

A System-Level Voltage/Frequency Scaling
Characterization Framework for Multicore CPUs

George Papadimitriou, Manolis Kaliorakis,
Athanasios Chatzidimitriou, Dimitris Gizopoulos

University of Athens, Greece
{georgepap, manoliskal, achatz, dgizop}@di.uoa.gr

Greg Favor, Kumar Sankaran
Applied Micro

Santa Clara, CA, USA
{gfavor, ksankaran}@apm.com

Shidhartha Das
ARM

Cambridge, UK
Shidhartha.Das@arm.com

Abstract—Supply voltage scaling is one of the most effective

techniques to reduce the power consumption of microprocessors.
However, technology limitations such as aging and process
variability enforce microprocessor designers to apply pessimistic
voltage guardbands to guarantee correct operation in the field
for any foreseeable workload. This worst-case design practice
makes energy efficiency hard to scale with technology evolution.
Improving energy-efficiency requires the identification of the
chip design margins through time-consuming and comprehensive
characterization of its operational limits. Such a characterization
of state-of-the-art multi-core CPUs fabricated in aggressive
technologies is a multi-parameter process, which requires
statistically significant information.

In this paper, we present an automated framework to support
system-level voltage and frequency scaling characterization of
Applied Micro’s state-of-the-art ARMv8-based multicore CPUs
used in the X-Gene 2 micro-server family. The fully automated
framework can provide fine-grained information of the system’s
state by monitoring any abnormal behavior that may occur
during reduced supply voltage conditions. We also propose a new
metric to quantify the behavior of a microprocessor when it
operates beyond nominal conditions. Our experimental results
demonstrate potential uses of the characterization framework to
identify the limits of operation for improved energy efficiency.

Index Terms—energy efficiency, voltage and frequency scaling,

power consumption, error detection and correction, multicore
CPUs characterization.

I. INTRODUCTION

Technology evolution with shrinking transistors increases
chip density throughout the entire computing spectrum, from
handheld devices employed at the edge of the Internet-of-
Things (IoT) to servers, datacenters and supercomputers. The
gains are indisputable in terms of performance, but come at
the expense of increased power consumption, which elevates
energy efficiency as a primary objective of computing systems
design. One of the most effective techniques to improve
energy efficiency is to reduce the chip supply voltage.

During chip fabrication, process variations can affect
transistor dimensions (length, width, oxide thickness etc.) [1]
which have direct impact on the threshold voltage of a MOS
device [2]. As technology scales, the percentage of these
variations compared to the overall transistor size increases and
raises major concerns for designers, who intend to increase the
energy efficiency. This variation is classified as static
variation and remains constant after fabrication. Additional to
that, transistor aging and dynamic variation in supply voltage
and temperature, caused by different workload interactions, is

also of primary importance. Both static and dynamic
variations lead microprocessor architects to apply aggressive
guardbands (operating voltage and frequency settings) in order
to avoid timing failures and guarantee correct operation, even
in the worst-case conditions excited by unknown workloads
[3] [4]. However, these guardbands impede the low power
consumption and the high performance, which can be derived
by reducing the supply voltage and increasing the operation
frequency, respectively.

To bridge the gap between energy efficiency and
performance improvements, several hardware and software
techniques have been proposed, such as Dynamic Voltage and
Frequency Scaling (DVFS) [5]. The premise of DVFS is that a
microprocessor’s workloads as well as the cores’ activity vary,
so when one or more cores have less or no work to perform,
the frequency, and thus, the voltage can be slowed down
without affecting performance adversely. However, to further
reduce the power consumption by keeping the frequency high
when it is necessary, recent studies aim to uncover the
conservative operational limits, by performing an extensive
system-level voltage scaling characterization of commercial
microprocessors’ operation beyond nominal conditions [6] [7]
[8] [9] [10]. These studies leverage the Reliability,
Accessibility, and Serviceability (RAS) features, provided by
the hardware (such as ECC), in order to expose reduced but
safe operating margins.
 A major challenge, however, in voltage scaling
characterization at the system level is the time-consuming
large population of experiments due to: (i) different voltage
and frequency levels, (ii) different characterization setups (e.g.
for a multicore chip both the cases of running a benchmark in
each individual core and simultaneously in all cores should be
examined), and (iii) diverse-behavior workloads. In addition,
due to the non-deterministic behavior of the experiments,
caused by different microarchitectural events that occur in a
system-level characterization and to ensure the statistical
significance of the observations, the same experiments should
be repeated multiple times at the same voltage level, which
further increases the characterization time. Moreover, when
the system operates in voltage levels that are significantly
lower than its nominal value, system crashes are frequent and
unavoidable and the recovery from these cases constitutes a
significant portion of the overall experiment time. For these
reasons, manually-controlled voltage scaling characterization
is infeasible; a generic and automated experimental framework
that can be easily replicated in different machines is required.
Furthermore, such a framework has to ensure the credibility of

