
Boosting Microprocessor Efficiency: Circuit- and
Workload-Aware Assessment of Timing Errors

Ioannis Tsiokanos*, George Papadimitriou†, Dimitris Gizopoulos†, and Georgios Karakonstantis*

*Institute of Electronics, Communications and Information Technology, Queen’s University Belfast, UK
†Dept. of Informatics and Telecommunications, University of Athens, Greece
*{i.tsiokanos, g.karakonstantis}@qub.ac.uk, †{georgepap, dgizop}@di.uoa.gr

Abstract—Aggressive technology scaling and increased static
and dynamic variability caused by process, temperature, voltage,
and aging effects make nanometer circuits prone to timing
errors which threaten system functionality. Accurately evaluating
the impact of those circuit-level errors on the resilience of a
CPU and the executed applications remains a first-class design
issue. However, existing error assessment frameworks fail to
accurately model the effects of timing errors because they
neglect microarchitecture- and workload-dependent parameters
that critically affect the error manifestation and propagation.

This paper provides a novel, cross-layer framework that
addresses the lack of a holistic methodology for the understanding
of the full system impact of hardware timing errors as they
propagate from the circuit-level through the microarchitecture
up to the application software. The proposed microarchitecture-
aware tool is able to realistically inject timing errors considering
circuit and workload features, accurately assessing timing error
effects on any application binary. We estimate the location (bit
position and instruction) and the time (cycle) of the injected
errors via a workload-aware error model which relies on
post place-and-route dynamic timing analysis. We also leverage
microarchitectural error injection to access the timing error
reliability of a widely deployed pipelined processor under several
workloads and voltage reduction levels. To evaluate the proposed
tool, our fully automated toolflow is also configured to support
timing error injection based on existing workload-agnostic error
models. Evaluation results for various workloads and voltage
reduction levels, show that our circuit- and workload-aware error
injection model improves the accuracy of the error injection ratio
by ∼ 250× on average compared to workload-agnostic models.
Finally, we quantify the degree to which various applications are
prone to timing errors using an application vulnerability metric
that can be used early in the design cycle to guide the adoption
of energy-efficient error mitigation strategies.

Index Terms—Cross-layer timing error evaluation, dynamic timing
analysis, error injection, error-resilience, microarchitecture-aware mod-
eling, voltage-scaled FPU

I. INTRODUCTION

The scaling of microelectronics to the nanometer regime enables
major design optimizations, but unfortunately circuit performance
metrics such as delay, power and leakage exhibit a significant amount
of variability [1]–[6]. Those variations caused by process, environ-
mental and operating conditions, may prevent modern designs from
meeting their timing specifications. Such a delay/timing uncertainty
typically manifests in the form of timing errors which threaten the
system functionality and output correctness [6]–[10]. Timing errors
occur within a processor and may cause (among others) silent errors

- known as silent data corruption (SDC)- in the application’s output,
without an indication of the output degradation in system event or
error logs. Although prior studies attribute SDCs mainly to soft errors
due to radiation and particle-strikes [11]–[14], recent studies on real
systems/datacenters conducted by Facebook and Google, indicate that
computational errors in central processing units (CPU), such as timing
errors, lead to SDCs at a much higher rate than the soft error-induced
SDCs [15], [16]. Interestingly, such studies reveal that silent errors
observed in CPUs, which have minimal error protection, are orders
of magnitude higher than errors in memories (DRAM, SRAM) that
are equipped with effective error-correction-codes (ECC) [17], [18].

State-of-the-art. Therefore, timing errors are a growing concern
for system and application resilience as manufactured devices move
towards the atomic scale feature dimensions [19]. In contrast to
soft errors, modeling timing errors and estimating their impact on
applications early in the design cycle is extremely challenging since
timing error manifestation depends on various static (e.g., supply
voltage, manufacturing limitations), as well as dynamic (e.g., exe-
cuted workload, lifetime degradation) parameters [1], [2], [4], [20].
The state-of-the-art in timing error evaluation is the development of
high-level error injection (EI) frameworks for injecting errors and
assessing their impact on program execution. Those frameworks study
timing error effects and guide the implementation of energy-efficient,
error-mitigation techniques that aim to depart from conventional
pessimistic voltage and frequency guardbands [5], [7], [10], [21]–
[23], [23]–[29]. Error injection on models of a microprocessor at
any level of abstraction (from the gate and the Register-Transfer
Level (RTL) [30], [31] to the microarchitecture [32]–[34] and the
software [35], [36]) has been widely used for system reliability
assessment. By injecting errors to the accessible resources of each
level’s model (gates, microarchitectural structures, architectural loca-
tions, or instructions), such approaches measure the probability for an
error to affect the execution of an application. Although emulation of
faulty conditions at the RTL [37]–[40] is the most accurate method in
capturing the real impact of errors, it is impractical to use it for full
system evaluation (including the user and the system software layers)
due to the extremely low simulation throughput and high setup cost,
thus it is rarely used [11], [41]. On the other hand, software-level
frameworks may help to speed up the functional emulation under
injected errors but such campaigns lack most, if not all, circuit and
micro-architecture properties that affect the error manifestation and
propagation; this can lead to serious assessment errors as it has been
recently shown [42].

Error injection at the microarchitecture level employing perfor-
mance simulators (e.g., gem5) offers a fast and accurate assessment of
system behaviour under injected errors at the level of clock cycle [11],
[13], [41]–[51] allowing the evaluation of large workloads with the
hardware accuracy of the microarchitecture. Such frameworks may

have been commonly exploited for evaluating the impact of soft
errors, however, they have not been extended to evaluate the effects
of timing errors on end-to-end application execution. This can be
attributed to the fact that they rely on simple random timing error
models that are agnostic of the data, circuit and microarchitecture
properties that trigger such errors [12], [52]–[55]. In fact, current
established methodologies inject single bit (or multiple bit) flips to
the register file based on a fixed (data-agnostic) error probability,
which is considered the same for any executed workload. Such
data-agnostic models may be effective for emulating particle-strike
soft errors [14], [56] which are random in nature, but they cannot
capture the circuit-state and dynamic, data-dependent timing error
manifestation. Typically, soft errors are shown to be distributed
uniformly across bit positions and mainly affect a single instruction
and a single bit within this instruction [14], [43], [53], [56], [57].
Conversely, timing errors tend to corrupt multiple bits and instructions
depending on the input data [9], [58]–[63]. Failing to understand or
underestimating the timing error effects on applications may lead to
wrong design decisions and adoption of inefficient error mitigation
schemes and operating points.

The manifestation of a dynamic timing error depends on the
excitation of timing critical computational paths, which incurs only
by specific instruction types when they are fed by certain input
operands [9], [59], [62], [64]. To model such data-dependent error
behavior, recently, error injection campaigns based on instruction-
aware models have been proposed [58], [65], [66]. Although more
accurate than data-agnostic error injection models, instruction-aware
error injection models focus on injecting and evaluating timing errors
rather than estimating the rate at which occurs. Moreover, they lack
of detailed microarchitectural modeling (e.g., out-of-order processor
models) which may result in wrong conclusions on system’s relia-
bility since microarchitecture-level masking and its features (flushes,
store forwarding, dead instructions) are neglected.

Contributions. In this paper, we present an accurate and fast
timing error injection framework that takes steps towards the eval-
uation of the impact of timing errors on applications. To achieve
this, we jointly consider all different circuit, microarchitectural, and
workload factors that affect the manifestation of timing errors and
their propagation from the circuit up to the application through a
complex pipelined microachitecture. Our main contributions are:
• We develop, for the first time, a fully automated, cross-layer,

timing error injection tool that combines and enhances a widely
used microarchitecture-level system simulator with detailed
circuit-level dynamic timing analysis (DTA) information. Unlike
existing timing error evaluation tools, our tool estimates the
injection ratio, and considers the time (i.e., instruction cycle)
and location (i.e., bit positions) of an injected error exploiting
timing properties of the target hardware and executed workload.

• We depart from the conventional, almost purely random fixed
error models, and propose accurate and realistic error models
that tie the circuit’s behavior with the executed input data.
In contrast to prior error modeling frameworks which rely on
individual functional units, our models are extracted by applying
DTA on a complex, post-place-and-route, out-of-order (OoO), 5-
stage CPU core in 45 nm process technology. This is the first
reported comparison of different timing error models on top
of a microarchitectural-based injection framework that injects
timing errors considering i) random (data-agnostic), ii) statistical
(instruction type-aware) and realistic (instruction type- and input
operand-aware) error probabilities/distributions.

• We evaluate our error injection tool by considering benchmarks

from different domains: HPC, Data Mining, Medical Imaging
and Image Detection. Experimental results provide fine-grained
insights of the timing error effects (SDC, Timeout, Crash,
Masked) on the application outcome under different levels of
delay increase induced by voltage underscaling that is one of
the most popular technique to reduce power consumption. It is
shown that the error injection ratio and the final program output
estimation significantly vary across the comparable models:
data-agnostic models inject timing errors within a ratio that
fluctuates by ∼ 250× on average compared to the realistic one
estimated by workload-aware models using accurate dynamic
timing analysis.

• We present a new Application Vulnerability Metric or AVM,
which quantifies the degree to which various applications are
prone to timing errors under different voltage reduction levels
and error injection techniques. We provide conclusive evidence
that existing error models are highly inaccurate in timing error
assessment, resulting in AVM values that differ by 49.8% on
average than the values obtained for the detailed workload-aware
model. We also demonstrate that AVM can be used to guide
energy-efficient error mitigation schemes, leading to up-to 20%
energy savings when combined with a timing error prevention
technique.

The rest of the paper is organized as follows. Section II presents
background information, and limitations of prior injection frame-
works that motivate our work. Section III discusses the implemen-
tation steps of our timing error injection tool. Section IV details
our evaluation methodology and the considered injection models.
Section V presents experimentation results; and Conclusions are
drawn in Section VI.

II. BACKGROUND & RELATED WORK

This section provides background on how timing errors manifest
in complex pipelined architectures under any variation-induced delay
increase. We also discuss the most common error models that are
used by existing timing error injection frameworks and analyse the
challenges that motivate our work.

