

Multi-Bit Upsets Vulnerability Analysis of
Modern Microprocessors

Athanasios Chatzidimitriou George Papadimitriou Christos Gavanas George Katsoridas Dimitris Gizopoulos
Dept. of Informatics and Telecommunications, University of Athens, Greece

{achatz | georgepap | chrisgavanas | katsorid | dgizop}@di.uoa.gr

Abstract—Miniaturization of integrated circuits brings more
devices (thus more functionality) on the same silicon area but also
makes them more vulnerable to soft (transient) errors. Assessment
and understanding of the magnitude of a microprocessor’s vulner-
ability to soft errors in early stages of the design can steer wise,
cost-effective protection decision at the hardware or software
level. In recent fabrication technologies, the effect of radiation
(neutrons or other particles) is significantly more severe on silicon
devices and leads to increased numbers of multi-bit upsets. In this
paper, we analyze the effects of multi-bit upsets in modern micro-
processors, using microarchitecture level fault injection and a
complete system stack. We present details about the effects of
multi-bit upsets on 6 major hardware components of an ARM
Cortex-A9 CPU modeled on Gem5 microarchitectural simulator,
with 15 workloads across 8 fabrication technology nodes. For the
purposes of our analysis, we employ and extend the GeFIN (Gem5-
based Fault INjector) framework to model and analyze multi-bit
faults in the hardware structures of the CPU. The enhanced ver-
sion of the fault injector models multi-bit faults in adjacent areas
of a structure; a very realistic case when modern silicon chips are
affected by radiation. Our analysis shows that the architectural
vulnerability factor (AVF) significantly increases from 1.5x
(+50%) to 3.2x (+220%) between single and triple-bit faults across
components. We present the aggregate multi-bit AVF of each
hardware structure and each technology node from 250nm to
22nm; our results show significant AVF difference between single
bit and aggregate multi-bit measurements, up to 35% as the tech-
nology node decreases – this reveals the magnitude of the assess-
ment gap when only single bit errors are considered by any
method. We report soft error Failures in Time (FIT) rates for the
entire ARM Cortex-A9 CPU across technology nodes and our re-
sults show that the contribution of multi-bit upsets in the overall
CPU FIT consistently increases across technologies and reaches
21% in 22nm.

Keywords—CPU reliability, soft errors, failures in time, spatial
MBU, fault injection, microarchitecture simulation

I. INTRODUCTION

The constant refinement of semiconductor technologies con-
tinuously (although not always consistently) increases the den-
sity and complexity of modern microprocessor chips in favor of
performance and functionality. This extreme scaling has a neg-
ative impact on the reliable operation of microprocessors, mak-

ing them more vulnerable to cosmic radiation, latent manufac-
turing defects, device and packaging degradation and low volt-
age operation [13] [14] [15] [16]. As a result, transient faults
(soft errors) tend to appear more frequently than in previous
manufacturing generations, which, in turn, makes them a major
threat to reliable computing system operation. However, not all
faults will necessarily harm the system stability nor will have the
same severity for software workloads. Several metrics have been
proposed to express the system vulnerability against transient
faults. The Architectural Vulnerability Factor (AVF) [17] was
proposed by Mukherjee et al. to quantify a microprocessor’s
vulnerability to transient faults; the AVF of a microprocessor
hardware structure is the probability that a fault in it will affect
the correct execution of a program. Similarly, IVF [18] and H-
AVF [19] have been proposed to express the vulnerability of mi-
croprocessor structures to intermittent and permanent (hard)
faults, respectively. Sridharan and Kaeli later proposed finer lev-
els of abstraction for the AVF, introducing the Hardware Vul-
nerability Factor (HVF) [20] and the Program Vulnerability Fac-
tor (PVF) [21], each to quantify the portion of AVF that can be
attributed to the Hardware layer (including the microarchitec-
ture) and the Software layer, respectively.

The assessment of microprocessor vulnerability to soft er-
rors is very crucial during the early design stages to guide effi-
cient error protection. Fault-tolerance mechanisms impose area,
power and performance overheads, which can, for example,
vary in a range between 1% and 125% (in terms of extra memory
capacity) for typical memory error detection and correction [17].
Thus, significant effort must be devoted to effectively measure
the vulnerability of a CPU design as early as possible and make
cost effective design decisions for error protection.

