
Energy Efficiency of Out-of-Order CPUs: Comparative Study and

Microarchitectural Hotspot Characterization of RISC-V Designs

Odysseas Chatzopoulos† George Papadimitriou† Wing Shek Wong§ Dimitris Gizopoulos†
†University of Athens, Greece {od.chatzopoulos | georgepap | dgizop}@di.uoa.gr

§Intel, Austin, Texas wing.shek.wong@intel.com

Abstract

Building on the power of open-source RISC-V CPU designs
at the register-transfer level (RTL) we evaluate the energy ef-
ficiency of the state-of-the-art open-source out-of-order (OoO)
RISC-V microarchitecture (SonicBOOM) at three different
design points of increasing aggressiveness. We measure the
contributions of all major hardware structures and identify
their power consumption. Our findings can assist micropro-
cessor designers in making informed decisions regarding the
microarchitectural trade-offs, enabling the development of
more energy-efficient CPUs by focusing on the major power
consumption contributors and their performance criticality.

1. Introduction

Microarchitecture plays a crucial role in determining
the power consumption of a processor or a computer
system [1]. Power consumption is a significant concern in
modern computing devices due to limitations in battery life,
energy efficiency requirements, and the need for thermal
management [2]. By measuring and optimizing microar-
chitecture choices, designers can contribute to energy-
efficient solutions that align with the growing demand
for sustainable and power-conscious technologies [3–5].
With the growing popularity of the RISC-V instruction
set architecture (ISA) and the large variety of different
microarchitectures that implement the ISA, understanding
the combined performance and power implications of such
choices on RISC-V cores becomes increasingly vital. This
paper builds on top of a publicly available OoO RISC-
V CPU (SonicBOOM) and aims at fulfilling this goal. In
this paper, (1) we present a comprehensive RTL power
estimation flow, using a comprehensive, end-to-end combi-
nation of commercial and open-source tools, (2) we assess
the impact of microarchitecture on power consumption,
targeting three different configurations of SonicBOOM [6]
(i.e., MediumBoom, LargeBoom, MegaBoom), (3) we evaluate
and present insights on how major microarchitectural com-
ponents contribute to the power consumption of the entire
microprocessor chip, and (4) we present the performance
per watt evaluations for ten benchmarks and each of the
three BOOM configurations we used in this study.

2. Tools, Models, Frameworks

We employ a set of both open-source and commer-
cial tools to evaluate the effects of microarchitecture on
chip power consumption. These tools enable fast design

space exploration of different microprocessor configurations,
providing metrics such as performance, area, and energy
efficiency. In this section, we enumerate and briefly describe
these tools.

1) Chipyard is a widely-used, open-source frame-
work that enables the design and evaluation of
full-system hardware using an agile development
approach [7].

2) SonicBOOM is the 3rd generation of BOOM, the
state-of-the-art, open-source, out-of-order RISC-V
core. It is written in Chisel and is highly parame-
terized, allowing for fast design-space exploration
and optimization for a wide range of target applica-
tions [6, 8]. Figure 1 presents a microarchitectural
diagram of the BOOM core.

3) ASAP7 is a 7nm predictive process design kit
(PDK). It was developed in collaboration with Arm
for academic use. The kit is based on the assump-
tions for the 7nm technology node and is not tied
to any specific foundry for manufacturing [9].

L1 Instruction
Cache

Brach Predictor BTB
RASI-TLB

Fetch Buffer

Decoder

Renaming Allocate Logic Commit

Reorder Buffer (ROB) IN
T R

egister File

FP Issue
Queue

Mem Issue
Queue

Int Issue
Queue

Store Queue
Load Queue

L1 Data CacheMSHR D-TLB

ALU

ALU

CSRs

RoCC

ALU

Mul

Div

FDiv

FMul

Branch

AGU

Store
Data

FP
 R

eg
is

te
r

Fi
le

Front-End Instruction
Decode Unit

Execution
Unit

Load-Store
Unit

Figure 1: SonicBOOM microarchitecture. Different back-

ground colors show the distinct major units of the core.

4) Verilator is a high-performance simulator for the
Verilog hardware description language (HDL) [10].
It is renowned for its speed, reputed as the fastest
open-source simulator for Verilog HDL [11].

