
Silent Data Corruptions:
The Stealthy Saboteurs of Digital Integrity

George Papadimitriou† Dimitris Gizopoulos† Harish Dattatraya Dixit§ Sriram Sankar§

†University of Athens, Greece, {georgepap | dgizop}@di.uoa.gr
§Meta Platforms, Inc., {hdd | sriramsankar}@meta.com

Abstract—Silent Data Corruptions (SDCs) pose a significant
threat to the integrity of digital systems. These stealthy sabo-
teurs silently corrupt data, remaining undetected by traditional
error handling mechanisms. The silent nature of SDCs makes
them challenging to trace at the hardware level, as they evade
error reporting systems. Instead, their effects manifest at the
application level, potentially causing data loss and system-wide
issues. Detecting and measuring SDCs present unique challenges.
Their low occurrence rates, dependence on hardware structure
and software workloads, and correlation to environmental factors
make accurate measurement complex. Addressing SDCs requires
proactive measures to prevent data corruption and ensure digital
integrity. Software redundancy methods provide a means to
tolerate SDCs by introducing duplication or triplication of
application resources. However, these methods come with their
own limitations, including increased code size, altered execution
patterns, and potential vulnerability to other types of failures.
Understanding the nature of SDCs and developing effective
mitigation strategies are crucial for maintaining digital integrity
in large-scale infrastructure services. This paper sheds light on
the stealthy saboteurs that silently corrupt data, emphasizes the
need for comprehensive measurement techniques, and explores
the limitations of existing mitigation approaches. By addressing
the challenges posed by SDCs, we can fortify digital systems
against these hidden threats and ensure the reliability and
integrity of our digital infrastructure.

Index Terms—Silent data corruptions, system reliability, mi-
croprocessors, hardware reliability, large scale infrastructure, mi-
croarchitectural simulation and modeling, fault injection, failure
rates

I. INTRODUCTION

In the realm of modern computing systems, microproces-
sors hold immense importance as critical components that
drive a vast array of applications, spanning from personal
devices to sprawling data centers. The future of supercomput-
ing envisions achieving extraordinary levels of performance
through the utilization of millions of microprocessor cores
and specialized accelerators. However, attaining dependable
computing at an exascale level remains an arduous obstacle to
surmount [1], [2]. Despite employing highly aggressive design
and manufacturing techniques, microprocessors are not imper-
vious to errors. Among these, silent data corruptions (SDCs)
pose a particularly insidious and hard-to-detect problem within
contemporary computing [3]. Silent data corruptions occur
when data becomes corrupted in a manner that appears valid,
without triggering any alarms at the hardware or software
level. However, the consequences manifest as incorrect results
during computations. Within the realm of microprocessors,

such errors can emanate from various sources, including
cosmic rays, hardware defects, and design flaws. Cosmic rays,
for instance, can bombard computer memory, resulting in
bit flips where 0 turns into 1 or vice versa. Other sources
encompass manufacturing and aging defects, design bugs, and
fluctuations in power supply. Additionally, operating micro-
processors at lower voltages renders them more susceptible to
silent data corruptions, as the critical charge required to flip a
bit diminishes at reduced voltages [4]–[11].

Detecting and quantifying silent data corruptions within
microprocessors pose challenges due to their sporadic nature
and difficulty in reproducing them [12]–[15]. The problem
also attracted the attention of the general press [16], [17]. To
mitigate the impact of on-chip memory errors, error correcting
codes (ECC) are employed to identify and rectify such er-
rors [18]. However, the use of ECC methods entails additional
storage requirements and increased complexity, and it does
not encompass the detection and correction of all hardware-
induced errors [19]. Although commonly used ECC methods
can detect and correct certain faults, their capabilities are
limited. For instance, the prevalent single error correction,
double error detection (SECDED) method can detect up to
two flipped bits and correct only one flipped bit within a
64-bit segment [18], [19]. Furthermore, in newer fabrication
technologies, on-chip memory structures witness a higher
occurrence of multiple-bit faults [20]. While ECC can prove
beneficial in reducing failure rates within specific on-chip
memory structures, it may not be universally applicable to all
functional, control, and memory blocks of a microprocessor.
Consequently, even with the implementation of ECC methods,
the possibility of silent data corruptions persists, particularly
within extensive datacenter infrastructures, posing a significant
threat to the integrity of programs [12], [13], [21].

The frequency and nature of silent data corruptions present a
significant challenge for modern microprocessors and the com-
puting systems they underpin. However, extensive research and
development efforts over the past few decades have yielded
remarkable progress in mitigating the occurrence and impact
of silent data corruptions. As computing systems continue to
advance in complexity and their importance in our daily lives
grows, it is evident that this area of research will remain a focal
point for the computing community. Consequently, it becomes
crucial to identify the primary sources of errors that can
silently compromise program execution and explore innovative
methods for modeling and detecting silent data corruptions.



