physical chips
is the ability to operate them at native speeds.

Software-level fault injection tools are also widely em-
ployed to assess systems at native speeds [40]–[47]. Despite
their capacity to evaluate systems under realistic workloads,
they fall short in capturing hardware vulnerabilities since they
start with a corrupted instruction, not a hardware structure,
and provide limited information on the Hardware Vulnerability
Factor (PVF). It should be noted that PVF, while valuable for
enhancing software-side reliability, should be used cautiously
as it can provide misleading insights into the AVF estimation
of a system.

FPGAs have also been utilized for prototyping and relia-
bility analysis [48]–[52]. FPGA-based reliability assessment
offers high throughput and accuracy levels. However, it re-
quires a complete design, which is only available in the late
design stages. When dealing with early design stages where
only models are accessible, two abstraction levels of micro-
processor design can be used for reliability evaluation: RTL
(Register Transfer Level) and performance (microarchitecture
level) models. The RTL model provides detailed hardware
representation, while the microarchitecture-level model offers
a more abstract implementation. Both models provide high
observability and are available during the design cycle, with
microarchitecture-level models being accessible early in the
design process and RTL models available just before design
signoff. These models help overcome the limitations associated
with silicon prototypes, such as the lack of observability.
However, early design stage models may suffer from limited
throughput and potential inaccuracies, with these drawbacks
being inversely proportional—greater accuracy comes at the
expense of throughput, and vice versa. The following sections
provide a detailed analysis of the methodologies applicable at
these two abstraction levels.

SLM Workshop



Microprocessor reliability evaluation is a broad and complex
endeavor, involving various methodologies across different
abstraction levels and stages of system design and lifetime.
Each approach has its advantages and disadvantages, and no
single method can cover all aspects of reliability estimation
trade-offs. These methodologies complement each other and
can contribute to different extents in guiding sound design
decisions. However, it remains challenging to determine which
of these techniques is closest to the ground truth and how
they interrelate due to the complexity involved. Therefore, the
aim of this dissertation is to enhance the overall assessment of
reliability at the microarchitecture level and provide additional
insights to refine the taxonomy of the reliability evaluation
ecosystem.

V. CONCLUSION

This paper provides a comprehensive analysis of silent data
corruptions in CPU hardware structures, specifically focusing
on the L1 data cache, L1 instruction cache, physical register
file, and functional units, across the three prevailing CPU ar-
chitectures: x86, Arm, and RISC-V. This research contributes
to our understanding of SDC risks in modern microprocessors
and guides future efforts in designing more robust and reliable
CPU architectures.

ACKNOWLEDGMENT

This work is supported by research gifts from Meta and
AMD and by the European Union’s Horizon Europe re-
search and innovation programme under grant agreements No
101070238 (NEUROPULS) and No 101097224 (REBECCA).
Views and opinions expressed are those of the authors only
and do not necessarily reflect those of the European Union.
Neither the European Union nor the granting authority can be
held responsible for them.

REFERENCES

[1] J. Srinivasan, S. Adve, P. Bose, and J. Rivers, “The impact of tech-
nology scaling on lifetime reliability,” in International Conference on
Dependable Systems and Networks, 2004, 2004, pp. 177–186.

[2] G. Papadimitriou and D. Gizopoulos, “Silent data corruptions: Microar-
chitectural perspectives,” IEEE Transactions on Computers, pp. 1–13,
2023.

[3] G. Papadimitriou, D. Gizopoulos, H. D. Dixit, and S. Sankar, “Silent data
corruptions: The stealthy saboteurs of digital integrity,” in 2023 IEEE
29th International Symposium on On-Line Testing and Robust System
Design (IOLTS), 2023, pp. 1–7.

[4] A. Singh, S. Chakravarty, G. Papadimitriou, and D. Gizopoulos, “Silent
data errors: Sources, detection, and modeling,” in 2023 IEEE 41st VLSI
Test Symposium (VTS), 2023, pp. 1–12.

[5] P. R. Bodmann, G. Papadimitriou, R. L. Rech Junior, D. Gizopoulos, and
P. Rech, “Soft error effects on arm microprocessors: Early estimations
versus chip measurements,” Computer, vol. 56, no. 7, pp. 4–6, 2023.

[6] P. R. Bodmann, G. Papadimitriou, R. L. R. Junior, D. Gizopoulos, and
P. Rech, “Soft error effects on arm microprocessors: Early estimations
versus chip measurements,” IEEE Transactions on Computers, vol. 71,
no. 10, pp. 2358–2369, 2022.

[7] G. Papadimitriou and D. Gizopoulos, “Avgi: Microarchitecture-driven,
fast and accurate vulnerability assessment,” in 2023 IEEE International
Symposium on High-Performance Computer Architecture (HPCA), 2023,
pp. 935–948.

