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Abstract—Supply voltage scaling is one of the most effective 

techniques to reduce the power consumption of microprocessors. 
However, technology limitations such as aging and process 
variability enforce microprocessor designers to apply pessimistic 
voltage guardbands to guarantee correct operation in the field 
for any foreseeable workload. This worst-case design practice 
makes energy efficiency hard to scale with technology evolution. 
Improving energy-efficiency requires the identification of the 
chip design margins through time-consuming and comprehensive 
characterization of its operational limits. Such a characterization 
of state-of-the-art multi-core CPUs fabricated in aggressive 
technologies is a multi-parameter process, which requires 
statistically significant information. 

In this paper, we present an automated framework to support 
system-level voltage and frequency scaling characterization of 
Applied Micro’s state-of-the-art ARMv8-based multicore CPUs 
used in the X-Gene 2 micro-server family. The fully automated 
framework can provide fine-grained information of the system’s 
state by monitoring any abnormal behavior that may occur 
during reduced supply voltage conditions. We also propose a new 
metric to quantify the behavior of a microprocessor when it 
operates beyond nominal conditions. Our experimental results 
demonstrate potential uses of the characterization framework to 
identify the limits of operation for improved energy efficiency.  

  
Index Terms—energy efficiency, voltage and frequency scaling, 

power consumption, error detection and correction, multicore 
CPUs characterization. 

I. INTRODUCTION 

Technology evolution with shrinking transistors increases 
chip density throughout the entire computing spectrum, from 
handheld devices employed at the edge of the Internet-of-
Things (IoT) to servers, datacenters and supercomputers. The 
gains are indisputable in terms of performance, but come at 
the expense of increased power consumption, which elevates 
energy efficiency as a primary objective of computing systems 
design. One of the most effective techniques to improve 
energy efficiency is to reduce the chip supply voltage.  

During chip fabrication, process variations can affect 
transistor dimensions (length, width, oxide thickness etc.) [1] 
which have direct impact on the threshold voltage of a MOS 
device [2]. As technology scales, the percentage of these 
variations compared to the overall transistor size increases and 
raises major concerns for designers, who intend to increase the 
energy efficiency. This variation is classified as static 
variation and remains constant after fabrication. Additional to 
that, transistor aging and dynamic variation in supply voltage 
and temperature, caused by different workload interactions, is 

also of primary importance. Both static and dynamic 
variations lead microprocessor architects to apply aggressive 
guardbands (operating voltage and frequency settings) in order 
to avoid timing failures and guarantee correct operation, even 
in the worst-case conditions excited by unknown workloads 
[3] [4]. However, these guardbands impede the low power 
consumption and the high performance, which can be derived 
by reducing the supply voltage and increasing the operation 
frequency, respectively. 

To bridge the gap between energy efficiency and 
performance improvements, several hardware and software 
techniques have been proposed, such as Dynamic Voltage and 
Frequency Scaling (DVFS) [5]. The premise of DVFS is that a 
microprocessor’s workloads as well as the cores’ activity vary, 
so when one or more cores have less or no work to perform, 
the frequency, and thus, the voltage can be slowed down 
without affecting performance adversely. However, to further 
reduce the power consumption by keeping the frequency high 
when it is necessary, recent studies aim to uncover the 
conservative operational limits, by performing an extensive 
system-level voltage scaling characterization of commercial 
microprocessors’ operation beyond nominal conditions [6]  [7] 
[8] [9] [10]. These studies leverage the Reliability, 
Accessibility, and Serviceability (RAS) features, provided by 
the hardware (such as ECC), in order to expose reduced but 
safe operating margins.  
 A major challenge, however, in voltage scaling 
characterization at the system level is the time-consuming 
large population of experiments due to: (i) different voltage 
and frequency levels, (ii) different characterization setups (e.g. 
for a multicore chip both the cases of running a benchmark in 
each individual core and simultaneously in all cores should be 
examined), and (iii) diverse-behavior workloads. In addition, 
due to the non-deterministic behavior of the experiments, 
caused by different microarchitectural events that occur in a 
system-level characterization and to ensure the statistical 
significance of the observations, the same experiments should 
be repeated multiple times at the same voltage level, which 
further increases the characterization time. Moreover, when 
the system operates in voltage levels that are significantly 
lower than its nominal value, system crashes are frequent and 
unavoidable and the recovery from these cases constitutes a 
significant portion of the overall experiment time. For these 
reasons, manually-controlled voltage scaling characterization 
is infeasible; a generic and automated experimental framework 
that can be easily replicated in different machines is required. 
Furthermore, such a framework has to ensure the credibility of 



 
 

the delivered results because when a system operates beyond 
nominal conditions it can fall in unstable states. 