One approach to address this challenge is the utilization of
fault tolerance techniques, such as redundancy or replication,
to ensure the availability of multiple copies of critical data.
This redundancy can serve as a safeguard, allowing the system
to operate correctly even in the presence of silent data corrup-
tions. Additionally, the application of error-correcting codes is
another valuable strategy. These codes possess the capability
to automatically identify and rectify errors, enhancing system
reliability. Particularly in safety-critical systems, where the
ramifications of silent data corruptions can be disastrous, such
error correction methods are of utmost importance.

In this paper, we provide an overview that underscores
the significance of silent data corruptions. We begin by pre-
cisely defining the nature of the problem itself. Furthermore,
we comprehensively analyze existing approaches while also
identifying critical gaps in addressing this pressing issue. Our
investigation extends to identifying potential sources of failure
that have the potential to give rise to silent data corruptions.
Finally, we shed light on the challenges encountered when
attempting to measure the rates of silent data corruptions in
real microprocessors and detailed low-level simulation models.
By employing early microarchitecture level modeling and
conducting thorough measurements, we reveal the severity
of silent data corruption rates across different technology
fabrication nodes and under diverse operating conditions.

II. UNDERSTANDING SILENT DATA CORRUPTIONS

A. Overview

Silent data corruption (SDC) poses a threat to large-scale in-
frastructure services. SDC is a widespread problem that affects
microprocessor chips, as well as off-chip memory, storage, and
networking, which have traditionally been identified as the
main contributors to the issue [12]–[14]. SDCs are difficult to
trace at the hardware level because microprocessors lack error
reporting systems capable of recording such corruptions, hence
the name ”silent”. However, these data corruptions permeate
the system stack and manifest as problems at the application
level. In large-scale data centers, the issue can be distributed
across multiple server locations. The consequences of these
errors include data loss, and rectifying them can take months
due to the delayed detection of silent data loss [12]–[14].

Silent data corruption occurs when a microprocessor chip
unintentionally corrupts the data it processes, often due to soft
errors, manufacturing defects, or design flaws. For example,
a CPU with a hardware fault or bug may produce incorrect
computations (e.g., 2 x 2 = 5) or load/store incorrect values,
which subsequently affect further computations. Unless the
software actively checks for such corruptions, there may be
no visible evidence of these computational issues.

Unlike other failures that are easily observable, such as
application crashes, SDCs often go unnoticed in many cases.
To address SDCs and prevent software-level failures, software-
level redundancy methods or software-based fault-tolerant
methods can be implemented in applications [22], [23]. These
methods rely on redundancy, typically duplicating or triplicat-
ing the application’s resources.

B. Limitations of Software-Based Fault-Tolerance Methodolo-
gies

By doing so, fault-tolerant applications can minimize the
risk of data corruption, since redundant copies increase the
chances of detecting and isolating potentially malfunctioning
hardware resources. However, software-based fault-tolerant
methods have four significant limitations (as presented in [1]),
even though they can significantly reduce the potential for
SDCs and ensure correct execution.

1) The expense of incorporating redundancy in terms of
performance and power efficiency is excessive, resulting
in significant degradation in performance and increased
power consumption. These negative effects directly im-
pact end users. The more robust the redundancy ap-
proach, such as triplication of application resources, the
greater the performance degradation and power con-
sumption.

2) These methods aim to tolerate SDCs by introducing
computational and/or resource redundancy, which sig-
nificantly increases the size of the application’s code.
This increase in code (and data) size alters the execution
patterns of the fault-tolerant program compared to the
original, unprotected version. As a consequence, while
SDCs may be reduced, the likelihood of other potential
faults, such as crashes, may actually increase. Recent
research has demonstrated that software redundancy
methods can enhance the susceptibility of hardened
applications to crashes [24].

3) Software redundancy methods are typically applied only
to the application itself and not to the entire software
stack, including libraries and the operating system (un-
less they are open source). Although some previous
studies have aimed to tolerate well-known open-source
libraries (e.g., PyTorch [25]) and the Linux kernel (e.g.,
FT-Linux [26]) for hardware-induced faults, the issues
of fault coverage locations and performance degrada-
tion still remain unresolved and severe. For instance,
FT-Linux [26] is a Linux-based operating system that
replicates race-free, multithreaded POSIX applications
across different hardware partitions of a single machine.
This method introduces a slowdown of up to 40% in
addition to the replication, which is attributed to the
utilization of double the resources. Furthermore, from
both a development effort and performance degradation
perspective, it would be impractical, if not unfeasible, to
apply redundancy to the entire software stack, including
applications, libraries, and the operating system.