A. Timing Properties in Pipelined Cores

Instruction pipelining is a common technique to improve the execu-
tion throughput of a CPU by allowing the simultaneous execution of
several instructions [67]. Typically, a pipelined processor consists of a
set of N unique timing paths P= {P1,P2, ...,PN}, which are character-
ized by their delays D(Pi) for i = 1,2, ...,N (D(Pi) also considers the
clock-to-output delay and the setup time of a register [68]). In such
a core, each of the paths can be found within exactly one pipeline
stage s, with s = 1,2, ...,S, and only few of them will be excited
at every clock cycle depending on the executed instruction. Each
pipeline stage processes a specific part of one instruction at a time,
allowing the parallel execution of multiple instructions. By the terms
parallel or concurrent execution of instructions, we mean that up-to
S instructions share the same hardware circuitry (i.e., pipeline) in a
time-sharing fashion. At design time, the conventional static timing
analysis evaluates the longest timing path across all S pipeline stages
and determines the timing bound of the operation, i.e., the clock
period (CLK), such as:

CLK = max
s=1....S

{
max
p∈Ps
{D(p)}

}
= max

p∈P
{D(p)} (1)

where Ps is the set of unique path-groups in any of the S pipeline
stages for s = 1,2...,S such that ∪S

s=1Ps = P and Ps∩ Ps′= /0 for

I_1:

Program Flow

Pipelined Core

S=3

I_3
I_2 I_1

I_1, I_2, … , I_(N-1), I_N
Instruction Order

OP ORa ORb
sub r4 r6
010 0101.. 1101..

I_2: add r2 r3
100 1011.. 1110..

I_(N-1): mul r8 r7
011 0100.. 1111..

I_N: div r1 r5
110 0001.. 1001..

. . .

 Path i from Stage 1

Delay

islack1

Path m from Stage 2

. . .

mslack 2

Path n from Stage 3 slack n
3

Clock Period

ORd
r9

1000..

r11
1100..

r14
0011..

r12
1000..

Time

Stage 1 Stage 2 Stage 3

Fig. 1: Instruction sequence and delay requirements across different
paths and stages in a 3-stage (S=3) pipelined core.

s 6= s′. During the circuit operation only few of these paths get
activated depending on the instruction type and its operands. Figure 1
provides an example where 3 instructions (I 1, I 2, I 3) are executed
on a pipelined core with S = 3 stages. Any excited path Pi has
a positive timing slack, slacki = CLK −D(Pi), until the so-called
point of failure (PoF). In case of any path delay increase, which
exceeds the available slack slacki, the activated path Pi will fail since
D(Pi) > CLK, leading to a setup timing error [68], [69]. Timing
errors refer to the discrepancy between a computed value and the
specified, correct value, and can propagate through microarchitecture
to application-layer. As in prior work [58], faults are defined as
physical events that corrupt hardware components. If a fault changes
the architectural state, then it turns into an error.

B. Data-Agnostic Timing Error Injection Models

Prior frameworks [11], [12], [41], [53], which assess soft-error
effects, are data-agnostic since they perform error injection using
normal random distributions. To model the data-dependent path
excitation, current error injection tools [53]–[55] inject errors with
a fixed probability under a specific voltage/frequency setting. We
refer to this model as DA-model which stands for data-agnostic.
DA-model estimates the error probability, which we define as Pe,
by executing a number of Monte Carlo simulations varying the input
data under a given operating condition and an assumed delay increase.
At the end, the average error ratio observed across all Monte Carlo
trials is used as the fixed probability for any injection experiment
at the given voltage and delay increase. Most existing tools [11],
[41], [53] inject random bit flips into logical or physical registers
within the processor using such a fixed error ratio. DA-model
models the timing error probability Pe(V) as a function of the target
supply voltage V . This data-agnostic model is shown to be a good
approximation of single-event-upsets [56] and particle strikes [14].

Nevertheless, error injection with fixed probability is also used
frequently to model the impact of variations which manifest as
timing errors [41], [53]. Unfortunately, this straightforward approach
is obviously highly inaccurate and lacks any physical motivation: the
model neglects the fact that timing errors incur dynamically only on
certain instructions and bit locations once the critical or near-critical
paths are excited [59], [69], [70]. Moreover, the timing error injection
ratio has no direct link to the activity of the underlying hardware and
it is fixed across all type of instructions executed by the target core.

C. Instruction-Aware Models

Modelling dynamic timing errors on a pipelined design is much
more complex than simple non-pipelined functional units and requires

consideration of the type of the executed instruction, as recently
indicated [58], [63], [65], [71]. To better illustrate this, let us
assume a pipelined core, as shown in Figure 1. Every pipeline stage
consists of a number of timing paths which implement different
functions/operations. In such a core, each of the executed instructions
activates different timing paths with different delay requirements.
The program flow of Figure 1 includes a set of N instructions
I = {I 1, .., I N} which are concurrently executed in sequences, each
consisting of d instructions with d < N.

In each clock cycle, both operands and especially the type of
instruction that is currently in-flight in pipeline stage s determines the
delay of the activated path and thus the number and the distribution of
the timing errors. Instructions which activate critical long paths tend
to fail more frequently [9], [60], [64], [72]. For example, one of the
previous studies [61] shows that the long latency floating-point addi-
tion instructions can fail more often than their integer counterparts,
which excite less critical paths. In the same direction, authors in [73]
observe that timing error-prone instructions are opcode-dependent:
special instruction types (e.g., floating-point multiplication) trigger
timing-critical paths (i.e., long latency paths), while instructions such
as MOV and XOR activate only off-critical paths (i.e., short latency
paths).

To model this dynamic timing behavior, instruction-aware error
models have been proposed [58], [65], which rely on dynamic timing
analysis. We refer to this instruction-aware model as IA-model.
IA-model considerably improves the accuracy of DA-model by
deploying detailed DTA to extract instruction-aware statistics. This
characterization is performed independently for different instructions,
using gate-level characterization kernels (covering all the considered
instruction types) with randomized input operands. The extracted
dynamic statistics are then used to determine the probabilities of an
instruction to face a timing error at a specific bit location, using
the magnitude of the applied delay increase as a parameter. Unlike
DA-model, IA-model considers instruction and data dependencies
of path delays. The timing error probability Pe(V, I) of IA-model is
determined by the corresponding supply voltage V (which is assumed
to be the reason of the delay increase) and the currently executed
instruction type. Despite their statistical nature, they also suffer from
inaccuracies though in a lesser degree than DA-model, because
injection is based on an aggregate error ratio rather than the actual
circuit state and its executed workload. Moreover, the timing statistics
extracted by DTA requires a number of detailed, yet slow gate-level
simulations for each instruction type. Thus, due to time constraints,
current work performs DTA on a limited number of input operands,
which may not be representative and have never validated or tuned
with experimental results.

D. Workload-Aware Models

IA-model conditions the error statistics on the instruction type,
however, depending on input operands, the same type of instruction
may activate different paths of different latency requirements leading
to significantly different error ratios [59], [60], [64], [74]. The
diversity of input operands renders the timing error modeling very
difficult. This escalates the need of workload-aware timing error
models that are able to characterize the timing behavior of the target
design for a given input workload and delay increase [58], [61],
[75], [76]. We refer to this workload-aware model as WA-model.
WA-model takes into account all parameters: the target supply
voltage V , the instruction type I, as well as the executed workload
W for estimating the timing error probability Pe(V, I,W). However,
those models are applied to simple functional units and thus cannot

Synthesis
Place &
Route

Dynamic
Timing Analysis

Input Data
I_1, I_2, …, I_d

Timing Error
Models

Standard Cell Library

Model Development Phase

Supply
Voltage

Variable parameters

1. Data
Agnostic
Model

2. Instruction
Aware
Model

3. Workload
Aware
Model

Application Evaluation Phase

Timing Error
Models

EI Target Generation

App

Microarchitectural-based EI

I_1: OP

Bit_1 Bit_2 … Bit_k

I_N: 01101 … 10000

01100 … 11010
ORa ORbORd

. .

010…00Bitmask_1: . .

001…00Bitmask_N: ORd: 110..0
010 … 000Bitmask_i: , I_i

ORd: 100..0
Output Classification

1. Silent Data Corruption
2. Timeout

3. Crash
4.Masked

Fig. 2: Workflow for timing error injection (EI) experimentation. We develop the timing error models using circuit-level information, and
use those models to perform microarchitectural error injection, evaluating the impact of timing errors on applications’ outcome.

capture the complicated path activation of pipelined cores [72], [76]
nor evaluate the impact of those errors on applications using detailed
microarchitecure-aware timing error injection.

E. Microarchitecture-Aware Error Injection

Timing error evaluation through error injection at either hardware
or software layers, is based on injecting errors and experimentally
observing their effects on full program execution. Therefore, it is
important to model the way that timing errors propagate from the
hardware layer and manifest to the software layer. Microarchitecture-
based error injection provides a comprehensive way to measure
the application’s vulnerability due to timing errors on top of the
entire system stack, including microarchitecture, architecture, and
the software layers (both user and kernel space), during a full
program’s execution. It reveals useful insights for the application’s
vulnerability on the presence of timing errors, and thus, ignoring
microarhitectural features can misguide resilience studies. Moreover,
microarchitecture-based timing error evaluation can be conducted in
the pre-silicon stage, using early design models (called performance
or microarchitectural models). In such a way, designers can take
decisions early about the susceptibility of a specific hardware design
on timing errors, and apply the most efficient voltage and frequency
settings on their hardware designs.

Table I provides an overview of different error modeling ap-
proaches, and their features, as explained in this section. To the best of
our knowledge, there is no any timing error evaluation framework to
date that relies on circuit-level dynamic timing analysis and accounts
for the full-features of the complex microarchitecture of a high-end
CPU design.

TABLE I: Overview of existing timing error injection models

Model Injection
technique

Voltage
aware

Instruction
aware

Workload
aware

Microarchi-
tecture aware

DA
model

fixed
probability X X X X

IA
model statistical X X X X

WA
model

(proposed)
statistical X X X X

III. PROPOSED TIMING ERROR INJECTION TOOL

To deal with the limitations of the current timing error evaluation
frameworks, we propose a cross-layer timing error injection tool for
fast, accurate, and realistic timing error assessment early in the design
cycle (i.e., prior to silicon prototyping). To this aim, we develop
a novel microarchitectural injection framework that injects timing
errors based on statistics drawn from accurate, circuit-level dynamic
timing analysis. By doing so, our tool is able to incorporate all

the dynamic factors (instruction types, operands distribution). These
factors determine the manifestation of the timing errors at the outputs
(i.e., destination registers or ORd) of functional units as well as their
propagation through the underlying microarchitecture to the program
output.

Figure 2 depicts the workflow of our tool split in two phases.
During the model development phase, we build the timing error
models through a comprehensive dynamic timing analysis. Dur-
ing the application evaluation phase, we perform workload- and
microarchitecture-aware injections based on the timing error models
extracted during the model development phase. The rest of this
section describes the two phases in detail.

