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Abstract—In this paper, we present a fine-grained characteri-
zation of the impact of transient faults (soft errors) on program 
execution for different compiler optimization levels and two out-
of-order microarchitectures through extensive microarchitec-
ture-level fault injection experiments. We evaluate how the dif-
ferent levels of compiler optimization impact the failure probabil-
ity of the most important hardware structures in two different 
out-of-order Arm microarchitectures (Cortex-A15 and Cortex-
A72). We analyze 32 different executables: sources come from 
eight different benchmarks with large datasets, each one com-
piled with three different levels of compiler optimization (O1, O2, 
O3) and the baseline unoptimized code level (O0); execution 
times of the 32 binaries range from 72M cycles to 1.4B cycles. We 
show how the different compiler optimization levels affect the 
vulnerability of eight important hardware structures. We per-
form extensive soft error fault injection campaigns to measure 
with high statistical significance the Architectural Vulnerability 
Factor (AVF) of all hardware structures at each optimization 
level, and identify the structures whose vulnerability is more sen-
sitive to compiler optimizations. Finally, we aggregate the vul-
nerabilities of the hardware structures into the overall failure 
rates of the microprocessor and complement with a performance-
aware comparison of all optimization levels. The performance-
aware vulnerability analysis shows that higher optimization levels 
counterbalance their increased vulnerability with the speedup the 
deliver. From the failure rates sole point of view, an unprotected 
design has variable behavior, however, when typical ECC protec-
tion is employed the O2 optimization level is consistently the most 
robust one, while for more recent microarchitectures, O1 can be 
equally robust to O2 which is not the case in older microarchitec-
tures. 

Index Terms—reliability; microprocessors; transient faults; 
microarchitecture; compilers; architectural vulnerability factor; 
microarchitecture-level fault injection 

I. INTRODUCTION 
The extreme scaling of technology has a negative impact on the 

reliable operation of the microprocessors, making them more vulner-
able to cosmic radiation, manufacturing defects, and low-voltage 
operation [1]-[5]. As a result, transient faults (soft errors) tend to 
appear more frequently than in previous manufacturing generations, 
which, in turn, makes them a major threat to reliable computing sys-
tem operation. Several metrics have been proposed to express the 
system vulnerability against transient faults. The Architectural Vul-
nerability Factor (AVF) [6] was proposed by Mukherjee, et al. to 
quantify the microprocessor’s vulnerability to transient faults. The 

AVF of a microprocessor hardware structure is the probability that a 
fault in it will affect the correct execution of a program.  

The resilience of a microprocessor and program combination to 
soft errors can be affected by many factors, including the program-
ming language, the algorithm of the workload and its inputs, the envi-
ronmental conditions (e.g., altitude, temperature), the voltage, and the 
aging of the microprocessor hardware [7] [8]. Among these factors, 
optimizations introduced by compilers modify the way that a program 
utilizes the hardware structures of the microprocessor, even if the 
source algorithm of the program and the inputs remain the same. 
Recent studies have considered the impact of compiler optimizations 
on microprocessor’s vulnerability [9]-[15]. These studies, however, 
have either kept the analysis at the software layer without any consid-
eration of the underlying microarchitecture or have only investigated 
very few hardware structures (such as the register file only) and not 
the entire CPU. A fine-grained analysis for all hardware structures 
when the full system stack is employed is very important and such 
studies are crucial not only for early reliability assessment by hard-
ware designers, but also for software resiliency, since compiler opti-
mizations are one of the most successful ways to improve perfor-
mance with relatively low effort by software engineers.  

It has been shown that the resilience to transient faults varies 
dramatically across different applications, and across different phases 
of the same application [16] [17]. Compiler optimizations, also affect 
the vulnerability of the application [18] [19] [20] [21]. For example, 
code optimization can increase the hardware structures utilization and 
the instruction throughput of out-of-order processors, which generally 
improve performance. On the other hand, since transient faults occur 
randomly in the microprocessor structures, higher utilization implies 
higher sensitivity to these faults, as there are more microprocessor’s 
components that operate on application’s instructions and data in 
parallel. Additionally, increasing data locality may reduce the number 
of cache misses, and thus, faults occurring in a cache memory may 
have lower probability to propagate themselves to lower memory 
hierarchy levels, but may increase the time a certain value resides in a 
register before being changed. Thus, a fault in the microprocessor 
register may have higher probability of propagating into the applica-
tion’s data structures and generate data corruptions or crashes. 

In this paper, we investigate the impact of compiler optimization 
levels and the microarchitecture on microprocessor vulnerability to 
soft errors. We study the three different compiler optimization levels 
of GCC compiler (O1, O2, O3) and compare them to the unoptimized 
code (O0), to thoroughly identify their vulnerability differences for 
all important structures of an out-of-order microarchitecture. To do 
so, we employ fine-grained, statistically significant microarchitec-
ture-level fault injection to measure the reliability of each optimiza-
tion level across several different workloads and two different Arm 



microarchitectures (i.e., a Cortex-A15 and a Cortex-A72). Statistical 
Fault Injection (SFI) [22] [23] [24] is often the most time-consuming 
reliability evaluation method, as it requires multiple simulations in 
order to gather a statistically significant sample. However, it is the 
most accurate method and provides insights on the fault effects, as it 
experimentally determines the vulnerability of a system and the fine-
grain effect of every single injected fault [25]. To the best of our 
knowledge, this is the first work that provides a fine-grained analysis 
using SFI at the detail of the microarchitecture level and individually 
analyzes the impact of the compiler optimization levels on the vul-
nerability of each individual hardware structure of two different mi-
croarchitectures and the microprocessor as a whole. Specifically, the 
contributions of this paper are: 
1. We measure the AVF of the 8 most important microprocessor 

hardware structures including all their subfields/arrays (L1 data 
and instruction caches (tags and data fields), L2 cache (tags and 
data fields), the physical register file, the load and store queues, 
the issue queue (Source and Destination fields), and the reorder 
buffer (all its four fields) for the three compiler optimization lev-
els (O0, O1, O2, O3) of 8 different benchmarks. The evaluation is 
performed for two different Arm microarchitectures (an older 32-
bit Cortex-A15 and a newer 64-bit Cortex-A72). In total, we 
evaluate 960 combinations of programs + hardware structures, 
through 1,920,000 end-to-end fault injection runs. We employ the 
large input datasets in all benchmarks with end-to-end execution, 
so that all hardware structures are sufficiently utilized; this deci-
sion significantly increases the total simulation time but is im-
portant for analyzing the executions of realistic programs.  