Multi-bit transient upsets (MBU) are an increasingly im-
portant challenge in SRAMs [1], [8]. High-energy particles are
able to deposit charge onto multiple SRAM storage cell because
of their shrinking dimensions, and this results in upsets in mul-
tiple adjacent bits. This is called a spatial multi-bit fault (sMBF)
(or multi-bit upset (MBU)). Ibe et al. in [1] show that in a 180nm
fabrication technology node, about 5.3% of neutron-induced er-
rors in SRAMs are multi-bit upsets, while in 22nm process, this
ratio is as high as 45%. This increase in multi-bit fault rate is
projected to continue despite the introduction of technologies
such as FinFET transistors, which have reduced fault rates [22]
[23]. Estimating architectural vulnerability factors of micropro-
cessors hardware structures by considering multi-bit faults at
their rates for a particular technology, allows architects to have

This work has been funded by the European Union through the CLERECO
project (FP7 Grant 611404), the UniServer project (H2020 Grant 688540), a
Tetramax-Bilateral-TTX-2 grant, and by Cisco Research.

a more accurate evaluation of the system’s vulnerability and pro-
tect the structures for realistic upsets rates and cardinalities and
not only for single-bit faults. Design-time vulnerability estima-
tion techniques (including fault injection and lifetime analytical
methods) focus on single-bit faults and fail to capture the effects
of multi-bit faults [3] [6] [28] [33] [34] [35] [36].

In this paper, we perform a microarchitecture-level reliabil-
ity assessment using fault injection at the full system level. We
present a comprehensive study and analysis that considers re-
portedly important spatial multi-bit faults, in 6 important micro-
architectural components of an ARM Cortex-A9 CPU, in order
to quantify the effect of multi-bit upsets in the overall system
reliability. We employ and extend GeFIN [3] [6], a Gem5-based
[2] fault injection framework to inject multi-bit faults in the
hardware structures of the CPU model. We enhance the fault
mask generator of GeFIN to support the generation of spatial
multi-bit faults in adjacent areas of a structure. The results of this
study reveal that, for important hardware structures such as the
L1I cache, the vulnerability of triple-bit faults increases up to
3.2x (220%) when compared to single-bit fault injection, for
22nm fabrication technology; a huge gap in soft error vulnera-
bility assessment that our analysis reveals. We also show that
the portion of the overall CPU FIT rate that is caused by multi-
bit faults is significant in all technology nodes after 250nm, it
consistently increases and reaches 21% at 22nm. Even larger
contributions of multi-bit faults in the CPU FIT rates in latest
technologies (14nm, 10nm, 7nm) can be safely assumed, calling
for diligent protection against multi-bit upsets at least in the
hardware structures that our study identifies as the most vulner-
able. The presented vulnerability estimation methodology can
be used in all current and future technologies as the supported
fault models are very flexible and easily configurable.

II. RELATED WORK

The majority of early vulnerability estimation studies focus
on single bit faults and only a few consider the impact of multi-
bit faults in SRAMs and logic [8] [23] [24] [25] [26] [27].
George et al. in [8] modeled only spatial double-bit faults using
microarchitecture level fault injection on PTLsim simulator and
reported the AVF of only two hardware components (the regis-
ter file and reorder buffer), while the multi-bit rates across tech-
nologies have not been taken into consideration to quantify the
contribution of multi-bit faults in the overall AVF and FIT meas-
urement. In [23], the authors propose the use of ACE analysis to
capture the vulnerability of multi-bit faults, assuming the exist-
ence of hardware protection. They also use GPU fault injection
to validate the assumption that bit ACEness (importance for ar-
chitecturally correct execution) is not affected by neighboring
bits in a structure. In this work, we do not make assumptions of
hardware protection as we consider that this is the scope of per-
forming a reliability evaluation in early design phases – based
on the findings of our analysis informed multi-bit error protec-
tion can be implemented in a CPU design.

The authors in [24] [25] [26] [27] perform multi-bit reliabil-
ity analysis at the software or architecture level (not the actual
hardware or microarchitecture level that we focus on). Lu et al.
in [24] compare the results of single-bit faults to double-bit
faults in a single word and in different words at the LLVM com-
piler’s intermediate code level. They find that there is not much
variation between the error resilience of the different models.

The main focus of the work is on the fault injection tool rather
than a thorough study of the impact of multiple bit-flip errors.
Ayatolahi et al. in [25] compare the single bit-flip model with
the double bit-flip model at the assembly-level code. In their
study, double bit-flip errors are only injected into a single word
(i.e., register or memory location). They also find that the SDC
results obtained for the two fault models are only marginally dif-
ferent. Adamu-Fika and Jhumka in [26] compare the results of
injecting double-bit faults in a single word to those into different
words at the LLVM compiler’s intermediate code level. Similar
to the previous studies, the results of their experiments show
that, on average, the difference between the percentages of data
failures for the two models is marginal. On the contrary, Sang-
choolie et al. in [27] presented that the single-bit fault experi-
ments can give results close to multi-bit fault experiments, while
they propose that at most triple-bit faults are reasonable.