[8] ——, “Characterizing soft error vulnerability of cpus across compiler
optimizations and microarchitectures,” in 2021 IEEE International Sym-
posium on Workload Characterization (IISWC), 2021, pp. 113–124.

[9] ——, “Anatomy of on-chip memory hardware fault effects across the
layers,” IEEE Transactions on Emerging Topics in Computing, vol. 11,
no. 2, pp. 420–431, 2023.

[10] ——, “Demystifying the system vulnerability stack: Transient fault
effects across the layers,” in 2021 ACM/IEEE 48th Annual International
Symposium on Computer Architecture (ISCA), 2021, pp. 902–915.

[11] P. Bodmann, G. Papadimitriou, D. Gizopoulos, and P. Rech, “Impact
of cores integration and operating system on arm processors reliability:
Micro-architectural fault-injection vs beam experiments,” in 2020 20th
European Conference on Radiation and Its Effects on Components and
Systems (RADECS), 2020, pp. 1–4.

[12] A. Chatzidimitriou, P. Bodmann, G. Papadimitriou, D. Gizopoulos, and
P. Rech, “Demystifying soft error assessment strategies on arm cpus:
Microarchitectural fault injection vs. neutron beam experiments,” in
2019 49th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), 2019, pp. 26–38.

[13] P. Bodmann, G. Papadimitriou, D. Gizopoulos, and P. Rech, “The
impact of soc integration and os deployment on the reliability of arm
processors,” in 2021 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), 2021, pp. 223–225.

[14] D. Gizopoulos, G. Papadimitriou, A. Chatzidimitriou, V. J. Reddi,
B. Salami, O. S. Unsal, A. C. Kestelman, and J. Leng, “Modern hardware
margins: Cpus, gpus, fpgas recent system-level studies,” in 2019 IEEE
25th International Symposium on On-Line Testing and Robust System
Design (IOLTS), 2019, pp. 129–134.

[15] G. Papadimitriou, A. Chatzidimitriou, and D. Gizopoulos, “Adaptive
voltage/frequency scaling and core allocation for balanced energy and
performance on multicore cpus,” in 2019 IEEE International Symposium
on High Performance Computer Architecture (HPCA), 2019, pp. 133–
146.

[16] G. Papadimitriou, M. Kaliorakis, A. Chatzidimitriou, D. Gizopoulos,
P. Lawthers, and S. Das, “Harnessing voltage margins for energy
efficiency in multicore cpus,” in Proceedings of the 50th Annual
IEEE/ACM International Symposium on Microarchitecture, ser. MICRO-
50 ’17. New York, NY, USA: Association for Computing Machinery,
2017, p. 503–516. [Online]. Available: https://doi.org/10.1145/3123939.
3124537

[17] G. Papadimitriou, M. Kaliorakis, A. Chatzidimitriou, D. Gizopoulos,
G. Favor, K. Sankaran, and S. Das, “A system-level voltage/frequency
scaling characterization framework for multicore cpus,” in IEEE Silicon
Errors in Logic – System Effects (SELSE 2017), 2017. [Online].
Available: https://doi.org/10.48550/arXiv.2106.09975

[18] I. Tsiokanos, G. Papadimitriou, D. Gizopoulos, and G. Karakonstantis,
“Boosting microprocessor efficiency: Circuit- and workload-aware as-
sessment of timing errors,” in 2021 IEEE International Symposium on
Workload Characterization (IISWC), 2021, pp. 125–137.

[19] A. Chatzidimitriou, G. Papadimitriou, D. Gizopoulos, S. Ganapathy, and
J. Kalamatianos, “Assessing the effects of low voltage in branch pre-
diction units,” in 2019 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), 2019, pp. 127–136.

[20] ——, “Analysis and characterization of ultra low power branch predic-
tors,” in 2018 IEEE 36th International Conference on Computer Design
(ICCD), 2018, pp. 144–147.

[21] K. Tovletoglou, L. Mukhanov, G. Karakonstantis, A. Chatzidimitriou,
G. Papadimitriou, M. Kaliorakis, D. Gizopoulos, Z. Hadjilambrou,
Y. Sazeides, A. Lampropulos, S. Das, and P. Vo, “Measuring and
exploiting guardbands of server-grade armv8 cpu cores and drams,” in
2018 48th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks Workshops (DSN-W), 2018, pp. 6–9.

[22] P. Koutsovasilis, C. D. Antonopoulos, N. Bellas, S. Lalis, G. Papadim-
itriou, A. Chatzidimitriou, and D. Gizopoulos, “The impact of cpu
voltage margins on power-constrained execution,” IEEE Transactions
on Sustainable Computing, vol. 7, no. 1, pp. 221–234, 2022.