4) Employing a comprehensive solution to protect the soft-
ware side from hardware-induced corruptions leading
to SDCs could involve hardening the entire software
stack. However, recent research has indicated that a
considerable number of hardware-induced faults result-
ing in SDCs may go undetected by both the software
and architecture layers [1], [24]. Therefore, even with
robust software-based protection throughout the entire



software stack, a significant portion of hardware faults
that eventually cause SDCs may remain unnoticed, not
only by SECDED ECC at the hardware level (especially
if the corruption exceeds a single bit), but also by the
software protection, and may affect the output without
any indication.

C. Silent Data Corruptions at Scale

Silent Errors within hardware devices occur when an inter-
nal defect manifests in a part of the circuit which does not
have checked logic to detect the incorrect circuit operation.
The results of such a defect can range from flipping a single
bit in a single data value, up to causing the software to execute
the wrong instructions. Silent Data Corruption (SDC) can have
a negative impact on large scale infrastructure services. SDCs
are not captured by error reporting mechanisms or contained
by hardware fault tolerance architectures within computing
devices. These make them untraceable at the hardware level.
However, these data corruptions propagate across the stack
and manifest as application level problems. These types of
errors can result in data loss and can require months of
debug engineering time. Meta has observed numerous defect
types in silicon manufacturing that lead to SDCs. We have
dealt with hundreds of real-world examples of silent data
corruption within datacenter applications and have established
methodologies and debug flows to root-cause and triage faulty
instructions within a computing unit. We utilize numerous
techniques to implement mitigations to reduce the risk of silent
data corruptions within a large production fleet. Manifesta-
tions of silent errors are accelerated by datapath variations,
temperature variance, and age, among other silicon factors.
Mitigations range from modifying hardware architectures for
upcoming internal and external compute devices, to imple-
menting fleetwide detection and testing architectures which
scan the fleet periodically at different stages of infrastructure
maintenance flows.

Given the challenging nature of the problem, we experi-
mented with different methods for detection and mitigation at
scale. We employ two such approaches:

1) Fleetscanner (out-of-production testing) and
2) Ripple (in-production testing).

We continuously evaluate the infrastructure tradeoffs asso-
ciated with the silicon testing funnel across 4+ years of
production experience within these techniques and consistently
optimize them. In our large-scale infrastructure, we have run
a vast library of silent error test scenarios across hundreds
of thousands of machines in our fleet. This has resulted in
hundreds of devices detected for these errors, showing that
SDCs are a systemic issue across generations. Based on
the at-scale monitoring established for SDCs in the past 5
years within Meta fleet, we determine that reducing silent
data corruptions requires not only hardware resiliency and
production detection mechanisms, but also robust fault-tolerant
software architectures. The effort to mitigate these silent data
corruptions require novel ideas in silicon design, verification
and validation, testing strategies, hardware fault modeling and

containment, compiler level instruction resilience and fault-
tolerant software architectures.

III. THE CHALLENGE OF MEASURING SDC RATES

A. The Challenging Task of Unveiling Errors at System-Level

Measuring the rates of SDCs presents a significant challenge
due to their nature - being undetectable by hardware-based
or software-based error handling mechanisms. SDC rates are
typically low and heavily influenced by the faulty hardware
structure and the workload being executed. To obtain accurate
measurements of SDC rates, a substantial volume of data from
a significant number of defective chips must be processed.
For instance, in a typical datacenter, billions of bytes of
data are processed every second, necessitating specialized
equipment and techniques like hardware monitors or software-
based profiling tools [27]. Another factor complicating SDC
rate measurements is the high dependency of these errors on
the system’s configuration and workload. Systems operating
in harsh environments or experiencing frequent power fluctu-
ations may exhibit higher SDC rates [6], [8], [9]. Similarly,
systems running complex and resource-intensive applications
may also encounter elevated SDC rates. Therefore, conducting
accurate SDC rate measurements requires extensive experi-
ments encompassing a wide range of conditions, which is
both time-consuming and expensive. Such experiments can
practically be carried out only by owners of extreme-scale
systems.

