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Abstract—Several hyperscalers have recently disclosed the
occurrence of Silent Data Corruptions (SDCs) in their systems
fleets, sparking concerns about the severity of known and the
existence of unidentified root causes of faults in CPUs. These
incidents reveal that CPU chips have the potential to generate
incorrect results for different tasks due to latent manufacturing
defects, variability, marginalities, bugs, and aging. To tackle
this problem, we present Harpocrates, an automated method-
ology for the generation of short, constrained-random functional
test programs that maximize fault detection in target CPU
structures and can be employed at different stages of system
lifetime. Harpocrates stands out by adopting a hardware-model-
in-the-loop approach, which iteratively refines the generated test
programs using a detailed simulation-based microarchitecture
engine. The engine models and grades for multiple hardware
fault types that can lead to data corruptions during system
operation. Harpocrates is versatile and can adapt to various
program generators, ISAs, microarchitectures, and fault types.
Our results on six important CPU hardware structures show
that Harpocrates attains much shorter test generation times than
hardware-agnostic publicly available frameworks and outper-
forms open-source test suites in terms of fault detection capability.

I. INTRODUCTION

As modern CPUs become increasingly complex and power-
ful, their ability to execute demanding workloads and handle
large amounts of data becomes more critical. This complexity
raises the probability of unexpected faults occurring during
data processing increasing the risk of data corruptions, leading
to wrong results, information loss, or system crashes [1]–
[6]. Data corruption in CPUs can occur due to hardware de-
fects and marginalities (e.g., temperature conditions), particle
strikes, hardware design bugs, and even malicious attacks [7].
The risk of data corruption has further increased as CPU
designs have become more complex [3], [8]. Traditional verifi-
cation and testing methods are often insufficient for detecting
all potential defects and root causes of Silent Data Corrup-
tions (SDCs) in modern CPUs [9]. Shrinking technology,
skyrocketing counts of CPU and memory chips, and new
failure mechanisms all pose extreme reliability challenges.
For example, the emergence of marginal defect-induced [10]
or degrading faults [11] is a major issue, which cannot be
tackled solely relying on conventional manufacturing testing
and screening [12]–[14].

In this context, recent hyperscaler reports suggest high levels
of defective parts per million (DPPM) for CPUs deployed in
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Fig. 1. Reported CPU defective parts per million (DPPM) by hyperscalers.

their fleets. Fig. 1 shows the values disclosed by [1] (“hundreds
of CPUs detected for SDCs in hundreds of thousands of ma-
chines” ≈1,000 DPPM), by [2] (”the order of a few mercurial
cores per several thousand machines” = a bit less than 1,000
DPPM) and recently by [3] (”3.61 CPUs per 10,000” = 361
DPPM). Acceptable values vary across domains: safety-critical
domains (e.g., automotive) require less than 10 DPPM [15],
while general purpose computing in the cloud or HPC can
afford few 100’s DPPM, though driving the DPPM as low
as possible is important as data center deployments scale
out1. The daunting DPPM values of Fig. 1 call the computing
community to action to verify the rates and better understand
the root causes.

Several hyperscalers [1]–[3] disclosures extend the quest
about the origins of SDCs: from usual suspects (memory,
storage, network) to the heart of the computation: the CPU. In
CPUs the overheads of redundancy (area, performance, power)
and protection decisions for hardware structures are criti-
cal. CPUs are traditionally protected against particle-induced
transients (soft errors) using industry best practices such as
AVF (Architectural Vulnerability Factor) modeling [16] to
determine which structures to protect and to what extent. Yet,
with the rise of new defect mechanisms and resulting escaping
faults, vulnerability estimates relying solely on transients as
the primary root cause might not be entirely accurate, poten-
tially increasing the SDC risk. To this end, it is important
for CPU designers and users to employ effective ways for
the detection of potential defects in cores (at manufacturing
as well as in the field) and expose the root causes of data
corruptions.

1The need to attain very low DPPM was emphasized at recent panels held
at architecture (ISCA), design automation (DAC), testing (ITC) conferences.



CPU fault detection through execution of programs com-
posed of normal instructions has been studied exten-
sively [17]–[27]. This method is known variously as functional
testing, instruction-based testing, software-based testing, or
native mode testing. Unlike structural testing methods em-
ployed at manufacturing time placing the CPU in a special
mode (such as scan), functional testing aims at detecting
hardware faults that affect the CPU during normal operating
mode. The generation of efficient functional test programs can
be deterministic or directed random. Grading of the quality of
functional test programs is performed by fault simulation EDA
tools on top of detailed gate-level models of the CPU.

We present Harpocrates2, a novel methodology and unique
toolchain for the automatic generation and grading of effective
functional test programs for modern CPUs. Harpocrates is
aligned to related industry-led efforts [3], [28]–[31], which
present functional test program generation frameworks for
CPUs. Functional testing of CPUs at native instruction ex-
ecution mode aims to detect any type of fault before it
manifests in the field and affects user programs. The goal is
to maximize the coverage of the CPU hardware (go through
as much of the hardware as possible) by generating effective
but short test programs. By monitoring the CPU’s behavior
for irregularities (erroneous outputs or crashes) during the
execution of these functional test programs, hardware faults
can be identified and faulty CPUs isolated. Therefore, an
efficient method for generating functional test programs should
ideally be automated and hardware-aware.

For Harpocrates (or any other approach) to be practically
plausible, some important challenges should be addressed:

1) Dealing with modern CPU design and deployment: mod-
ern CPUs are complex, with multiple interacting layers
of hardware and software, and therefore all layers should
be considered.

2) Targeting specific hardware structures: most types of
hardware faults tend to be localized in specific structures.
Aiming to be generically applicable, existing frameworks
are hardware-agnostic and do not grade tests on specific
CPU microarchitectures. Localizing the fault is important
for root cause analysis of defective CPUs and provides
valuable field data for driving design improvements in the
next generations.

3) Generating fast functional test programs: both for root
causing (CPU designer) and quick detection (CPU user),
the functional test programs should have short execution
times. Datacenter providers aim for near zero fleet down-
time. Test programs (on demand or periodically executed)
should minimally affect downtime; this aspect should be
enhanced in existing frameworks.

Altogether, effective functional program generation for
hardware faults detection should be hardware-aware using
microarchitectural knowledge, consider the full system stack,
and aim at short programs with high fault detection capability.

2God of silence and secrecy: https://en.wikipedia.org/wiki/Harpocrates.

Our method and tools framework Harpocrates is a novel
contributor to these challenges, by:

1) Developing a constrained-random program generator and
mutator called MuSeqGen (Mutator and Sequence Gen-
erator). MuSeqGen’s code generator is built on Micro-
Probe [32], an established framework for the generation
of assembly-level programs for POWER and RISC-V
architectures. MuSeqGen extends the ISA support to
x86-64 and, more importantly, offers versatile utilities
for configurable random generation under any set of
constraints. MuSeqGen integrates a mutation engine that
alters or combines generated sequences to generate re-
fined variants of programs. (Challenges #2, #3).

2) Increasing the hardware coverage and the detection ca-
pability of generated programs to hardware faults by
employing a hardware-in-the-loop approach: a detailed
CPU model using the gem5 simulator. Gem5, and the
tooling built around it, is a key piece of Harpocrates
in grading and refining the automatically generated pro-
grams. (Challenges #1, #2, #3).