5) Cadence Joules is an RTL power estimation tool
that achieves both high accuracy and relatively
high speed [12]. Joules can evaluate all three parts
of power in digital CMOS designs, i.e., Leakage
(Static) Power, Internal (Short Circuit) Power

and Switching Power [13].

3. Experimental Setup

This section describes the experimental methodology
we follow to assess the impact of microarchitecture on chip
power consumption. We describe the experimental flow
explaining how we combined the use of the tools described
in Section 2, as well as the benchmarks and the target
BOOM configurations employed for our analysis.

3.1. Experimental Flow

Our workflow is illustrated in Figure 2. The first step
is to select the target Chipyard SoC configurations 1 that
contain three different BOOM setups, i.e., MediumBOOM,
LargeBOOM and MegaBOOM, as shown in Table 1. Medi-
umBOOM is a 2-wide core, LargeBOOM is 3-wide and
MegaBOOM is 4-wide. All three configurations implement
the BOOM microarchitecture, as depicted in Figure 1. The
microarchitectural components highlighted in bold within
this figure indicate the components under consideration
for our study. It is clear that we have encompassed the
majority of the microarchitectural components.

Our target configurations define the entire chip includ-
ing the BOOM core, caches, and peripheral that are included
in Chipyard as customizable, Chisel based, generator IP
blocks 2 . The Chisel-based designs undergo a build process,
which initially converts them into FIRRTL intermediate rep-
resentation. Subsequently, the intermediate representation
is processed through a series of predefined transforms, such

as memory macro mapping, resulting in the creation of the
target Verilog 3 . This target Verilog is fed into Verilator
that transforms it into a fast, multithreaded, cycle-accurate
simulator 5 that can produce cycle-by-cycle signal traces
for the entire chip. The default Verilator configuration has
two limitations, preventing us from tracking all signals in
the design: (1) some signal names start with an underscore
which Verilator by default ignores during trace file genera-
tion, and (2) some unpacked arrays are over the size limit
that Verilator traces by default. We address these issues
by passing the appropriate command line arguments to
Verilator during the simulator build process 4 .

We utilize a diverse set of ten benchmarks, each consist-
ing of an average of 1.4 million dynamic instructions (we
have confirmed that this is a typical workload execution
time for RTL simulations in industry setups). To ensure
accurate results in terms of power and performance for
all benchmarks, particularly those involving a significant
number of memory accesses, we perform cache warm-up by
executing each benchmark twice. Towers, Software Multiply,
and QSort benchmarks are part of the RISC-V toolchain,
while Basicmath, Bitcount, Dijkstra, and FFT benchmarks
are part of the MiBench benchmark suite [14]. Int_Add
and Mem_Load are custom benchmarks designed to stress
the integer and memory pipelines, respectively, while the
Dhrystone benchmark is a well-known, integer-focused
benchmark widely used for comparing the performance
of different cores.

Running the benchmarks on our fast multithreaded
simulator, we produce 30 trace files 6 , each encompassing
every signal in the respective design for every execution
cycle. The trace files that Verilator produces are in the
Value Change Dump (VCD) format. Each file varies in size,
falling within the range of 30 to 70 gigabytes. While the
VCD format is commonly used and well-accepted, we found
the size of the files to be excessively large for practical
handling and analysis. To overcome this challenge, we
convert these files into the FSDB (Fast Signal Database)
format. This format, which employs a binary system,

SoC
Configuration

RTL Generators

Caches Peripherals

RTL Build Process

Target
Verilog

RTL
Simulation

TCL Script ASAP7 PDK
Benchmark

Trace FileExport .csv
Files

Parsing

Joules
Multithreaded Fast Sim

C/C++

Figure 2: The experimental flow used in this study for RTL power modeling and evaluation.

TABLE 1: BOOM Configurations Used in this Study.

Medium Large Mega

Fetch/Decode/Issue Width 4/2/4 8/3/5 8/4/8
Int / Mem / FP IQ Entries 20/12/16 32/16/24 40/24/32

Int / Mem / FP EXUs 2/1/1 3/1/1 4/2/2
Int Regs 80 100 128

Int RF Rd Ports 6 8 12
Int RF Wr Ports 3 4 6

FP Regs 64 96 128
FP RF Rd Ports 3 3 6
FP RF Wr Ports 2 2 4

ROB Entries 64 96 128
L1 I$ Size / Associativity 16KB / 4 32KB / 8 32KB / 8
L1 D$ Size / Associativity 16KB / 4 32KB / 8 32KB / 8
Load / Store Queue Size 16 / 16 24 / 24 32 / 32

Branch Predictor GShare GShare GShare
BTB Entries 256 512 512

significantly reduces the file sizes—by as much as tenfold.
Such a reduction streamlines our processes and makes the
subsequent steps in our methodology more efficient.