[23] G. Papadimitriou, A. Chatzidimitriou, D. Gizopoulos, V. J. Reddi,
J. Leng, B. Salami, O. S. Unsal, and A. C. Kestelman, “Exceeding con-
servative limits: A consolidated analysis on modern hardware margins,”
IEEE Transactions on Device and Materials Reliability, vol. 20, no. 2,
pp. 341–350, 2020.

[24] A. Chatzidimitriou, G. Papadimitriou, and D. Gizopoulos, “Healthlog
monitor: Errors, symptoms and reactions consolidated,” IEEE Transac-
tions on Device and Materials Reliability, vol. 19, no. 1, pp. 46–54,
2019.

[25] ——, “Healthlog monitor: A flexible system-monitoring linux service,”

SLM Workshop



in 2018 IEEE 24th International Symposium on On-Line Testing And
Robust System Design (IOLTS), 2018, pp. 183–188.

[26] R. Leveugle, A. Calvez, P. Maistri, and P. Vanhauwaert, “Statistical fault
injection: Quantified error and confidence,” in 2009 Design, Automation
& Test in Europe Conference & Exhibition, 2009, pp. 502–506.

[27] S. Mukherjee, C. Weaver, J. Emer, S. Reinhardt, and T. Austin, “A
systematic methodology to compute the architectural vulnerability fac-
tors for a high-performance microprocessor,” in Proceedings. 36th An-
nual IEEE/ACM International Symposium on Microarchitecture, 2003.
MICRO-36., 2003, pp. 29–40.

[28] ——, “A systematic methodology to compute the architectural vulner-
ability factors for a high-performance microprocessor,” in Proceedings.
36th Annual IEEE/ACM International Symposium on Microarchitecture,
2003. MICRO-36., 2003, pp. 29–40.

[29] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5
simulator,” SIGARCH Comput. Archit. News, vol. 39, no. 2, p. 1–7, aug
2011. [Online]. Available: https://doi.org/10.1145/2024716.2024718

[30] J. Lowe-Power, A. M. Ahmad, A. Akram, M. Alian, R. Amslinger,
M. Andreozzi, A. Armejach, N. Asmussen, B. Beckmann, S. Bharadwaj,
G. Black, G. Bloom, B. R. Bruce, D. R. Carvalho, J. Castrillon, L. Chen,
N. Derumigny, S. Diestelhorst, W. Elsasser, C. Escuin, M. Fariborz,
A. Farmahini-Farahani, P. Fotouhi, R. Gambord, J. Gandhi, D. Gope,
T. Grass, A. Gutierrez, B. Hanindhito, A. Hansson, S. Haria, A. Harris,
T. Hayes, A. Herrera, M. Horsnell, S. A. R. Jafri, R. Jagtap, H. Jang,
R. Jeyapaul, T. M. Jones, M. Jung, S. Kannoth, H. Khaleghzadeh,
Y. Kodama, T. Krishna, T. Marinelli, C. Menard, A. Mondelli,
M. Moreto, T. Mück, O. Naji, K. Nathella, H. Nguyen, N. Nikoleris,
L. E. Olson, M. Orr, B. Pham, P. Prieto, T. Reddy, A. Roelke,
M. Samani, A. Sandberg, J. Setoain, B. Shingarov, M. D. Sinclair,
T. Ta, R. Thakur, G. Travaglini, M. Upton, N. Vaish, I. Vougioukas,
W. Wang, Z. Wang, N. Wehn, C. Weis, D. A. Wood, H. Yoon, and
Éder F. Zulian, “The gem5 simulator: Version 20.0+,” 2020. [Online].
Available: https://arxiv.org/abs/2007.03152

[31] “gem5 GitHub Repository,” https://github.com/gem5/gem5, accessed:
2023-07-25.

[32] A. Chatzidimitriou, G. Papadimitriou, C. Gavanas, G. Katsoridas, and
D. Gizopoulos, “Multi-bit upsets vulnerability analysis of modern mi-
croprocessors,” in 2019 IEEE International Symposium on Workload
Characterization (IISWC), 2019, pp. 119–130.

[33] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge,
and R. Brown, “MiBench: A free, commercially representative
embedded benchmark suite,” in Proceedings of the Fourth Annual
IEEE International Workshop on Workload Characterization. WWC-
4 (Cat. No.01EX538), 2001, pp. 3–14. [Online]. Available: https:
//doi.org/10.1109/WWC.2001.990739

[34] R. Baumann, “Radiation-induced soft errors in advanced semiconductor
technologies,” Device and Materials Reliability, IEEE Transactions on,
vol. 5, no. 3, pp. 305–316, Sept 2005.

[35] J. F. Ziegler and H. Puchner, SER–history, Trends and Challenges: A
Guide for Designing with Memory ICs. Cypress, 2010.

[36] T. Santini, L. Carro, F. R. Wagner, and P. Rech, “Reliability analysis
of operating systems and software stack for embedded systems,” IEEE
Transactions on Nuclear Science, vol. 63, no. 4, pp. 2225–2232, Aug
2016.