3) Proposing a feedback-based automated methodology for
the generation of functional programs. The methodology
comprises three distinct components: (i) the Generator,
(ii) the Mutator, and (iii) the Evaluator, which, together,
construct the full Harpocrates program generation loop.
(Challenges #1, #2).

Harpocrates is optimized for high throughput of functional
test program generation and delivers fast programs with high
fault detection ability. We demonstrate its effectiveness in
detecting different faults in multiple hardware structures of a
modern x86 CPU in which it excels in terms of fault detection
capability and speed compared to both open-source programs
and regular benchmark workloads we evaluate.

II. BACKGROUND: ESSENTIAL CONCEPTS AND
DEFINITIONS

A. Silent Data Corruptions (SDCs)

SDCs have become a common concern, impacting critical
infrastructures [1], [5], [33]. They are now increasingly linked
to CPU chips alongside memory, storage, and networking.
These corruptions are termed ’silent’ because they escape
hardware-level detection mechanisms, causing errors that may
propagate through the system unnoticed until they manifest
as application-level issues, leading to potential data loss [1],
[2]. SDCs may arise from various factors like soft errors,
manufacturing defects, and design flaws. They often go un-
noticed since the software does not always check for them,
especially in cloud and data center environments. Redundancy
methods, such as duplicating or triplicating execution, can help
mitigate SDCs, but they come with performance and power
costs. Both software and hardware-based redundancy methods
are expensive in terms of performance, power, and design
complexities.



B. Defects, Faults, Errors

A fault models a physical mechanism that leads to a
mismatch between a specification and the delivered service; in
a CPU the service is the correct execution of programs. Every
fault has a physical root cause, and in the case of processor
faults, high-energy particles like neutrons or alpha particles,
as well as silicon manufacturing defects or device lifetime
degradation, are well-understood root causes. The temporal
behavior of a fault - transient, intermittent, or permanent - is
closely tied to its physical root cause (”a bit” in the definitions
refers either to a storage element or to a gate output) [18], [34],
[35]. The following fault types (in terms of their temporal
behavior) are widely used; we use the broad term fault type
instead of fault model to imply only the temporal behavior
(duration of existence) of faults and not their logical behavior.

1) Transient faults exist for a finite period of time (disap-
pear when the bit is overwritten) and are nonrecurring.

2) Intermittent faults oscillate between faulty and fault-free
operation.

3) Permanent faults do not correct over time (constantly
stuck-at faults) [36].

In the context of hardware faults, errors are observable
outcomes stemming from faults in hardware resources like
storage elements or gates. When a defective resource is used
during computation, it can lead to Silent Data Corruption
(SDC), system crashes, error notifications, or corrections
through hardware resilience mechanisms like Error Correcting
Codes (ECC). SDC is the most dangerous outcome, as it can
potentially compromise the correctness of software running
on the hardware without any observable indication of the
error [10]. In the realm of Reliability, Availability, and Ser-
viceability (RAS) design for CPUs, emphasis has been placed
on mitigating particle-induced faults, often referred to as
“soft errors” [37]. However, recent reports from hyperscalers
highlight new fault causes, such as marginal defects, capable
of inducing faults under specific conditions like temperature,
voltage, and workload patterns [10], [11], [38], [39]. These
defects, along with device degradation in scaled technologies,
pose severe concerns for transient, intermittent, and permanent
faults over a processor’s lifespan. To ensure high reliability,
it is crucial to comprehend various physical root causes, their
associated fault types, and the resulting errors based on the
location of these faults within a processor.

C. Fault Detection Capability and Hardware Coverage

Fault detection capability of a program in a hardware
structure for a specific fault type or model, is the fraction
of the faults in the structure that the program detects (i.e., the
faulty run of a diagnostic program deviates from the fault-
free run). Detection capability is measured in our simulation
infrastructure through statistical fault injection. If N faults are
injected and the program detects n of them, its detection capa-
bility is n/N . For our fault injection runs in the experimental
evaluation, we use the latest version of the gem5-based injector
(GeFIN) [40] employed in many reliability studies [41]–[47];

a major extension of the tool is the injection of faults in gate
level models of CPU functional units.

Hardware coverage (for the purposes of our methodology)
is defined as any objective (reward) function tied to a specific
CPU hardware structure of any granularity (bit, register, cache
line, functional unit, decoder, etc.) that is expected to correlate
well with the fault detection capability of functional programs
targeting the structure. Coverage functions can incorporate
different measures of utilization (both spatial and temporal)
in the relevant hardware unit but need to be measured quickly
to facilitate iterative refinement of program generation3.

Thus, coverage is a generic first-order (fast to measure)
hardware proxy employed by our method to grade and enhance
the fault detection capability of programs, which is the metric
employed in the eventual evaluation of the quality of the
programs that Harpocrates generates. Coverage is essentially
a proxy of the ability of a program to both activate (sensitize)
faults and make them observable (propagate).

D. Fault Types Interplay and Coverage Measurement

Fig. 2 shows the relationship among fault types used to
model silicon defect mechanisms. Ideally, a perfect functional
test program would detect all fault types across all hardware
areas, including faults that arise during the CPU’s lifetime
but were not present during manufacturing. The diagram’s
“transients” area encompasses all fault combinations over time
(i.e., all combinations of a [bit] x [cycles of fault existence]),
representing the entire fault universe. Permanent faults are a
subset of transients (i.e., the cycles the fault exists is equal to
the total program cycles), persisting throughout the program.
Intermittent faults exist for a specific number of cycles and
can behave as permanent or transient within that interval. A
program that detects all transient faults is also very likely4 to
detect the other two types of faults in a hardware bit.

To this end, to guide the Harpocrates methodology for
array-based components, we focus on a hardware coverage
metric related to transient faults. Architecturally Correct Exe-
cution (ACE) analysis [16], [48], [49] identifies the fraction of
bits crucial for correct execution thus estimating the program’s
vulnerability to transient faults [50]. The ACE lifetime analysis
computes, in each cycle (incorporating the notion of time
which is needed for transient faults), the bits that are necessary
for Architecturally Correct Execution (ACE) and labels them
as ACE. We use the ACE lifetime analysis result (the “vulner-
ability”; ranging from 0 to 1 or 0% to 100%) as our hardware

3For some structures, hardware coverage is as simple as a usage counter. For
others, extra information is needed to reflect the diversity of their utilization.

4But not certain because detection also depends on specific bit patterns.
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Fig. 3. ACE lifetime analysis of a cache bit. Yellow intervals are ACE. Arrows
refer to accesses. For other components, only Reads and Writes are needed.

coverage measurement for the bits of a CPU array structure
when a program runs. Fig. 3 shows ACE lifetime stages for a
hardware bit (e.g., in the L1D cache). ACE identifies intervals
crucial for program correctness (write-to-read or read-to-read),
labeling them as ACE periods, with the remaining labeled un-
ACE. In summary, for transient faults in bit array components,
we measure the hardware coverage of a program by calculating
the ratio of ACE cycles to total cycles for each storage bit.

However, the ACE lifetime analysis metric is not suitable
for other fault types, such as permanent faults in arithmetic
units or gates. For those cases, we define the Input Bit Ratio
(IBR) as a more fitting coverage metric. IBR measures the total
input bits to a unit across program execution divided by the
theoretical maximum count of input bits, (assuming the unit’s
inputs are utilized at every cycle of program execution)5.