2. We thoroughly analyze the impact of different compiler optimiza-
tions and microarchitectures on the vulnerability of each individ-
ual microprocessor structure. We show how each optimization 
level significantly affects the vulnerability of each microarchitec-
tural structure and provide essential observations about the mag-
nitude of different fault effect classes, and how the levels of these 
classes can be altered on each hardware structure when different 
optimization levels are applied to the source code of a program. 

3. We present the overall impact of compiler optimization levels on 
each individual microprocessor structure of each microarchitec-
ture. Since each combination of a hardware component and a 
benchmark has a different AVF, we employ an aggregating 
weighted AVF metric, which takes into consideration the AVF 
differences among different workloads and provides an overall 
AVF for each structure that takes into consideration the different 
execution times.  

4. We finally present the Failures in Time (FIT) rate of the entire 
out-of-order microprocessors (failures per 109 hours of opera-
tion). By using this rate, we can further extend our observations to 
analyze the impact of the different optimization levels for each 
microarchitecture on the total vulnerability of the microprocessor 
(not only individual hardware structures). In addition, we intro-
duce a performance-aware metric (failures per execution) which 
compares all optimization levels, to identify the best tradeoff be-
tween the performance improvement that optimizations deliver 
and the impact they have on the entire microprocessor reliability. 

II. BACKGROUND AND RELATED WORK  

A. Compiler Optimization Flags 
Modern compilers, like GNU Compiler Collection (GCC), are the 

key tool to unlock the performance of applications running on mod-

ern microprocessors. To generate an effective machine code from the 
high-level source code, the compiler usually requires many iterations 
(passes) to rearrange the source code into a basic instruction sequence 
and determines the instruction sequence which can provide improved 
performance or reduced code size. Since the large range of compiler 
optimizations will greatly affect the performance of applications, 
there should also be a range of features in each application which can 
be affected by the compilation process. These include loops, nested 
loops, different arithmetic types, calls to procedures, bitwise opera-
tions, vector/array accesses, etc. 

GCC includes a large variety of optimizations, which may be in-
dividually or in groups turned on. In order to achieve better perfor-
mance, GCC can enable plenty of optimizations, which are called 
compiler optimization levels. The most common and essential opti-
mization levels are denoted through the O0, O1, O2, and O3 compila-
tion flags. Level O0 indicates that no optimization will be enabled 
during the compilation of the source code. Higher optimization levels 
add extra optimizations in the source code compared to the lower 
ones and perform more global transformations on the program by 
applying more sophisticated analysis algorithms to generate a faster 
and more compact code [26] [27]. The final effects of the compilation 
time and the resulting improvement in execution time depend on the 
particular application and the underlying hardware design. From all 
available optimizations, some of them reduce the size of the resulting 
machine code, while others try to create a faster code, potentially 
increasing its size (e.g., loop unrolling increases the machine code 
size, but typically reduces the execution time). Furthermore, each 
optimization level affects in different ways the instruction execution 
flow and the resulting behavior of each individual microprocessor 
component.  

The effects of each optimization level explored in this work are 
briefly described below: 

O0: the compiler does not perform any optimization and each 
command in the source code is converted directly to the correspond-
ing machine code. 

O1: the compiler aims to reduce the code size and execution 
time. It enables instruction reordering, loop optimization, and other 
common optimizations. 

O2: this level further enhances O1 optimization, including in-
struction scheduling, recursive call optimization, and cross jumps. 

O3: this level turns on more sophisticated optimizations, includ-
ing procedure inlining, moving loop invariant conditions out of the 
loop, and other optimizations that further enhance the performance of 
the executed code but the generated code is usually larger than the 
other optimization levels. 

B. Related Work 
Previous studies focused on investigating the impact of compiler 

optimizations on microprocessor’s vulnerability by primarily using 
software-based tools for reliability evaluation, i.e., assuming that a 
software visible location (an architectural register) is the starting 
point of the analysis. Although these studies, which use software-
based techniques to investigate the impact of compiler optimizations, 
allow reliability assessment on long and realistic workloads, they do 
not capture the real hardware vulnerability, since the starting point of 
the experiment is a corrupted instruction (not a hardware structure 
that is hit by a particle and suffers a soft error) [25]. Moreover, to the 
best of our knowledge, there are no previous studies that comprehen-
sively investigate the impact of different compiler optimization levels 
on the major microprocessor components of different microarchitec-



tures, e.g., all cache memory levels, and the fundamental pipeline 
structures, such as Reorder Buffers, Physical Register file, the 
Load/Store and Issue Queues – our analysis covers all these struc-
tures. In particular, Links et al. in [9] investigate the effects of com-
piler optimizations on an embedded Arm Cortex-A9 microprocessor 
for the Register File only by using interrupt-based fault injection and 
heavy ion experiments. Demertzi, et al. in [10] provide coarse-grain 
estimations (not through fault injection) about the AVF of the In-
struction Store Queue, the Load Store Queue, and the Reorder Buffer, 
by using some estimation equations. Based on an estimated AVF for 
these three structures, the authors explain how the compiler optimiza-
tion levels affect their vulnerability. In this study, we go far beyond 
this and investigate not only the impact of optimizations on 8 major 
microprocessor components (for all their fields), but also provide a 
fine-grained analysis of the vulnerability for each individual compo-
nent across different benchmarks and for the microprocessor as a 
whole and for different microarchitectures. This way we present a 
thorough evaluation of the impact of compiler optimizations on the 
vulnerability of different microarchitectures. 