[37] A. B. de Oliveira, G. S. Rodrigues, and F. L. Kastensmidt, “Analyzing
lockstep dual-core arm cortex-a9 soft error mitigation in freertos
applications,” in Proceedings of the 30th Symposium on Integrated
Circuits and Systems Design: Chip on the Sands, ser. SBCCI ’17.
New York, NY, USA: ACM, 2017, pp. 84–89. [Online]. Available:
http://doi.acm.org/10.1145/3109984.3110008

[38] V. Fratin, D. Oliveira, C. Lunardi, F. Santos, G. Rodrigues, and P. Rech,

“Code-dependent and architecture-dependent reliability behaviors,” in
2018 48th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), 2018, pp. 13–26.

[39] A. Martı́nez-Álvarez, F. Restrepo-Calle, S. Cuenca-Asensi, L. M.
Reyneri, A. Lindoso, and L. Entrena, “A hardware-software approach
for on-line soft error mitigation in interrupt-driven applications,” IEEE
Transactions on Dependable and Secure Computing, vol. 13, no. 4, pp.
502–508, 2016.

[40] T. Tsai, R. Iyer, and D. Jewitt, “An approach towards benchmarking of
fault-tolerant commercial systems,” in Proceedings of Annual Sympo-
sium on Fault Tolerant Computing, 1996, pp. 314–323.

[41] S. Han, K. Shin, and H. Rosenberg, “Doctor: an integrated software fault
injection environment for distributed real-time systems,” in Proceedings
of 1995 IEEE International Computer Performance and Dependability
Symposium, 1995, pp. 204–213.

[42] J. Carreira, H. Madeira, J. Silva, and D. Informtica, “Xception: Software
fault injection and monitoring in processor functional units,” Proceed-
ings of the 5th IFIP Working Conference on Dependable Computing for
Critical Applications, 03 2001.

[43] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: Building customized
program analysis tools with dynamic instrumentation,” in Proceedings
of the 2005 ACM SIGPLAN Conference on Programming Language
Design and Implementation, ser. PLDI ’05. New York, NY, USA:
Association for Computing Machinery, 2005, p. 190–200. [Online].
Available: https://doi.org/10.1145/1065010.1065034

[44] H. Madeira, D. Costa, and M. Vieira, “On the emulation of software
faults by software fault injection,” in Proceeding International Con-
ference on Dependable Systems and Networks. DSN 2000, 2000, pp.
417–426.

[45] R. Natella, D. Cotroneo, J. A. Duraes, and H. S. Madeira, “On fault
representativeness of software fault injection,” IEEE Transactions on
Software Engineering, vol. 39, no. 1, pp. 80–96, 2013.

[46] J. Wei, A. Thomas, G. Li, and K. Pattabiraman, “Quantifying the
accuracy of high-level fault injection techniques for hardware faults,” in
2014 44th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, 2014, pp. 375–382.

[47] Q. Lu, M. Farahani, J. Wei, A. Thomas, and K. Pattabiraman, “Llfi:
An intermediate code-level fault injection tool for hardware faults,” in
2015 IEEE International Conference on Software Quality, Reliability
and Security, 2015, pp. 11–16.

[48] A. Sari and M. Psarakis, “A fault injection platform for the analysis of
soft error effects in fpga soft processors,” in 2016 IEEE 19th Interna-
tional Symposium on Design and Diagnostics of Electronic Circuits &
Systems (DDECS), 2016, pp. 1–6.

[49] M. Alderighi, F. Casini, S. D’Angelo, M. Mancini, S. Pastore, G. Sechi,
and R. Weigand, “Evaluation of single event upset mitigation schemes
for sram based fpgas using the flipper fault injection platform,” in 22nd
IEEE International Symposium on Defect and Fault-Tolerance in VLSI
Systems (DFT 2007), 2007, pp. 105–113.

[50] S. Di Carlo, P. Prinetto, D. Rolfo, and P. Trotta, “A fault injection
methodology and infrastructure for fast single event upsets emulation
on xilinx sram-based fpgas,” in 2014 IEEE International Symposium on
Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT),
2014, pp. 159–164.

[51] N. A. Harward, M. R. Gardiner, L. W. Hsiao, and M. J. Wirthlin,
“Estimating soft processor soft error sensitivity through fault injec-
tion,” in 2015 IEEE 23rd Annual International Symposium on Field-
Programmable Custom Computing Machines, 2015, pp. 143–150.

[52] G. L. Nazar and L. Carro, “Fast single-fpga fault injection platform,” in
2012 IEEE International Symposium on Defect and Fault Tolerance in
VLSI and Nanotechnology Systems (DFT), 2012, pp. 152–157.

SLM Workshop