In this paper, we present a versatile framework to study the 
behavior of multicore CPUs, when they operate under scaled 
voltage and frequency conditions. We build a 
voltage/frequency (V/F) scaling characterization framework 
on Applied Micro’s (APM) X-Gene 2 micro-server family, 
fabricated in 28nm process technology that consists of eight 
ARMv8-compliant cores. The proposed infrastructure is fully 
aligned with all the aforementioned requirements and aims to 
investigate the limits of a state-of-the-art microprocessor 
architecture beyond the nominal conditions: it is fast, reliable 
and easily extensible and replicable. The characterization 
framework records several different types of deviations from 
the normal execution as proxies for the effect of voltage and 
frequency scaling. 

We also propose a metric called Severity Function, to both 
quantify the severity and illustrate the scaling of abnormal 
behaviors due to voltage reduction. The metric’s contribution 
is twofold: (1) to aggregate the results produced by multiple 
runs, and (2) to quantify a microprocessor’s ability to operate 
beyond nominal conditions. To the best of our knowledge, this 
is the first study that presents in detail an automated 
infrastructure for the characterization of ARM-based systems 
beyond nominal conditions. 

The rest of the paper is organized as follows. Section II 
describes all the related works, while Section III describes all 
the details of the X-Gene 2 and our proposed framework. 
Finally, Section IV presents our experimental results and 
Section V summarizes all our conclusions.  

II. RELATED WORK 

During the last years, the goal for improving 
microprocessors’ energy efficiency, while reducing their 
power supply voltage is a main concern of many scientific 
studies that investigate the chips’ operation limits in nominal 
and off-nominal conditions. For example, in [11] [12] and [13] 
the authors propose methods to maximize voltage droops in 
single core and multicore chips in order to investigate their 
worst case behavior due to the generated voltage noise effects. 

In order to eliminate the effects of voltage noise, studies 
such as [14]  and [15] focus on the prediction of critical parts 
of benchmarks, in which large voltage noise glitches are likely 
to occur, leading to system malfunctions. In the same context, 
several studies either in the hardware or in the software level 
were presented to mitigate the effects of voltage noise [4] [16] 
[17] [18] [19] or to recover from them after their occurrence 
[20]. 

Apart from these studies that are mainly concentrated on the 
core and the voltage droops, [7] and [8] focus on the 
observation of the errors manifested on caches of a 
commercial Intel Itanium processor during the execution of 
benchmarks in voltage conditions in off-nominal values. The 
authors in these studies observe how the ECC rates increase 
along with the supply voltage reduction. Moreover, the 
authors in [21] [22] and [23] propose several 

microarchitectural approaches to ensure the correct operation 
of caches in ultra-low voltage conditions. 

Finally, the characterization studies of commercial chips  in 
off-nominal voltage conditions are limited [6] [7] [8] [9] [10], 
strengthening the purpose of the existence of our proposed 
framework that targets the commercial APM X-Gene 2 micro-
server (fabricated in 28nm process technology).   

III. SYSTEM ARCHITECTURE 

The APM X-Gene 2 micro-server consists of eight 64-bit 
ARMv8 cores. The X-Gene 2 architecture offers high-end 
processing performance and capabilities. For example, the X-
Gene 2 subsystem features the Power Management processor 
(PMpro) and Scalable Lightweight Intelligent Management 
processor (SLIMpro) to enable breakthrough flexibility in 
power management, resiliency, and end-to-end security for a 
wide range of applications. The PMpro, a 32-bit dedicated 
processor provides advanced power management capabilities 
such as multiple power planes and clock gating, thermal 
protection circuits, Advanced Configuration Power Interface 
(ACPI) power management states and external power 
throttling support. The SLIMpro, a 32-bit dedicated processor 
monitors system sensors, configure system attributes (e.g. 
regulate supply voltage, change DRAM refresh rate etc.) and 
access all error reporting infrastructure, using an integrated 
I2C controller as the instrumentation interface between the X-
Gene 2 Cores and this dedicated processor. SLIMpro can be 
accessed by the system’s running Linux Kernel.  