Jones, et al. in [11] evaluate the effects of compiler optimizations 
on the reliability of the microprocessor, by using ACE analysis, as 
initially described in [6]. The impact of the compiler optimizations in 
the AVF is evaluated by trying to reduce the AVF-delay-square-
product (ADS). The authors primarily focus on the tradeoffs between 
vulnerability and performance for each optimization level, without 
analyzing their behavior on each microprocessor component. Alt-
hough ACE analysis aims to profile the data lifetime inside the hard-
ware structures and quantify their exposure to estimate the vulnerabil-
ity, it does not provide fine-grained insights on the fault effects and is 
known to be pessimistic (i.e., over-estimates the vulnerability of a 
microprocessor structure) [23]. Cook, et al. in [28] use an instruction-
level injection technique to demonstrate how an incorrect architectur-
al state can result in a correct program behavior. Narayanamurthy, et 
al. in [12] use LLVM-based fault injection to examine the effect of 
compiler optimizations on the error resilience of the software. Ashraf, 
et al. in [19] analyze how the most common compiler optimization 
levels impact the vulnerability of several applications, the trade-offs 
between performance and vulnerability, and the relations between 
compiler optimization and application vulnerability. Similar to the 
previous works, they use a software-level metric to show that highly 
optimized code is generally more vulnerable than unoptimized code. 
Sangchoolie, et al. in [13] examine the effect of compiler optimiza-
tion levels on the SDC rates of different workloads for architectural 
registers and main memory (again software visible locations). They 
use instruction-based fault injection and find that the optimization 
levels reduce the resilience of the application. Bergaoui and Leveugle 
in [14] analyzed the impact of compiler optimizations on data relia-
bility in terms of variable liveness. Variable liveness is the time peri-
od between the variable that is written and it is last read before a new 
write operation. The authors state that the liveness is not related only 
to compiler optimizations, but also on the application itself. Ferreira, 
et al. in [15] focused on compiler optimizations of embedded soft-
ware and reported that random selection of optimizations, can de-
crease software reliability, when the applications were developed to 
detect and correct radiation-induced control-flow errors. 

Although PVF, LLVM-based and instruction-level fault injection 
techniques quantify the architecture-level fault masking inherent in a 
program, they do not consider the vulnerability of the actual underly-
ing hardware, and thus, can lead to misleading findings and observa-
tions [25]. In contrast to these studies, in this work, we are based on 

detailed microarchitecture-level reliability evaluation and provide 
extensive fault injection campaigns to reach statistically safe results 
and accurately support our observations. 

III. EXPERIMENTAL METHODOLOGY 
In this work, we use an extensive microarchitecture-level fault in-

jection simulation-based study and collect a set of important observa-
tions for vulnerability analysis of a microprocessor in different com-
piler optimization levels. For this study, we select 8 representative 
benchmarks from the MiBench benchmarks suite [29], with the larg-
est possible input data sets, and have simulated them for 8 major 
hardware components for two different microarchitectures. This cor-
responds to 1,920,000 fault injections for all components, bench-
marks, and microarchitectures used in this study. The simulated mi-
croprocessors are (i) an Arm Cortex-A15 out-of-order model (Armv7 
ISA) and (ii) an Arm Cortex-A72 out-of-order model (Armv8 ISA). 

A. Fault injection Platform 
Among the available abstraction models, microarchitecture-level 

fault injection is the only one that comes with sufficient hardware 
detail and can run full-system simulation including the operating 
system [25]. Further, microarchitecture-level fault injection offers 
high observability, allowing fine-grained selection of where exactly 
the faults strike (e.g., whether it was on kernel or user mode or data, 
whether the corrupted entry was used or not, etc.) but also detailed 
information of the effect of the fault on the entire system stack as we 
describe in the following subsection. Our microarchitectural model-
ling is based on gem5 simulator, the state-of-the-art, flexible full-
system cycle-accurate simulator [30]. Table I presents the configura-
tion of gem5 for the two microprocessor models. 

For the reliability assessment we use GeFIN [31]: a microarchi-
tecture-level fault injection framework that was built on top of the 
gem5 simulator. The faults are injected in the 8 most important com-
ponents (including all their subfields) that per our estimations corre-
spond to 90% – 95% of the memory cells of the microprocessor: L1 
data and instruction caches (tags and data fields), L2 cache (tags and 
data fields), the physical register file, the load and store queues, the 
issue queue (Source and Destination fields), and the Reorder Buffer 
(all its four fields). For each of the 8 components and each of their 
fields (sub-components), 2,000 single-bit faults were randomly in-
jected (following the uniform distribution as defined in [22]), result-
ing in 1,920,000 fault injections for the two microarchitectures, all 8 
benchmarks and the 4 different optimization levels. We follow the 
widely adopted formulation of [22] for the statistical fault sampling 

TABLE I. MICROPROCESSORS CONFIGURATION. 
Parameter Cortex-A15 Cortex-A72 

ISA Armv7 Armv8 
Pipeline Out-of-Order Out-of-Order 

L1 Data Cache 32 KB (2-way), PIPT* 32 KB (2-way), PIPT 
L1 Instruction Cache 32 KB (2-way), PIPT 48 KB (3-way), PIPT 

L2 Cache 1 MB (8-way), PIPT 2 MB (16-way), PIPT 
Physical Register File 128 registers 192 registers 

Issue Queue 32 entries x 32 bit 64 entries x 64 bit 
Load / Store Queue 16 entries x 32 bit 16 entries x 64 bit 

Reorder Buffer 40 entries 128 entries 
Fetch width 3 3 

Execute Width 6 6 
Writeback Width 8 8 
* PIPT = Physically-Indexed Physically-Tagged 



calculations; 2,000 fault injections per component correspond to a 
very small 2.88% error margin with very high 99% confidence level. 