the delivered results because when a system operates beyond
nominal conditions it can fall in unstable states.

In this paper, we present a versatile framework to study the
behavior of multicore CPUs, when they operate under scaled
voltage and frequency conditions. We build a
voltage/frequency (V/F) scaling characterization framework
on Applied Micro’s (APM) X-Gene 2 micro-server family,
fabricated in 28nm process technology that consists of eight
ARMv8-compliant cores. The proposed infrastructure is fully
aligned with all the aforementioned requirements and aims to
investigate the limits of a state-of-the-art microprocessor
architecture beyond the nominal conditions: it is fast, reliable
and easily extensible and replicable. The characterization
framework records several different types of deviations from
the normal execution as proxies for the effect of voltage and
frequency scaling.

We also propose a metric called Severity Function, to both
quantify the severity and illustrate the scaling of abnormal
behaviors due to voltage reduction. The metric’s contribution
is twofold: (1) to aggregate the results produced by multiple
runs, and (2) to quantify a microprocessor’s ability to operate
beyond nominal conditions. To the best of our knowledge, this
is the first study that presents in detail an automated
infrastructure for the characterization of ARM-based systems
beyond nominal conditions.

The rest of the paper is organized as follows. Section II
describes all the related works, while Section III describes all
the details of the X-Gene 2 and our proposed framework.
Finally, Section IV presents our experimental results and
Section V summarizes all our conclusions.

II. RELATED WORK

During the last years, the goal for improving
microprocessors’ energy efficiency, while reducing their
power supply voltage is a main concern of many scientific
studies that investigate the chips’ operation limits in nominal
and off-nominal conditions. For example, in [11] [12] and [13]
the authors propose methods to maximize voltage droops in
single core and multicore chips in order to investigate their
worst case behavior due to the generated voltage noise effects.

In order to eliminate the effects of voltage noise, studies
such as [14] and [15] focus on the prediction of critical parts
of benchmarks, in which large voltage noise glitches are likely
to occur, leading to system malfunctions. In the same context,
several studies either in the hardware or in the software level
were presented to mitigate the effects of voltage noise [4] [16]
[17] [18] [19] or to recover from them after their occurrence
[20].

Apart from these studies that are mainly concentrated on the
core and the voltage droops, [7] and [8] focus on the
observation of the errors manifested on caches of a
commercial Intel Itanium processor during the execution of
benchmarks in voltage conditions in off-nominal values. The
authors in these studies observe how the ECC rates increase
along with the supply voltage reduction. Moreover, the
authors in [21] [22] and [23] propose several

microarchitectural approaches to ensure the correct operation
of caches in ultra-low voltage conditions.

Finally, the characterization studies of commercial chips in
off-nominal voltage conditions are limited [6] [7] [8] [9] [10],
strengthening the purpose of the existence of our proposed
framework that targets the commercial APM X-Gene 2 micro-
server (fabricated in 28nm process technology).

III. SYSTEM ARCHITECTURE

The APM X-Gene 2 micro-server consists of eight 64-bit
ARMv8 cores. The X-Gene 2 architecture offers high-end
processing performance and capabilities. For example, the X-
Gene 2 subsystem features the Power Management processor
(PMpro) and Scalable Lightweight Intelligent Management
processor (SLIMpro) to enable breakthrough flexibility in
power management, resiliency, and end-to-end security for a
wide range of applications. The PMpro, a 32-bit dedicated
processor provides advanced power management capabilities
such as multiple power planes and clock gating, thermal
protection circuits, Advanced Configuration Power Interface
(ACPI) power management states and external power
throttling support. The SLIMpro, a 32-bit dedicated processor
monitors system sensors, configure system attributes (e.g.
regulate supply voltage, change DRAM refresh rate etc.) and
access all error reporting infrastructure, using an integrated
I2C controller as the instrumentation interface between the X-
Gene 2 Cores and this dedicated processor. SLIMpro can be
accessed by the system’s running Linux Kernel.