E. Measuring Fault Detection Capability

We employ Statistical Fault Injection (SFI) to estimate a
program’s fault detection capability. SFI injects faults at the
microarchitecture level and observes outcomes at the software
level [45], [51]–[54]. This approach assesses a program’s
ability to detect hardware faults across the layers. In particular,
if the injected fault propagates to the output of the program
without any observable indication, the effect is a Silent Data
Corruption (SDC). Another case is when the injected fault
propagates to the software and results in an Application or
System Crash. Conversely, if the fault is masked at either
the hardware or software level, it remains undetected. CPU
protection schemes like parity and ECC are considered in
fault injection modeling. For example, a single bit flip in a
fully unprotected cache will be either Masked or lead to an
SDC or Crash, while in a SECDED (single error correction
double error detection) cache it will be Masked (Corrected).
For different fault types (e.g., transient or permanent faults),
we grade the final fault detection capability of the refined
functional programs of Harpocrates using this approach.

III. EXISTING FRAMEWORKS AND EXPERIMENTAL SETUP

A. Open-Source CPU Testing Frameworks

Aiming to drive community-wide efforts in improving
defects detection in CPUs, some open-source frameworks,
contributed by the industry, have been publicly released. Many
of these test frameworks have been released to the community
through the broad industry-wide effort in the context of the
Open Compute Project (OCP) and are summarized in [55].

5IBR can be <1 due to several factors. For example, a 64-bit arithmetic unit
may not be utilized in every cycle. Moreover, its inputs may not always be 64-
bits wide. IBR only considers the effective input bits passed to the unit during
the cycles it is actually used. IBR is a fast toggle-count-like measurement, to
facilitate many iterations while remaining representative of hardware activity.

They present generic approaches that can be further enhanced
and provide guidelines for more community contributions.
Our aspiration for Harpocrates is to be a major contributor
to these efforts. In our experimental evaluation section, we
present results from the open-source tests these suites publicly
offer and compare them with Harpocrates. In this paper, we
choose SiliFuzz [28], [29] and OpenDCDiag [30], [56], as
these frameworks also include tests, which we use in our
evaluations. Wang et al. in [3] mention that the company’s in-
house test programs are not publicly available, but they also
employ SiliFuzz and OpenDCDiag to test the fleet.

1) SiliFuzz [29]: SiliFuzz employs fuzzing on (hardware-
like) software proxies like CPU simulators and disassemblers.
It uses software-coverage metrics to create a diverse input
set, known as the corpus. High code coverage in proxies, is
conjectured to uncover interesting CPU behavior and detect
defects. Silifuzz is hardware and ISA agnostic, generating
programs by randomly mutating byte sequences. Valid and
deterministic result programs are retained as snapshots to run
on the CPU. While still a work in progress, SiliFuzz is yielding
results in the field. To achieve statistically significant results in
our fault injection-based evaluation, instructions from multiple
snapshots (maximum of 100 bytes of binary code each) are
aggregated into a single 10K instructions test (the typical size
of our methodology’s test programs).

2) OpenDCDiag [56]: OpenDCDiag is an open-source
project designed for identifying defects and bugs in CPUs,
focusing on datacenter CPUs, though not limited to them. It
consists of a set of manually specified tests built around a
CPU testing framework. The framework permits the addition
of custom, user-specified tests, offering convenient primi-
tives. The open-source tests provided include compression,
cryptographic operations, matrix multiplication and singular
value decomposition. These algorithms are sensitive to data
corruption; corruption in their inputs or intermediate results is
highly likely to result in corruption in the output data.

In our evaluation of OpenDCDiag we consider each test
separately, and evaluate a single execution of the full test.
Input sizes are configured so that no test exceeds 100 million
cycles of execution.

B. Harpocrates Experimental Setup

1) gem5 simulator: Harpocrates takes a novel hardware-in-
the-loop approach to complement the SiliFuzz and OpenDC-
Diag frameworks, which are hardware-agnostic. As discussed
in sections II-D and II-E, we employ two important evaluation
methodologies to refine and measure the hardware coverage
and the detection capability of Harpocrates-generated pro-
grams. Both the coverage and the detection capability can
highlight the ability to detect faults and identify the cause of a
potential data corruption. For all of our evaluations, we employ
the widely used gem5 simulator [57]–[59], which is a well-
established microarchitectural simulator. We extend the gem5
simulator to allow the evaluation of the ACE lifetime analysis
and the IBR metric (presented in II-D), as well as the injection
of faults of different types in the microarchitectural structures.



Finally, we specify an out-of-order core configuration setting
microarchitectural parameters and sizes based on publicly
available data for commercial x86 CPUs.

2) Fault Models and Hardware Structure Selection: Our
gem5-based fault injection infrastructure can inject transient,
intermittent or permanent faults to several hardware structures
of the CPU microarchitectural model (e.g., caches, register
files, queues, buffers, branch predictors, arithmetic units, etc.).

To demonstrate the effectiveness of Harpocrates, we present
results for six key hardware structures: (a) physical (integer)
register file, (b) L1 data cache, (c) integer adder, (d) integer
multiplier, (e) SSE floating-point adder and (f) SSE floating-
point multiplier. We intentionally selected the first four hard-
ware structures for a fair comparison of Harpocrates with Sil-
iFuzz and OpenDCDiag (which are hardware-agnostic) and to
a general-purpose benchmarks suite (MiBench [60])6 because
all of them bare the hope of a reasonably high utilization of
these four main structures. The two SSE FP arithmetic units
were chosen to complete the picture since recent reports from
hyperscalers clearly identify floating-point units along with
their integer counterparts (in scalar and vector hardware) as
very likely sources of SDCs in large fleets [3]. Harpocrates can
produce effective targeted functional programs for any other
hardware structure.

C. Setting the baseline

To set a fair baseline, we measure the effectiveness of the
open source frameworks (SiliFuzz, OpenDCDiag) in terms
of our driving metrics for Harpocrates: hardware coverage
(section II-D) and fault detection capability measured using
SFI (section II-E). We also present the same metrics for twelve
general purpose benchmarks from the MiBench suite [60].

We showcase SFI results both for transient and permanent
faults for different structures. SFI in bit array components,
such as the physical register file and L1 data cache, utilizes
a transient fault model characterized by a uniform random
distribution of bit and cycle selection. In each execution, a
single random bit undergoes a flip at a randomly chosen cycle
of program execution. On the other hand, SFI in functional
unit components, such as the integer adder and multiplier,
employs a permanent fault model at the gate level because
(single event) transients in logic minimally affect the operation

6MiBench is widely used in similar studies [43], [45], [51]–[53], [61]–[64].

of the CPU as they are masked logically and temporally [65].
All functional unit components are modeled at gate level, and
a set of random gates is uniformly sampled for injection. In
each iteration, one gate from this set is selected, and a stuck-
at-0 or stuck-at-1 fault is simulated to the end of execution.