B. Benchmarks Selection and Characteristics 
For our experiments we used 8 benchmarks from the MiBench 

benchmarks suite [29]. The suite is commonly used in many reliabil-
ity studies [2] [3] [11] [31]-[37]. The suite includes realistic bench-
marks from diverse application domains that share data and control 
flow characteristics with SPEC benchmark suite [38]. To maintain a 
large breadth in the analysis and avoid the bias of results on specific 
applications, we have chosen the largest available input datasets for 
all benchmarks. The benchmarks were also chosen to cover a wide 
variety of different computational characteristics that may affect the 
program execution metrics, such as vulnerability, execution time, and 
interaction-sensitivity to compiler optimizations. The main character-
istics that have been taken into consideration for the selection of 
benchmarks were (1) the integer operation intensity, (2) the frequen-
cy of branches, (3) the memory-hierarchy accesses frequency, and (4) 
the magnitude of performance improvement when applying any op-
timization level to the source code of the benchmark. Benchmarks 
with these characteristics can provide essential diversity to the exe-
cuted machine code and will lead to comprehensive observations.  

C. Fault Effects Classification 
The GeFIN classifies the outcomes of each fault injection based 

on the impact of the fault on the simulated system, as follows: 
Silent Data Corruption (SDC): The simulation finished normal-

ly, but the program output was different compared to the fault-free 
simulation, without any observable indications of this effect. 

Timeout: The simulation did not finish within a certain amount 
of time, equal to two times the fault-free execution time. These simu-
lations are externally stopped to resolve potential deadlock or live-
lock situations.  

Crash: A simulation that did not reach the end of the execution, 
as it was disturbed by a catastrophic event. As a result, no program 
output was produced. A crash may refer to a process crash (killed 
process) or a system crash (kernel panic). 

Assert: The simulation was unexpectedly terminated due to a 
high-level condition that the simulator was unable to handle. If, for 
instance, a physical address that is outside the system map is request-
ed, the simulator cannot tell how a real system would behave and 
raises an assertion.  

When the simulation was executed with no deviations from the 
fault-free simulation, the injected fault is categorized as a Masked 
fault. The result of a masked simulation is identical to the golden 
(fault-free) simulation, and thus, we do not present it in the diagrams. 

IV. COMPILER OPTIMIZATION EFFECTS ON AVF 
In this section, we summarize the performance improvement that 

each compiler optimization level delivers to our benchmarks and 
describe the compiler optimization and microarchitecture effects on 
AVF. Note that the scope of this work is not to analyze the reasons 
why each different application code provides different vulnerability 
results (this would suggest a detailed dynamic analysis of each appli-
cation), but the effects of different optimization levels and microar-
chitectures on the microprocessors vulnerability. To this end, to com-
prehensively summarize the detailed data and results for each hard-
ware component and show the aggregated AVF between Cortex-A15 
and Cortex-A72, we average the AVF of each component across the 

8 different benchmarks. To account for the different execution times 
of the benchmarks, instead of calculating the straightforward arithme-
tic mean of the AVFs of the component for the different benchmarks, 
we weight the AVFs with the execution time of the benchmarks, 
similarly to [25] and [39]. Thus, very short benchmarks will have a 
smaller impact on the component’s aggregate AVF compared to 
longer ones. The weighted AVF is calculated by summing the AVF 
of all benchmarks, each multiplied by the execution time of the corre-
sponding benchmark and dividing them by the sum of the execution 
times of all the benchmarks, as shown in equation (1): 

 wAVF(c) = ∑ (𝐴𝑉𝐹!(𝑐) × 𝑡!)N
k=1   ∑ tkN

k=1.  (1) 

where, wAVF(c) is the weighted AVF of a component c, AVFk(c) is 
the AVF of component c for benchmark k, tk is the execution time of 
each benchmark k, and N is the total number of benchmarks. The 
weighted AVF (wAVF) is shown for each optimization level at the 
rightmost bars of each figure. 

A. Performance Analysis 
The main target of compilers is either to increase the performance 

of an executed code or to reduce the generated code size. However, 
the magnitude of performance improvement of each optimization 
level varies significantly across different benchmarks, as shown in 
Fig. 1 for the benchmarks of our work. Optimizations on some 
benchmarks, such as qsort and patricia provide only slight perfor-
mance improvement, while others, such as fft provide nearly zero 
improvements. The inability to provide effective optimization in 
these benchmarks, is due to the structure of the code. On the other 
hand, dijkstra and gsm can be heavily optimized by all optimization 
levels. There are few library-calls in these benchmarks, and many 
structures in the code (e.g., recursive procedures, loops, etc.) that the 
compiler can effectively manage to exploit in order to provide essen-
tial optimizations in the generated code. Overall, as Fig. 1 shows, all 
benchmarks have different response to each different optimization 
level. Optimization level O1 provides the largest improvements in the 
most cases, while higher optimization levels sometimes increase but 
they may also decrease the performance compared to O1 (see gsm). 
Moreover, in all cases (except sha) the optimization level O3 shows 
marginally worse performance compared to O1 and O2, of 3.5% at 
most. This observation confirms the fact that optimization efficiency 
depends on source code structure. Note that, while in Cortex-A72 the 
absolute performance is higher than in Cortex-A15 for all bench-
marks, the relative performance among different optimization levels 
shown in Fig. 1 is the same between the two microarchitectures. 

B. L1 Instruction Cache (L1I) 
Fig. 2 presents the AVF results of L1I cache for the Data and Tag 

Fig. 1. Relative performance among all optimization levels. 
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fields, for all benchmarks and all optimization levels for both micro-
architectures used in this study. The foremost observation is that the 
most prominent faulty behavior among the vulnerable cases for any 
benchmark and any optimization level (including O0) for both micro-
architectures is the Crash fault class. The reason is that faults in the 
L1I cache affect the instructions and immediate values and very like-
ly lead to a crash. Compared to Crashes, the SDC fault behavior is 
extremely low for most of the benchmarks, especially for optimiza-
tion levels O1, O2, and O3. Comparing the two microarchitectures, 
we can see in the weighted AVF graphs (wAVF – the rightmost bars 
for each diagram) that for both Data and Tag fields of the L1I cache, 
the vulnerability of any optimization level is significantly reduced in 
Cortex-A72, while for Cortex-A15 the vulnerability of any optimiza-
tion level is virtually the same (for Data field) and is slightly in-
creased for the Tag field. Specifically, for Cortex-A72 the vulnerabil-
ity of optimization levels for Data field is up to 18.4% less than the 
unoptimized code, while for Tag field is up to 70% less vulnerable 
than the unoptimized code (O0). As we can also see in Fig. 2 (top-
right and bottom-right diagrams), although different optimization 
levels may have different behavior, it is clearly shown that the main 
reason for the vulnerability reduction of higher optimization levels in 
L1 Instruction cache of the Cortex-A72 is the reduction of Crash and 
SDC fault classes.  