At the manufacturing technology level multi-bit fault studies
have clearly revealed the importance of accounting and design-
ing for multi-bit faults in modern hardware. The authors of [1]
[41] [42] [43] [44] [45] analyze the ways that multi-bit upsets
affect SRAM cells, while in [39] [46], the authors examine pro-
tection options for spatial multi-bit faults. Suh et al. [40] intro-
duce a periodic autoregressive moving average (PARMA)
framework to compute the mean time to failure (MTTF) of
caches from single-bit faults and multi-bit upsets. In [47], the
authors consider several design characteristics and apply soft-
error rates in different technology nodes to showcase how the
error rates affect the same design on different technologies.

 Microarchitecture level fault injection has been used in var-
ious studies [3] [6] [28] for assessing reliability on hardware
components basis, but also for capturing the performance devi-
ation caused by the presence of faults in speculative components
[29] [30] [31] [32]. There are also studies [33] [34] [35] [36]
[37] [38] that spread their focus beyond a single abstraction layer
and aim to exploit the benefits of multiple abstraction layers to
either accelerate the evaluation process or deliver cross-layer re-
liability evaluation.

In this work, we move beyond previous studies and present
a complete analysis of realistic multi-bit failure rates which ag-
gregates the effects of multi-bit upsets (single, double, triple) for
8 different technologies, 6 major microprocessor components
and 15 different workloads. We quantify in fine granularity the
AVF and FIT rates of all the above combinations (technology,
component, workload) in an out-of-order ARM CPU model and
demonstrate the significant gap between single-bit analysis and
realistic multi-bit vulnerability analysis which corresponds to
the actual failure modes that a real CPU experiences in the field.

III. EXPERIMENTAL SETUP

Using a very extensive fault injection, simulation-based
study, we collected a set of interesting observations that demon-
strate the accuracy improvement we contribute to the vulnera-
bility estimation process of modern microprocessors. Our
benchmarks base consists of 15 benchmarks, simulated for 6
hardware components in an ARM Cortex-A9 with one, two and
three faults injected per run for each component. This corre-
sponds to 540,000 injections for all components and bench-
marks used in this study (details for the statistical properties of
the fault injection campaigns follow in the next subsections).

A. Platform

Among the available abstraction models, microarchitecture
level is the only one that comes with sufficient hardware detail
and is capable of running full-system simulation including the
operating system. While RTL is closer to the hardware, its ex-
tremely small simulation throughput does not allow running of
multiple fault injection simulations of a full system stack that
includes an operating system and transactions with I/O periph-
eral devices [48]. Our microarchitectural modeling is based on
Gem5 simulator, the state-of-the-art, flexible full system cycle-
accurate simulator [2]. Gem5 fully supports ARM ISA and
comes along with a detailed out-of-order core implementation.
The CPU core was configured to resemble the microarchitecture
of ARM® CortexTM-A9. Table I presents the configuration of the
Gem5 CPU core.

GeFIN fault injection framework [3] was used on top of
Gem5 for the reliability assessment. We have extended the Ge-
FIN infrastructure with a new fault generator to inject spatial
multi-bit upsets of different geometries and cardinalities during
the simulation of the system. The faults were injected in 6 im-
portant components that correspond to more than 94% of the
memory cells of the CPU: L2 Cache, L1 Data and Instruction
Caches, Physical Register file, Data and Instruction Translation
Lookaside Buffers (TLB). For each of the 6 components, three
sets of 2,000 single-bit faults, 2,000 double-bit faults, and 2,000
triple-bit faults were generated, resulting in 36,000 fault injec-
tion simulations per workload (or 540,000 fault injections for all
15 benchmarks together). We follow the widely adopted formu-
lation of [4] for the statistical fault sampling calculations; our
2,000 faults samples choice corresponds to 2.88% error margin
with 99% confidence level. This estimation corresponds to an
initial unknown AVF estimation [5], which, as suggested by [4],
is set to p = 0.5 in order to maximize the fault sample. After the
execution of simulation campaign, however, we can re-adjust
the p variable in the formula with the result of the estimation,
shifted by the maximum error margin. This gives us a better es-
timation of the actual error margin for each combination of
workload/component, which in our results is between 2.88% and
2.4% with 99% confidence.