Enterprise and cloud data centers are deploying increasingly
intricate System-on-Chip (SoC) devices in large quantities,
which heightens the risk of undetected faults that can lead
to unexpected crashes or SDCs. Numerous factors can cause
faults in an SoC, such as radiation, electrical marginalities,
and manufacturing defects. Even silicon defects that are not
detected (or even exist) during manufacturing can result in
faults [28], [29] in the field. The way these faults affect the
operation of a workload depends on the circuit where the
fault occurs [30], [31]. While soft errors caused by cosmic
rays are widely acknowledged [32], [33] for their ability
to provide SDCs, it is essential to consider SDCs resulting
from manufacturing defects and in-field reliability mecha-
nisms due to the vast scale of data center infrastructure [12],
[13], [27]. Detecting and screening defects that contribute to
SDCs pose challenges because they require specific conditions
for occurrence, such as a particular sequence of machine
instructions, operating voltage, frequency, temperature, and
platform behavior like interrupts [13]. Consequently, SDC
detection tests exhibit limited repeatability, and identifying
failures necessitates extended testing durations. Hence, it is
crucial to design test methods that account for this behavior.
One approach is to execute SDC-targeting code multiple times
during tests, while another involves utilizing pseudo-random
instruction and data sequences within each execution loop to
increase the diversity of applied data sequences in the tests.

The effects of silent data corruptions are unpredictable and
depend on various factors. While an incorrect calculation of
a single pixel value may not be significant, a data error in



a financial transaction calculation could require corrective
action [27]. Since a single fault can manifest in different
ways over time due to workload variations, managing faults
that can cause SDC at scale is crucial, particularly when
millions of processing cores are installed in a data center or a
supercomputer. Lerner et al. in [27] presented that a datacenter
of modest size (i.e., 100,000 SoCs) is likely to experience at
least one SDC event per month with a rate of 10 failures
in time (FIT) (1 FIT equals to one failure every 109 –one
billion– hours of operation). For larger installations, frequent
SDC events are likely, even at 1 FIT. To this end, it is crucial to
minimize the rate of SDC, for example, by periodically testing
the datacenter infrastructure to identify defective hardware
components that perform wrong calculations.

B. The Need for Billions of Real Machines or Billions of Years
of Simulation

Given the challenges associated with measuring SDC rates,
discussed in the previous section, it is not surprising that many
researchers have turned to simulations as a way to study such
errors: simulation-based analysis provides the opportunity to
evaluate faulty chips even without having access to any faulty
physical chip. Simulations have their limitations. In particular,
measuring SDC rates at the RTL (register-transfer level) pro-
vides very high detail and accuracy, which, unfortunately, is
extremely computationally expensive. In fact, measuring real
SDC rates at the RTL is practically impossible since it can take
many years, even with the most powerful computers available
today. Table I shows the most common ways to evaluate the
reliability (including the expected SDC rates) of computing
devices, comparing the time and cost required to complete the
study, how many of the available resources can be accessed
(or are modeled), if the faults are induced by processes that
are natural (i.e., realistic error rates) or synthetic (i.e., models
chosen by the user), if the study can be performed in the
early stages of the project or only on the final product, and
how much information can be gathered on faults generation
and propagation (observability). Alternatively, researchers can
attempt to measure SDC rates using real machines [12], [13].
However, this approach is possible only for hyperscalers, i.e.,
owners of huge fleets of computing machines to study SDC
rates accurately. For example, in order to precisely measure the
SDC rates, billions of machines may be required [12], [13].
Even with the proliferation of cloud computing and big data
platforms, it is hard to obtain access to such large numbers of
machines. For microprocessors consisting of several million

bits and programs consisting of several billions of cycles,
determining the real probability of failure (or the FIT rate)
is an extremely difficult, if at all possible, task. Specifically,
there are two stages at which the FIT rate is measured.

Typically, RAS architects rely either on Statistical Fault
Injection (SFI) [35] or on analytical methods, such as the
Architecturally Correct Execution (ACE) analysis [36], to
provide insights into the programs’ resiliency toward transient
faults, because both methods aim to report the cross-layer
vulnerability. Unlike lower-level simulation models (e.g., gate
and RTL), microarchitecture-level fault-injection based on
performance models allows deterministic end-to-end execution
of large workloads on top of an operating system, i.e., full
system analysis, which is impossible at lower levels [24],
[31], [37]. Further, injection on RTL models [38] would
marginally augment vulnerability analyses with combinational
logic vulnerability, since logic has very low raw failure rates
compared to storage elements.

We, therefore, employ GeFIN [5], which has been developed
and extended on top of the gem5 simulator [39], which is a
state-of-the-art microarchitecture-level simulator. Recent stud-
ies have shown that fault injection based on microarchitecture-
level models in gem5 simulator can provide vulnerability re-
sults of the entire CPU during 18 days [31], in contrast to RTL
fault injections, which could need several years (see Table I).
Moreover, microarchitecture-level fault injection studies are
performed in GPUs too, in which SDCs can also occur [40].
In the next subsections, we summarize a number of recent
vulnerability studies using our gem5-based simulation and
injection set of tools.