A. Model Development Phase

The main goal of the model development phase is to generate the
timing error models that will be exploited through microarchitectural
injection. The generated timing error models determine the spatial
and temporal location of an injection (i.e., they characterize the
rate and the point of time). The first step of timing error modeling
is to estimate the manifestation of timing errors. To achieve this,
we perform dynamic timing analysis, which identifies the actual
timing margins of the target core at runtime by including path
activation information (instruction type, operand values) that are
unavailable during static timing analysis but needed for accurate error
modeling. To this end, we use detailed post-place-and-route gate-
level simulation supported by a commercial hardware simulator (see
Section IV.B).

The post-place-and-route gate-level simulation requires the follow-
ing input parameters:
1) A library file which specifies the logic and the rise and fall times
of the standard cells.
2) A gate-level netlist which is stored in a Verilog format (.v). This
file consists of a list of the low-level components in the circuit and
a list of the nodes they are connected to.
3) A standard delay format (SDF) file which describes the cell
and interconnect delays. While the first parameter is provided by
the available standard cell library, the other two parameters are
obtained using the typical Application-Specific Integrated Circuit
(ASIC) flow [77]. It includes the Synthesis and Place and Route steps.
Note that those steps are performed utilizing optimizations which aim
at achieving maximum performance.

1) Performing Dynamic Timing Analysis: The post-place-and-
route gate-level simulation is then used to perform dynamic timing
analysis on a number of input data (i.e., a set of instructions and
corresponding operands). Note that the size and the type of this
instruction set depend on the level of detail of the target error
model (see Section IV.C). Every instruction of the target set under
nominal conditions produces an error-free output, which is used as
the correct, golden output. To estimate the number of manifested

dynamic timing errors under any potential delay increase, we execute
two parallel instances of post-place-and-route gate-level simulation.
The fist instance is executed under nominal operating conditions,
while the second simulates the design using lower voltage settings
(thus increased delays) than the nominal supply voltage of the
evaluated model. Then, the golden output is compared with the
simulation output (i.e., output of the reduced voltage) to determine
the occurrence of a timing error. A timing error occurs when a
simulation run output does not match to the golden output. To speed
the comparison, we use a bitwise XOR on each pair of corresponding
bits of the two outputs. The result of each bit position is ‘1’ if only
the two output bits are different and thus there is a timing error. A
value of ‘0’ indicates that there is no error. Therefore, each instruction
corresponds to a bitmask which indicates the corrupted bit positions
of the destination/output register (ORd).

B. Application Evaluation Phase

At this second phase, the timing error models extracted
at the model development phase are employed to perform
microarchitecture- and circuit-aware injection, evaluating the impact
of timing errors on applications. As shown in Figure 2, the extracted
timing error models are provided as inputs to the microarchitecture-
level error injection framework (details in Section IV) along with
the application. Timing error models provide essential details and
information about the error injection ratio, the corrupted bit locations,
and the corrupted instructions. Using such information, we can
accurately model and evaluate the timing error effects for each
application. Each model consists of a set of bitmasks. The number
of bitmasks, the location of erroneous bits, and the instructions in
which the error occurs (due to timing violations), strongly depend
on the application and the voltage conditions. The injector uses this
information to model the corrupted instructions of the application and
the corresponding corrupted bits of the operation result. In particular,
the injector applies the bitmask to the destination register and induces
bit-flips depending on the bit values of the bitmask. A bit of ‘1’ in the
bitmask implies that an error will be obtained in the specific bit of the
considered instruction’s destination register. Our injector induces an
error by flipping this bit. When the simulation campaign finishes, the
results of the simulations are classified into 4 categories, as described
in the next section.

For the sake of fair comparison, our toolflow (see Figure 2)
is configured to support all the state-of-the-art error models and
approaches (i.e., DA-model, IA-model, WA-model) explained
in Section II. We elaborate on the details of the compared error
models later (Section IV). To the best of our knowledge, this is
the first reported comparison among microarchitecture-aware, timing
error evaluation campaigns that inject errors based on realistic timing
error distributions (WA-model) which are extracted based on the
most accurate pre-silicon way in timing error estimation (circuit-
level dynamic timing analysis), and random models (DA-model,
WA-model) that use fixed error statistics.

IV. SETUP & ERROR MODELS BUILDING

In this section, we first describe the experimental setup of our
cross-layer timing error injection tool. Then, we evaluate and compare
different error modeling approaches.

A. Software Platform & Benchmarks

We evaluate the impact of timing error on different applications by
harnessing the microarchitecture-level accuracy of the most popular
performance simulator gem5 [78]. Unlike lower-level simulation

TABLE II: Input, size and error classification across the benchmarks.

App Input Number of
Instructions

Classification
Criteria

sobel 123 x 456 632×106 Image Output

cg S 318×106 Verification
checking

k-means 300 34f 35.5×109 Clustering

srad v1 100 0.5 502 458 1 2.3×109 Image Output

hotspot 512 512 1 4.9×109 File Output

is S 73×106 Verification
checking

mg S 36×106 Verification
checking

models (e.g., gate-level and RTL), gem5 allows cycle accurate and
deterministic end-to-end execution of large workloads on top of an
operating system, i.e., full system analysis which is impossible at
lower levels. We have extended gem5 cycle-accurate simulator to
support accurate timing error injections, and employ it to deliver,
for first time, a full-system microarchitecture-level timing error
injection framework. It consists of a modified gem5 version that
allows timing error injection at the microarchitecture level along with
instrumentation for running and controlling simulation campaigns on
full-system setup. To evaluate the efficacy of our framework, we use
a diverse set of 7 benchmarks from the Rodinia [79] and NAS [80]
benchmark suites, and an open-source image filter application [81].
Specifically, those programs are k-means, hotspot and cg, is, mg and
bt and sobel. All applications execute sequentially on a single thread
and are compiled with gcc v9.3 using the original building scripts.

Table II summarizes the benchmarks, their inputs and what we
check in order to classify the injection outcome. Injection outcomes
are classified into 4 categories:

• Masked. Masked includes the error injection runs in which the
timing error does not affect the execution of the application
(which is executed till the end) or the system. The result of
a simulation with a masked error is identical to the error-free
simulation in terms of the output of the application.

• Silent Data Corruption (SDC). The simulation finished nor-
mally, but the program output was different compared to the
error-free simulation, without any observable indications of this
effect.

• Crash. A simulation that did not reach the end of the execution,
as it was disturbed by an unrecoverable event. As a result,
no program output was produced. A crash may refer to a
process crash (killed process), a system crash (kernel panic),
or a floating-point exception.

• Timeout. The simulation did not finish within a certain amount
of time, equal to two times the error-free execution time. These
simulations are externally stopped to resolve potential deadlock
or livelock situations.

B. Hardware Platforms

To extract error models, we perform timing analysis of the open-
source, 32-bit marocchino general-purpose embedded microprocessor
which is based on OpenRISC instruction set architecture (ISA) [82].
The microarchitecture of the core includes a 5-stage, out-of-order-
pipeline and supports a single and double precision, IEEE-754
compatible [83], floating-point unit (FPU). Figure 4 shows the

Order Control
Buffer & Pre-

Normalize

Pre-
addition/

subtraction
align

Mantissa
 Add &
Update

exponent

 Post-
Normalize

&
Common

align

 Rounding

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6
Pipeline
Control
Signals

FPU
Operation

Configuration
Signals

Pipeline
Control
Outputs

Multiplex

&
Shift

Arithmetic
Outputs

Exceptions

Operands

Fig. 3: Microarchitecture of the floating-point addition/subtraction operations.

0 1 2 3 4

Timing slack (ns)

100

101

102

T
im

in
g

 P
at

h
s

FPU
Non-FPU

Error-prone paths

Fig. 4: Distribution of the 1000 longest timing paths (i.e., paths with
the lowest slack) in the marocchino pipeline.

distribution of the 1000 longest (i.e., most prone to timing errors)
paths of the post-placed-and-routed core. The figure shows that in
this implementation only the FPU-related paths are prone to timing
errors (they have the lowest timing slack), while all the paths in non-
FPU instructions (e.g., integer addition, MOV, etc.) are short enough
(they have sufficient timing slack) to be safe under potential levels of
delay increase due to voltage scaling. We further assume that memory
is protected with Error Correcting Codes [17].

Hence, for this study, we can limit our modeling to arithmetic
floating-point instructions, following the representation: −1S×M×
2E , where S denotes the sign, E is the exponent and M is the mantissa.
In a double (single) precision floating-point number, defined by the
IEEE-754 Standard, the most significant bit (MSB) indicates the sign,
the next 11 (8) bits represent the exponent and the mantissa consists
of the last 52 (23) bits. Previous studies have also demonstrated that
floating-point instructions are much more prone to timing errors due
to their long computation timing paths [58], [60], [61], [64], [76].
Also, floating-point operations typically determine the clock period
(they have the lowest timing slack as shown in Figure 4) and emerge
as a major contributor to the energy consumption (>30%) [84], [85]
Note that the ARM FPU and CPU model on which we perform
our microarchitecture-level experiments on gem5 have an 1-to-1
correspondence of instructions to the OpenRISC FPU used by model
development phase (see Figure 2) to estimate timing errors. Although
we demonstrate the features and accuracy of our cross-layer error
injection framework on the floating point subsystem of the CPU,
exactly the same approach can be employed to evaluate the impact

of timing errors in other subsystems of the CPU.
For the experiments in this study, the following 12 floating-

point instructions (6 single precision instructions + 6 double preci-
sion instructions) are implemented: multiplication, division, addition,
subtraction, integer to floating-point and floating-point to integer
conversions. Figure 3 highlights the microarchitecture of the floating-
point addition/subtraction operations. At Stage 1, an Order Control
Buffer (OCB) and a Pre-Normalize block are implemented, which
permit data dependencies detection and adjustment of the expo-
nent and mantissa, respectively. Stage 2 is responsible for the pre-
addition/subtraction alignment, while Stage 3 performs the necessary
multiplexing and shifting of the operands. Mantissa addition and
exponent update are performed at Stage 4; post-normalization and
rounding occur in the last two stages. The target FPU also handles
exceptions such as denormalized numbers, overflow, underflow, or
Not-a-Number (NaN) and generates exception signals.