After obtaining the required trace files, we feed them
to Cadence Joules 7 along with the target Verilog RTL
code produced in a previous step along with the ASAP7
PDK library files 8 and HAMMER generated TCL script 9

that runs the Joules power-estimation flow as described in
Section 3.2. In order to study the effects of microarchitecture
on power consumption, we use the same clock rate in
all three BOOM configurations (therefore, the microar-
chitectures differ in their IPC—instructions per cycle). To
better fit our needs, we made several modifications to the
default flow. We made adjustments to the generated script
to eliminate the need for performing a new synthesis every
time we need to execute power estimation for a different
benchmark on a specific configuration. Instead, we save the
synthesized database and restore it when it exists, bypassing
the time-consuming re-synthesis process. Moreover, we
enable multithreaded reading of the trace files, resulting in
vastly quicker stimulus processing. Finally, we implemented
customized power reporting commands into the flow. This
facilitates our results parsing 10 using a tailor-made Python
script, enabling us to extract and interpret our findings in
a more organized and comprehensive manner.

3.2. Joules Power Estimation

Initially both RTL source (Verilog [15], SystemVer-
ilog [16], VHDL [17]) and Process Design Kit (PDK) library
files (Liberty, LEF) [9] are read by the tool. The RTL
source is elaborated and saved in a database to be used in
the Design Mapping (Synthesis) and Stimulus (Trace File)
Processing stages. During the technology mapping stage,
a rough synthesized netlist is created by implementing
the arbitrary RTL constructs with actual library standard
cells. This process is much faster than an actual full chip
synthesis step. Joules takes into account the PDK liberty
files that contain timing, area, and power specifications of
standard cells and constraint files that define the desired
clock frequency and other important design constraints.
Trace files from RTL simulators are used to determine the
toggle rate of each signal in the design. Joules can accept

a variety of trace file formats that depending on workload
length can range from a few Megabytes to hundreds of
Gigabytes of data. Finally, power-estimation is performed
by first generating an appropriate clock-tree and then using
the mapped netlist in conjunction with the calculated toggle
rate of each signal to determine the Leakage, Internal, and
Switching power of the design.

4. Experimental Results & Analysis

In this section, we focus on analyzing the results derived
from the experimental methodology discussed in Section 3.
We aim to thoroughly evaluate the obtained data and
gain valuable insights on how microarchitecture impacts
power consumption and how the power of each hardware
component scales as its size varies and observe the workload
sensitivity of each component’s power consumption.

4.1. Power Consumption Analysis per Microar-

chitectural Component

Figures 3, 4 and 5 show the power consumption of each
of the 13 hardware components considered in this study
across all ten workloads for the three BOOM configurations,
as described in Section 3.

Due to space limitations we provide insights about
the BOOM scheduler. Similar observations can be made
for the rest of the microarchitectural components. BOOM
employs a three-way distributed scheduler design, where
different units are responsible for issuing different types of
instructions. The Integer Issue Unit handles integer instruc-
tions, the Memory Issue Unit handles memory instructions,
and the Floating Point Issue Unit handles floating-point
instructions. Among these units, the Integer Issue Unit
exhibits the highest power consumption across all BOOM
configurations, as shown in Figures 3, 4 and 5. On average
for all benchmarks, the Integer Issue Unit consumes 0.73mW
in MediumBOOM, 1.56mW in LargeBOOM, and 2.67mW
in MegaBOOM. These values correspond to 6.7%, 8.4%,
and 8.5% of the total power consumed by the BOOM tile,
respectively. The Integer Issue Unit demonstrates significant
workload sensitivity, as its power consumption is closely
tied to the ILP of the executed program. A high number of
independent integer instructions leads to increased activity
within the issue unit, resulting in high power consumption.
This correlation explains why the integer issue unit’s power
consumption varies depending on the workload.