Fig. 4 shows the hardware coverage and the fault detection
capability evaluation of MiBench, SiliFuzz, and OpenDCDiag
for the Integer Register File (IRF) and L1 data (L1D) cache.
The IRF detection capability is very low (less than 5%) across
most of the programs considered, with few outliers in MiBench
and SiliFuzz that marginally pass the 5% mark. Looking at the
L1D cache evaluation results, the detection capability across
all three frameworks is significantly higher than the IRF reach-
ing more than 80% for a single OpenDCDiag program. In both
components, it is clear that the coverage results are always
higher than the detection numbers - a known property of ACE
that provides an upper bound of the actual detection [16]. The
gap of measured detection from this upper limit is large in
most programs tested, due to software masking. Thus, Fig. 4
clearly shows that there is significant room for improvement
and underline the objective of Harpocrates.

Fig. 5 shows the hardware coverage and the fault detection
capability evaluation for the Integer Adder and the Integer
Multiplier. When it comes to the Integer Adder, all three sets
of workloads exhibit an average detection capability around
the 80% mark, with MiBench and OpenDCDiag having single
outlier programs that reach 99% and 98% respectively. When it
comes to the integer multiplier there is significantly more vari-
ability among the three frameworks. MiBench has an average
detection capability of 53%, SiliFuzz 70% and OpenDCDiag
37%. The highest detection capability is achieved by a SiliFuzz
generated workload and reaches 87% while MiBench and
OpenDCDiag programs exhibit maximum detection capabil-
ities of 67% and 58% respectively.

Fig. 6 shows the hardware coverage and the fault detection
capability for the SSE FP Adder and Multiplier. Unlike the
previous four hardware structures, the two SSE FP units are
not utilized by many of the considered workloads. Thus,
only 4 MiBench and half of the OpenDCDiag benchmarks
have non-zero detection. OpenDCDiag performs best with a
maximum detection capability of 98.5% for the SSE FP adder
and 58.2% for the SSE FP multiplier. This is expected as much
of its workloads are FP-heavy: MxM (Matrix Multiply), SVD
(Singular Value Decomposition), etc.

Fig. 4. Coverage (light dots, left y-axis) and Detection (dark crosses, right y-axis) for the IRF and L1D



Fig. 5. Coverage (light dots, left y-axis) and Detection (dark crosses, right y-axis) for the integer adder and multiplier.

Fig. 6. Coverage (light dots, left y-axis) and Detection (dark crosses, right y-axis) for the SSE FP adder and SSE FP multiplier.

Considering the coverage results for FUs, while IBR does
not serve as an upper bound for the detection capability in the
manner ACE does for bit arrays, it does quantify the degree
of ”exercising” of these components. Thus, the presence of
numerous instances illustrating relatively high IBR alongside
low detection capability suggests the occurrence of masking
at the software level, as these programs seemingly propagate
a small portion of the functional unit results to the output.
From these results, it is clear, that there is a pressing need for
improvement in the development of tests capable of efficiently
identifying permanent gate-level faults in functional units.

While the detection capabilities achieved by the best work-
loads from MiBench, OpenDCDiag and Silifuzz for the Integer
and SSE FP adders might appear satisfactory we show that
Harpocrates consistently reaches a detection > 99% in two
orders-of-magnitude less CPU cycles. Harpocrates employs
a detailed CPU model in gem5 as a fast grading engine to
iteratively improve the hardware coverage which positively
correlates with fault detection capability in our approach.

IV. THE Harpocrates SYSTEM ARCHITECTURE

The Harpocrates system is designed to produce and itera-
tively increase the quality of functional programs with respect
to their hardware coverage and error detection capability. This
section provides a high-level overview of the system, while
the next section elaborates on our concrete instantiation of
Harpocrates.

A. High-Level Description

Harpocrates consists of the main components shown as
orange boxes in Fig. 7 which also depicts their interactions.

We will elaborate on the specific tools we have chosen in
the following section. Different tools that provide a similar
functionality can be substituted in each spot.

The three main components are:
• Generator: This component generates valid functional

test programs. It also bootstraps the iterative refinement
process by producing an initial test program population.

• Mutator: Operating alongside the Generator, the Mutator
alters the current set of programs or combines them to
craft new variants (see more details in Section V-B1).

• Evaluator: Acting as the driving force of the system,
the Evaluator assesses all generated programs against a
predefined metric (an objective function that we are opti-
mizing for). Programs that perform best under this metric
(fittest) are retained for subsequent mutation iterations,
thereby directing the evolution of test programs towards
those that optimize the objective function7.

Harpocrates’ flow resembles that of a genetic algorithm. We
manage a collection of programs (i.e., the population). These
programs undergo combination (akin to genetic crossover) and
modification (mutation). The subsequent generation’s popula-
tion is then determined by an evaluation metric that serves
as a fitness function. Existing systems like Silifuzz [29] are
built around similar principles. In Silifuzz, the generation and
mutation is mapped to the fuzzing component that alters and
combines byte sequences that serve as test programs and
the evaluator is mapped to the computation of the software
coverage of the proxy (CPU emulator, disassembler, etc.).

7Different metrics can be used depending on the target structure, the fault
model of interest, or other required parameters of the generated programs.
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Fig. 7. The Harpocrates architecture and complete flow of operation during program refinement.

Therefore, SiliFuzz is hardware-agnostic; Harpocrates adopts
a novel hardware-in-the-loop approach through the grading
that the microarchitectural simulation engine provides.

Fig. 8 presents a simple example scenario, showcasing the
different approaches of the two frameworks. We assume that
the frameworks are tasked with creating test programs for an
example OoO core which has two ALUs both of which can
handle all integer operations. Moreover, the target structure
for these tests is ALU #0. As previously mentioned, Silifuzz
represents the program as a byte sequence mutating raw bytes
with no internal notion of x86 encoding. This results in more
than 2 out of 3 produced sequences being eventually unusable
due to illegal instructions, etc. Silifuzz initially adds them to
its test corpus, but later discards them as non-runnable. This
percentage of discarded sequences coincides with our experi-
mental data for Silifuzz as presented in section VI. Harpocrates
on the other hand is ISA-aware and thus generates instruction
sequences accurately encoding the operands and their types
(notice how Harpocrates encodes that the ADD instruction’s
operands are both registers). Harpocrates relies on accurate
hardware feedback from the execution of the program on the
gem5 simulator to decide which of the mutated programs
should advance to the next generation. In the example, the
fitness function is set to the number of operations executed in
ALU #0 (i.e. the target structure). When the SUB instruction
is mutated to a DIV, that DIV is issued to ALU #1, stalling
the unit for a large number of cycles. The rest of the additions
are issued to ALU #0, which now executes 3 operations in
total. Based on its increased fitness this program advances to
the next generation while the other is dropped.

B. Flexibility and Uses of Harpocrates

The ISA, microarchitecture, optimization, and fault model
parameters in Harpocrates can be flexibly adapted as follows:

• any ISA supported by the microarchitectural simulation
engine8 that performs the Harpocrates evaluation can be
used (gem5 supports x86, Arm and RISC-V ISAs);

• any microarchitectural structure of a complex out-of-
order CPU can be analyzed (currently, our fault injection
infrastructure in gem5 models and injects faults in more
than 70 different hardware structures);

• any ”quality” metric can be used to guide the iterative
refinement of the functional test program (hardware cov-
erage metric tailored to particular structure);

• any fault model can be used for the evaluation of the final
fault detection capability of programs.