C. SDC Failures in Time (FIT) Analysis

Failures in Time (FIT) rate of a device is the number of
failures that can be expected in one billion (109) device-hours
of operation. For each hardware structure in a microprocessor,
a different FIT is computed using the formula below.

FITstruct = AV Fstruct × rawFITbit ×#Bitsstruct

The FIT of the structure is determined by three components:
the FITBIT (or raw FIT) rate, which is determined by the
fabrication technology and expresses the fault rate of a single
bit, the number of bits of the structure and the SDC AVF of the
structure, which is affected by the microarchitecture and the
running workload. The raw FIT rate expresses the number of
SDCs that will be introduced in the component, while the AVF
(architectural vulnerability factor) is the derating factor that

TABLE I
SILENT DATA CORRUPTION RATE MEASUREMENT METHODOLOGIES [34].

Evaluation Method Time Needed Cost Accessible Resources Fault Source Availability Observability
Field, Lifetime data months/years very high all natural final product limited

Beam testing hours high all natural final product limited
Software-level fault injection hours low limited synthetic early/final product medium

Architecture-level fault injection days low limited synthetic early medium
Microarchitecture-level fault injection days/weeks low most synthetic early very high

RTL fault injection years low all synthetic late very high



quantifies how many of these errors will lead to a failure. The
product equals the FIT rate of a component. The SDC FIT rate
of the entire CPU is calculated by adding the individual SDC
FITs of the individual hardware structures. In the following
subsections, the AVF is determined using microarchitecture
level fault injection on gem5 simulator.

Fig. 1 shows the SDC FIT rate for each technology
node [20]. The red color indicates the percentage of SDC
FIT due to multi-bit faults, which starts from 0% in 250 nm
node and reaches a high 12% in 22 nm. We can also see
that the SDC FIT for each technology node is increasing until
the point of 130 nm. After that, the SDC FIT rate starts to
decrease, reaching the lowest FIT values at 22 nm. These
values correspond to the exact same microarchitecture with
the exact same configuration. The differences observed are
due to the much smaller area that the chip occupies in the
higher density technologies, which results in a significantly
smaller number of particles that will eventually strike the
microprocessor.

D. SDC Rates for Bare-metal versus OS Executions

In this section, we summarize a characterization study which
is performed through physical beam experiments on an Arm
Cortex-A5 microprocessor, to show the contribution of OS
(Operating System) to the SDC rates. To this end, we show a
comparison between SDC FIT rates of bare-metal executions
and with Linux OS. In Fig. 2 we can observe that the average
SDC rates for A5 is 23.7% for bare metal and 59.3% for Linux.
It is also clear from Fig. 2 that the SDC rate is constantly
higher when the applications run on top of Linux, in contrast to
bare-metal execution. Specifically, we can see that the differ-
ence of the SDC rates between bare-metal and Linux OS can
be as high as 6.7×. However, as we discussed earlier, during
beam experiments it is very difficult to investigate the SDC
rates in finer granularity. To this end, in the next subsection we
show results from the state-of-the-art microarchitecture-level
fault injection framework, named GeFIN [41] which is based
on the gem5 simulator. Simulation-based analysis (typically
performed through statistical fault injection) is a very useful

Fig. 1. SDC FIT for the entire CPU core for different technology nodes
(numbers inside the green bars) due to transient faults. Red color areas
correspond to the contribution of multi-bit upsets. The graph shows only the
FIT rate for SDCs [20].

Fig. 2. Cortex A5 Bare-metal and Linux beam FIT rates for SDCs [34].

early-stage method for SDCs error rate estimation. Physical
experiments (like the neutron beaming ones we just described)
assist the validation of the simulation-based approaches and
the quantification of the accuracy of the failure rates they
report.

E. SDC Correlation to on-chip storage structures

In this section, we examine the relationship between SDCs
and the major on-chip memory structures of modern micropro-
cessors. It is essential to evaluate the SDC rates of individual
hardware structures to understand their susceptibility. Fig. 3
illustrates the susceptibility of each structure to non-benign
faults that are not masked at the hardware level. An SDC can
occur if a hardware error eventually becomes available at the
software and silently affects the execution of the program.
Therefore, in Fig. 3 show the percentage of these errors to
result in an SDC. Our first and most significant observation is
that the Re-Order Buffer (ROB), Load Queue (LQ), and Store
Queue (SQ) have a zero probability of experiencing SDCs.
This is because any fault that occurs in these structures is
not architecturally visible due to dependency graph checks
that fail before the commit stage. Memory structures like the
ROB, LQ, and SQ, which are deep in the microprocessor’s
pipeline, ensure proper instruction ordering when instructions
are ready to commit. Any corruption in these structures may
lead to dependency graph check failures before the commit
stage and result in a crash.