Fig. 1. X-Gene 2 micro-server power domains block diagram. The outlines

with dashed lines present the independent power domains of the chip.

X-Gene 2 has three independently regulated power domains
(as shown in Fig. 1 above):
1) PMD (Processor Module): Each PMD contains two

ARMv8 cores. Each of the two cores has separate
instruction and data caches, while they share a unified L2
cache. The operating voltage of all four PMDs together
can change with a granularity of 5mV beginning from
980mV. While PMDs operate at the same voltage, each
PMD can operate in a different frequency. The frequency
can range from 300MHz up to 2.4GHz at 300MHz steps.

L3

PCP/SoC

0 1

L1I

L1D L1D

L2

PMD 0
L1I

2 3

L1I

L1D L1D

L2

PMD 1
L1I

4 5

L1I

L1D L1D

L2

PMD 2
L1I

6 7

L1I

L1D L1D

L2

PMD 3
L1I

PMpro SLIMpro

MCU MCU MCU MCU

DDR3 SDRAM

PMD

Standby
Power Domain

2) PCP (Processor Complex)/SoC: It contains the L3 cache,
the DRAM controllers, the central switch and the I/O
bridge. The PMDs do not belong to the PCP/SoC power
domain. The voltage of the PCP/SoC domain can be
independently scaled downwards with a granularity of
5mV beginning from 950mV.

3) Standby Power Domain: This includes the SLIMpro and
PMpro microcontrollers and interfaces for I2C buses.

TABLE I summarizes the most important architectural and
microarchitectural parameters of the APM X-Gene 2 micro-
server that is used in our study.

TABLE I: BASIC CHARACTERISTICS OF X-GENE 2.

Parameter Configuration

ISA ARMv8 (AArch64, AArch32, Thumb)
Pipeline 64-bit OoO (4-issue)

CPU 8 Cores, 2.4GHz
L1 Instr. Cache 32KB per core (Parity Protected)
L1 Data Cache 32KB per core (Parity Protected)

L2 cache 256KB per PMD (ECC Protected)
L3 cache 8MB (ECC Protected)

IV. FRAMEWORK OVERVIEW

The primary goals of the proposed framework are: (1) to
identify the target system’s limits when it operates at scaled
voltage and frequency conditions, and (2) to record/log the
effects of a program’s execution under these conditions. The
framework provides the following features; it:

§ compares the outcome of the program with the correct
output of the program when the system operates in
nominal conditions to record Silent Data Corruptions
(SDCs),

§ monitors the exposed corrected and uncorrected errors
from the hardware platform’s error reporting
mechanisms

§ recognizes when the system is unresponsive to restore
it automatically,

§ monitors system failures (crash reports, kernel hangs,
etc.),

§ determines the safe, unsafe and non-operating voltage
regions for each application for all frequencies, and

§ performs massive repeated executions of the same
configuration.

The automated framework (outlined in Fig. 2) is easily
configurable by the user, and can be embedded to any Linux-
based system, with similar voltage and frequency regulation
capabilities. As shown in Fig. 2, the proposed framework
consists of three phases (Initialization, Execution, Parsing).

To completely automate the characterization process, and
due to the frequent and unavoidable system crashes that occur
when the system operates in reduced voltage levels, we set up
a Raspberry Pi board connected externally to the X-Gene 2
board which behaves as a watchdog. The Raspberry is
physically connected to both the Serial Port and the Power and
Reset buttons of the system board to enable physical access to
the system.

We discuss the several challenges that were taken into
consideration for a solid development of such a framework.

Safe Data Collection. Given that a system operating
beyond nominal conditions often has unexpected behaviors
(e.g. file system driver failures), there is the need to correctly
identify and store all the essential information in log files (to
be subsequently parsed and analyzed). The automated
framework was developed in such a way to collect and store
safely all the necessary information about the experiments.

Failure Recognition. Another challenge is to recognize and
distinguish the system and program crashes or hangs. This is a
very important feature for the Parsing Phase to easily identify
and classify the final results, with the most possible distinct
information concerning the characterization.