Another observation is that the vulnerability for each optimiza-
tion level between the two microarchitectures (for both the Data and 
the Tag fields) is virtually at the same levels. For example, if we see 
the wAVF for each graph, we observe that the vulnerability percent-
age between the two microarchitectures is very close, although as we 
discussed earlier, the compiler optimizations provide significantly 
less vulnerability in Cortex-A72 compared to O0.  

C. L1 Data Cache (L1D) 
Fig. 3 presents the AVF results of L1 Data Cache for the Data 

and Tag fields for all benchmarks and all optimization levels for both 
microarchitectures used in this study. The foremost observation in 

case of L1D cache for both microarchitectures, is that the most prom-
inent faulty behavior among the vulnerable cases for the most of 
benchmarks and optimization levels (including O0) is the SDC fault 
class. The reason is that faults in L1 data cache affect the actual data 
words of an application, so there is high probability for a fault to 
corrupt the calculations, and thus, the final results of an application. 

Unlike the L1 instruction cache (in which both microarchitectures 
show very close vulnerabilities for Data and Tag Fields), L1 data 
cache shows that Cortex-A15 has significantly less vulnerability than 
Cortex-A72 for both Data and Tag Fields. Specifically, the wAVF 
bars for O0 show that Cortex-A72 is 32.3% more vulnerable than 
Cortex-A15 for the Data field, while for the Tag field is 45.2% more 
vulnerable. Another important observation, is that the vulnerability of 
different compiler optimization levels is very close to the unopti-
mized code for both microarchitectures for Data field. However, Cor-
tex-A72 shows slightly reduced vulnerability in all optimization lev-
els for the Tag field, which is up to 8.6% less than the O0. 

D. L2 Cache (L2) 
  Fig. 4 presents the AVF results of L2 cache for the Data and Tag 

fields for all benchmarks and all optimization levels for both micro-
architectures used in this study. The foremost observation in case of 
L2 cache, is that the most prominent faulty behavior among the vul-
nerable cases for all benchmarks and all optimization levels (includ-
ing O0) across both microarchitectures is the SDC fault class, while 
only for dijkstra the most prominent faulty behavior is the Crash fault 
class for all optimization levels for the Data field. Similar to L1 data 
cache, and unlike the L1 instruction cache, Cortex-A72 is significant-
ly more vulnerable in L2 cache compared to Cortex-A15 for any 
optimization level. Specifically, the vulnerability of Cortex-A72 is up 
to 32.4% more than the vulnerability of Cortex-A15 for the Data 
field, and up to 45.2% more for the Tag field. Although the absolute 
vulnerability is higher in Cortex-A72 than in Cortex-A15, the vulner-
ability of different optimization levels for any microarchitecture of 
both Data and Tag fields is virtually the same. However, for the Tag 

Fig. 2. AVF for L1 Instruction Cache (Data field at the top and Tag field at the bottom) for Cortex-A15 (left) and Cortex-A72 (right) for all 
compiler optimization levels. 
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field of Cortex-A72, the vulnerability of compiler optimization levels 
is 8.6% less than the unprotected core (O0). This is in line with the 
L1 data cache we discussed earlier.  

E. Physical Register File (RF) 
Fig. 5 presents the AVF results of Physical Register File (RF) for 

all benchmarks and all optimization levels for both microarchitec-
tures used in this study. The foremost observation in case of RF, is 
that in most cases the optimized code is more vulnerable compared to 
the unoptimized one (O0). Compared to the caches’ vulnerability 
analysis of the previous subsections, this means that the fundamental 

modifications induced by compiler in all optimization levels have a 
major impact on the registers and not on the caches’ levels. The AVF 
results presented in Fig. 5, show that compiler optimizations in the 
source code of an application can lead to higher vulnerability in the 
physical register file than in a cache memory array. This can be at-
tributed to the fact that compiler optimization methods try to increase 
the register file utilization (i.e., higher read and write operations), as 
much as possible, to minimize the memory accesses. However, as it 
is shown, the optimizations induced by the compiler, despite the im-
proved performance, they increase the vulnerability of the physical 
register file. For example, blowfish is 2.25× more vulnerable at O1 
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Fig. 4. AVF for L2 Cache (Data field at the top and Tag field at the bottom) for Cortex-A15 (left) and Cortex-A72 (right) for all compiler opti-
mization levels. 

Fig. 3. AVF for L1 Data Cache (Data field at the top and Tag field at the bottom) for Cortex-A15 (left) and Cortex-A72 (right) for all compiler 
optimization levels. 
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level, compared to O0 for the Cortex-A15, and 2× more vulnerable 
for Cortex-A72. To further support this statement, we observed that 
there is a significant increase of registers utilization during the execu-
tion of optimized code. For example, dijkstra’s register utilization is 
increased 4× in O1 compared to the unoptimized code. Other bench-
marks, such as sha and patricia have nearly zero difference in regis-
ter file utilization among different optimization levels. Another inter-
esting observation is that in all benchmarks, Crash and SDC fault 
classes are balanced for each optimization level (including O0), alt-
hough in most cases both the Crash and SDC classes are slightly 
increased in O1, O2, and O3 compared to O0. Interestingly, compiler 
optimization levels show higher impact on the vulnerability of Cor-
tex-A72 compared to Cortex-A15. Specifically, the vulnerability 
difference for Cortex-A72 is up to 56.7% higher for the optimized 
codes, while for Cortex-A15 is up to 22% higher compared to the 
unoptimized code (O0). 