Microarchitecture level fault injection offers high observa-
bility, allowing distinction of where exactly the faults strike
(e.g., whether it was on kernel or user mode or data, whether the
corrupted entry was used or not, etc.) but also detailed infor-
mation of what was the system effect as we describe in the fol-
lowing subsection.

B. Fault Modeling

Spatial multi-bit faults can affect both neighboring cells that
share a p-well or an n-well as well as memory cells in a nearby
area. Based on the findings of [1] and [43], we have created a
new fault generator for GeFIN that implements the concept of a
fault cluster [1]. For a given cluster size of X rows and Y col-
umns, the generator creates N random faults (bit flips) inside this
array. The cluster is then placed in a random position inside the
SRAM array, where it marks where the faults should be injected.
Cluster sizes and fault numbers can be configured to resemble
observed patterns of fabrication technologies. The vulnerability
of each cluster is quantified separately and its contribution to the
overall AVF of a device is weighted according to the technology
characteristics. This level of configuration allows assessment of
current and future technology nodes.

Our experiments consist of single-bit, double-bit and triple-
bit faults generated in a 3x3 cluster (quadruple-bit and larger
rates are virtually zero as reported in [1]). A generated fault
mask contains a multi-bit fault that is injected to the hardware of
the CPU. This means that for each experiment we virtually iso-
late a 3x3 cluster of a structure. Then, we randomly select which
are the faulty cells in this cluster and perform the injection. We
know that those bits are placed in adjacent areas, very similarly
to what is performed during accelerates beam testing where the
multi-bit faults are observed in adjacent areas of memory blocks.
Table II shows some examples of single-bit, double-bit and tri-
ple-bit upsets in a 3x3 cluster produced by our faults generator.
Notice that, unlike MBU code that is used in [1], which defines
as cluster size the smallest possible region that can fit all faults,
for the fault generation we can also have series of faults that can
fit in smaller clusters (e.g., the first example of double-bit could
fit in a 2x2 cluster). This way we model more realistic results
with all smaller sub-clusters included in our analysis.

TABLE II. EXAMPLES OF MULTI-BIT UPSET CATEGORIES IN A 3 X 3 CLUSTER

USED IN OUR ANALYSIS.

Category Error Bit Pattern Example

Single-bit Fault

Double-bit Fault

Triple-bit Fault

C. Fault Effect Classification

The GeFIN injector classifies the outcomes of each fault
simulation based on the impact of the fault on the simulated sys-
tem. Five classes are used for the fault effects classification for
AVF measurements:

Masked: Masked includes the fault injection runs in which
the fault does not affect the execution of the application (which
is executed through its end) or the system. The result of a simu-
lation with a masked fault is identical to the fault-free simulation
in terms of the output of the application and any exceptions gen-
erated during execution.

TABLE I. SUMMARY OF SETUP ATTRIBUTES.

Microarchitectural attribute Value

ISA / Core ARMv7 / Out-of-Order
L1 Data cache 32KB 4-way

Clock Frequency 2 GHz
L1 Instruction cache 32KB 4-way

L2 cache 512KB 8-way
Data / Instruction TLB 32 entries
Physical Register File 56 registers

Instruction queue 32
Reorder buffer 40

Fetch / Execute / Writeback width 2 / 4 / 4

Silent Data Corruption (SDC): Silent Data Corruption in-
cludes the fault injection runs for which the final output of the
program that is written to an output file is corrupted (differs from
the output of the fault-free execution) and no other indication of
the fault has been recorded (an abnormal event such as an ex-
ception, etc.).

Crash: Crash includes any case that results in an unrecover-
able situation that stops the simulated program. Crashes involve:
a process crash, where the simulated program was abnormally
terminated and a system crash (kernel panic), where the simu-
lated full-system was unable to recover.

Timeout: Timeout includes all the cases where the simula-
tion did not finish within a certain amount of time, that lead to
either a Deadlock (a condition in which the program flow has
been trapped -due to the injected fault- and can’t commit any
further instructions) or a Livelock (a situation where the pro-
gram flow has been redirected -due to the injected fault- and
continues the execution of instructions on random code areas).
The execution timeout limit to monitor these cases is four times
equal to the fault-free execution of each benchmark.

Assert: Assert includes all the cases where the simulation
was unexpectedly terminated due to a simulator failure. If the

simulator crashes or reaches a high-level condition that is unable
to handle, it raises an assertion to stop the simulation.