Reliable Cores Setup. Another major challenge we also
face is that the characterization of a system is performed
primarily by using properly chosen programs in order to
provide diverse behaviors and expose all the potential
deviations from nominal conditions. It is thus important to run
the selected benchmarks in reliable cores setup. This means
that the cores, where the benchmark runs, must be isolated and
unaffected from the other active processes of the kernel in
order to capture only the effects of the desired benchmark.

Iterative Execution. The non-deterministic behavior of the
characterization results due to several microarchitectural
features makes necessary to repeat the experiments multiple
times with the same configuration to eliminate the probability
of misleading results.

In the following subsections, we analyze each of these
functionalities grouped in the 3 distinct phases of the
framework’s execution (Initialization, Execution, Parsing),
and describe their detailed implementation and how these
challenges were overcome.

Fig. 2. Framework Layout.

A. Initialization Phase
During the initialization phase, a user can declare a

benchmark list with any input dataset to run in any desirable
characterization setup. The characterization setup includes the
voltage and frequency (V/F) values under which the

Initialization

Execution

Benchmark

Results

Voltage
Reduction

Configuration

Reset Switch

Power Switch

Watchdog
monitor

Execution Loop

Result
Parsing Final CSV

Results

Raw data

Cloud

Initialization
Phase

Execution
Phase

Parsing
Phase

Serial

Network

experiment will take place and the cores where the benchmark
will be run; this can be an individual core, a pair of cores in
the same PMD, or all of the available eight cores in the
microprocessor. The characterization setup depends on the
power domains supported by the chip, but our framework is
easily extensible to support the power domain features of
different CPU chips.

This phase is in charge of setting the voltage and frequency
ranges, the initial voltage and frequency values, with which
the characterization begins, and to prepare the benchmarks:
their required files, inputs, outputs, as well as the directory
tree where the necessary logs will be stored. This phase is
performed at the beginning of the characterization and each
time the system is restored by the Raspberry (for example,
after a system crash) in order to proceed to the next run until
the entire Execution Phase finishes. Each time the system is
restored, this phase restores the initial user’s desired setup and
recognizes where and when the characterization has been
previously stopped. This step is essential for the
characterization to proceed sequentially according to user’s
choice, and to complete the whole Execution Phase.

This phase is also responsible to overcome the challenge of
reliable cores setup that is responsible to ensure the
correctness and integrity of our results. The benchmark must
run in an “as bare as possible” system without the interference
of any other running process. Therefore, reliable cores setup is
twofold: first, it recognizes these cores or group of cores that
are not currently under characterization, and migrates all
currently running processes (except for the benchmark) to a
completely different core. The migration of system processes
is required to isolate the execution of the desired benchmark
from all other active processes. Second, given that all the
PMDs in the studied system are in the same power domain,
they always have the same voltage value (in case this does not
hold in a different microarchitecture the proposed framework
can be adapted). This means that even though there are several
processes run on different cores (not in the core(s) under
characterization), they have the same probability to affect an
unreliable operation while reducing the voltage.

On the other hand, each individual PMD can have different
frequency, so we leverage the combination of V/F states in
order to set the core under characterization to the desired
frequency, and all other cores to the minimum available
frequency in order to ensure that an unreliable operation is due
to the benchmark’s execution only. When for example the
characterization takes place in the PMD0 (meaning that the
benchmark runs in PMD0; cores 0 and 1), the PMD0 is set to
the pre-defined by the user frequency, and all the other PMDs
are set to the minimum available frequency (300MHz in our
case). Thus, all the running processes, except for the
benchmark, are executed to the reliable cores setup.

In our setup, we also use a stripped/lightweight Linux
Kernel to diminish the unnecessary kernel daemons that the
majority of well-known Linux Distributions provide. Thus, the
system’s running processes and the common power domain of
all PMDs, neither affect the benchmarks execution nor can
contribute to a system’s failure or error event.

B. Execution Phase
After the characterization setup is defined, the automated

Execution Phase begins. The Execution Phase consists of
multiple runs of the same benchmark, each one representing
the execution of the benchmark with a pre-defined
characterization setup. The set of all the characterization runs
running the same benchmark with different characterization
setups represents a campaign. After the initialization phase,
the framework enters the Execution Phase, in which all runs
take place. The runs are executed according to user’s
configuration, while the framework reduces the voltage with a
step defined by the user in the initialization phase. For each
run, the framework collects and stores the necessary logs at a
safe place externally to the system under characterization,
which will be then used by the parsing phase.