F. Load and Store Queues (LQ and SQ) 
We present the behavior of the Load and the Store Queues 

together, as they have very similar behavior regarding the impact of 
each optimization level on AVF. Fig. 6 presents the AVF results of 
Load Queue (we omit the graph for SQ due to space limitations, but 
we use the data in the calculations for the overall microprocessor) for 
all benchmarks and all optimization levels for both microarchitec-
tures used in this study. The foremost observation in case of the 
LQ/SQ, is that the most prominent faulty behavior among the vulner-
able cases is the Assert fault class for all optimization levels. The 
reason is that LQ and SQ contain register operands, meaning that any 
corruption in the register operands will certainly lead to an unex-
pected (unhandled) microprocessor operation, since it is highly likely 
for an unused or invalid register to appear due to the corruption. 
However, in the case of the LQ/SQ we can observe in Fig. 6  that the 
Assert fault class is the only class that affects these components. As 
we can see in Fig. 6, while the absolute vulnerabilities (wAVF) of the 

Cortex-A72 are lower than the Cortex-A15, for both LQ and SQ, the 
compiler optimization levels of Cortex-A72 show significantly higher 
vulnerability than the unoptimized code, which is not the case for 
Cortex-A15 where all optimization levels provide virtually the same 
vulnerability results. Specifically, in Cortex-A72 the vulnerability of 
optimized codes is up to 19.4% higher than the unoptimized code 
(O0). Similar to the Register File, in Cortex-A72 we observe signifi-
cantly higher vulnerability of all optimization levels than in Cortex-
A15. 

G. Issue Queue (IQ) 
 Fig. 7 presents the AVF results of Issue Queue for the Source 

field for all benchmarks and all optimization levels for both microar-
chitectures used in this study (we omit the graph for Destination field 
due to space limitations, but we use the data in the calculations for 
the overall microprocessor). Unlike all other microprocessor struc-
tures, the Issue Queue is the only one that provides increased levels 
of Timeout and Assert fault classes. More specifically, as we can see 
in  Fig. 7, the vulnerability of the Assert and Timeout fault classes are 
virtually balanced for any benchmark and microarchitecture, while all 
other fault classes provide nearly zero vulnerability. Another interest-
ing observation is that in Issue Queue the vast majority of bench-
marks in Cortex-A15 show higher AVF at O0 compared to other 
optimization levels, while in most of the cases the optimization levels 
show lower vulnerability compared to the O0. On the contrary, in 
Cortex-A72 we can see that while the absolute vulnerability is lower 
than the Cortex-A15 (by up to 70% lower for the O0), all optimiza-
tion levels provide higher vulnerability compared to the unoptimized 
code (O0), which is up to 20% higher. This observation is in line with 
the Register File and Load and Store queues, as we discussed.  

H. Reorder Buffer (ROB) 
Fig. 8 presents the AVF results of Reorder Buffer for the PC field 

for all benchmarks and all optimization levels for both microarchitec-

Fig. 6. AVF for Load Queue (top diagrams) and Store Queue (bottom diagrams) for Cortex-A15 (left) and Cortex-A72 (right) for all compiler 
optimization levels. 
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Fig. 5. AVF for Physical Register File for Cortex-A15 (left) and Cortex-A72 (right) for all compiler optimization levels. 



tures used in this study (we omit the graph for the other three fields 
due to space constraints, but we use the data in the calculations for 
the overall microprocessor). It is clearly shown that the Reorder 
Buffer is the most vulnerable component among all other hardware 
structures for both microarchitectures. There is only one exception 
for the Cortex-A72, in which the L1 instruction cache is the most 
vulnerable one. Furthermore, Reorder Buffer is vulnerable only to 
Assert fault class (as the Load and Store Queues), in contrast to all 
other hardware structures that we have studied. Furthermore, as we 
can also see in Fig. 8, in most of cases, optimization level O0 is the 
most vulnerable case among all other optimization levels (O1, O2, 
and O3) for both microarchitectures. Reorder Buffer is the only mi-
croarchitectural component which shows less vulnerability in all 
optimization levels (O1, O2, and O3) compared to the unoptimized 
code (O0) and for both microarchitectures. For example, L1 data and 
instruction caches show lower vulnerability in all optimization levels 
than the unoptimized code, only for Cortex-A72.   

V. AVF ANALYSIS PER HARWARE COMPONENT 
In the previous section, we discussed in detail the sensitivity and 

behavior to all compiler optimization levels in 8 major components of 
our analysis and for two different microarchitectures. In this section, 
we quantify the aggregate effect of these vulnerabilities to the total 
AVF of all components (including all sub-components/fields). Dif-
ferent workloads and optimization levels have different AVF per 
component, thus in this section we utilize the per-component vulner-
abilities to calculate the total AVF for every hardware structure, and 
in what extent each different optimization level affects it when all our 
benchmarks are jointly considered as the executed workload. To this 
end, in this section we use the weighted AVF as it is calculated in the 
previous section to show the comparative results and draw essential 
conclusions about the impact of different compiler optimization lev-
els and microarchitectures in microprocessors vulnerability. 

Fig. 9 shows the weighted average AVF difference for optimiza-
tion levels O1, O2, O3, relative to O0, for each component and for 

each different field of the hardware structure for the Cortex-A15 (top 
diagram) and Cortex-A72 (bottom diagram). As we can see in the 
bottom graph of Fig. 9, for Cortex-A72, all the largest components of 
the microprocessor (L1 instruction and data caches, and L2 cache for 
both data and tag fields) show significantly reduced vulnerability in 
all optimization levels compared to the unoptimized code (O0). How-
ever, this is not the case for the Cortex-A15 in which we can see at 
the top graph, that all the largest components, except for the L1 in-
struction cache, show increased vulnerability. This observation sug-
gests that the most modern microarchitectures have a lower vulnera-
bility for optimized codes. On the contrary, for all other hardware 
structures, (RF, LQ, IQ, ROB), both microarchitectures provide simi-
lar vulnerability trends (SQ is an outlier because it provides opposite 
vulnerability trends between the two microarchitectures, however, the 
AVF difference of SQ is slightly different compared to the unopti-
mized code). Specifically, IQ and ROB (with all their fields) show 
significantly lower vulnerability for all optimization levels, compared 
to the unoptimized code (O0). This demonstrates that compiler opti-
mizations for instruction reordering, instruction scheduling and the 
code size reduction can, not only improve the execution time of the 
workloads, but also significantly reduce the vulnerability impact of 
the applications on the target hardware structures. Additionally, it is 
clearly shown that the higher the optimization level, the less vulnera-
ble the Reorder Buffer is, which demonstrates that the Reorder Buffer 
is the single microprocessor structure that incrementally improves its 
vulnerability (for any of the ROB’s filed) when higher compiler op-
timizations are applied. 