D. Benchmarks

In our experiments we use 15 workloads from the MiBench
benchmarks suite [7], as shown in Table III. The suite is com-
monly used in reliability studies [3] [6] [8] [9] [10] [11], as it
combines benchmarks with reasonable execution (thus simula-
tion) time and facilitates complete end-to-end executions for the
thousands of fault injections required in our comprehensive
analysis. The suite also includes programs from diverse applica-
tion domains that share data and control flow characteristics
with SPEC benchmark suite [12]. AVF is estimated using the
program output and thus, complete execution of the workloads
is required.

To have a broad analysis and avoid the bias of results on spe-
cific applications, we have chosen benchmarks with different
computational characteristics. Table III lists the benchmarks and
shows the execution time for each benchmark.

IV. FINE-GRAIN EXPERIMENTAL RESULTS

In this section, we present the detailed results from our ex-
periments. The results report the vulnerability (AVF) for differ-
ent microprocessor components (L1D, L1I, L2 caches, Register
File, DTLB and ITLB) of the analyzed out-of-order CPU (ARM
Cortex-A9) for 8 technology nodes, and the FIT of each compo-
nent and technology node. The AVF of different components
scales differently from single-bit to multi-bit faults and we elab-
orate on these differences.

A. L1 Data (L1D) Cache

As we can see in the single-bit fault bars of Fig. 1, the
masked faults vary between 53.7% (cjpeg) and 94.5%
(stringsearch), and the SDC vulnerability between 39.4%
(cjpeg) and 1.1% (dijkstra). SDC is the dominant fault effect
class, while the crashes are estimated between 2-3% for most of
the cases. The vulnerability of the remaining two classes (Assert
and Timeout) is extremely low, with the only exception of qsort,
in which the Timeouts account for 5.5% of the total.

In the double-bit fault bars of Fig. 1, the masked faults vary
between 39.2% (rijndael_dec) and 92.1% (stringsearch). We ob-
serve that, in double-bit fault experiments, all the benchmarks

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

CRC32 FFT adpcm_dec basicmath cjpeg dijkstra djpeg gsm_dec qsort rijndael_dec sha stringsearch susan_c susan_e susan_s

A
V

F

L1 Data Cache

Masked Crash SDC Timeout Assert

Fig. 1. AVF for single-bit, double-bit and triple-bit fault injection campaigns for 15 benchmarks for L1 Data Cache (L1D Cache).

TABLE III. BENCHMARK EXECUTION TIME.

Benchmark
Execution Time

(clock cycles)

CRC32 132,195,721

FFT 48,339,852

ADPCM decode 53,690,367

basicmath 67,556,250

jpeg C 26,126,843

dijkstra 41,643,556

jpeg D 10,105,853

gsm_dec 12,862,888

qsort 31,326,716

rijndael D 33,327,494

sha 12,141,593

stringSearch 1,082,451

susan_c 2,150,961

usan_e 2,876,202

susan_s 13,750,557

report higher vulnerability compared to the single-bit fault injec-
tion. SDC is estimated between 56.3% (rijndael_dec) and 1%
(dijkstra). Crash vulnerability varies between 10.6% (qsort) and
1.3% (susan_s), however, only one benchmark (cjpeg) has a
crash rate higher than 10% (10.5%). Although the vulnerability
increases in double-bit faults, the balance between fault-effect
classes is not changed.

The highest vulnerability is reported in triple-bit fault bars of
Fig. 1, where the masked faults vary between 29.7%
(rijndael_dec) and 88.9% (stringsearch). Similarly to the double-
bit faults, SDCs dominate among the vulnerable classes, which
varies between 62.5% (rijdnael_dec) and 1.5% (dijkstra). Crash
vulnerability varies between 13.4% (qsort) and 1.8% (CRC32).
For the two remaining classes (Assert and Timeout) the vulner-
ability is extremely low, except for the case of qsort, in which
there is a 12.3% of timeouts, which is higher than SDC (10%),
and slightly lower than crash (13.4%).

B. L1 Instruction (L1I) Cache

Fig. 2 presents the AVF results of L1 instruction cache for
single, double and triple-faults. In the single-fault results, the
masked faults vary between 76.3% (rijdnael_dec) and 95.1%
(susan_e). Crash is the most prominent faulty behavior among
the vulnerable cases, as faults in L1I Cache affect the instruc-
tions and immediate values, while the SDC vulnerability is ex-
tremely low for most of the benchmarks. Specifically, the crash
vulnerability varies between 14.3% (adpcm_dec) and 3.3% (su-
san_e), and 6 out of 15 benchmarks provide a rate higher than
10%. The SDC vulnerability varies between 8.6% (rijdnael_dec)
and 0.1% (stringsearch). Similar to L1D cache, the fault rates for
the rest of the classes are extremely low (i.e., Timeouts) or vir-
tually zero for the Assert class.