The logged information includes: the output of the
benchmark at each execution, the corrected and uncorrected
errors (if any) collected by the Linux EDAC Driver [24], as
well as the errors’ localization (L1 or L2 cache, DRAM, etc.),
and several failures, such as benchmark crash, kernel hangs,
and system unresponsiveness. The framework can distinguish
these types of failures and keep logging about them to be
parsed later by the parsing phase. Benchmark crashes can be
distinguished by monitoring the benchmark’s exit status. On
the other hand, to identify the kernel hangs and system
unresponsiveness, during this phase the framework notifies the
Raspberry when the execution is about to start and also when
the execution finishes.

In the meantime, the Raspberry starts pinging the system to
check its responsiveness. If the Raspberry does not receive a
completion notification (hang) in the given time (we defined
as timeout condition a 2 times the normal execution time of
the benchmark) or the X-Gene 2 turns completely
unresponsive (ping is not responding), the Raspberry sends a
signal to the Power Off button on the board, and the system
resets. After that, the Raspberry is also responsible to check
when the system is up again, and sends a signal to restart the
experiments. These decisions contribute to the Failure
Recognition challenge.

During the experiments, some Linux tasks or the kernel
may hang. To identify these cases, we use an inherent feature
of the Linux kernel to periodically detect these tasks by
enabling the flag “hung_task_panic” [24]. Therefore, if the
kernel itself recognizes a process hang, it will immediately
reset the system, so there is no need for the Raspberry to wait
until the timeout. In this way, we also contribute to the Failure
Recognition challenge and accelerate the reset procedure and
the entire characterization.

Note that, in order to isolate the framework’s execution
from the core(s) under characterization, the operations of the
framework are also performed in Reliable Cores Setup.
However, when there are operations of the framework, such as
the organization of log files during the benchmark’s execution
that are an integral part of the framework, and thus, they must
run in the core(s) under characterization, these operations are
performed after the benchmark’s execution in the nominal
conditions. This is the way to ensure that any logging

information will be stored correctly and no information will be
lost or changed due to the unstable system conditions, and
thus, to overcome the Safe Data Collection challenge.

C. Parsing Phase
In the last step of our framework, all the log files that are

stored during the Execution Phase are parsed in order to
provide a fine-grained classification of the effects observed for
each characterization run. Note that, each run is correlated to a
specific benchmark and characterization setup. The categories
that are used for our classification are summarized in TABLE
II, but the parser can be easily extended according to the user’s
needs. For instance, the parser can also report the exact
location that the correctable errors occurred (e.g. the cache
level, the memory, etc.) using the logging information
provided by the Execution Phase.

TABLE II: EXPERIMENTAL EFFECT CATEGORIZATION.

Effect Description

ΝΟ
(Normal Operation)

The benchmark was successfully completed
without any indications of failure.

SDC
(Silent Data
Corruption)

The benchmark was successfully completed, but
a mismatch between the program output and the

correct output was observed.

CE
(Corrected Error)

Errors were detected and corrected by the
hardware.

UE
(Uncorrected Error)

Errors were detected, but not corrected by the
hardware.

AC
(Application Crash)

The application process was not terminated
normally (the exit value of the process was

different than zero).

SC
(System Crash)

The system was unresponsive; meaning that the
X-Gene 2 is not responding to pings or the

timeout limit was reached.

Note that each characterization run can manifest multiple

effects. For instance, in a run both SDC and CE can be
observed; thus, both of them should be reported by the parser
for this run. Furthermore, the parser can report all the
information collected during multiple campaigns of the same
benchmark. The characterization runs with the same
configuration setup of different campaigns may also have
different effects with different severity. For instance, let us
assume two runs with the same characterization setup of two
different campaigns. After the parsing, the first run finally
revealed some CEs, and the second run was classified as SDC.
To quantify the criticality of the effects of different
experimental runs of different campaigns with the same setup,
we define the “severity function” Sv, where v is the voltage
value, as presented below:

S" = 	W&'(∙
SDC
N

+W(. ∙
CE
N
+W0. ∙

UE
N
+W2(∙

AC
N
+W&(∙

SC
N

In this function, the parameters SDC, CE, UE, AC and SC
can take the values from 0 to N (N is the number of runs at
each voltage level), and represent the times that this effect

appears to these runs. Parameters WSDC, WCE, WUE, WAC and
WSC represent “weights” that can be set to characterize the
severity of each effect of TABLE II. The higher the weight,
the more critical the effect is considered by our function. For
the purpose of this paper, we defined the values presented in
TABLE III as values for our severity function (any values for
the weights can be used).