1) Gate-level Operating Conditions: The FPU design is imple-
mented using the typical corner of the Composite Current Source
(CCS) NanGate 45 nm library (supply voltage = 1.1V, temperature
= 25°C) [86]. For hardware Synthesis and Place and Route, we
use the Design Compiler (version: N-2017.09-SP3) from Synopsys
and Innovus (version: v16.13-s0451) from Cadence, respectively. For
the dynamic power measurements, we invoke Voltus (version 16.2)
from Cadence. DTA is performed using detailed post place-and-
route simulation supported by ModelSim (version 10.7c) from Mentor
Graphics. The fastest (minimum) clock period or CLK achieved is 4.5
ns. In this work, we focus on timing errors resulting from different
voltage reduction (VR) levels. We use two different VR levels,
VR15 and VR20 that correspond to 15% and 20% supply voltage
reduction, respectively. Particularly, the nominal operating voltage
of target design is at 1.1 V which is defined by the typical corner
of the available library. To evaluate the performance of the design
across the two VR levels, we perform accurate library characterization
under iso-temperature and process conditions. To do so, we use
SiliconSmart from Synopsys. Although our evaluation focuses on
timing errors as a result of supply voltage reduction, our injection
tool can be used to evaluate timing errors due to different sources of
delay increase (e.g., overclocking, temperature fluctuations, transistor
aging, process variation).

C. Timing Error Injection Models Comparison

To analyze the impact of different error models on timing error
evaluation, we perform microarchitectural error injection using the
following state-of-the-art models discussed in Section II.

1) Timing Error Injection using a Data-Agnostic Model: We begin
our analysis with the widely used random error injection which is
agnostic of the executed data [12], [14], [41], [45], [46]. DA-model

43.9%

21.3%3.4%

31.4%

1 2
3 4+

bit flips

(a) VR15 V

1 2
3 4+

21.9%

39.7%

11.7%

26.7%

(b) VR20 V

Fig. 5: Distribution of the number of bit flips at faulty instructions
outputs under 15% (VR15) and 20% (VR20) supply voltage reduction
(VR).

introduces random bit flips into all or a limited subset of registers
within the processor using a fixed error injection ratio. To estimate
this, we perform DTA on 10 millions instructions which are randomly
extracted from the considered benchmarks. We estimate the timing
error ratio (ER) of the target instructions when subjected to 15%
(VR15) and 20% (VR20) voltage reduction, respectively. We define
ER as follows:

ER =
Faulty Instructions
Total Instructions

(2)

ER under VR15 is equal to 10−3 and under VR20 it is 10−2. Hence,
based on DA-model, the number of the injected timing errors to each
program is predefined, it depends only on its execution time and can
be estimated as follows: #errors = d#Instructions× f ixed ERe.
DA-model randomly selects the target instruction and each bit

flip occurs with a uniform, fixed probability. In particular, this model
corrupts a single bit of the target instruction and the corrupted bit
is randomly selected across the bits of the destination register. This
simple model has originally been motivated by the analysis of single-
event-upsets, such as soft errors, which affect all resources uni-
formly and independently of the processor state or timing properties.
However, timing errors tend to flip more that one bits [58], [61],
[64] and in a non-uniform pattern. Using dynamic timing analysis
(see Section III.A,1), we characterize how many bits of the faulty
instructions are flipped and at which ratio. Figure 5 shows that timing
errors flip multiple bits in most cases (64.5% on average under the
two VR levels). Such a finding is consistent with existing studies
indicating that timing errors tend to affect more than 2 bits [58].

2) Timing Error Injection using an Instruction-Aware Model: To
improve the inaccuracy of DA-model and more accurately link the
microarchitecture-level error injection to the physical circuit behavior
in the presence of timing errors, IA-model has been proposed which
performs error injection using instruction-aware dynamic statistics.
We have adopted this model from existing error injection tools [65],
[66] which extract bit error ratios by applying accurate yet slow dy-
namic timing analysis. Due to the very low throughput of circuit/gate-
level timing analysis, such a characterization can be only based on a
limited number of input operands the number of which may not be
statistically significant. This may lead to inaccurate error statistics,
misleading timing error behavior of circuits. To investigate how many
instructions are more important that others in estimating accurate bit
error ratios (BERs) (i.e., BERs close to the actual ones), we conduct
the following experiment. First, we extract the input operands of all
the floating-point multiplication (fp-mul) instructions found in is
program and estimate the ER of each bit (i.e., BER) at VR20. The
BER of the full trace is then compared with the one measured by a
set of K : K = 10K,100K,1M randomly extracted fp-mul instructions.

0

100

B
it

E
rr

o
r

R
at

io
(%

)

Full
1M
100K
10K

S E M
0 20 40 60

10-4

10-3

10-2

10-1

AE(Full,1M): 0.0061
AE(Full,100K): 0.0072
AE(Full,10K): 0.0084

Fig. 6: Bit error ratio (BER) for the floating point multiplication
(fp-mul) instruction of the is program under different number of
instructions and 20% voltage reduction. X axis depicts the sign
(S), exponent(E) and mantissa (M) bits. The average absolute error
(AE) across the BER extracted by the different number of fp-mul
instructions and the BER extracted by the full trace, is also depicted.

Each step records the BER and the average absolute error (AE),
defined as:

AE =
∑

K
i=1

∣∣∣BER f ull(i)−BERsim(i)
BER f ull(i)

∣∣∣
K

(3)

where BER f ull(i) denotes the exact BER output value obtained from
the full trace and BERsim(i) represents the BER obtained by the
simulation using a set of K instructions for a specific output bit
position. For this experiment, we use input operands with a 32-bit
value range (single precision floating-point instruction) and a 32-bit
output result, and with 64-bit operands (double precision floating-
point instructions) giving a 64-bit result.

Figure 6 shows the output BER and AE in the sign, mantissa and
exponent bits across different number of considered instructions. As
observed, the BER produced by both 1M randomly extracted fp-mul
instructions and full trace is almost identical with low AE. Similar
observations were made when we perform dynamic timing analysis
using different instruction types, however due to space limitations,
we plot insights only from fp-mul instructions which as we explain
next are the most error-prone ones. Thus, we choose to simulate
1M input data of each instruction type to extract instruction-aware
statistics for the IA-model. Specifically, we use in total 12M
uniformly distributed random operands, covering all the considered
12 floating-point instructions (1M operands per operation). Unlike

0

10-4

10-2

B
it

E
Ip

ro
b

ab
ili

ty
(%

)

10-3

10-5

FP MUL FP DIV
FP ADD FP SUB

F2I
I2F

S E M
0 20 40 60

(a) VR15

100

B
it

 E
I p

ro
b

ab
ili

ty
 (

%
)

FP MUL FP DIV
FP ADD FP SUB

F2I
I2F

0

101

10-1

10-2

10-3

S E M
0 20 40 60

(b) VR20

Fig. 7: Bit error injection (EI) probabilities for an instruction-aware
timing error injection model under (a) 15% voltage reduction (VR15)
and (b) 20% voltage reduction (VR20). X axis depicts the sign (S),
exponent (E) and mantissa (M) bits.

0

100

B
it

E
Ip

ro
b

ab
ili

ty
(%

)
FP MUL
FP DIV
FP ADD
FP SUB
F2I
I2F

S E M
0 20 40 60

10-4

10-3
10-2

10-1

101

(a) sobel at VR15

100

B
it

 E
I p

ro
b

ab
ili

ty
 (

%
)

S E M
0 20 40 60

101

102

10-1

10-2

10-3

0

(b) sobel at VR20

10-4

10-2

B
it

E
Ip

ro
b

ab
ili

ty
(%

) FP MUL FP DIV
FP ADD FP SUB

F2I
I2F

S E M
0 20 40 60

10-3

0

(c) cg at VR15

0

100

B
it
E
Ip
ro
b
ab
ili
ty
(%
)

S E M
0 20 40 60

10-4
10-3
10-2
10-1

101

(d) cg at VR20

0

10-5

B
it

E
Ip

ro
b

ab
ili

ty
(%

)

FP MUL
FP DIV
FP ADD
FP SUB
F2I
I2F

S E M
0 20 40 60

No timing errors

(e) K-means at VR15

0

10-5

B
it

E
Ip

ro
b

ab
ili

ty
(%

)

FP MUL
FP DIV
FP ADD
FP SUB
F2I
I2F

S E M
0 20 40 60

No timing errors

(f) K-means at VR20

0

100

B
it

E
Ip

ro
b

ab
ili

ty
(%

)

FP MUL
FP DIV
FP ADD
FP SUB
F2I
I2F

S E M
0 20 40 60

10-4

10-3

10-2

10-1

(g) srad at VR15

0

100

B
it
E
Ip
ro
b
ab
ili
ty
(%
)

S E M
0 20 40 60

10-4
10-3
10-2
10-1

(h) srad at VR20

0

10-5

B
it

E
Ip

ro
b

ab
ili

ty
(%

)

FP MUL
FP DIV
FP ADD
FP SUB
F2I
I2F

S E M
0 20 40 60

No timing errors

(i) hotspot at VR15

10-5

100

B
it
E
Ip
ro
b
ab
ili
ty
(%
)

S E M
0 20 40 60

10-4
10-3
10-2
10-1

0

(j) hotspot at VR20

0

10-3
B

it
E

Ip
ro

b
ab

ili
ty

(%
)

FP MUL
FP DIV
FP ADD
FP SUB
F2I
I2F

S E M
0 20 40 60

(k) is at VR15

0

100

B
it
E
Ip
ro
b
ab
ili
ty
(%
)

S E M
0 20 40 60

10-4

10-3

10-2

10-1

(l) is at VR20

0

10-4

10-3

B
it

E
Ip

ro
b

ab
ili

ty
(%

) FP MUL FP DIV
FP ADD FP SUB

F2I
I2F

S E M
0 20 40 60

(m) mg at VR15

100

B
it

 E
I p

ro
b

ab
ili

ty
 (

%
)

S E M
0 20 40 60

101

10-1

10-2

10-3

10-4

10-5

0

(n) mg at VR20

Fig. 8: Bit error injection (EI) probabilities in the considered benchmarks under the instruction- and workload-aware timing error model
(WA−model). All these outcomes are evaluated under 15% (VR15) and 20% (VR20) supply voltage reduction. X axis depicts the sign (S),
exponent (E) and mantissa (M) bits.

the DA-model, the IA-model models instruction and data depen-
dencies of path delays.