Any combination of the above can be picked to match the
requirements of a particular use case of Harpocrates. A short
(non-exhaustive) list of use cases follows:

• Fast periodic scan of a CPUs fleet (the Ripple, in pro-
duction testing mode, discussed in [33]): in this case,
Harpocrates can be constrained to generate programs of
certain short duration (cycles or instructions) maximizing
their fault detection capability under this constraint.

• Comprehensive scan of CPUs fleet (the Fleetscanner,
out of production testing mode discussed in [33]): in
this case, Harpocrates is set to reach a certain (very
high) fault detection capability without an execution time
constraint.

• Electrical and environment conditions screening before
silicon is shipped: silicon designers look for marginal
defects [7], [10] that produce faults under certain condi-
tions; when conditions require focus on a particular fault
type or structure, Harpocrates can be configured for the
purpose.

8An emulator can also be employed but the point in Harpocrates is to bring
the hardware awareness which is missing from ISA emulators.
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V. OUR INSTANTIATION OF HARPOCRATES: THE TOOLS

We describe in detail the specific tools employed in our
instantiation of Harpocrates through which we derived the ex-
perimental results present in the next section (and the baseline
results presented in III-C). Our evaluation engine is the gem5
simulator enriched with hardware coverage analysis and fault
detection measurement (through fault injection) capabilities.

Program generation and mutation is orchestrated via the
MuSeqGen (Mutator and Sequence Generator) framework we
have developed. The complete framework is depicted in Fig. 9.

A. MuSeqGen

A central piece of MuSeqGen is the code generator. Har-
pocrates utilizes and significantly extends the publicly avail-
able version of the MicroProbe [66] code generation frame-
work to support a large subset of the (previously completely
unsupported in MicroProbe) x86-64 ISA and all the additional
complexities of generating valid programs in the x86-64 ISA.
MicroProbe’s publicly available implementation only covers
the POWER and RISC-V ISAs. In addition, we have modified
MicroProbe’s tooling in order to support constrained random
generation of programs. We also develop higher-level tooling
to streamline the generation process and expose all config-
urable parameters. The next paragraphs introduce MicroProbe
to familiarize the reader with the framework’s terminology.

MicroProbe [32], [66] is an ISA-independent, modular,
and extensible code generation framework. MicroProbe was
initially developed to assist in accurate energy-related char-
acterization of CPUs. The key feature of MicroProbe, is the
separation of architecture (i.e., ISA) and microarchitecture-
specific details from the code generation process.

Specifically (Fig. 9), the framework consists of two main
modules: the Architecture Module and the Code Generation
Module. The Architecture Module is composed of a set
of configuration text files that specify all the ISA details
(registers, instructions, formats, etc.) and, optionally, certain
microarchitectural details (e.g., core components, cache con-
figurations, latencies, etc.). All this information, and most
importantly the ISA details, is queried during generation
to produce the microbenchmark that is valid for the target
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Fig. 9. The MuSeqGen framework structure. It corresponds to module #3 of
our instantiation of the Harpocrates architecture (Fig. 7).

ISA. The Code Generation Module orchestrates the code
generation process. The microbenchmark being generated is
encoded in an internal representation, which undergoes refin-
ing transformations via a set of compiler-like (user-specified)
passes. These transformations handle: initialization, branch
resolution, memory operand resolution, register allocation, etc.
The sequence of passes that was specified to produce the final
microbenchmark is collectively referred to as a policy.

The collection of passes and the policies created from
those passes are generic and reusable, thanks to the separation
provided by the detachment of all architectural dependencies
from code generation. For example, existing register allocation
passes in the code generation module are compatible with any
target ISA specified in the architecture module. The generation
process is driven by the synthesizer object, to which we
attach our sequence of passes (i.e., our policy). Ultimately, a
microbenchmark must be lowered to a valid assembly. This
requires a substantial amount of architectural information,
which is retrieved through interfaced communication between
the Code Generation Module and the Architecture Module.

MicroProbe’s approach is an ideal fit for the generation of
programs in Harpocrates due to the following features:

1) Extensibility: The framework is inherently highly exten-
sible and modular, enabling our developed tooling to easily
interface with the other Harpocrates modules.

2) ISA-awareness: The generated programs are always
valid, provided all ISA constraints are encoded.

3) Assembly Level Codegen: This is critical because work-
ing at a higher level (e.g., with a high-level programming
language) would deprive us of complete control over code
generation. The compiler’s back end would be responsible for
instruction selection, favoring certain instructions over others
and translating higher-level programming language constructs
into specific patterns. A compiler aims for performance; how-
ever, in our case, such behavior during code generation would
restrict the explored program space and limit our flexibility.

B. x86 support

Let us now delve into some implementation details con-
cerning the support of the x86 ISA in MuSeqGen. For a
new ISA to be supported, we need to provide all relevant
configuration files in the Architecture Module (see Fig. 9).
These configuration files collectively define the ISA. The
extension of the Architecture Module for the x86 ISA involved
the following key steps:

• Identifying an x86-64 ISA reference file in a structured,
machine-readable format (e.g., an XML file).

• Developing a parser to interpret the file and convert it
into a set of configuration files with specific formats.

• Incorporating the configuration files into the Architecture
Module so that they can be utilized during the code
generation step to produce valid x86-64 assembly.

This process results in our generator supporting ≈ 2, 000
x86 instruction variants, closely matching the extent of x86
support in the gem5 simulator. The x86-64 CISC ISA is
significantly more complex than the two RISC ISAs already in



Microprobe and several subtle details needed to be accounted
for to reliably produce valid, deterministic, and non-crashing
x86-64 assembly.

Firstly, x86 supports several addressing modes. For Har-
pocrates’ demonstration purposes in the experimental evalu-
ation on six hardware structures, we implement support for
RIP-relative as well as base + offset addressing. However, the
flexibility of our framework allows for the implementation of
any x86 addressing mode without any restriction.

Moreover, in x86, we have to consider the implicit operands
of instructions when encoding them. For example, in x86-
64, some variants of the MUL instruction implicitly store
part of their result in RAX. If this case is disregarded, the
code generator will be unable to prevent a situation like the
following: Assume the RAX register is used as an address base
register, but the generator inserts a MUL instruction. In this
case, a segmentation fault is very likely during execution, as
the address is most likely corrupted after the MUL operation.

Stack-related instructions like PUSH and POP and their
variants can also produce crashing sequences, e.g., popping the
empty stack. A related issue was the resulting stack alignment
after the execution of the generated sequence. For x86-64
(or amd64) architecture, the stack alignment ABI requires the
stack to be aligned on a 16-byte boundary when a function is
called. We carefully insert a re-aligning snippet of instructions
after the end of our generated sequence.

To detect corruptions, it is important to provide programs
with deterministic output (i.e., executions of the program
always provide the same output). To achieve this, the code
generator excludes certain x86-64 instructions that are non-
deterministic (as the authors of SiliFuzz also pointed out).

The aforementioned complexities are only a representative
subset of the modifications and constraints we had to develop
into the generator to reliably produce a non-crashing deter-
ministic x86-64 assembly.