 
Fig. 1. X-Gene 2 micro-server power domains block diagram. The outlines 

with dashed lines present the independent power domains of the chip. 

X-Gene 2 has three independently regulated power domains 
(as shown in Fig. 1 above): 
1) PMD (Processor Module): Each PMD contains two 

ARMv8 cores. Each of the two cores has separate 
instruction and data caches, while they share a unified L2 
cache. The operating voltage of all four PMDs together 
can change with a granularity of 5mV beginning from 
980mV. While PMDs operate at the same voltage, each 
PMD can operate in a different frequency. The frequency 
can range from 300MHz up to 2.4GHz at 300MHz steps. 

L3

PCP/SoC

0 1

L1I

L1D L1D

L2

PMD 0
L1I

2 3

L1I

L1D L1D

L2

PMD 1
L1I

4 5

L1I

L1D L1D

L2

PMD 2
L1I

6 7

L1I

L1D L1D

L2

PMD 3
L1I

PMpro SLIMpro

MCU MCU MCU MCU

DDR3 SDRAM

PMD

Standby 
Power Domain



 
 

2) PCP (Processor Complex)/SoC: It contains the L3 cache, 
the DRAM controllers, the central switch and the I/O 
bridge. The PMDs do not belong to the PCP/SoC power 
domain. The voltage of the PCP/SoC domain can be 
independently scaled downwards with a granularity of 
5mV beginning from 950mV. 

3) Standby Power Domain: This includes the SLIMpro and 
PMpro microcontrollers and interfaces for I2C buses. 

TABLE I summarizes the most important architectural and 
microarchitectural parameters of the APM X-Gene 2 micro-
server that is used in our study. 

TABLE I: BASIC CHARACTERISTICS OF X-GENE 2. 

Parameter Configuration 

ISA ARMv8 (AArch64, AArch32, Thumb) 
Pipeline 64-bit OoO (4-issue) 

CPU 8 Cores, 2.4GHz 
L1 Instr. Cache 32KB per core (Parity Protected) 
L1 Data Cache 32KB per core (Parity Protected) 

L2 cache 256KB per PMD (ECC Protected) 
L3 cache 8MB (ECC Protected) 

IV. FRAMEWORK OVERVIEW 

The primary goals of the proposed framework are: (1) to 
identify the target system’s limits when it operates at scaled 
voltage and frequency conditions, and (2) to record/log the 
effects of a program’s execution under these conditions. The 
framework provides the following features; it: 

§ compares the outcome of the program with the correct 
output of the program when the system operates in 
nominal conditions to record Silent Data Corruptions 
(SDCs), 

§ monitors the exposed corrected and uncorrected errors 
from the hardware platform’s error reporting 
mechanisms  

§ recognizes when the system is unresponsive to restore 
it automatically, 

§ monitors system failures (crash reports, kernel hangs, 
etc.), 

§ determines the safe, unsafe and non-operating voltage 
regions for each application for all frequencies, and 

§ performs massive repeated executions of the same 
configuration. 

The automated framework (outlined in Fig. 2) is easily 
configurable by the user, and can be embedded to any Linux-
based system, with similar voltage and frequency regulation 
capabilities. As shown in Fig. 2, the proposed framework 
consists of three phases (Initialization, Execution, Parsing). 

To completely automate the characterization process, and 
due to the frequent and unavoidable system crashes that occur 
when the system operates in reduced voltage levels, we set up 
a Raspberry Pi board connected externally to the X-Gene 2 
board which behaves as a watchdog. The Raspberry is 
physically connected to both the Serial Port and the Power and 
Reset buttons of the system board to enable physical access to 
the system. 

We discuss the several challenges that were taken into 
consideration for a solid development of such a framework. 

Safe Data Collection. Given that a system operating 
beyond nominal conditions often has unexpected behaviors 
(e.g. file system driver failures), there is the need to correctly 
identify and store all the essential information in log files (to 
be subsequently parsed and analyzed). The automated 
framework was developed in such a way to collect and store 
safely all the necessary information about the experiments. 

Failure Recognition. Another challenge is to recognize and 
distinguish the system and program crashes or hangs. This is a 
very important feature for the Parsing Phase to easily identify 
and classify the final results, with the most possible distinct 
information concerning the characterization. 