Figure 7 depicts the bit error injection probabilities extracted for
each instruction type and VR level for the IA-model. As shown,
in the target design, fp-MUL is the most error-prone instruction.
Particularly, for VR15, fp-mul and floating-point subtraction (fp-
sub) are the only two instructions that may lead to a timing error.
The integer to floating-point (I2F) and floating-point to integer (F2I)
conversions incur no errors under any of the assumed VR level, while
floating-point divisions (fp-div) and additions (fp-add) result in errors
only under VR20. It is important to note that we observe no timing
errors for the single precision floating-point instructions under the

target operating conditions (reduced supply voltage).
3) Timing Error Injection using an Instruction- & Workload-Aware

Model: The IA-model extracts different statistics depending on
the type of the executed instruction. Then, it injects errors based on
those statistics into every input workload. Unfortunately, despite the
significant effort of IA-model, timing errors cannot be accurately
modeled due largely to lack of consideration of workload variation
(input operand values). It is recently shown that both the instruction
type and mainly the input values can significantly influence the
distribution and ratio of the dynamic timing errors [9], [58], [61],
[75]. Therefore, we develop a more accurate timing model, namely
WA−model that considers instruction type and operands distribution

97
%

97
%

97
%

97
%

97
%

10
0% 88
%

95
%

10
0%

10
0% 42
%

84
%

10
0%

10
0% 0% 0% 0% 0%

10
0%

10
0%

10
0%

10
0% 97
%

98
%

10
0%

10
0% 0%

10
0% 0%

10
0% 38
%

38
%

59
%

59
%

38
%

38
%

90
%

91
%

99
%

99
%

61
%

90
%

0%
20%
40%
60%
80%

100%
DA

-m
od

el
 -

VR
15

DA
-m

od
el

 -
VR

20

IA
-m

od
el

 -
VR

15

IA
-m

od
el

 -
VR

20

W
A-

m
od

el
 -

VR
15

W
A-

m
od

el
 -

VR
20

DA
-m

od
el

 -
VR

15

DA
-m

od
el

 -
VR

20

IA
-m

od
el

 -
VR

15

IA
-m

od
el

 -
VR

20

W
A-

m
od

el
 -

VR
15

W
A-

m
od

el
 -

VR
20

DA
-m

od
el

 -
VR

15

DA
-m

od
el

 -
VR

20

IA
-m

od
el

 -
VR

15

IA
-m

od
el

 -
VR

20

W
A-

m
od

el
 -

VR
15

W
A-

m
od

el
 -

VR
20

DA
-m

od
el

 -
VR

15

DA
-m

od
el

 -
VR

20

IA
-m

od
el

 -
VR

15

IA
-m

od
el

 -
VR

20

W
A-

m
od

el
 -

VR
15

W
A-

m
od

el
 -

VR
20

DA
-m

od
el

 -
VR

15

DA
-m

od
el

 -
VR

20

IA
-m

od
el

 -
VR

15

IA
-m

od
el

 -
VR

20

W
A-

m
od

el
 -

VR
15

W
A-

m
od

el
 -

VR
20

DA
-m

od
el

 -
VR

15

DA
-m

od
el

 -
VR

20

IA
-m

od
el

 -
VR

15

IA
-m

od
el

 -
VR

20

W
A-

m
od

el
 -

VR
15

W
A-

m
od

el
 -

VR
20

DA
-m

od
el

 -
VR

15

DA
-m

od
el

 -
VR

20

IA
-m

od
el

 -
VR

15

IA
-m

od
el

 -
VR

20

W
A-

m
od

el
 -

VR
15

W
A-

m
od

el
 -

VR
20

sobel cg k-means srad_v1 hotspot is mg

Masked SDC Crash Timeout

AVM

Fig. 9: Injection outcome distributions in the considered benchmarks under data-agnostic model (DA−model), instruction-aware model
(IA−model), and instruction- and workload-aware model. All these outcomes are evaluated under 15% (VR15) and 20% (VR20) voltage
reduction.

of the target benchmark. WA−model estimates the bit error ratio
of each benchmark by applying dynamic timing analysis on 1M
randomly extracted instructions from the executed workload. Note
that none of the prior workload-aware models have been used in the
context of microarchitectural timing error injection that takes into
account data- and microarchitecture-dependent error manifestation
and propagation in the full system stack.

Figure 8 depicts the bit error ratio across the floating-point instruc-
tion types in the 7 benchmarks at VR15 and VR20 voltage reduction
levels, where several interesting observations can be made. Figure 8
illustrates the error behaviour of each of the 64 individual output
bits (sign, mantissa and exponent bits) of the floating-point unit
(FPU) under test; it clearly shows that different workloads exhibit
vastly different bit error ratios. For example, the ten MSBs (i.e.,
first 10 bits from the left) of the mg under 15% voltage reduction
(see Figure 8(m)) exhibit a nearly zero BER, while the same bit
positions under the srad program (see Figure 8(g)) exhibit BER
up-to 8%. Furthermore, it is evident that, in contrast to soft errors,
each bit has its own timing error ratio and, thus, multiple bits can
have timing errors simultaneously. This justifies the importance of
using different error injection probabilities for each bit. It can be also
observed that the mantissa’s bits are more prone to timing errors than
the exponent’s bits. This is an interesting finding as it indicates that
techniques tailored for error mitigation on the mantissa’s bits could
improve fault tolerance of applications.

V. EXPERIMENTAL RESULTS

This section demonstrates the effectiveness of our cross-layer tool
in accurate timing error evaluation. We first showcase the application
outcomes obtained using error injection for different voltage reduc-
tion levels to visually contrast the results from different error models.
Next, we report the error ratio along with the application vulnerability
to errors across different voltage reduction, or VR, levels and error
injection models.

For the statistical significance (error injection accuracy for a 3%
error margin with a 95% confidence interval) of the evaluation results,
we run 1068 different executions [87] for each benchmark and at
each VR level. The plots related to DA-model, IA-model and
WA-model reflect this setting. For the 7 target programs, the 2 VR
levels, and the 3 error models of our comparison, we conducted a total
of (1068 ·7 ·2) ·3 = 44856 injection experiments. For every program
execution, we apply the bitmasks in a random clock cycle. Note that
the instructions that are corrupted during an experiment are guided

through the timing error models provided by the Development Phase
(see Figure 2).

A. Distribution of Error Injection Outcomes

Here, we discuss the outcomes of the injection experiments at
the application-level, and report them in terms of Crashes, SDCs,
Timeouts and Masked outcomes, for the different error injection
models and VR levels.

Figure 9 shows the distributions of the error injection outcomes
in the considered benchmarks under the different timing error mod-
els and VR levels. The results are obtained using the developed
toolflow (Figure 2) and configuring it to inject errors based on
the 2 traditional errors models (DA-model, IA-model) and the
proposed WA-model. Then, we compare the output of the target
application applying different error models with the error-free output.
Note that the injection outcome distributions are largely application-
dependent. As we see, in most of the cases the WA-model provides
significantly different results that the DA-model and IA-model. As
we have demonstrated in Section II, the DA-model and IA-model
models are applied to simple functional units and cannot capture
the complicated path activation of pipelined cores, and thus, cannot
be considered as a representative way for accurately evaluating the
impact of timing errors due to low-voltage operation on different
applications. Assume for example the cg benchmark shown in
Figure 9. Evaluating the cg application for timing errors for two
different voltage levels (VR15 and VR20) based on the DA-model,
we can see that there is a high probability of SDCs to occur as
the effect of the timing errors in these voltage levels. Specifically,
there is only 12% and 5% masking probability for VR15 and
VR20, respectively. IA-model, on the other hand, show that the
masking probability is 0% and the application primarily suffers from
Crashes (instead of SDC which is the primary cause of the timing
error effects according to DA-model). Since both models (i.e.,
DA-model, IA-model) cannot capture all required information
for evaluating the effects of timing errors, these divergences are
expected. On the contrary, the proposed WA-model, which takes
into account all necessary aspects from the circuit-level analysis, is
able to provide accurate evaluations of the timing error effects for
each application. The large magnitude of the masking probability
of cg is obvious in the two voltage levels (i.e., VR15 and VR20).
Specifically, while WA-model shows 58% and 16% masking effects
for VR15 and VR20, respectively, the DA-model and IA-model
show virtually zero (or negligible) masking probability. It is clear
that such diverging results that the DA-model and IA-model

D
A

-m
o

d
el

 -
 V

R
15

D
A

-m
o

d
el

 -
 V

R
20

IA
-m

o
d

el
 -

 V
R

15
IA

-m
o

d
el

 -
 V

R
20

W
A

-m
o

d
el

 -
V

R
15

W
A

-m
o

d
el

 -
V

R
20

D
A

-m
o

d
el

 -
 V

R
15

D
A

-m
o

d
el

 -
 V

R
20

IA
-m

o
d

el
 -

 V
R

15
IA

-m
o

d
el

 -
 V

R
20

W
A

-m
o

d
el

 -
V

R
15

W
A

-m
o

d
el

 -
V

R
20

D
A

-m
o

d
el

 -
 V

R
15

D
A

-m
o

d
el

 -
 V

R
20

IA
-m

o
d

el
 -

 V
R

15
IA

-m
o

d
el

 -
 V

R
20

W
A

-m
o

d
el

 -
V

R
15

W
A

-m
o

d
el

 -
V

R
20

D
A

-m
o

d
el

 -
 V

R
15

D
A

-m
o

d
el

 -
 V

R
20

IA
-m

o
d

el
 -

 V
R

15
IA

-m
o

d
el

 -
 V

R
20

W
A

-m
o

d
el

 -
V

R
15

W
A

-m
o

d
el

 -
V

R
20

D
A

-m
o

d
el

 -
 V

R
15

D
A

-m
o

d
el

 -
 V

R
20

IA
-m

o
d

el
 -

 V
R

15
IA

-m
o

d
el

 -
 V

R
20

W
A

-m
o

d
el

 -
V

R
15

W
A

-m
o

d
el

 -
V

R
20

D
A

-m
o

d
el

 -
 V

R
15

D
A

-m
o

d
el

 -
 V

R
20

IA
-m

o
d

el
 -

 V
R

15
IA

-m
o

d
el

 -
 V

R
20

W
A

-m
o

d
el

 -
V

R
15

W
A

-m
o

d
el

 -
V

R
20

D
A

-m
o

d
el

 -
 V

R
15

D
A

-m
o

d
el

 -
 V

R
20

IA
-m

o
d

el
 -

 V
R

15
IA

-m
o

d
el

 -
 V

R
20

W
A

-m
o

d
el

 -
V

R
15

W
A

-m
o

d
el

 -
V

R
20

10-6

10-4

10-2

E
rr

o
r

R
at

io
(E

R
)

**** * *

VR15
VR20
ER = 0*

sobel cg k-means srad_v1 hotspot is mg

Fig. 10: Timing error ratio (ER) in the considered benchmarks under data-agnostic error injection (DA−model), instruction-aware error
injection (IA−model), and instruction- and workload-aware error injection. All outcomes are evaluated under 15% (VR15) and 20% (VR20)
voltage reduction.

deliver, can easily mislead any protection or energy-efficient decisions
for a specific design. Note that for our target design, VR15 and
VR20 voltage levels are intentionally chosen because they provide
aggressive voltage reduction (and thus, power reduction), so we can
show the significance of the divergences provided by DA-model and
IA-model compared to the WA-model. Similar observations can
be also drawn for is and mg applications.