4.2. Performance per Watt

Performance per watt is a metric used to measure the
efficiency of a system or device by assessing its performance
relative to the amount of power it consumes. It is com-
monly used in the context of computer systems, processors,
graphics cards, and other electronic devices where energy
efficiency is important. Performance per watt is typically
expressed as a ratio or a figure of merit, such as instructions
per watt (IPC/W). These metrics indicate how much work
or computational capability can be achieved per unit of

0.0

0.5

1.0

1.5

2.0

Branch
Predictor

L1 Data
Cache

Integer
Rename Unit

Load Store
Unit

Integer Issue
Unit

FP Rename
Unit

Reorder
Buffer

L1
Instruction

Cache

Memory
Issue Unit

Integer
Register File

Fetch Buffer FP Issue Unit FP Register
File

m
W

Basicmath Bitcount Dhrystone Dijkstra FFT Int_Add Mem_Load Software_Multiply Qsort Towers

Figure 3: Power consumption per hardware structure for the MediumBoom across all ten benchmarks.

0

1

1

2

2

3

3

4

Branch
Predictor

L1 Data
Cache

Integer
Rename Unit

Integer Issue
Unit

FP Rename
Unit

Load Store
Unit

L1
Instruction

Cache

Reorder
Buffer

Integer
Register File

Memory
Issue Unit

FP Issue Unit Fetch Buffer FP Register
File

m
W

Basicmath Bitcount Dhrystone Dijkstra FFT Int_Add Mem_Load Software_Multiply Qsort Towers

Figure 4: Power consumption per hardware structure for the LargeBoom across all ten benchmarks.

0

1

2

3

4

5

6

Integer
Register File

L1 Data
Cache

Branch
Predictor

Integer
Rename Unit

Integer Issue
Unit

Load Store
Unit

FP Rename
Unit

Reorder
Buffer

L1
Instruction

Cache

FP Register
File

Memory
Issue Unit

FP Issue Unit Fetch Buffer

m
W

Basicmath Bitcount Dhrystone Dijkstra FFT Int_Add Mem_Load Software_Multiply Qsort Towers

Figure 5: Power consumption per hardware structure for the MegaBoom across all ten benchmarks.

electrical power consumed. The importance of performance
per watt has increased significantly in recent years due to
the growing demand for energy-efficient computing systems.
As power consumption has become a limiting factor in
many applications, improving performance per watt has
become a key goal for hardware manufacturers. Figure
6 shows the performance per-watt for all three BOOM
configurations across the 10 benchmarks we executed (the
right-most bars show the average values for all benchmarks
of each configuration). We observe that in 8 out of 10
benchmarks, the MediumBOOM configuration prevails.
In the Bitcount and Int_Add benchmarks, LargeBOOM
marginally takes the lead. MegaBOOM while having the best
absolute performance sacrifices significantly more power
to achieve it.

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14

Dh
ry
st
on
e

To
we
rs

So
ftw

ar
e_
M
ul
tip
ly

Qs
or
t

Ba
sic
m
at
h

Bi
tc
ou
nt

Di
jks
tra FF

T

In
t_
Ad
d

M
em

_L
oa
d

AV
G

P
er

fo
rm

an
ce

/W
at
t

Medium Large Mega

Figure 6: Performance per Watt for each benchmark (x-axis)

and for all three BOOM configurations.

5. Conclusion

We presented an exploration of the impact of microar-
chitectural configurations on energy efficiency (i.e., power
consumption and performance) using the state-of-the-art
RISC-V based CPU design (SonicBOOM). We demonstrated
how microarchitectural design choices significantly influ-
ence power consumption profiles. By assessing the power
consumption of three different configurations of the Sonic-
BOOM design and evaluating the effects of thirteen major
microarchitectural components, we gained insights to the
relationship between microarchitecture and power consump-
tion. Furthermore, our performance per watt evaluations
showed that, despite providing lower performance, smaller
RISC-V designs exhibited higher performance per watt ratios
(i.e., thet are more energy efficient). These findings have
important implications for system designers and computer
architects, as they can now make informed decisions to
optimize energy efficiency in modern microarchitectures.

Acknowledgments

This work is supported by research gifts from Intel
and AMD, as well as the European Union’s Horizon Europe
research and innovation programme under grant agreement
No 101070238 (Neuropuls). Views and opinions expressed
are however those of the authors only and do not necessarily
reflect those of the European Union. Neither the European
Union nor the granting authority can be held responsible
for them.