 As we can see in the double-bit fault bars of Fig. 2, the
masked faults vary between 63% (rijdnael_dec) and 89.3% (su-
san_c). The vulnerability is significantly lower compared to
L1D Cache, where we can benchmarks with AVF more than
50%. Similarly, double-bit AVF is always higher compared to
single-bit faults. The crash vulnerability varies between 23.4%
(rijndael_dec) and 7.2% (CRC32), and SDCs vulnerability is
lower than 10% in all cases except for rijndael_dec, which pro-
vides an SDC vulnerability of 11.1%. Assertions are extremely
low (lower than 1% in all cases), while Timeouts are lower than
4% for all benchmarks.

In the triple-bit fault bars of Fig. 2, the masked faults vary
between 55.4% (rijndael_dec) and 86.7% (susan_c). Interest-
ingly, the measured vulnerability is never more than 50%, even
for triple-bit faults. The crash vulnerability varies between
30.2% (rijndael_dec) and 9.7% (susan_c). Compared to the sin-
gle-bit fault injections crashes escalate to almost 2x for most
benchmarks, while for the cases where the vulnerability is low,
we observe a 3x increase in crash vulnerability (susan_e from
3.3% to 11.6%). SDC cases vary between 12.1% (rijndael_dec)
and 0.5% (stringsearch), with all the cases, except for
rijndael_dec, to be under 10%. We can also see a timeout ratio
of 4.8% for adpcm_dec. Assertions in the instruction cache are
marginal.

C. L2 Cache

L2 cache vulnerability is presented in Fig. 3. Single-bit AVF
varies between 47.8% (adpcm_dec) and 4.2% (stringsearch),
sharing similarities with L1 Data cache. SDC and Crashes are
the dominant fault effect classes. SDC vulnerability varies be-
tween 44.4% (adpcm_dec) and 0.1% (sha), while crashes vul-
nerability varies between 4.7% (susan_s) and 1.9% (rinjn-
dael_dec). Timeout and assertions are negligible.

When considering double-bit fault bars of Fig. 3, the masked
faults vary between 40% (adpcm_dec) and 91.7% (sha), show-
ing a difference of over 50% between these two corner cases.
adpcm_dec is the only benchmark with a vulnerability greater
than 50%. L1D Cache had 4 benchmarks in the same category,
while L1I has none. SDC vulnerability varies between 54.4%
(adpcm_dec) and 0% (susan_s). This actually shows a reduction
in SDCs for susan_s, from 0.2% in single-bit faults to 0% in
double-bit faults. Crash vulnerability varies between 9.6% (su-
san_s) and 3.3% (qsort). As a result, given that susan_s provides
zero SDC vulnerability, this leads to a 2x increase of crash vul-
nerability (from 4.7% to 9.6%). Timeouts vary between 2%
(qsort and susan_c) and 0.75% (cjpeg).

 As we can see in the triple-bit fault bars of Fig. 3, the
masked faults vary between 30.2% (adpcm_dec) and 89.8%
(stringsearch). Compared to single and double-bit fault injection
campaigns, for the L1D Cache and the L1I Cache, we can notice
that the L2 cache has similar behavior to the L1D Cache, making
the L1I Cache less vulnerable. In L1I Cache, we notice only 2
benchmarks out of 15, with a rate lower than 50% for the masked
faults, which is far better than L1D Cache’s rate, in which 5

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

CRC32 FFT adpcm_dec basicmath cjpeg dijkstra djpeg gsm_dec qsort rijndael_dec sha stringsearch susan_c susan_e susan_s

A
V

F

L1 Instruction Cache

Masked Crash SDC Timeout Assert

Fig. 2. AVF for single-bit, double-bit and triple-bit fault injection campaigns for 15 benchmarks for L1 Instruction Cache (L1I Cache).

benchmarks has masked faults lower than 50%. SDC vulnera-
bility varies between 62.1% (adpcm_dec) and 0.2% (susan_s),
while crash vulnerability varies between 10.9% (susan_s) and
4.4% (qsort). Timeouts vary between 2.7% (qsort) and 1%
(adpcm_dec), while assertions continue holding negligible rates,
with a maximum of 0.5% for FFT; lower than single- and dou-
ble-bit fault injection campaigns.