Another important observation derived by Figure 9 is that there are
also cases in which a specific voltage level will not produce any errors
for some applications. Assume for example the hotspot application,
in which we can see that in VR15 there is zero probability of timing
errors to occur (i.e., WA-model). This means that there is a potential
for more aggressive power savings. However, the DA-model’s
evaluation results hide this opportunity, and very simplistically show
that this application has 100% probability to be corrupted in this
voltage level; a misleading result. The same observation also exists
for the k-means benchmark, which can safely operate at both VR15
and VR20 according the the WA-model, while DA-model shows
the exact opposite result. These findings indicate that DA-model and
IA-model are inaccurate in evaluating dynamic timing errors since
both models lead to pessimistic results concerning the estimation of
timing error effects, and thus, prevent the system for being more
energy efficient.

B. Timing Error Injection Ratios

A more informative indicator of the divergence or the similarity
among measurements with the different error models is the ratio of
injected errors. Figure 10 compares the ratio of errors injected by
our microarchitectural error injection tool with the ratios obtained
for DA-model, IA-model and WA-model under different VR
levels. For each experiment, we estimate the timing error ratio
(see (2)). There are several interesting observations in Figure 10.
First, as expected, all the compared error injection models inject
more errors under VR20 than VR15. This difference in the number
of errors between the two VR levels is consistent with the timing
wall phenomenon [64], [70], [88]. Second, different applications
experience different error ratios. This is because different input data
activate different paths. However, this is not true for the instruction-
and operand-agnostic DA-model which assumes a fixed error ratio

across the considered workloads. DA-model injects errors with a
ratio that differs (higher or lower) by ∼ 250× on average from
the ratio obtained when applying the accurate error model, i.e.
WA-model; this is a clear indication of the accuracy the WA-model
brings.

To make error injection more realistic, IA-model extracts
instruction-aware error probabilities for each distinct bit. IA-model
injects errors with a ratio that varies by ∼ 230× on average from the
ratio obtained when we apply error injection based on WA−model.

C. Analysis of Application Vulnerability

The proposed error injection framework enable us to early check
if a particular application is susceptible to timing errors when the
target CPU operates at reduced voltages. For this reason, we introduce
the Application Vulnerability Metric (AVM), which can measure
the probability of different voltage reduction levels to affect the
application’s correct execution. AVM is defined as follows:

AV M =
#SDC + #Crash + #Timeout

Total In jected Errors
(4)

AVM takes into account all non-masked probabilities (i.e., SDC,
Crash, and Timeout) and aggregates in a single number the severity
of each voltage level and each application to timing errors. For
example, as shown at the top of Figure 9, in the case of k-means,
AVM for IA-model and WA-model indicates that this program is
highly tolerant to errors (AVM = 0%) under 15% and 20% voltage
reduction. Accordingly, we can reduce the voltage from 1.1 V down
to 0.88 V without influencing the program output and thus improve
power efficiency by up to 56%. Notably, for the same workload,
the DA-model-driven error injection suggests no voltage reduction
beyond 10% of the nominal voltage, which is translated to 21% of
power savings. It is clear how severe the effect of pessimistic voltage
reduction is due to the inaccurate evaluations of DA-model and
IA-model.

VI. CONCLUSION & FUTURE WORK

We presented a novel, cross-layer framework to accurately evaluate
timing error effects for any application binary prior to silicon proto-
typing and thus guide optimal points of operation. To achieve this,

we consider, for the first time, the workload- and microarchitecture-
dependent error manifestation and propagation in any program. Our
fully-automated toolflow allows the designer to assess the impact
of timing errors on programs, with realistic input sizes consisting
of billions of instructions, and identify reliability bottlenecks in
microarchitectures (by pinpointing hardware structures that cause
frequent errors), while determining efficient operating settings under
a desired output quality target. Our tool can be also used for post-
silicon analysis. It helps application/infrastructure developers to i)
detect code regions that are vulnerable to timing errors due to the
existence of error-prone instructions, and ii) select efficient error
recovery schemes.

The proposed framework injects timing errors at runtime to the
actual program execution by leveraging and enhancing a widely-
used microarchitecture-level system simulator, gem5. We estimate
the injected timing error considering workload and microarchitecture
properties that significantly affect how timing errors manifest and
propagate. For fair comparison and evaluation of the proposed
workload-aware model which relies on detailed circuit-level gate-
level simulation, our toolflow allows the evaluation of timing errors
which are injected via different error models which are data-agnostic.
When compared to existing error injection models, our workload-
aware model enhances the accuracy of error injection ratio by ∼ 250×
on average in different applications under various degrees of voltage
reduction. Additionally, our framework is able to quantify the degree
to which several applications are prone to timing errors and guide
energy-efficient operating settings by introducing the new Application
Vulnerability Metric, AVM.

In our future research, we aim to characterize the behavior of sev-
eral CPU models in the presence of timing errors. Although we focus
on timing errors as a result of undervolting, the proposed tool can
be easily extended to assess timing errors due to several sources of
delay increase such as temperature variations, overclocking, transistor
aging, and process fluctuations.

ACKNOWLEDGMENT

This research effort has been supported by European Union’s
H2020 Tetramax project (Grant 761349) through a Technology Trans-
fer Experiment, the H2020 UniServer project (Grant 688540), and the
FP7 Clereco project (Grant 611404).

REFERENCES

[1] S. Borkar, T. Karnik, S. Narendra, J. Tschanz, A. Keshavarzi, and V. De,
“Parameter variations and impact on circuits and microarchitecture,” in
Proceedings of the 40th Design Automation Conference, DAC 2003,
Anaheim, CA, USA, June 2-6, 2003. ACM, 2003, pp. 338–342.

[2] K. A. Bowman, J. W. Tschanz, S. Lu, P. A. Aseron, M. M. Khel-
lah, A. Raychowdhury, B. M. Geuskens, C. Tokunaga, C. Wilkerson,
T. Karnik, and V. K. De, “A 45 nm resilient microprocessor core for
dynamic variation tolerance,” J. Solid-State Circuits, vol. 46, no. 1, pp.
194–208, 2011.

[3] S. Dighe, S. R. Vangal, P. Aseron, S. Kumar, T. Jacob, K. A. Bow-
man, J. Howard, J. Tschanz, V. Erraguntla, N. Borkar, V. K. De,
and S. Borkar, “Within-die variation-aware dynamic-voltage-frequency-
scaling with optimal core allocation and thread hopping for the 80-core
teraflops processor,” IEEE Journal of Solid-State Circuits, vol. 46, no. 1,
pp. 184–193, 2011.

[4] P. Gupta, Y. Agarwal, L. Dolecek, N. D. Dutt, R. K. Gupta, R. Kumar,
S. Mitra, A. Nicolau, T. S. Rosing, M. B. Srivastava, S. Swanson, and
D. Sylvester, “Underdesigned and opportunistic computing in presence
of hardware variability,” IEEE Trans. on CAD of Integrated Circuits and
Systems, vol. 32, no. 1, pp. 8–23, 2013.

[5] G. Papadimitriou, M. Kaliorakis, A. Chatzidimitriou, D. Gizopoulos,
P. Lawthers, and S. Das, “Harnessing voltage margins for energy
efficiency in multicore cpus,” in 2017 50th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), Oct 2017, pp.
503–516. [Online]. Available: https://doi.org/10.1145/3123939.3124537

[6] K. A. Bowman, J. W. Tschanz, S.-L. L. Lu, P. A. Aseron, M. M. Khellah,
A. Raychowdhury, B. M. Geuskens, C. Tokunaga, C. B. Wilkerson,
T. Karnik, and V. K. De, “A 45 nm resilient microprocessor core
for dynamic variation tolerance,” IEEE Journal of Solid-State Circuits,
vol. 46, no. 1, pp. 194–208, 2011.

[7] Y. Zhang, M. Khayatzadeh, K. Yang, M. Saligane, N. R. Pinckney,
M. Alioto, D. T. Blaauw, and D. Sylvester, “irazor: Current-based error
detection and correction scheme for PVT variation in 40-nm ARM
cortex-r4 processor,” J. Solid-State Circuits, vol. 53, no. 2, pp. 619–631,
2018. [Online]. Available: https://doi.org/10.1109/JSSC.2017.2749423

[8] M. Gautschi, P. D. Schiavone, A. Traber, I. Loi, A. Pullini, D. Rossi,
E. Flamand, F. K. Gürkaynak, and L. Benini, “Near-threshold RISC-V
core with DSP extensions for scalable iot endpoint devices,” IEEE Trans.
VLSI Syst., vol. 25, no. 10, pp. 2700–2713, 2017.

[9] I. Tsiokanos, L. Mukhanov, and G. Karakonstantis, “Low-power
variation-aware cores based on dynamic data-dependent bitwidth trun-
cation,” in DATE. IEEE, 2019, pp. 698–703.

[10] D. M. Bull, S. Das, K. Shivashankar, G. S. Dasika, K. Flautner, and D. T.
Blaauw, “A power-efficient 32b ARM ISA processor using timing-error
detection and correction for transient-error tolerance and adaptation to
PVT variation,” in IEEE International Solid-State Circuits Conference,
ISSCC 2010, Digest of Technical Papers, San Francisco, CA, USA, 7-11
February, 2010. IEEE, 2010, pp. 284–285.

[11] M. Kaliorakis, D. Gizopoulos, R. Canal, and A. Gonzalez,
“Merlin: Exploiting dynamic instruction behavior for fast and
accurate microarchitecture level reliability assessment,” in 2017
ACM/IEEE 44th Annual International Symposium on Computer
Architecture (ISCA), June 2017, pp. 241–254. [Online]. Available:
https://doi.org/10.1145/3079856.3080225

[12] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and
D. Grossman, “Enerj: approximate data types for safe and general low-
power computation,” in PLDI. ACM, 2011, pp. 164–174.

[13] G. Georgakoudis, I. Laguna, H. Vandierendonck, D. S. Nikolopoulos,
and M. Schulz, “Safire: Scalable and accurate fault injection for parallel
multithreaded applications,” in 2019 IEEE International Parallel and
Distributed Processing Symposium (IPDPS), 2019, pp. 890–899.

[14] H. Schirmeier, C. Borchert, and O. Spinczyk, “Avoiding pitfalls in fault-
injection based comparison of program susceptibility to soft errors,” in
2015 45th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, June 2015, pp. 319–330.