Reliable Cores Setup. Another major challenge we also 
face is that the characterization of a system is performed 
primarily by using properly chosen programs in order to 
provide diverse behaviors and expose all the potential 
deviations from nominal conditions. It is thus important to run 
the selected benchmarks in reliable cores setup. This means 
that the cores, where the benchmark runs, must be isolated and 
unaffected from the other active processes of the kernel in 
order to capture only the effects of the desired benchmark.  

Iterative Execution. The non-deterministic behavior of the 
characterization results due to several microarchitectural 
features makes necessary to repeat the experiments multiple 
times with the same configuration to eliminate the probability 
of misleading results.  

In the following subsections, we analyze each of these 
functionalities grouped in the 3 distinct phases of the 
framework’s execution (Initialization, Execution, Parsing), 
and describe their detailed implementation and how these 
challenges were overcome. 

 
Fig. 2. Framework Layout. 

A. Initialization Phase 
During the initialization phase, a user can declare a 

benchmark list with any input dataset to run in any desirable 
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experiment will take place and the cores where the benchmark 
will be run; this can be an individual core, a pair of cores in 
the same PMD, or all of the available eight cores in the 
microprocessor. The characterization setup depends on the 
power domains supported by the chip, but our framework is 
easily extensible to support the power domain features of 
different CPU chips. 

This phase is in charge of setting the voltage and frequency 
ranges, the initial voltage and frequency values, with which 
the characterization begins, and to prepare the benchmarks: 
their required files, inputs, outputs, as well as the directory 
tree where the necessary logs will be stored. This phase is 
performed at the beginning of the characterization and each 
time the system is restored by the Raspberry (for example, 
after a system crash) in order to proceed to the next run until 
the entire Execution Phase finishes. Each time the system is 
restored, this phase restores the initial user’s desired setup and 
recognizes where and when the characterization has been 
previously stopped. This step is essential for the 
characterization to proceed sequentially according to user’s 
choice, and to complete the whole Execution Phase. 

This phase is also responsible to overcome the challenge of 
reliable cores setup that is responsible to ensure the 
correctness and integrity of our results. The benchmark must 
run in an “as bare as possible” system without the interference 
of any other running process. Therefore, reliable cores setup is 
twofold: first, it recognizes these cores or group of cores that 
are not currently under characterization, and migrates all 
currently running processes (except for the benchmark) to a 
completely different core. The migration of system processes 
is required to isolate the execution of the desired benchmark 
from all other active processes. Second, given that all the 
PMDs in the studied system are in the same power domain, 
they always have the same voltage value (in case this does not 
hold in a different microarchitecture the proposed framework 
can be adapted). This means that even though there are several 
processes run on different cores (not in the core(s) under 
characterization), they have the same probability to affect an 
unreliable operation while reducing the voltage. 

On the other hand, each individual PMD can have different 
frequency, so we leverage the combination of V/F states in 
order to set the core under characterization to the desired 
frequency, and all other cores to the minimum available 
frequency in order to ensure that an unreliable operation is due 
to the benchmark’s execution only. When for example the 
characterization takes place in the PMD0 (meaning that the 
benchmark runs in PMD0; cores 0 and 1), the PMD0 is set to 
the pre-defined by the user frequency, and all the other PMDs 
are set to the minimum available frequency (300MHz in our 
case). Thus, all the running processes, except for the 
benchmark, are executed to the reliable cores setup. 

In our setup, we also use a stripped/lightweight Linux 
Kernel to diminish the unnecessary kernel daemons that the 
majority of well-known Linux Distributions provide. Thus, the 
system’s running processes and the common power domain of 
all PMDs, neither affect the benchmarks execution nor can 
contribute to a system’s failure or error event. 

B. Execution Phase 
After the characterization setup is defined, the automated 

Execution Phase begins. The Execution Phase consists of 
multiple runs of the same benchmark, each one representing 
the execution of the benchmark with a pre-defined 
characterization setup. The set of all the characterization runs 
running the same benchmark with different characterization 
setups represents a campaign. After the initialization phase, 
the framework enters the Execution Phase, in which all runs 
take place. The runs are executed according to user’s 
configuration, while the framework reduces the voltage with a 
step defined by the user in the initialization phase. For each 
run, the framework collects and stores the necessary logs at a 
safe place externally to the system under characterization, 
which will be then used by the parsing phase. 