1) Mutation Engine: MuSeqGen introduces a program mu-
tation engine (Fig. 9), closely integrated with the code gener-
ator. Having implemented and tested various sequence alter-
ing and recombination strategies (e.g., k-point crossover and
variations on instruction replacement), we have experimentally
settled on a specific variation of instruction replacement that
replaces all the occurrences of a randomly selected instruction
of the sequence, with another random instruction (the same
mnemonics with different operand types are handled as distinct
instructions). This strategy provides fairness in replacement
due to the uniform selection of the replacement instruction.
This policy’s benefits are twofold: (1) We can optimize any
objective function without tuning the mutation strategy sep-
arately, (2) We avoid the pitfall of specifying “too explicit”
mutation strategies that would trivialize programs and narrow
the explored ISA space or get stuck in local optima. The
counterargument might be that a “targeted” mutation strategy
converges faster, however, as we present in the evaluation sec-
tion VI, our instruction replacement policy converges swiftly,
without the aforementioned pitfalls.

2) Generation and Mutation Manager: The final piece of
MuSeqGen is the Manager (bottom middle in Fig. 9), a coop-
erating collection of scripts that orchestrate the most common
flows in the framework. The simplest one is configurable
constrained random generation, whereas the more interesting
flows involve the mutation engine as well. For example,
we could instruct the Manager to orchestrate the following:
1) Generate 10 random programs, 2) Randomly mutate the
instruction sequence of each generated program 5 times, 3)
Generate programs from the 25 total mutated sequences, etc.;
which is how the Harpocrates’ loop is set in motion.

C. Complete Flow

The complete Harpocrates flow is shown in Fig. 7.
Step 0: The process starts with the Generator, MuSeqGen.

The program generation engine produces (in parallel) the
initial population of random test programs, based on any user-
specified constraints. Given our generator’s intrinsic under-
standing of the x86-64 ISA and its restrictions, it ensures every
generated program results in valid assembly. This process is
described in subsection V-D.

Step 1: Next is the evaluation step, conducted via the gem5
microarchitectural simulator [57]–[59], which serves as our
evaluation/grading platform (III-B). Utilizing gem5 enables
us to harness a wide collection of program execution metrics
(akin to hardware counters but much more expansive). The
rich microarchitectural-level data available through simulation
permits the creation of sophisticated metrics and analyses.
One such analysis is the ACE-like analysis we presented in
subsection II-D. In this phase, the functional test programs are
simulated in parallel in gem5 and our predefined evaluation
metric is computed, for each one, as a fitness score (which
corresponds to the hardware coverage metric). The result of
the evaluation step is the ranking of the current generation of
test programs based on their fitness scores.

Step 2: In the next step, we perform selection. Our strategy
in this step is straightforward. We advance the top-K programs
that maximize our metrics to the following step.

Step 3: In this step, the Mutator alters the top-K programs
according to the strategy described in V-B1, to produce the
next generation of programs. The mutation engine is integrated
within MuSeqGen, leveraging the available ISA information,
which allows us to express various mutation strategies. This in-
tegration ensures that mutations comply with ISA constraints.

The new set of test programs goes through evaluation again,
starting the next cycle of the iterative assessment and mutation
flow. The process is repeated until our metrics converge.

D. The x86 Program Generation of MuSeqGen

MuSeqGen starts the generation process by encoding the
program structure via variable-sized basic blocks connected in
a control flow graph (CFG). The next step involves selecting
instructions for these blocks, which can be done either by
importing sequences from external tools like MuSeqGen’s
mutation engine, manual specification (for smaller programs),
or allowing the generator to autonomously choose instructions



based on uniform or user-defined distributions. After popu-
lating the basic blocks with instructions, the focus shifts to
assigning operands. Register allocation is configurable, allow-
ing strategies (i.e., passes) such as constant register depen-
dency distance, random allocation subject to ISA constraints,
round-robin, etc. Any allocation algorithm can be integrated
into the framework. Address resolution for memory operands
necessitates the definition of memory regions within which
the operands are validly addressed. These regions and the
access patterns defined on them are completely configurable.
Consider an access pattern that iterates over a region with a
fixed stride; in a 32 KB region for example, with a stride of
32 bytes, we could resolve operands to 1K different addresses.
Finally, immediate operands are resolved by uniform sam-
pling across their whole range, while branch target resolution
requires careful design to maintain consistent control flow
despite variations in operands, memory, or initial state.

For our objectives and the hardware structures we analyze,
we have determined that the generation of instructions within a
single basic block is sufficient and provides the desirable level
of structural simplicity. Our programs thus consist of a linear
sequence of instructions. To ensure this linear execution path,
all branches resolve to the subsequent instruction, equating
taken and not-taken paths. Register allocation maximizes the
dependency distance, to provide a balance between high ILP
and data flow propagation. Memory operands are always
resolved in a round-robin fashion and within a cache-sized
designated memory space with a fixed stride. These parameters
were chosen for our target components after carrying out
a detailed sensitivity analysis which we omit due to space
limitations. Had we been targeting different structures (e.g.,
caching hierarchy logic, page-fault logic) our parameters and
more importantly memory passes and instruction sequence size
would have been configured accordingly.

After resolving operands, the final step involves generating
valid assembly instructions for the target ISA. However, raw
assembly alone cannot produce a standalone binary; initializa-
tion of registers and memory is crucial for producing a fixed
end-state output, vital for error detection. MuSeqGen handles
this through configurable wrappers, which encompass raw
assembly, allowing for initialization and output computation
code. The wrapper, typically a minimal C program, encodes
the core test program as an inline assembly within the main
function. It manages register and memory initialization and
ensures appropriate warmup code so that all core test instruc-
tions are run under a similar hardware state (i.e., consistency).
An added benefit with a C code wrapper is that producing
and executable binary for our test is simple; we just pass
through a C compiler. The test’s output includes the final state
of architectural registers and a signature over accessed memory
regions. To ensure accurate evaluation metrics, gem5 directives
are set to isolate core program instructions from initialization
or output computation.

VI. EXPERIMENTAL EVALUATION

Below, we discuss the Harpocrates-generated programs fault
detection effectiveness, as well as other properties. All ex-
periments are performed on a dual-socket AMD EPYC 7402
24-Core CPU (96 hyperthreads) with 128GB of DDR4 RAM.

A. Harpocrates Performance Evaluation

Harpocrates’ generation and evaluation speed can be com-
pared to SiliFuzz, which is the only alternative automated
methodology available for this purpose. We calculate the
effective instruction generation rate for both frameworks.

1) SiliFuzz: The first step involves fuzzing the proxy to ac-
cumulate a set of “interesting” inputs, which adequately cover
the proxy’s code. We performed fuzzing on the Unicorn x86
emulator that SiliFuzz uses, on all cores, for 40 minutes. This
step yielded 635,587 test inputs. Subsequently, only the test
inputs (i.e., programs) that are non-crashing and deterministic
are picked out. This sorting step lasted 5 minutes. Only about
one-third of the programs were kept, amounting to 173,731
runnable, deterministic, short programs. The average SiliFuzz-
generated program contains 18.6 instructions, for a total of
3,230,528 runnable instructions produced in 45 minutes, or
≈1,200 instructions per second.

2) Harpocrates: As Table I shows Harpocrates completes a
mutation / generation / evaluation cycle in 13.35 seconds, for
96 programs of 5K instructions each. This amounts to 480,000
generated and evaluated instructions, or ≈36,000 runnable in-
structions per second. Harpocrates (runnable and evaluated)
instruction generation rate is 30x that of Silifuzz.