[15] H. D. Dixit, S. Pendharkar, M. Beadon, C. Mason, T. Chakravarthy,
B. Muthiah, and S. Sankar, “Silent data corruptions at scale,” 2021.

[16] P. H. Hochschild, P. Turner, J. C. Mogul, R. Govindaraju, P. Ran-
ganathan, D. E. Culler, and A. Vahdat, “Cores that don’t count,” in
HotOS ’21: Workshop on Hot Topics in Operating Systems, Ann Arbor,
Michigan, USA, June, 1-3, 2021, S. Angel, B. Kasikci, and E. Kohler,
Eds. ACM, 2021, pp. 9–16.

[17] H. Farbeh, H. Kim, S. G. Miremadi, and S. Kim, “Floating-ecc: Dynamic
repositioning of error correcting code bits for extending the lifetime of
stt-ram caches,” IEEE Transactions on Computers, vol. 65, no. 12, pp.
3661–3675, 2016.

[18] X. Wang, M. Mao, E. Eken, W. Wen, H. Li, and Y. Chen, “Sliding
basket: An adaptive ecc scheme for runtime write failure suppression of
stt-ram cache,” in 2016 Design, Automation Test in Europe Conference
Exhibition (DATE), 2016, pp. 762–767.

[19] M. T. Bohr and I. A. Young, “Cmos scaling trends and beyond,” IEEE
Micro, vol. 37, no. 6, pp. 20–29, 2017.

[20] H. Amrouch, B. Khaleghi, A. Gerstlauer, and J. Henkel, “Towards
aging-induced approximations,” in 2017 54th ACM/EDAC/IEEE Design
Automation Conference (DAC), June 2017, pp. 1–6.

[21] V. K. Chippa, S. T. Chakradhar, K. Roy, and A. Raghunathan, “Analysis
and characterization of inherent application resilience for approximate
computing,” in The 50th Annual Design Automation Conference 2013,
DAC ’13, Austin, TX, USA, May 29 - June 07, 2013. ACM, 2013, pp.
113:1–113:9.

[22] B. Moons and M. Verhelst, “Dvas: Dynamic voltage accuracy scaling
for increased energy-efficiency in approximate computing,” in 2015
IEEE/ACM International Symposium on Low Power Electronics and
Design (ISLPED), July 2015, pp. 237–242. [Online]. Available:
https://doi.org/10.1109/ISLPED.2015.7273520

[23] G. Karakonstantis, A. Chatterjee, and K. Roy, “Containing the nanometer
”pandora-box”: Cross-layer design techniques for variation aware low
power systems,” IEEE J. Emerg. Sel. Topics Circuits Syst., vol. 1, no. 1,
pp. 19–29, 2011.

[24] L. Rashid, K. Pattabiraman, and S. Gopalakrishnan, “Characterizing the
impact of intermittent hardware faults on programs,” IEEE Transactions
on Reliability, vol. 64, no. 1, pp. 297–310, March 2015.

[25] C. R. Lefurgy, A. J. Drake, M. S. Floyd, M. S. Allen-Ware, B. Brock,
J. A. Tierno, J. B. Carter, and R. W. Berry, “Active guardband manage-
ment in power7+ to save energy and maintain reliability,” IEEE Micro,
vol. 33, no. 4, pp. 35–45, July 2013.

[26] G. Papadimitriou, M. Kaliorakis, A. Chatzidimitriou, D. Gizopoulos,
G. Favor, K. Sankaran, and S. Das, “A System-Level Voltage/Frequency
Scaling Characterization Framework for Multicore CPUs,” in Silicon
Errors in Logic - System Effects (SELSE), 2017. [Online]. Available:
https://arxiv.org/pdf/2106.09975

[27] G. Papadimitriou, A. Chatzidimitriou, D. Gizopoulos, V. J. Reddi,
J. Leng, B. Salami, O. S. Unsal, and A. C. Kestelman,
“Exceeding conservative limits: A consolidated analysis on modern
hardware margins,” IEEE Transactions on Device and Materials
Reliability, vol. 20, no. 2, pp. 341–350, 2020. [Online]. Available:
https://doi.org/10.1109/TDMR.2020.2989813

[28] P. Koutsovasilis, C. Antonopoulos, N. Bellas, S. Lalis, G. Papadimitriou,
A. Chatzidimitriou, and D. Gizopoulos, “The impact of cpu
voltage margins on power-constrained execution,” IEEE Transactions
on Sustainable Computing, pp. 1–1, 2020. [Online]. Available:
https://doi.org/10.1109/TSUSC.2020.3045195

[29] G. Papadimitriou, A. Chatzidimitriou, and D. Gizopoulos, “Adaptive
voltage/frequency scaling and core allocation for balanced energy and
performance on multicore cpus,” in 2019 IEEE International Symposium
on High Performance Computer Architecture (HPCA), 2019, pp. 133–
146. [Online]. Available: https://doi.org/10.1109/HPCA.2019.00033

[30] X. Iturbe, B. Venu, and E. Ozer, “Soft error vulnerability assessment
of the real-time safety-related arm cortex-r5 cpu,” in 2016 IEEE In-
ternational Symposium on Defect and Fault Tolerance in VLSI and
Nanotechnology Systems (DFT), 2016, pp. 91–96.

[31] J. Blome, S. Mahlke, D. Bradley, and K. Flautner, “A microarchitectural
analysis of soft error propagation in a production-level embedded
microprocessor,” in In Proceedings of the First Workshop on Architecture
Reliability, 2005.

[32] A. Chatzidimitriou and D. Gizopoulos, “Anatomy of microarchitecture-
level reliability assessment: Throughput and accuracy,” in 2016
IEEE International Symposium on Performance Analysis of Systems
and Software (ISPASS), 2016, pp. 69–78. [Online]. Available:
https://doi.org/10.1109/ISPASS.2016.7482075

[33] O. Goloubeva, M. Rebaudengo, M. Sonza Reorda, and M. Violante,
“Soft-error detection using control flow assertions,” in Proceedings 18th
IEEE Symposium on Defect and Fault Tolerance in VLSI Systems, 2003,
pp. 581–588.

[34] A. Chatzidimitriou, G. Papadimitriou, C. Gavanas, G. Katsoridas, and
D. Gizopoulos, “Multi-bit upsets vulnerability analysis of modern
microprocessors,” in 2019 IEEE International Symposium on Workload
Characterization (IISWC), 2019, pp. 119–130. [Online]. Available:
https://doi.org/10.1109/IISWC47752.2019.9042036

[35] J. Carreira, H. Madeira, and J. Gabriel, “Xception: Software fault
injection and monitoring in processor functional units1,” 1995.

[36] H. Madeira, D. Costa, and M. Vieira, “On the emulation of software
faults by software fault injection,” in Proceeding International Confer-
ence on Dependable Systems and Networks. DSN 2000, 2000, pp. 417–
426. [Online]. Available: https://doi.org/10.1109/ICDSN.2000.857571

[37] D. Kammler, J. Guan, G. Ascheid, R. Leupers, and H. Meyr, “A fast
and flexible platform for fault injection and evaluation in verilog-based
simulations,” in 2009 Third IEEE International Conference on Secure
Software Integration and Reliability Improvement, 2009, pp. 309–314.

[38] V. Sieh, O. Tschache, and F. Balbach, “Verify: evaluation of reliability
using vhdl-models with embedded fault descriptions,” in Proceedings of
IEEE 27th International Symposium on Fault Tolerant Computing, 1997,
pp. 32–36.

[39] N. J. Wang, A. Mahesri, and S. J. Patel, “Examining ACE analysis
reliability estimates using fault-injection,” in 34th International
Symposium on Computer Architecture (ISCA 2007), June 9-
13, 2007, San Diego, California, USA, D. M. Tullsen and
B. Calder, Eds. ACM, 2007, pp. 460–469. [Online]. Available:
https://doi.org/10.1145/1250662.1250719

[40] M. Maniatakos, N. Karimi, C. Tirumurti, A. Jas, and Y. Makris,
“Instruction-level impact analysis of low-level faults in a modern micro-
processor controller,” IEEE Transactions on Computers, vol. 60, no. 9,
pp. 1260–1273, Sep. 2011.

[41] K. Parasyris, G. Tziantzoulis, C. D. Antonopoulos, and N. Bellas,
“Gemfi: A fault injection tool for studying the behavior of applications
on unreliable substrates,” in 2014 44th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, June 2014, pp. 622–
629.

[42] G. Papadimitriou and D. Gizopoulos, “Demystifying the system
vulnerability stack: Transient fault effects across the layers,” in 48th
International Symposium on Computer Architecture (ISCA 2021), June
14-19, 2021, Worldwide Online Event. IEEE, 2021, pp. 902–915.
[Online]. Available: https://doi.org/10.1109/ISCA52012.2021.00075

[43] A. Chatzidimitriou, P. Bodmann, G. Papadimitriou, D. Gizopoulos, and
P. Rech, “Demystifying soft error assessment strategies on arm cpus:
Microarchitectural fault injection vs. neutron beam experiments,” in
2019 49th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), 2019, pp. 26–38. [Online]. Available:
https://doi.org/10.1109/DSN.2019.00018

[44] P. N. Sanda, J. W. Kellington, P. Kudva, R. Kalla, R. B. McBeth,
J. Ackaret, R. Lockwood, J. Schumann, and C. R. Jones, “Soft-error
resilience of the ibm power6 processor,” IBM Journal of Research and
Development, vol. 52, no. 3, pp. 275–284, May 2008.

[45] M. Li, P. Ramachandran, S. K. Sahoo, S. V. Adve, V. S. Adve, and
Y. Zhou, “Understanding the propagation of hard errors to software and
implications for resilient system design,” in Proceedings of the 13th
International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS 2008, Seattle, WA, USA,
March 1-5, 2008, S. J. Eggers and J. R. Larus, Eds. ACM, 2008, pp.
265–276. [Online]. Available: https://doi.org/10.1145/1346281.1346315

[46] N. J. Wang and S. J. Patel, “Restore: Symptom-based soft error detection
in microprocessors,” IEEE Transactions on Dependable and Secure
Computing, vol. 3, no. 3, pp. 188–201, July 2006.

[47] N. Foutris, D. Gizopoulos, J. Kalamatianos, and V. Sridharan, “Assessing
the impact of hard faults in performance components of modern micro-
processors,” in 2013 IEEE 31st International Conference on Computer
Design (ICCD), Oct 2013, pp. 207–214.