On the other hand, the Physical Register File, and Load Queue 
demonstrate the opposite phenomenon; i.e., all optimization levels are 
more vulnerable than the unoptimized code (O0) for both microarchi-
tectures. For example, as we can see in the bottom graph of Fig. 9, 
when applications compiled with the highest optimization level (O3), 
the vulnerability of the RF can increase up to 37% more than the 
unoptimized code (O0). This increment means that when the micro-
processor executes a fully optimized workload, it can approximately 
be 1.37´ more vulnerable than when executing an unoptimized code. 
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Fig. 7. AVF for Issue Queue for Cortex-A15 (left) and Cortex-A72 (right) for all compiler optimization levels. 
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Fig. 8. AVF for Reorder Buffer for Cortex-A15 (left) and Cortex-A72 (right) for all compiler optimization levels. 



Overall, if we compare the vulnerability difference among all optimi-
zation levels in absolute values, we can notice that the hardware 
component that is being affected less than all others is the Data field 
of the L1 data cache for both microarchitectures, while the Register 
File, and the Reorder Buffer are affected the most when the micro-
processor executes optimized code in any optimization level.  

VI. FAILURES IN TIME AND PERFORMANCE-AWARE 
COMPARISON FOR THE ENTIRE MICROPROCESSOR 

Apart from the vulnerability impact on each hardware structure, it 
is also essential to demonstrate the impact of each individual optimi-
zation level on the entire microprocessor chip (all hardware structures 
together) for each microarchitecture. To do so, in this section we first 
present the microprocessor’s Failures in Time (FIT) rates for each 
individual optimization level to account for the sizes of the individual 
components of the microprocessor. Although the FIT rate is an essen-
tial global measurement unit of the reliability of a microprocessor, it 
does not take into account the application’s throughput (i.e., number 
of tasks that can be executed per time unit). To this end, we also pre-
sent another metric that takes this parameter into account and shows a 
performance-aware comparison among different optimization levels.   

A. Failures in Time (FIT) Analysis 
Failures in Time (FIT) rate of a device estimates the number of 

failures that can be expected in one billion (109) device-hours of op-
eration. For each hardware structure of a microprocessor, a different 
FIT is computed using the formula in Eq. 2 below.  

 FITstruct = AVFstruct × raw FITbit × #Bitsstruct (2) 

The FIT of the structure depends on three parameters: (1) the 
FITbit (or raw FIT) rate, which is determined by the fabrication tech-
nology and the operational conditions and expresses the fault proba-
bility of a single bit, (2) the number of bits of the structure, and (3) 
the AVF of the structure, which is affected by the microarchitecture 
and the executed workload. The raw FIT rate expresses the number of 
transient faults that will be introduced in the component, while the 
AVF is the derating factor that quantifies how many of these upsets 
will lead to a failure. The product equals to the FIT rate of a particu-
lar hardware structure. The FIT rate of the entire CPU is calculated 
by adding the individual FITs of the structures. For the calculation of 
the FIT, we use the raw FIT rate per bit, as described in [37], which is 
2.59×10−5 FIT/bit for Cortex-A15 and 9.39×10−6 FIT/bit for Cortex-
A72 but, of course, any technology-related (or arbitrary) value can be 
used. 

As a first quantitative comparison, we show the FIT rates for each 
optimization level and for all benchmarks, as shown in Fig. 10. The 
most important observation is that in Cortex-A72, 5 out of 8 bench-
marks (dijkstra, fft, sha, blowfish, gsm) have significantly lower FIT 
rate compared to Cortex-A15. Another important observation, is that 
in the most modern microarchitecture (Cortex-A72), there is a signif-
icant increase of the SDC rate. As we can see, in Cortex-A72, the 
SDC rate is the dominant one, while in Cortex-A15 the AppCrash is 
the dominant. This observation suggests that modern microarchitec-
tures are less susceptible to SDCs, which would lead to severe prob-
lems in the field operation. This is in line with the recent works of 
Facebook [42] and Google [43], which unveil the significance of the 

Fig. 10. Arm Cortex-A15 FIT rates (left graph) and Arm Cortex-A72 FIT rates (right graph). 
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Fig. 9. Weighted AVF Difference for all optimization levels (O1, O2, O3) relative to O0, separately for each component fort both microarchi-
tectures (Cortex-A15 at the top and Corte-A72 at the bottom). 
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SDC phenomena at scale. Moreover, as we described in Section IV, 
each optimization level affects differently the vulnerability of each 
hardware structure. Therefore, it would be misleading if we just com-
pare the FIT rates of each optimization level. To this end, we present 
in the next subsection a performance-aware comparison of the fail-
ures for each optimization level to quantitatively evaluate the impact 
of compiler optimization levels on the microprocessor.  

B. Failures per Execution (FPE) 
Optimizations introduced by compilers significantly affect the 

performance of the executed code and modify the access patterns to 
the microprocessor’s structures. To account for these diversities, 
system performance can be measured by the time it requires to 
complete a full program execution. Since our baseline out-of-order 
microprocessors is the same for all optimization levels, the 
throughput can be considered as one full execution for each 
microarchitecture. Assume for example in qsort algorithm that O0 
requires 10 seconds to complete a sorting of an array (qsort_O0) and 
O2 requires 1 second for the same task (qsort_O2). Given that FIT 
rate encapsulates the failures per 109 device-hours, we can conclude 
that qsort_O2 has been executed 10 times more than qsort_O0. This 
is not a fair comparison when we account for the same algorithm but 
different compilation outcomes. To this end, we introduce the 
Failures Per Execution (FPE) metric, as shown in equation 3 below: 

FPE  = FIT × Execution_Time / 109              (3) 