Another point to be drawn out, is the impracticality of a
flow that refines programs by directly measuring detection
capability through SFI. In such a flow, a single iteration takes
several hours, instead of the seconds shown in Table I.
B. Harpocrates Parameters and Convergence

Harpocrates is configured and operates as follows.
1) Integer Register File: Program size is set to 10K instruc-

tions in the generator. Mutation is performed via instruction
replacement as presented in V-B1, thus the size remains
constant through iterations. The hardware coverage (reward
function) being optimized with every iteration is computed by
the ACE lifetime analysis detailed in II-D. In each iteration, we
evaluate 96 programs (i.e., the maximum number of hardware
threads in our setup; Harpocrates exploits the full parallelism
of any CPU configuration), only keeping the top 16. The
next population is produced by mutating each of the top
16 programs 6 times, producing 96 offspring programs. The
convergence of this process is shown in the top-left graph
of Fig. 10. Harpocrates iterated 10,000 times in total; the
graph only shows the coverage values measured for the top-
16 programs every 1,000 iterations. This explains the upward
”gaps” seen every 16 dots in the graph; we advance by

TABLE I
HARPOCRATES SINGLE LOOP STEP DURATION BREAKDOWN.

Step Mutation Generation Compilation Evaluation Total
Time 0.51s 9.18s 1.12s 2.54s 13.35s



1,000 iterations. Harpocrates has reached convergence much
earlier than the 10,000 iterations, at about 5,000 iterations.
We showcase the full graph to illustrate that the maximum
coverage is retained for subsequent iterations. Harpocrates
attains more than 3x the coverage of the best-performing tests
(w.r.t coverage, Fig. 4 top graphs) in the other frameworks.
The final measure of test quality is, however, the detection
capability, which we compare in the following subsection.

2) L1 Data Cache: The setup is similar to the Register
File with two differences. First, the program size is now
set to 30K instructions. Second, all memory references are
resolved sequentially with a stride of 8 bytes in a 32KB region.
Both of these constraints enable the generated programs to
adequately exercise the data cache. The 32KB memory region
is intentionally chosen; our data cache has that exact capacity.
Coverage is mapped once again to the ACE analysis but only
considering the bits of the data cache this time. Harpocrates
converges after approximately 2,000 iterations, attaining a
maximum coverage of 95%, as shown in the top-right graph
in Fig. 10. Unlike the coverage graph for the IRF the coverage
progression has no upward jumps due to the smaller sampling
interval. Specifically, we show the coverage of the top 16
programs every 100 iterations. Finally, notice the high starting
point (≈77% in the first generation) due to the cache-aware
constraints we imposed on program generation.

3) Integer Adder: Program size is set to 5K instructions.
Mutation is still the instruction replacement presented in V-B1,
however we now map our coverage function to IBR, explained
in the last paragraph of II-D. Each iteration evaluates 32
programs, only keeping the top 8. Each of the top 8 programs
is mutated 4 times to produce the subsequent generation.
In this scenario, Harpocrates manages to converge in just
over 1,000 iterations, saturating to ≈10% coverage (IBR), as
shown in the middle-left graph in Fig. 10. Again, the graph is
sampled, showing the coverage of the top programs every 100
iterations. It is clear that the smaller population and program
size chosen are perfectly adequate for strong convergence,
speeding up the full execution of Harpocrates to under 2 hrs.

Fig. 10. Coverage (light dots, left y-axis) and Detection (dark crosses, right
y-axis) for all components, measured across Harpocrates optimization.

4) Integer Multiplier: We employ an identical setup to the
integer adder. Again, Harpocrates converges in 1,000 itera-
tions, saturating to a 6% coverage (IBR). In both functional
units examined, Harpocrates achieves 2x higher coverage
than the best programs from other frameworks (as seen when
comparing the middle graphs of Fig. 10 to Fig. 5).

5) SSE FP Adder: The setup is similar to the integer
functional units. For the SSE FP adder, Harpocrates’ converges
in 5,000 iterations, saturating to a 7% coverage (IBR metric).
However, our SFI experiments revealed that detection capabil-
ity peaks much earlier (step 500) stabilizing just below 100%
and thus we present data up to step 1,100 (sampling every 100
steps) to better illustrate the progress curve of Harpocrates.

6) SSE FP Multiplier: For the SSE FP multiplier, we
configure Harpocrates similarly to the previous units and
observe convergence in 5,000 iterations, saturating to a 5%
coverage (IBR metric). Again, detection capability peaks much
earlier (step 600) and thus we truncate the data to step 1,100 to
show the progress of Harpocrates generation. The early peaks
in detection for both SSE FP components can be attributed to
the fact that the XMM registers are accessed with relatively
fewer instructions than general registers, and thus there is a
smaller probability that a fault that has propagated in those
registers will be masked by a subsequent operation. Compared
to the three other frameworks for both the SSE FP units
Harpocrates achieves more than 10x increased coverage.

A critical observation, which confirms the crux assumption
in our methodology, can be drawn from Fig. 10: For all the
components it is evident that increasing the coverage of our
test program population (through the Harpocrates’ methodol-
ogy) translates to increases in detection capability. Thus,
our coverage metrics, carefully selected for the combination
of fault type and hardware structure, are positively correlated
with the measured detection capability of our programs. This is
the key insight of Harpocrates; relying on accurate, hardware-
aware, quantitative feedback to evolve highly-specialized pro-
grams targeted at specific microarchitectural structures. This
automated, targeted, hardware-aware evaluation is the key
novelty of our framework, contrary to other approaches which
might rely on a priori expert knowledge on microarchitecture
or hardware-“blind” evaluation metrics like Silifuzz.

Another interesting point is the discrepancy observed in
detection capability. Specifically, injected transient faults in the
two bit-array components are much harder to detect (for all
frameworks) compared to permanent faults in the functional
units. This is mainly due to fault characteristics: transients
are easily overwritten, while permanents persist across the
whole execution. Another reason is that the IRF and L1
data cache are microarchitected and present complex dynamic
behaviour (adequately covering them in a generated test is
harder), whereas the functional units are primarily exercised
by specific instructions. The “difficulty” of the two scenarios
is also apparent from the convergence of Harpocrates: For all
functional units ≈1000 loops of refinement produce excellent
programs. For the data cache, we need more than 2000
iterations and for the IRF coverage (and detection) reach



Fig. 11. Maximum (top of bars) and Average (middle of bars when shown) detection values for each method and for each of the six hardware structures.

their peak at about 5000 iterations. It is thus experimentally
”harder” for Harpocrates to converge on good solutions for
bit arrays (studied for transient faults) compared to functional
units (studied for permanent faults).

C. Harpocrates Fault Detection and Full Comparisons

This section compares and discusses the fault detection
capability for all frameworks for the six hardware components
of this study (Fig. 11). The results from the open source tests
(Silifuzz and OpenDCDiag) and the MiBench workloads are
shown to put things in perspective and showcase how Har-
pocrates can generate tests that adapt to different components
and fault modes, providing excellent detection capability.