TABLE III: WEIGHTS USED IN OUR EXPERIMENTS.

Weight Value

WSC 16
WAC 8

WSDC 4

WUE 2

WCE 1

WNO 0

At the end of the parsing step, all the collected results

concerning the characterization (according to TABLE II) and
the severity function of each run are reported in CSV files.

V. EXPERIMENTAL EVALUATION

We present indicative examples of the results that can be
generated by the characterization framework. As the aim of
this paper is to describe and present the automated framework
for system-level characterization the results are presented to
demonstrate the framework capabilities.

The framework can reveal for each core of the CPU and the
evaluated program the three different regions of operation
when we reduce the voltage. These are the safe and unsafe
operating regions and the region in which the system cannot
operate (crash). For our experiments, we used two different
benchmarks: Linpack, which is a widely-used high-
performance benchmark [25] and hmmer from the SPEC
CPU2006 benchmark suite [26] with the reference input
dataset. Both of them ran on a single core in each PMD, while
the remaining six cores (that is 3 PMDs) are reliable (see
explanation in section IV). In order to present the non-
deterministic behavior of such experiments, we ran each
campaign three times. Fig. 3 and Fig. 4 present the three
campaigns for the Linpack and hmmer benchmark (1st, 2nd,
3rd), respectively, in the case that are executed in each
individual core running at 2.4GHz, while the rest of the PMDs
operate on the reliable cores setup. In both benchmarks, we
can notice the three regions of operation according to the
collected results. The regions are:
§ Safe region (green): The characterization runs that

correspond to this zone had a NO (normal operation)
without SDCs, errors or crashes.

§ Unsafe region (yellow): The characterization runs that
correspond to this zone manifested an abnormal
behavior (SDC, CE, UE, AC) but not a system crash.

§ Crash region (grey): This region is created by the first
characterization runs that lead to a system crash.

We observe significant variation among the three runs, and

also significant core-to-core static variation when they execute
the same benchmark. From these results, we observe that cores
4 and 5 of the particular chip we used are more robust than the
others. Moreover, it is important to notice the width of the
Safe region in the two benchmarks that is up to 11.2% lower
than the nominal voltage value (980mV). This reduction of the
voltage from the nominal value corresponds to power gains up
to more than 21%. Finally, the width of the Safe region ranges
from 0mV up to 40mV. This illustrates that with the
development of appropriate mitigation techniques the power
gain can reach the 28.3%.

Fig. 3. Linpack benchmark - Cores characterization.

Fig. 4. hmmer benchmark - Cores characterization.

Finally, for the same characterization runs we used the
severity function presented in subsection IV.C to present the
scaling of the effects and their severity in the reduced voltage
margins. In Fig. 5 and Fig. 6 we can notice that the lighter the
color, the more stable and reliable is the system. While
reducing the voltage margins, we observe that the instability
increases (the color becomes darker), until the darkest color,

which indicates that the system cannot operate in such voltage
margins.

Fig. 5. Linpack benchmark - Severity scaling.

Fig. 6. hmmer benchmark - Severity scaling.

VI. CONCLUSION

We presented a versatile framework for system-level
voltage and frequency scaling characterization built on top of
the ARMv8-compliant APM’s X-Gene 2 micro-server family.
The framework is fully automated and reports information
supported by the hardware itself, such as cache ECC errors, as
well as SDCs, system or process crashes, and hangs. We
present the challenges for the development of such a
framework, and describe how we overcame these challenges,
by using and combining several hardware, software and
system engineering techniques. We also proposed a new
metric for both aggregating the results produced by multiple
runs due to non-deterministic executions, and quantifying the
microprocessor’s ability to operate beyond nominal
conditions. Finally, we presented some experimental results,
which demonstrate potential uses of the characterization
framework to identify the limits of operation and support
system-level design decisions for improved energy efficiency.