The logged information includes: the output of the 
benchmark at each execution, the corrected and uncorrected 
errors (if any) collected by the Linux EDAC Driver [24], as 
well as the errors’ localization (L1 or L2 cache, DRAM, etc.), 
and several failures, such as benchmark crash, kernel hangs, 
and system unresponsiveness. The framework can distinguish 
these types of failures and keep logging about them to be 
parsed later by the parsing phase. Benchmark crashes can be 
distinguished by monitoring the benchmark’s exit status. On 
the other hand, to identify the kernel hangs and system 
unresponsiveness, during this phase the framework notifies the 
Raspberry when the execution is about to start and also when 
the execution finishes. 

In the meantime, the Raspberry starts pinging the system to 
check its responsiveness. If the Raspberry does not receive a 
completion notification (hang) in the given time (we defined 
as timeout condition a 2 times the normal execution time of 
the benchmark) or the X-Gene 2 turns completely 
unresponsive (ping is not responding), the Raspberry sends a 
signal to the Power Off button on the board, and the system 
resets. After that, the Raspberry is also responsible to check 
when the system is up again, and sends a signal to restart the 
experiments. These decisions contribute to the Failure 
Recognition challenge. 

During the experiments, some Linux tasks or the kernel 
may hang. To identify these cases, we use an inherent feature 
of the Linux kernel to periodically detect these tasks by 
enabling the flag “hung_task_panic” [24]. Therefore, if the 
kernel itself recognizes a process hang, it will immediately 
reset the system, so there is no need for the Raspberry to wait 
until the timeout. In this way, we also contribute to the Failure 
Recognition challenge and accelerate the reset procedure and 
the entire characterization. 

Note that, in order to isolate the framework’s execution 
from the core(s) under characterization, the operations of the 
framework are also performed in Reliable Cores Setup. 
However, when there are operations of the framework, such as 
the organization of log files during the benchmark’s execution 
that are an integral part of the framework, and thus, they must 
run in the core(s) under characterization, these operations are 
performed after the benchmark’s execution in the nominal 
conditions. This is the way to ensure that any logging 



 
 

information will be stored correctly and no information will be 
lost or changed due to the unstable system conditions, and 
thus, to overcome the Safe Data Collection challenge. 

C. Parsing Phase 
In the last step of our framework, all the log files that are 

stored during the Execution Phase are parsed in order to 
provide a fine-grained classification of the effects observed for 
each characterization run. Note that, each run is correlated to a 
specific benchmark and characterization setup. The categories 
that are used for our classification are summarized in TABLE 
II, but the parser can be easily extended according to the user’s 
needs. For instance, the parser can also report the exact 
location that the correctable errors occurred (e.g. the cache 
level, the memory, etc.) using the logging information 
provided by the Execution Phase. 

TABLE II: EXPERIMENTAL EFFECT CATEGORIZATION. 

Effect Description 

ΝΟ 
(Normal Operation) 

The benchmark was successfully completed 
without any indications of failure. 

SDC  
(Silent Data 
Corruption) 

The benchmark was successfully completed, but 
a mismatch between the program output and the 

correct output was observed. 

CE  
(Corrected Error) 

Errors were detected and corrected by the 
hardware. 

UE  
(Uncorrected Error) 

Errors were detected, but not corrected by the 
hardware. 

AC 
(Application Crash) 

The application process was not terminated 
normally (the exit value of the process was 

different than zero). 

SC 
(System Crash) 

The system was unresponsive; meaning that the 
X-Gene 2 is not responding to pings or the 

timeout limit was reached. 

 
Note that each characterization run can manifest multiple 

effects. For instance, in a run both SDC and CE can be 
observed; thus, both of them should be reported by the parser 
for this run. Furthermore, the parser can report all the 
information collected during multiple campaigns of the same 
benchmark. The characterization runs with the same 
configuration setup of different campaigns may also have 
different effects with different severity. For instance, let us 
assume two runs with the same characterization setup of two 
different campaigns. After the parsing, the first run finally 
revealed some CEs, and the second run was classified as SDC. 
To quantify the criticality of the effects of different 
experimental runs of different campaigns with the same setup, 
we define the “severity function” Sv, where v is the voltage 
value, as presented below: 

S" = 	W&'( ∙
SDC
N

+W(. ∙
CE
N
+W0. ∙

UE
N
+W2( ∙

AC
N
+W&( ∙

SC
N

 

In this function, the parameters SDC, CE, UE, AC and SC 
can take the values from 0 to N (N is the number of runs at 
each voltage level), and represent the times that this effect 

appears to these runs. Parameters WSDC, WCE, WUE, WAC and 
WSC represent “weights” that can be set to characterize the 
severity of each effect of TABLE II. The higher the weight, 
the more critical the effect is considered by our function. For 
the purpose of this paper, we defined the values presented in 
TABLE III as values for our severity function (any values for 
the weights can be used). 