[48] G. Georgakoudis, I. Laguna, D. S. Nikolopoulos, and M. Schulz,
“REFINE: realistic fault injection via compiler-based instrumentation
for accuracy, portability and speed,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage
and Analysis, SC 2017, Denver, CO, USA, November 12 - 17, 2017,
B. Mohr and P. Raghavan, Eds. ACM, 2017, pp. 29:1–29:14. [Online].
Available: https://doi.org/10.1145/3126908.3126972

[49] A. Shye, T. Moseley, V. J. Reddi, J. Blomstedt, and D. A. Connors,
“Using process-level redundancy to exploit multiple cores for transient
fault tolerance,” in 37th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN’07), June 2007, pp. 297–306.

[50] V. C. Sharma, A. Haran, Z. Rakamaric, and G. Gopalakrishnan, “To-
wards formal approaches to system resilience,” in 2013 IEEE 19th
Pacific Rim International Symposium on Dependable Computing, Dec
2013, pp. 41–50.

[51] R. Venkatagiri, K. Ahmed, A. Mahmoud, S. Misailovic, D. Marinov,
C. W. Fletcher, and S. V. Adve, “gem5-approxilyzer: An open-source
tool for application-level soft error analysis,” in 2019 49th Annual
IEEE/IFIP International Conference on Dependable Systems and Net-
works (DSN), 2019, pp. 214–221.

[52] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Architecture
support for disciplined approximate programming,” in ASPLOS. ACM,
2012, pp. 301–312.

[53] K. Parasyris, V. Vassiliadis, C. D. Antonopoulos, S. Lalis, and N. Bellas,
“Significance-aware program execution on unreliable hardware,” ACM
Trans. Archit. Code Optim., vol. 14, no. 2, Apr. 2017. [Online].
Available: https://doi.org/10.1145/3058980

[54] J. Sartori, J. Sloan, and R. Kumar, “Stochastic computing: Embracing
errors in architecture and design of processors and applications,” in
2011 Proceedings of the 14th International Conference on Compilers,
Architectures and Synthesis for Embedded Systems (CASES), 2011, pp.
135–144.

[55] E. Krimer, P. Chiang, and M. Erez, “Lane decoupling for improving the
timing-error resiliency of wide-simd architectures,” in 2012 39th Annual
International Symposium on Computer Architecture (ISCA), 2012, pp.
237–248.

[56] H. Cho, S. Mirkhani, C. Cher, J. A. Abraham, and S. Mitra, “Quantitative
evaluation of soft error injection techniques for robust system design,”
in 2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC),
May 2013, pp. 1–10.

[57] P. Bodmann, G. Papadimitriou, D. Gizopoulos, and P. Rech, “The
impact of soc integration and os deployment on the reliability of arm
processors,” in 2021 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), 2021, pp. 223–225.
[Online]. Available: https://doi.org/10.1109/ISPASS51385.2021.00040

[58] C. Chang, W. Yin, and M. Erez, “Assessing the impact of timing errors
on HPC applications,” in Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis,
SC 2019, Denver, Colorado, USA, November 17-19, 2019, M. Taufer,
P. Balaji, and A. J. Peña, Eds. ACM, 2019, pp. 70:1–70:19. [Online].
Available: https://doi.org/10.1145/3295500.3356184

[59] A. Rahimi, L. Benini, and R. K. Gupta, “Application-adaptive guard-
banding to mitigate static and dynamic variability,” IEEE Trans. Com-
puters, vol. 63, no. 9, pp. 2160–2173, 2014.

[60] G. Tziantzioulis, A. M. Gok, S. M. Faisal, N. Hardavellas, S. Ogrenci-
Memik, and S. Parthasarathy, “b-hive: A bit-level history-based error
model with value correlation for voltage-scaled integer and floating point
units,” in 2015 52nd ACM/EDAC/IEEE Design Automation Conference
(DAC), June 2015, pp. 1–6.

[61] X. Jiao, A. Rahimi, Y. Jiang, J. Wang, H. Fatemi, J. P. de Gyvez,
and R. K. Gupta, “Clim: A cross-level workload-aware timing error
prediction model for functional units,” IEEE Transactions on Computers,
vol. 67, no. 6, pp. 771–783, June 2018.

[62] J. Constantin, L. Wang, G. Karakonstantis, A. Chattopadhyay, and
A. Burg, “Exploiting dynamic timing margins in microprocessors for
frequency-over-scaling with instruction-based clock adjustment,” in Pro-
ceedings of the 2015 Design, Automation & Test in Europe Conference &
Exhibition, DATE 2015, Grenoble, France, March 9-13, 2015, W. Nebel
and D. Atienza, Eds. ACM, 2015, pp. 381–386.

[63] I. Tsiokanos and G. Karakonstantis, “Exhero: Execution history-aware
error-rate estimation in pipelined designs,” IEEE Micro, vol. 41, no. 1,
pp. 61–68, 2021.

[64] I. Tsiokanos, L. Mukhanov, D. S. Nikolopoulos, and G. Karakonstantis,
“Significance-driven data truncation for preventing timing failures,”
IEEE Transactions on Device and Materials Reliability, vol. 19, no. 1,
pp. 25–36, March 2019.

[65] J. Constantin, A. P. Burg, Z. Wang, A. Chattopadhyay, and G. Karakon-
stantis, “Statistical fault injection for impact-evaluation of timing errors
on application performance,” in Proceedings of the 53rd Annual Design
Automation Conference, DAC 2016, Austin, TX, USA, June 5-9, 2016.
ACM, 2016, pp. 13:1–13:6.

[66] S. Roy and K. Chakraborty, “Predicting timing violations through
instruction-level path sensitization analysis,” in DAC. ACM, 2012, pp.
1074–1081.

[67] J. Gaudiot, J. Kang, and W. Ro, Techniques to Improve Performance Be-
yond Pipelining: Superpipelining, Superscalar, and VLIW, ser. Advances
in Computers, 2005, pp. 1–34.

[68] J. Bhasker and R. Chadha, Static Timing Analysis for Nanometer
Designs: A Practical Approach, New York, USA: Springer, 2009.

[69] D. Garyfallou, I. Tsiokanos, N. Evmorfopoulos, G. Stamoulis, and
G. Karakonstantis, “Accurate estimation of dynamic timing slacks using
event-driven simulation,” in 2020 21st International Symposium on
Quality Electronic Design (ISQED), 2020, pp. 225–230.

[70] A. B. Kahng, S. Kang, R. Kumar, and J. Sartori, “Slack redistribution
for graceful degradation under voltage overscaling,” in Proceedings of
the 15th Asia South Pacific Design Automation Conference, ASP-DAC
2010, Taipei, Taiwan, January 18-21, 2010. IEEE, 2010, pp. 825–831.

[71] Y. Fan, T. Jia, J. Gu, S. Campanoni, and R. Joseph, “Compiler-guided
instruction-level clock scheduling for timing speculative processors,”
in 2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC),
2018, pp. 1–6.

[72] G. Hoang, R. B. Findler, and R. Joseph, “Exploring circuit timing-aware
language and compilation,” in Proceedings of the 16th International

Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS 2011, Newport Beach, CA, USA, March
5-11, 2011, R. Gupta and T. C. Mowry, Eds. ACM, 2011, pp.
345–356. [Online]. Available: https://doi.org/10.1145/1950365.1950405

[73] T. Jia, R. Joseph, and J. Gu, “An instruction-driven adaptive clock
management through dynamic phase scaling and compiler assistance
for a low power microprocessor,” IEEE Journal of Solid-State Circuits,
vol. 54, no. 8, pp. 2327–2338, 2019.

[74] I. Tsiokanos, L. Mukhanov, D. S. Nikolopoulos, and G. Karakonstantis,
“Variation-aware pipelined cores through path shaping and dynamic
cycle adjustment: Case study on a floating-point unit,” in Proceedings
of the International Symposium on Low Power Electronics and Design,
ISLPED 2018, Seattle, WA, USA, July 23-25, 2018. ACM, 2018, pp.
52:1–52:6.

[75] X. Jiao, D. Ma, W. Chang, and Y. Jiang, “Levax: An input-aware
learning-based error model of voltage-scaled functional units,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, pp. 1–1, 2020.

[76] I. Tsiokanos, L. Mukhanov, G. Georgakoudis, D. S. Nikolopoulos, and
G. Karakonstantis, “DEFCON: generating and detecting failure-prone
instruction sequences via stochastic search,” in DATE. IEEE, 2020, pp.
1121–1126.

[77] J. N. Rodrigues, M. Kamuf, H. Hedberg, and V. Owall, “A manual
on asic front to back end design flow,” in 2005 IEEE International
Conference on Microelectronic Systems Education (MSE’05), 2005, pp.
75–76.

[78] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5
simulator,” SIGARCH Comput. Archit. News, vol. 39, no. 2, p. 1–7, Aug.
2011. [Online]. Available: https://doi.org/10.1145/2024716.2024718

[79] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous computing,”
in 2009 IEEE International Symposium on Workload Characterization
(IISWC), Oct 2009, pp. 44–54.

[80] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter,
L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S.
Schreiber, H. D. Simon, V. Venkatakrishnan, and S. K. Weeratunga,
“The nas parallel benchmarks summary and preliminary results,” in
Supercomputing ’91:Proceedings of the 1991 ACM/IEEE Conference on
Supercomputing, Nov 1991, pp. 158–165.

[81] Implementation of the Sobel Filter in C, [online], available:
https://github.com/petermlm/SobelFilter.

[82] OpenRISC Community, ”OpenRISC 1000 architecture manual.”.
[83] IEEE 754-2008. IEEE 754-2008 Standard for Floating-Point Arithmetic.
[84] G. Tagliavini, S. Mach, D. Rossi, A. Marongiu, and L. Benin, “A

transprecision floating-point platform for ultra-low power computing,” in
2018 Design, Automation Test in Europe Conference Exhibition (DATE),
March 2018, pp. 1051–1056.

[85] A. Rahimi, A. Marongiu, R. K. Gupta, and L. Benini, “A
variability-aware openmp environment for efficient execution of
accuracy-configurable computation on shared-fpu processor clusters,”
in 2013 International Conference on Hardware/Software Codesign
and System Synthesis (CODES+ISSS), Sept 2013, pp. 1–10. [Online].
Available: https://doi.org/10.1109/CODES-ISSS.2013.6659022

[86] NanGate FreePDK45 Open Cell Library, [online], available:
http://nangate.com.

[87] R. Leveugle, A. Calvez, P. Maistri, and P. Vanhauwaert, “Statistical
fault injection: Quantified error and confidence,” in 2009 Design,
Automation Test in Europe Conference Exhibition, 2009, pp. 502–506.
[Online]. Available: https://doi.org/10.1109/DATE.2009.5090716

[88] J. Patel, “Cmos process variations: A critical operation point hypothesis,”
April 2008 [Online].