D. Register File

The register file is the only pipeline structure in our study.
Fig. 4 shows that the masked signle-bit faults vary between
84.2% (sha) and 94.4% (susan_c). The register file is less vul-
nerable compared to all other components. Similarly to the
cache memories, SDCs and Crashes dominate among the other
vulnerable classes. More specifically, crashes vary between
9.3% (susan_s) and 3.1% (stringsearch), and SDCs between
11% (sha) and 0.5% (susan_c). Timeouts and assertions have
very low rates, with timeouts reaching as large as 2.4%
(stringsearch) and assertions have 0% for 13 out of 15 bench-
marks.

Double-bit fault bars show that the masked faults vary be-
tween 74% (sha) and 89.7% (stringsearch). In 13 out of 15
benchmarks, crashes are the most prominent faulty behavior
among the other vulnerable cases, which varies between 14.9%
(susan_s) and 5% (stringsearch). SDC vulnerability varies be-
tween 15.5% (sha) and 0.7% (stringsearch). Timeouts vary be-
tween 4.5% (stringsearch) and 1.3% (FFT).

As we can see in the triple-bit fault bars of Fig. 4, the masked
faults vary between 69.1% (sha) and 85.5% (stringsearch). The
AVF difference among single, double and triple0bit faults is the
smallest, compared to the other components. The highest re-
ported vulnerability (69.1%) is also the lowest among the six
components for multi-bit faults. The second most frequent fault
effect is a Crash. Crashes vary between 18.4% (susan_s) and
7.7% (stringsearch), with 14 out of 15 benchmarks having ratios
higher than 10%. SDCs vary between 18.5% (sha) and 0.8% (su-
san_c). Timeouts vary between 5.7% (stringsearch) and 2.1%
(gsm_dec), and assertions reach a high of 0.3% for stringsearch.

E. Data Translation Look-Aside Buffer (DTLB)

TLBs do not directly participate in data transactions of a pro-
gram, but instead, they facilitate address translation. Faults in
TLBs can primarily lead to multiple incorrect memory accesses.
Both TLBs are highly vulnerable to all of the evaluated fault
models. As we can see in the single-bit fault bars of Fig. 5, the
AVF varies between 57.6% (basicmath) and 39.2% (qsort). We
notice that 7 out of 15 benchmarks have AVF higher than 50%.
The most frequent failure sourcing in DTLB faults appears to be
the Crashes followed by Timeouts. Crashes vary between 32.8%
(FFT) and 16.7% (qsort). Interestingly, we observe high rates
for timeouts which vary between 23.1% (stringsearch) and 6.3%
(cjpeg), while SDCs have lower rates for most of the cases,
which range between 17.1% (basicmath) and 1.5% (sha). For the
DTLB we also observe higher ratios for assertions compared to

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

CRC32 FFT adpcm_dec basicmath cjpeg dijkstra djpeg gsm_dec qsort rijndael_dec sha stringsearch susan_c susan_e susan_s

A
V

F

Register File

Masked Crash SDC Timeout Assert

Fig. 4. AVF for single-bit, double-bit and triple-bit fault injection campaigns for 15 benchmarks for the Register File.

Fig. 3. AVF for single-bit, double-bit and triple-bit fault injection campaigns for 15 benchmarks for L2 Cache.

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

CRC32 FFT adpcm_dec basicmath cjpeg dijkstra djpeg gsm_dec qsort rijndael_dec sha stringsearch susan_c susan_e susan_s

A
V

F
L2 Cache

Masked Crash SDC Timeout Assert

the previous components, with a maximum value of 3.50% for
CRC32.

For double-bit faults, the vulnerability is between 67.9%
(basicmath) and 50.3% (qsort). In all cases, AVF is higher than
50%. We observe a vulnerability escalation similar to the other
components. Crashes vary between 37.2% (djpeg) and 16.2%
(stringsearch). Timeouts vary between 32.8% (stringsearch) and
10.2% (cjpeg). SDCs vary between 14.1% (basimath and qsort)
and 0.6% (sha). Interestingly, in most benchmarks (14 out of 15)
the highest SDC rates are reported in single-bit faults. Assertions
vary between 8.6% (CRC32) and 2.3% (stringsearch), which is
approximately 2x the single-bit campaign for most of the cases.