FPE summarizes the failure probability of each program during a 
single execution. The metric depends both on the throughput of in-
structions execution and on the vulnerability of the execution. For the 
same workload that is compiled in different ways, lower FPE indi-
cates better tradeoff between reliability and performance: more cor-
rect executions take place between failing executions. Fig. 11 shows 
the FPE measurements normalized by the O0, for each optimization 
level and for all benchmarks and microarchitectures, which provides, 
a fair performance-aware comparison of the impact of optimization 
levels on microprocessors reliability. Using FPE we can get a more 
objective idea of the difference between the performance and reliabil-
ity. As a tradeoff, the results in Fig. 11 show that the performance 
gains offered by higher optimization levels can recover the reliability 
penalty (larger vulnerability) they introduce for both microarchitec-
tures. In Fig. 11 we can see that all benchmarks show that higher 
optimization levels, in general, provide lower (thus better) FPE w.r.t 
O0. For Cortex-A15, Rijndael and fft, however, show that higher 
optimization levels cannot cover the reliability penalty they intro-

duce. Overall, among the optimization levels the worst tradeoff be-
tween performance and reliability is observed for O3, while O1 and 
O2 tend to be the best choice for the most benchmarks, especially for 
Cortex-A72.  

VII. DISCUSSION & INSIGHTS FOR FUTURE DIRECTIONS 
In Section IV we presented a fine-grain AVF analysis for all ma-

jor microprocessor components by providing essential observations 
about the impact of different compiler optimization levels on the 
AVF of each different application for each individual hardware struc-
ture of two different microarchitectures. However, it is hard to extract 
a clear trend of the overall impact of compiler optimizations on each 
component’s vulnerability, due to the diverse effects that optimiza-
tions induce on different applications. To this end, in Section V we 
presented a comprehensive analysis of the impact of compiler optimi-
zations on each individual hardware structure to thoroughly investi-
gate the extent in which each optimization level affects each individ-
ual microprocessor component when all workloads are jointly con-
sidered. In that way, we demonstrated which components are more 
sensitive to higher optimization levels, and which are less sensitive. 
However, most modern microprocessor designs (i.e., Cortex-A72) 
protect L1 data cache and L2 cache with ECC protection schemes. 
Other designs, such as the Arm Cortex-A15, include the option of 
ECC protection for these hardware structures [40]. Based on this 
characteristic, we employ the weighted AVF shown in Section V to 
calculate the FIT rates of the entire microprocessor for each optimiza-
tion level when all workloads are jointly considered. This way, we 
provide insights of the impact on different compiler optimizations on 
microprocessor’s vulnerability when a protection scheme is either 
applied or not. It is clearly shown in the leftmost diagram of Fig. 12 
(top line) that in Cortex-A15 implementations without any ECC 
scheme (e.g., Samsung Exynos 5250 [41]) the higher the optimization 
level is, the more vulnerable is the microprocessor’s operation (larger 
FIT rates). This is not the case for Cortex-A72 (bottom line, leftmost 
graph) in which even in a fully unprotected design, the optimization 
levels are less vulnerable that the unprotected code (O0). However, 
when ECC is applied on both L1 data cache and L2 cache (the middle 
graphs) or only on L2 cache (the rightmost graphs), the O2 level is 
clearly the best optimization level for less vulnerable microproces-
sor’s operation, while it delivers its performance improvements. 
Moreover, in most recent designs (i.e., Cortex-A72), O1 seems to be 
also less vulnerable, however, the O3 optimization level is the most 
vulnerable one for both microarchitectures when protection schemes 
are applied.  

Fig. 11. Failures per Execution (FPE) normalized by the O0, for each optimization level and all benchmarks for both microarchitectures. 
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All these insights and observations we made are essential not on-
ly for hardware architects and software designers, but also for future 
reliability studies. Specifically, the most common trend is that O2 and 
O3 optimization levels are the most frequently used choices for an 
application. In this study we demonstrated that in modern micropro-
cessor designs which are equipped with protection schemes in L1 
data cache and L2 cache, the O2 level is constantly the most resilient 
optimization, while the O3 is consistently the worst-case scenario 
regarding the vulnerability. However, this paper can be considered as 
a basis for the future reliability studies, which may consider different 
optimization levels depending on the scope of the research and the 
studied hardware structure. To the best of our knowledge, previous 
studies have neither provided such a fine-grained analysis nor pre-
sented any essential insight about the impact of different optimization 
levels on microprocessor’s vulnerability. 

VIII.  CONCLUSION AND FUTURE WORK 
In this work, we investigated the impact of transient faults in 

modern out-of-order microprocessors reliability for different compil-
er optimization levels through extensive microarchitecture-level fault 
injection, which considers the effects on the entire system stack. We 
evaluated how different levels of compiler optimization affect the 
failure probability of all important hardware structures in two differ-
ent out-of-order microarchitectures. We performed extensive fault 
injection campaigns, using large datasets for all benchmarks, to 
measure the Architectural Vulnerability Factor (AVF) of each opti-
mized code, and identify that the largest microarchitectural compo-
nents (L1 data and instruction caches and L2 cache – both their Tag 
and Data fields) for more recent microarchitecture are less vulnerable 
to compiler optimizations than the older ones. Moreover, we correlat-
ed the observed reliability variations to the total microprocessor’s 
vulnerability, by showing the Failures in Time (FIT) rate for each 
individual optimization level and demonstrate that recent microarchi-
tectures are less susceptible to SDCs. We also presented a perfor-
mance-aware comparison (Failures per Execution – FPE) on how 
each optimization level affects the reliability of the microprocessor as 
a whole. We finally demonstrated that the O2 level is the most resili-
ent optimization for both microarchitectures with ECC protected L1 
data and L2 caches, while O1 can also offer opportunities for im-
proved (smaller) vulnerability in the most modern microarchitectures. 

As for the future work, we plan to characterize the impact of specific 
optimizations of each compiler optimization level on the micropro-
cessor’s vulnerability and how each optimization (or a combination 
of a small subset of optimizations) affects the vulnerability of each 
hardware structure of the microprocessor. 
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