1) Integer Register File: the Harpocrates-generated pro-
gram manages to detect nearly 10x more faults compared
to the other frameworks, as shown in the leftmost graph
in Fig. 11. The register file structure is very challenging
for transient fault detection due to the very high rates of
register allocation and freeing during program execution. Our
uniform random instruction replacement policy guided by
feedback from the ACE coverage metric allows us to generate
instruction patterns that maximize program bits exposed to
transient faults in the IRF. It is evident that these patterns do
not occur in “typical” workloads (MiBench, OpenDCDiag) nor
in Silifuzz-generated programs..

2) L1 Data Cache: Some OpenDCDiag framework tests
reach high fault detection capability for the L1D cache (almost
80%) as we can see in the second from left graph in Fig. 11.
Harpocrates’ final tests for the data cache manage an even
higher detection capability for transients, approaching 90%.

3) Integer Adder: In this structure, every framework’s best
programs nearly fully detect all gate-level stuck-at faults
injected (with SiliFuzz slightly behind the rest). However, the
average test of the other frameworks provides poor coverage
of the permanent faults (third from the left graph Fig. 11).

4) Integer Multiplier: In this structure, SiliFuzz performs
much better than OpenDCDiag and MiBench, which are
lacking a test with significant activity in the integer multiplier.
Harpocrates’ final tests reach nearly 100% detection.

5) SSE FP Adder: On average across MiBench, SiliFuzz
and OpenDCDiag the detection capability of SSE FP adder
faults is low, as seen in the second from the right graph of
Fig. 11, mainly due to lack of SSE activity in most workloads
as mentioned in Sec. III-C. There are multiple outlier programs
(mainly in OpenDCDiag) that achieve high detection capabil-
ity in this component (up to 98.5%). Harpocrates achieves
99.8% detection in orders-of-magnitude less CPU cycles.

6) SSE FP Multiplier: Similarly to the adder, SSE FP
multiplier detection capability is even lower on average for
non-Harpocrates workloads. In contrast to the adder, maximum
detection capability is achieved by a single OpenDCDiag
program and is only 58.2%, very low for permanent faults.
The Harpocrates generated program reaches 99.7% detection.
Overall, Harpocrates is the only framework to manage nearly
full fault detection in all functional units we compared.

The excellent detection capability demonstrated by Har-
pocrates’ tests can be elucidated by referring to the coverage
metrics outlined in Section II-D. For bit array components,
ACE serves as a coverage metric that establishes an upper
limit for detection capability. As illustrated in Fig. 10, the gaps
between the coverage and detection capability of our generated
programs are minimal, indicating negligible software masking,
due to the careful parameterization of our generator.

A similar observation can be made for the functional units.
The IBR metric signifies the ”exercising” of functional units,
and although it does not establish an upper limit for detection,
a strong correlation between the two is evident. This suggests
that our programs propagate most functional unit results to
their output. In contrast, a significant portion of workloads
in MiBench, SiliFuzz, OpenDCDiag exhibit a low correlation
between these metrics, indicating significant software masking.

An additional advantage of our approach lies in the detec-
tion speed facilitated by our tests. While a single MiBench
program matches our 99% detection in the integer adder,
it does so in more than 11 million cycles. In contrast,
Harpocrates’ programs can attain the same, or even supe-
rior, detection capability in a significantly shorter timeframe.
Specifically, 99% detection of the injected permanent faults is
accomplished in only 50,000 cycles, approximately 220 times
faster. This rapid detection speed is also consistently observed
for test programs directed at the multiplier. In comparison
to the best competition program (SiliFuzz-generated), which
only manages to detect 86.6% of all injected faults with a
similar runtime to our generated test, our hardware-in-the-
loop approach achieves 99.5%.

D. The unexpected bug detection in gem5 via Harpocrates

An unexpected finding during our experimental evalua-
tion, shed extra light into Harpocrates’ capabilities. A set of
Harpocrates-generated programs revealed an internal assertion
error in gem5 simulator (v22.0.0.2). Tracking down the root
cause of this assertion error, we found an instruction emulation
bug with the RCR x86 instruction, fixed in later versions [67]
of gem5. The simulation crashes in the corner-case where the
rotate amount is equal to the size of the rotated register.



VII. RELATED WORK

Various approaches and studies related to the detection,
tolerance, and impact of Silent Data Corruptions (SDCs) in
computing systems have been presented. Some employ redun-
dancy by executing identical processes on multiple replicas
and comparing their outcomes to detect and potentially correct
errors [68]–[71]. Hardware-based redundancy, like the dual-
core lockstep technique [72] is too costly for widespread
use, despite its effectiveness for critical applications. Other
works use ML [73]–[79] to forecast SDC occurrences. Some
predict result ranges and identify errors when the actual
result falls outside the predicted range [73]–[75]. Previous
studies focused on silent errors induced primarily by transient
radiation rays [80]–[82] and noted SDCs caused by faulty
processors in cloud service environments [1], [33], [83]. The
text refers to Meta’s case study on SDCs in production [1].

SDCs also originate from other components: disks, mem-
ory [81], [82], [84], TPUs [85], and corner-case or electrical
bugs that may occur under certain conditions in a hardware
unit and escape into volume production [12], [13], [86]–[88].
Environmental conditions such as temperature and humidity
affect electronic devices [89], [90] with core temperature
identified as a trigger for SDCs. Further, prior studies provide
in-depth evaluations of SDCs under diverse conditions, using
physical experiments or simulators. Fault injection is widely
used to evaluate system reliability. Methods range from using
neutron beams based on irradiation models [80], [82], [85]
to simulators, experimental devices for fault injection [4]–
[6], [45], [52], [91] or combining both beam experiments and
fault injection [41], [51], [64]. The aim is to improve injector
designs based on observations, to better assess SDC solutions.

Previous research has explored the generation of stress
tests via genetic algorithms in different contexts and objec-
tives: maximization of power consumption and dI/dt voltage
noise [92]–[97], or stress viruses for soft errors [62], [98],
[99]. Most of these approaches aim for worst-case instruction
sequences only, which naturally results in a few distinct in-
structions executed in a tight loop. In particular [99] operates
at the register transfer level and aims to maximize metrics that
can potentially increase the failure rate due to soft errors. Other
types of faults are not analyzed and, as the authors admit,
the paper does not provide any validation for the correlation
between the targeted metrics and the failure rate (through fault
injection). In the context of the CPU faults problem, such ap-
proaches would be primarily useful as a prologue: to establish
extreme stress conditions that can trigger an intermittent fault
resulting from a defect, particularly a marginal defect [7], [11].
Marginal defects are nowadays the most challenging to detect
through manufacturing and in-package testing, thus driving
the development of continuous fault screening methodologies
through the system lifetime, such as Harpocrates. Therefore,
Harpocrates is orthogonal to these studies; it mutates much
longer, diverse instruction sequences to stimulate hardware
components, increasing coverage and thus the defect detection
capability.

VIII. CONCLUSION

Harpocrates is a novel methodology for the automatic
generation of functional test programs for the detection of CPU
faults throughout the lifetime of computing systems. It is a ma-
jor contributor to existing frameworks, complementing them
with the novel hardware-model-in-loop approach to iteratively
refine hardware coverage leading to increased detection capa-
bility. It can be configured to produce effective programs for
different microarchitectural structures, ISAs, fault types, and
for different optimization targets (e.g., short duration or high
fault detection). We demonstrated Harpocrates’ effectiveness
on multiple important hardware structures of a modern x86
microarchitecture for different fault types.
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