Fig. 3. The percentage of hardware corruptions at the software level (i.e.,
non-masked errors at hardware level) that eventually result in SDC [1].



IV. CONCLUSION

Silent Data Corruptions (SDCs) represent a formidable
challenge to the integrity and reliability of digital systems.
Their stealthy nature and ability to go undetected by traditional
error-handling mechanisms make them particularly insidious.
While SDCs were initially attributed to off-chip memory and
storage, recent research has revealed the growing role of
microprocessor chips in causing these corruptions. Measuring
and detecting SDCs present significant hurdles due to their
irregular rates, dependence on hardware structure and software
workloads, and sensitivity to environmental factors. Accurate
measurement requires specialized equipment and extensive
experiments conducted under diverse conditions, making it
a resource-intensive endeavor. The protection against SDCs
requires a holistic approach that encompasses the entire soft-
ware stack, including applications, libraries, and the operating
system. However, achieving comprehensive protection remains
challenging, as undetectable hardware-induced faults can still
result in SDCs, evading both software-based protections and
hardware-level error correction mechanisms. To ensure the
integrity and reliability of large-scale infrastructure services,
it is crucial to deepen our understanding of SDCs (through
accurate simulation, emulation, and subsequent validation of
the reported results) and, based on the above, develop effec-
tive mitigation strategies. Further research and innovation are
needed to address the challenges posed by SDCs, including
more robust measurement techniques, enhanced redundancy
methods, and comprehensive protection mechanisms. By doing
so, we can bolster the digital infrastructure and safeguard
against the stealthy saboteurs that threaten the integrity of our
digital systems.

ACKNOWLEDGMENT

Work supported by research gifts from Meta and AMD, as
well as the European Union’s Horizon Europe research and
innovation programme under grant agreement No 101093062
(Vitamin-V), and No 101097224 (REBECCA). Views and
opinions expressed are however those of the authors only and
do not necessarily reflect those of the European Union. Neither
the European Union nor the granting authority can be held
responsible for them.

REFERENCES

[1] G. Papadimitriou and D. Gizopoulos, “Silent data corruptions: Microar-
chitectural perspectives,” IEEE Transactions on Computers, pp. 1–13,
2023.

[2] M. Snir, R. W. Wisniewski, J. A. Abraham, S. V. Adve, S. Bagchi,
P. Balaji, J. Belak, P. Bose, F. Cappello, B. Carlson, A. A. Chien,
P. Coteus, N. A. Debardeleben, P. C. Diniz, C. Engelmann, M. Erez,
S. Fazzari, A. Geist, R. Gupta, F. Johnson, S. Krishnamoorthy,
S. Leyffer, D. Liberty, S. Mitra, T. Munson, R. Schreiber, J. Stearley,
and E. V. Hensbergen, “Addressing failures in exascale computing,”
Int. J. High Perform. Comput. Appl., vol. 28, no. 2, p. 129–173, may
2014. [Online]. Available: https://doi.org/10.1177/1094342014522573

[3] A. Singh, S. Chakravarty, G. Papadimitriou, and D. Gizopoulos, “Silent
data errors: Sources, detection, and modeling,” in 2023 IEEE 41st VLSI
Test Symposium (VTS), 2023, pp. 1–12.

[4] L. Bautista-Gomez, F. Zyulkyarov, O. Unsal, and S. McIntosh-Smith,
“Unprotected computing: A large-scale study of dram raw error rate on a
supercomputer,” in SC ’16: Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis,
2016, pp. 645–655.

[5] A. Chatzidimitriou, G. Papadimitriou, D. Gizopoulos, S. Ganapathy, and
J. Kalamatianos, “Assessing the effects of low voltage in branch pre-
diction units,” in 2019 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), 2019, pp. 127–136.

[6] P. Koutsovasilis, C. D. Antonopoulos, N. Bellas, S. Lalis, G. Papadim-
itriou, A. Chatzidimitriou, and D. Gizopoulos, “The impact of cpu
voltage margins on power-constrained execution,” IEEE Transactions
on Sustainable Computing, vol. 7, no. 1, pp. 221–234, 2022.

[7] A. Chatzidimitriou, G. Papadimitriou, D. Gizopoulos, S. Ganapathy,
and J. Kalamatianos, “Analysis and characterization of ultra low power
branch predictors,” in 2018 IEEE 36th International Conference on
Computer Design (ICCD), 2018, pp. 144–147.