References

[1] D. Brooks, P. Bose, S. Schuster, H. Jacobson, P. Kudva, A. Buyuk-
tosunoglu, J. Wellman, V. Zyuban, M. Gupta, and P. Cook, “Power-
aware microarchitecture: design and modeling challenges for next-
generation microprocessors,” IEEE Micro, vol. 20, no. 6, pp. 26–44,
2000.

[2] P. Koutsovasilis, C. D. Antonopoulos, N. Bellas, S. Lalis, G. Papadim-
itriou, A. Chatzidimitriou, and D. Gizopoulos, “The impact of cpu
voltage margins on power-constrained execution,” IEEE Transactions
on Sustainable Computing, vol. 7, no. 1, pp. 221–234, 2022.

[3] Khubaib, M. A. Suleman, M. Hashemi, C. Wilkerson, and Y. N.
Patt, “Morphcore: An energy-efficient microarchitecture for high
performance ilp and high throughput tlp,” in 2012 45th Annual
IEEE/ACM International Symposium on Microarchitecture, 2012, pp.
305–316.

[4] A. Gamatie, G. Devic, G. Sassatelli, S. Bernabovi, P. Naudin, and
M. Chapman, “Towards energy-efficient heterogeneous multicore
architectures for edge computing,” IEEE Access, vol. 7, pp. 49 474–
49 491, 2019.

[5] P. R. Bodmann, G. Papadimitriou, R. L. Rech Jr., D. Gizopoulos, and
P. Rech, “Soft error effects on arm microprocessors: Early estimations
versus chip measurements,” IEEE Transactions on Computers, vol. 71,
no. 10, pp. 2358–2369, 2022.

[6] J. Zhao, B. Korpan, A. Gonzalez, and K. Asanovic, “Sonicboom: The
3rd generation berkeley out-of-order machine,” in Fourth Workshop
on Computer Architecture Research with RISC-V, vol. 5, 2020.

[7] A. Amid, D. Biancolin, A. Gonzalez, D. Grubb, S. Karandikar, H. Liew,
A. Magyar, H. Mao, A. Ou, N. Pemberton et al., “Chipyard: Integrated
design, simulation, and implementation framework for custom socs,”
IEEE Micro, vol. 40, no. 4, pp. 10–21, 2020.

[8] K. Asanovic, D. A. Patterson, and C. Celio, “The berkeley out-
of-order machine (boom): An industry-competitive, synthesizable,
parameterized risc-v processor,” University of California at Berkeley
Berkeley United States, Tech. Rep., 2015.

[9] L. T. Clark, V. Vashishtha, L. Shifren, A. Gujja, S. Sinha, B. Cline,
C. Ramamurthy, and G. Yeric, “Asap7: A 7-nm finfet predictive process
design kit,” Microelectronics Journal, vol. 53, pp. 105–115, 2016.

[10] W. Snyder, “Verilator: Open simulation-growing up,” DVClub Bristol,
2013.

[11] ——, “Verilator 4.0: open simulation goes multithreaded,” in Open
Source Digital Design Conference (ORConf), 2018.

[12] “Cadence joules,” https://www.cadence.com/en_US/
home/tools/digital-design-and-signoff/power-analysis/
joules-rtl-power-solution.html, accessed: 2023-06-12.

[13] H. Ranjitha, S. Hiremath, and S. G. Langadi, “Rtl power estimation:
Early design cycle approach for soc power sign-off,” in 2018 3rd IEEE
International Conference on Recent Trends in Electronics, Information
& Communication Technology (RTEICT). IEEE, 2018, pp. 480–484.

[14] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge,
and R. B. Brown, “Mibench: A free, commercially representative
embedded benchmark suite,” in Proceedings of the fourth annual IEEE
international workshop on workload characterization. WWC-4 (Cat.
No. 01EX538). IEEE, 2001, pp. 3–14.

[15] D. Thomas and P. Moorby, The Verilog® hardware description language.
Springer Science & Business Media, 2008.

[16] S. Sutherland, S. Davidmann, and P. Flake, SystemVerilog for Design
Second Edition: A Guide to Using SystemVerilog for Hardware Design
and Modeling. Springer Science & Business Media, 2006.

[17] P. J. Ashenden, The designer’s guide to VHDL. Morgan Kaufmann,
2010.