TABLE III: WEIGHTS USED IN OUR EXPERIMENTS. 

Weight Value 

WSC 16 
WAC 8 

WSDC 4 

WUE 2 

WCE 1 

WNO 0 

 
At the end of the parsing step, all the collected results 

concerning the characterization (according to TABLE II) and 
the severity function of each run are reported in CSV files. 

V. EXPERIMENTAL EVALUATION 

We present indicative examples of the results that can be 
generated by the characterization framework. As the aim of 
this paper is to describe and present the automated framework 
for system-level characterization the results are presented to 
demonstrate the framework capabilities. 

The framework can reveal for each core of the CPU and the 
evaluated program the three different regions of operation 
when we reduce the voltage. These are the safe and unsafe 
operating regions and the region in which the system cannot 
operate (crash). For our experiments, we used two different 
benchmarks: Linpack, which is a widely-used high-
performance benchmark [25] and hmmer from the SPEC 
CPU2006 benchmark suite [26] with the reference input 
dataset. Both of them ran on a single core in each PMD, while 
the remaining six cores (that is 3 PMDs) are reliable (see 
explanation in section IV). In order to present the non-
deterministic behavior of such experiments, we ran each 
campaign three times. Fig. 3 and Fig. 4 present the three 
campaigns for the Linpack and hmmer benchmark (1st, 2nd, 
3rd), respectively, in the case that are executed in each 
individual core running at 2.4GHz, while the rest of the PMDs 
operate on the reliable cores setup. In both benchmarks, we 
can notice the three regions of operation according to the 
collected results. The regions are: 
§ Safe region (green): The characterization runs that 

correspond to this zone had a NO (normal operation) 
without SDCs, errors or crashes.   

§ Unsafe region (yellow): The characterization runs that 
correspond to this zone manifested an abnormal 
behavior (SDC, CE, UE, AC) but not a system crash. 

§ Crash region (grey): This region is created by the first 
characterization runs that lead to a system crash. 

We observe significant variation among the three runs, and 



 
 

also significant core-to-core static variation when they execute 
the same benchmark. From these results, we observe that cores 
4 and 5 of the particular chip we used are more robust than the 
others. Moreover, it is important to notice the width of the 
Safe region in the two benchmarks that is up to 11.2% lower 
than the nominal voltage value (980mV). This reduction of the 
voltage from the nominal value corresponds to power gains up 
to more than 21%. Finally, the width of the Safe region ranges 
from 0mV up to 40mV. This illustrates that with the 
development of appropriate mitigation techniques the power 
gain can reach the 28.3%. 

 
Fig. 3. Linpack benchmark - Cores characterization. 

 
Fig. 4. hmmer benchmark - Cores characterization. 

Finally, for the same characterization runs we used the 
severity function presented in subsection IV.C to present the 
scaling of the effects and their severity in the reduced voltage 
margins. In Fig. 5 and Fig. 6 we can notice that the lighter the 
color, the more stable and reliable is the system. While 
reducing the voltage margins, we observe that the instability 
increases (the color becomes darker), until the darkest color, 

which indicates that the system cannot operate in such voltage 
margins. 

 
Fig. 5. Linpack benchmark - Severity scaling. 

 
Fig. 6. hmmer benchmark - Severity scaling. 

VI. CONCLUSION 

We presented a versatile framework for system-level 
voltage and frequency scaling characterization built on top of 
the ARMv8-compliant APM’s X-Gene 2 micro-server family. 
The framework is fully automated and reports information 
supported by the hardware itself, such as cache ECC errors, as 
well as SDCs, system or process crashes, and hangs. We 
present the challenges for the development of such a 
framework, and describe how we overcame these challenges, 
by using and combining several hardware, software and 
system engineering techniques. We also proposed a new 
metric for both aggregating the results produced by multiple 
runs due to non-deterministic executions, and quantifying the 
microprocessor’s ability to operate beyond nominal 
conditions. Finally, we presented some experimental results, 
which demonstrate potential uses of the characterization 
framework to identify the limits of operation and support 
system-level design decisions for improved energy efficiency. 
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