850

860

870

880

890

900

910

920

930

940

950

960

970

980

1s
t

2n
d

3r
d

1s
t

2n
d

3r
d

1s
t

2n
d

3r
d

1s
t

2n
d

3r
d

1s
t

2n
d

3r
d

1s
t

2n
d

3r
d

1s
t

2n
d

3r
d

1s
t

2n
d

3r
d

0 1 2 3 4 5 6 7

m
V

Cores

Linpack

Safe Unsafe Crash

850

860

870

880

890

900

910

920

930

940

950

960

970

980

1s
t

2n
d

3r
d

1s
t

2n
d

3r
d

1s
t

2n
d

3r
d

1s
t

2n
d

3r
d

1s
t

2n
d

3r
d

1s
t

2n
d

3r
d

1s
t

2n
d

3r
d

1s
t

2n
d

3r
d

0 1 2 3 4 5 6 7

m
V

Cores

hmmer

Safe Unsafe Crash

0 1 2 3 4 5 6 7
850

860

870

880

890

900

910

920

930

940

950

960

970

980

Cores

m
V

Linpack

1.3
4.0
6.0
11.0
14.3
16.0

19.0

2.7
4.7
5.3
8.3
17.3

19.0

2.7
4.0

6.0
16.0

19.0

2.7
4.0

8.7
16.0

19.0

4.0
4.7

9.0
10.3
12.0

16.0
19.0

4.3
4.0

9.0
9.7
10.3
10.7

19.0

4.0
5.3
9.0
12.7
13.3
16.0
19.0

5.0 4.7

4.0
5.0
11.3
16.0

19.0

5.0

13.3
16.0

7.3

13.7

0 0 0 0 0 00 0

0 1 2 3 4 5 6 7
850

860

870

880

890

900

910

920

930

940

950

960

970

980

Cores

m
V

hmmer

0 0

13.3
16.0

19.0

3.0
8.0
13.3
16.0

19.0

8.0
11.3
14.3
16.0
19.0

8.0
11.7
13.3
16.0
19.0

2.7
8.0
13.3
16.0
19.0

2.7
8.3
8.0
16.0
19.0

2.7
8.0
11.0
10.7
16.0
19.0

8.0
10.7
11.0
13.7
16.0
19.0

0 0 0 0 0 0

ACKNOWLEDGMENT

This work is funded by the H2020 Framework Program of
the European Union through the UniServer Project (Grant
Agreement 688540).

REFERENCES
[1] F. Salehuddin, I. Ahmad, F.A. Hamid, A. Zaharim, A. Maheran,

A.Hamid, P.S. Menon, H.A.Elgomati, and B.Y. Majlis, “Optimization of
process parameter variation in 45nm p-channel MOSFET using L18
Orthogonal Array,” in International Conference on Semiconductor
Electronic, 2012, pp.219-223.

[2] W. Schemmert, and G. Zimmer, "Threshold-voltage sensitivity of ion-
implanted MOS transistors due to process variations", Electronics
Letters, 1974, Vol. 10, No. 9, pp. 151–152.

[3] N. James, P. Restle, J. Friedrich, B. Huott, and B. McCredie,
“Comparison of split-versus connected-core supplies in the POWER6
microprocessor,” in International Solid-State Circuits Conference
(ISSCC), 2007, pp. 298–604.

[4] V. J. Reddi, S. Kanev, W. Kim, S. Campanoni, M. D. Smith, G.-Y. Wei,
and D. Brooks, “Voltage smoothing: Characterizing and mitigating
voltage noise in production processors via software-guided thread
scheduling”, in International Symposium on Microarchitecture
(MICRO), 2010, pages 77–88.

[5] E. Le Sueur, and G. Heiser, “Dynamic voltage and frequency scaling:
the laws of diminishing returns”, in International Conference on Power
Aware Computing and Systems (HotPOWER), 2010.

[6] C. R. Lefurgy, A. J. Drake, M. S. Floyd, M. S. Allen-Ware, B. Brock,
J.A. Tierno, J. B. Carter, “Active management of timing guardband to
save energy in POWER7”, in International Symposium on
Microarchitecture (MICRO), 2009, pages 1–11.

[7] A. Bacha, and R. Teodorescu, “Dynamic reduction of voltage margins
by leveraging on-chip ECC in Itanium II processors”, in International
Symposium on Computer Architecture (ISCA), 2013, pages 297–307.

[8] A. Bacha, and R. Teodorescu, “Using ECC feedback to guide voltage
speculation in low-voltage processors”, in International Symposium on
Microarchitecture (MICRO), 2014, pages 306–318.