[8] A. Chatzidimitriou, G. Papadimitriou, and D. Gizopoulos, “Healthlog
monitor: A flexible system-monitoring linux service,” in 2018 IEEE 24th
International Symposium on On-Line Testing And Robust System Design
(IOLTS), 2018, pp. 183–188.

[9] D. Gizopoulos, G. Papadimitriou, A. Chatzidimitriou, V. J. Reddi,
B. Salami, O. S. Unsal, A. C. Kestelman, and J. Leng, “Modern hardware
margins: Cpus, gpus, fpgas recent system-level studies,” in 2019 IEEE
25th International Symposium on On-Line Testing and Robust System
Design (IOLTS), 2019, pp. 129–134.

[10] A. Chatzidimitriou, G. Papadimitriou, and D. Gizopoulos, “Healthlog
monitor: Errors, symptoms and reactions consolidated,” IEEE Transac-
tions on Device and Materials Reliability, vol. 19, no. 1, pp. 46–54,
2019.

[11] G. Papadimitriou, A. Chatzidimitriou, D. Gizopoulos, V. J. Reddi,
J. Leng, B. Salami, O. S. Unsal, and A. C. Kestelman, “Exceeding con-
servative limits: A consolidated analysis on modern hardware margins,”
IEEE Transactions on Device and Materials Reliability, vol. 20, no. 2,
pp. 341–350, 2020.

[12] H. D. Dixit, S. Pendharkar, M. Beadon, C. Mason, T. Chakravarthy,
B. Muthiah, and S. Sankar, “Silent Data Corruptions at Scale,” 2021.
[Online]. Available: https://arxiv.org/abs/2102.11245

[13] P. H. Hochschild, P. Turner, J. C. Mogul, R. Govindaraju,
P. Ranganathan, D. E. Culler, and A. Vahdat, “Cores That Don’t
Count,” in Proceedings of the Workshop on Hot Topics in Operating
Systems, ser. HotOS ’21. New York, NY, USA: Association
for Computing Machinery, 2021, p. 9–16. [Online]. Available:
https://doi.org/10.1145/3458336.3465297

[14] H. D. Dixit, L. Boyle, G. Vunnam, S. Pendharkar, M. Beadon, and
S. Sankar, “Detecting silent data corruptions in the wild,” 2022.
[Online]. Available: https://arxiv.org/abs/2203.08989

[15] “Announcing the winners of the 2022 Silent Data Corruptions at Scale
request for proposals,” accessed: 2023-05-23. [Online]. Available:
https://research.facebook.com/blog/2022/6/announcing-the-winners-of-
the-2022-silent-data-corruptions-at-scale-request-for-proposals/

[16] “Tiny Chips, Big Headaches,” accessed: 2023-06-06. [Online].
Available: https://www.nytimes.com/2022/02/07/technology/computer-
chips-errors.html

[17] “Greek team investigating ‘glitch’ in computer chips,” accessed: 2023-
06-06. [Online]. Available: https://www.ekathimerini.com/economy/
1212658/greek-team-investigating-glitch-in-computer-chips/

[18] R. W. Hamming, “Error detecting and error correcting codes,” The Bell
System Technical Journal, vol. 29, no. 2, pp. 147–160, 1950.

[19] Y. Luo, S. Govindan, B. Sharma, M. Santaniello, J. Meza, A. Kansal,
J. Liu, B. Khessib, K. Vaid, and O. Mutlu, “Characterizing appli-
cation memory error vulnerability to optimize datacenter cost via
heterogeneous-reliability memory,” in 2014 44th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks, 2014,
pp. 467–478.

[20] A. Chatzidimitriou, G. Papadimitriou, C. Gavanas, G. Katsoridas, and
D. Gizopoulos, “Multi-bit upsets vulnerability analysis of modern mi-
croprocessors,” in 2019 IEEE International Symposium on Workload
Characterization (IISWC), 2019, pp. 119–130.

[21] J. Meza, Q. Wu, S. Kumar, and O. Mutlu, “Revisiting memory errors
in large-scale production data centers: Analysis and modeling of new
trends from the field,” in 2015 45th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, 2015, pp. 415–426.



[22] D. Kuvaiskii and C. Fetzer, “∆-encoding: Practical encoded processing,”
in 2015 45th Annual IEEE/IFIP International Conference on Depend-
able Systems and Networks, 2015, pp. 13–24.

[23] M. Didehban and A. Shrivastava, “nzdc: A compiler technique for near
zero silent data corruption,” in 2016 53nd ACM/EDAC/IEEE Design
Automation Conference (DAC), 2016, pp. 1–6.