[9] A. Bacha, and R. Teodorescu, “Authenticache: Harnessing cache ECC
for system authentication”, in International Symposium on
Microarchitecture (MICRO), 2015, pages 128–140.

[10] J. Leng, A. Buyuktosunoglu, R. Bertran, P. Bose, V. J. Reddi, “Safe
limits on voltage reduction efficiency in GPUs: a direct measurement
approach”, in International Symposium on Microarchitecture (MICRO),
2015, pages 294–307.

[11] M. Ketkar, and E. Chiprout, “A microarchitecture-based framework for
pre- and post-silicon power delivery analysis”, in International
Symposium on Microarchitecture (MICRO), 2009, pages 179–188.

[12] Y. Kim, and L. K. John, “Automated di/dt stressmark generation for
microprocessor power delivery networks”, in International Symposium
on Low Power Electronics and Design (ISPLED), 2011, pages 253-258.

[13] Y. Kim, L. K. John, S. Pant, S. Manne, M. Schulte, W. L. Bircher, and
M. S. S. Govindan, “AUDIT: Stress Testing the Automatic Way”, in
International Symposium on Microarchitecture (MICRO), 2012, pages
212–223.

[14] M. S. Gupta, V. J. Reddi, G. Holloway, G.-Y. Wai, and D. M. Brooks,
“An event-guided approach to reducing voltage noise in processors”, in
Design, Automation & Test in Europe Conference (DATE), 2009, pages
160-165.

[15] V. J. Reddi, M. S. Gupta, G. H. Holloway, G.-Y. Wei, M. D. Smith, and
D. M. Brooks, “Voltage emergency prediction: Using signatures to
reduce operating margins”, in International Conference on High-
Performance Computer Architecture (HPCA), 2009, pages 18–29.

[16] M. S. Gupta, K. K. Rangan, M. D. Smith, G.-Y. Wei, and D. Brooks,
“Towards a software approach to mitigate voltage emergencies”, in
International Symposium on Low Power Electronics and Design
(ISPLED), 2007, pages 123-128.

[17] R. Joseph, D. Brooks, and M. Martonosi, “Control techniques to
eliminate voltage emergencies in high performance processors”, in
International Conference on High-Performance Computer Architecture
(HPCA), 2003, pages 79–90.

[18] T. N. Miller, R. Thomas, X. Pan, and R. Teodorescu, “VRSync:
Characterizing and eliminating synchronization-induced voltage
emergencies in many-core processors”, in International Symposium on
Computer Architecture (ISCA), 2012, pages 249–260.

[19] M. D. Powel, and T. N. Vijaykumar, “Pipeline muffling and a priori
current ramping: architectural techniques to reduce high-frequency
inductive noise”, in International Symposium on Low Power Electronics
and Design (ISPLED), 2003, pages 223-228.

[20] M. S. Gupta, K. K. Rangan, M. D. Smith, G.-Y. Wei, and D. Brooks,
“DeCoR: A Delayed Commit and Rollback mechanism for handling
inductive noise in processors”, in International Conference on High-
Performance Computer Architecture (HPCA), 2008, pages 381–392.

[21] C. Wilkerson, H. Gao, A. R. Alameldeen, Z. Chishti, M. Khellah, and
S.-L. Lu, “Trading off cache capacity for reliability to enable low
voltage operation”, in International Symposium on Computer
Architecture (ISCA), 2008, pages 203–214.

[22] Z. Chishti, A. R. Alameldeen, C. Wilkerson, W. Wu, and S.-L. Lu,
“Improving cache lifetime reliability at ultra-low voltages”, in
International Symposium on Microarchitecture (MICRO), 2009, pages
89–99.

[23] H. Duwe, X. Jian, D. Petrisko, and R. Kumar, “Rescuing uncorrectable
fault patterns in on-chip memories through error pattern transformation”,
in International Symposium on Computer Architecture (ISCA), 2016,
pages 634–644.

[24] The Linux Kernel Documentation (Parent Directory),
https://www.kernel.org/doc/Documentation.

[25] J. J. Dongarra, P. Luszczek, and A. Petitet, "The LINPACK benchmark:
past, present and future", Concurrency and computation: practice and
experience. 15(9), 2003, pp. 803-820.

[26] J. L. Henning, “SPEC CPU2006 benchmark descriptions,” SIGARCH
Comput. Archit. September 2006.