[24] G. Papadimitriou and D. Gizopoulos, “Demystifying the system vulnera-
bility stack: Transient fault effects across the layers,” in 2021 ACM/IEEE
48th Annual International Symposium on Computer Architecture (ISCA),
2021, pp. 902–915.

[25] “Pytorch elastic documentation,” 2022. [Online]. Available: https:
//pytorch.org/elastic/0.1.0rc2/overview.html

[26] G. Losa, A. Barbalace, Y. Wen, H.-R. Chuang, B. Ravindran, and M. Sa-
dini, “Transparent fault-tolerance using intra-machine full-software-
stack replication on commodity multicore hardware,” in 2017 IEEE 37th
International Conference on Distributed Computing Systems (ICDCS),
2017, pp. 1521–1531.

[27] D. P. Lerner, B. Inkley, S. H. Sahasrabudhe, E. Hansen, L. D. R. Munoz,
and A. v. de Ven, “Optimization of tests for managing silicon defects in
data centers,” in 2022 IEEE International Test Conference (ITC), 2022,
pp. 578–582.

[28] M. D. McCluskey and A. Janotti, “Defects in semiconductors,” Journal
of Applied Physics, vol. 127, no. 19, p. 190401, 2020. [Online].
Available: https://doi.org/10.1063/5.0012677

[29] G. Papadimitriou, D. Gizopoulos, A. Chatzidimitriou, T. Kolan, A. Koyf-
man, R. Morad, and V. Sokhin, “Unveiling difficult bugs in address
translation caching arrays for effective post-silicon validation,” in 2016
IEEE 34th International Conference on Computer Design (ICCD), 2016,
pp. 544–551.

[30] S. Mukherjee, Architecture Design for Soft Errors. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 2008.

[31] G. Papadimitriou and D. Gizopoulos, “Avgi: Microarchitecture-driven,
fast and accurate vulnerability assessment,” in 2023 IEEE International
Symposium on High-Performance Computer Architecture (HPCA), 2023,
pp. 935–948. [Online]. Available: https://doi.org/10.1109/HPCA56546.
2023.10071105

[32] T. C. May and M. H. Woods, “A new physical mechanism for soft

errors in dynamic memories,” in 16th International Reliability Physics
Symposium, 1978, pp. 33–40.

[33] R. Baumann, “Radiation-induced soft errors in advanced semiconductor
technologies,” IEEE Transactions on Device and Materials Reliability,
vol. 5, no. 3, pp. 305–316, 2005.

[34] P. R. Bodmann, G. Papadimitriou, R. L. R. Junior, D. Gizopoulos, and
P. Rech, “Soft error effects on arm microprocessors: Early estimations
versus chip measurements,” IEEE Transactions on Computers, vol. 71,
no. 10, pp. 2358–2369, 2022.

[35] R. Leveugle, A. Calvez, P. Maistri, and P. Vanhauwaert, “Statistical fault
injection: Quantified error and confidence,” in 2009 Design, Automation
and Test in Europe Conference and Exhibition, 2009, pp. 502–506.

[36] S. Mukherjee, C. Weaver, J. Emer, S. Reinhardt, and T. Austin, “A
systematic methodology to compute the architectural vulnerability fac-
tors for a high-performance microprocessor,” in Proceedings. 36th An-
nual IEEE/ACM International Symposium on Microarchitecture, 2003.
MICRO-36., 2003, pp. 29–40.

[37] G. Papadimitriou and D. Gizopoulos, “Anatomy of on-chip memory
hardware fault effects across the layers,” IEEE Transactions on Emerging
Topics in Computing, vol. 11, no. 2, pp. 420–431, 2023.

[38] S. Mitra, N. Seifert, M. Zhang, Q. Shi, and K. Kim, “Robust system
design with built-in soft-error resilience,” Computer, vol. 38, no. 2, pp.
43–52, 2005.

[39] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5
simulator,” SIGARCH Comput. Archit. News, vol. 39, no. 2, p. 1–7, aug
2011. [Online]. Available: https://doi.org/10.1145/2024716.2024718

[40] D. Sartzetakis, G. Papadimitriou, and D. Gizopoulos, “gpufi-4: A
microarchitecture-level framework for assessing the cross-layer re-
silience of nvidia gpus,” in 2022 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS), 2022, pp. 35–
45.

[41] A. Chatzidimitriou and D. Gizopoulos, “Anatomy of microarchitecture-
level reliability assessment: Throughput and accuracy,” in 2016 IEEE
International Symposium on Performance Analysis of Systems and
Software (ISPASS), 2016, pp. 69–78.