As we can see in the triple-bit fault bars of Fig. 5, the vulner-
ability increases, from 55.9% (qsort) to 71.5% (basimath).
Timeouts vary between 37.5% (stringsearch) and 14.8% (cjpeg).
SDCs vary between 13.4% (qsort) and 0.7% (sha). As the num-
ber of faults increases, we observe a reduction on SDC rates
(similar to double-bit faults), in which 11 out of 15 benchmarks
have lower rates compared to the double-bit fault injection cam-
paigns. DTLB reports the worst rates for assertions compared to
other components since faults in the DTLB can cause a physical
address request that is not part of the system map. We can see a
variation from 8.9% (CRC32) to 2.5% (cjpeg). Assertions are
more frequent than SDCs for 6 out of 15 benchmarks.

F. Instruction Translation Look-Aside Buffer (ITLB)

Like the DTLB, ITLB guides the translation of the instruc-
tion fetch requests. Faults can result to incorrect physical address

translation that are used in the program counter. Single-bit fault
bars of Fig. 6 show that AVF varies between 41.9%
(rijndael_dec) and 62% (basicmath). We observe that similarly
to the DTLB, 6 out of 15 benchmarks the AVF is more than
50%. Crashes are the most frequent fault effect, estimated be-
tween 43.1% (djpeg) and 1.5% (stringsearch). On the other
hand, timeouts are estimated between 16.2% (qsort) and 44.2%
(stringsearch). Interestingly, the while the stringsearch bench-
mark has the lowest ratio of crashes, it has the highest ratio of
timeouts. Faults in ITLB are expected to lead to either a crash of
the benchmark because of a virtual address in the TLB that does
not correspond to a mapped physical address or to a Timeout if
the program counter is guided to a random set of instructions.
Thus, it is unlikely to have an SDC. Most of the benchmarks (10
out of 15) have zero SDCs, while the highest rate is just 0.4% (8
out of 2000 runs led to an SDC) for sha benchmark. Assertions
also appear in small rates, with a maximum of 1.3% for CRC32.

Similarly to the DTLB, all the benchmarks have a vulnera-
bility greater than 50% in the double-bit fault bars of Fig. 6, the
AVF varies between 54% (rijdnael_dec) and 69.8% (basic-
math). Crashes are estimated from 1.5% (stringsearch) to 44.3%
(djpeg), while timeouts vary between 55.5% (stringsearch) and
22.1% (djpeg). SDCs, still hold negligible rates while assertions
reach a high of 2.1% for CRC32.

ITLB is the most vulnerable among all other components.
Crash vulnerability varies between 46.4% (basimath) and 1.4%
(stringsearch) for triple-bit faults, while timeouts vary between

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

CRC32 FFT adpcm_dec basicmath cjpeg dijkstra djpeg gsm_dec qsort rijndael_dec sha stringsearch susan_c susan_e susan_s

A
V

F
Data TLB

Masked Crash SDC Timeout Assert

Fig. 5. AVF for single-bit, double-bit and triple-bit fault injection campaigns for 15 benchmarks for Data TLB (DTLB).

Fig. 6. AVF for single-bit, double-bit and triple-bit fault injection campaigns for 15 benchmarks for Instruction TLB (ITLB).

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

CRC32 FFT adpcm_dec basicmath cjpeg dijkstra djpeg gsm_dec qsort rijndael_dec sha stringsearch susan_c susan_e susan_s

A
V

F

Instruction TLB

Masked Crash SDC Timeout Assert

62.8% (stringsearch) and 25.4% (basimath). Interestingly, with
triple-bit fault campaigns, we did not observe any SDCs apart
from a single exception in all in 30,000 runs, showing that faults
in ITLBs cannot really result in SDCs. Assertions appear to have
the highest ratio of 3.4% for CRC32 (almost 3x higher than the
single-bit fault campaign).

G. Summary and Observations

Table IV summarizes the observations of the previous sub-
sections regarding the AVF estimation, for each component
across all benchmarks between single- and double-bit faults (2-
bit column) and between single- and triple-bit faults (3-bit col-
umn). Table IV clearly shows that the L1I cache suffers the most
from triple-bit faults, as the vulnerability is 3.2x higher (220%
increase) compared to single-bit faults, while the most sensitive
component to double-bit faults is the L1D cache, which is 2.4x
more vulnerable (140% increase) than in single-bit faults. On the
contrary, the DTLB is the most resistant in double-bit fault in-
jections among all other components (1.4x increase), and the
ITLB shows the smallest effect of triple-bit faults (1.5x in-
crease). Another important observation is that the TLBs show a
different faulty behavior than other components, in which we
observe a lower SDC rate (because faults in TLBs primarily lead
to incorrect memory accesses, and thus, wrong fetched data or
instructions from memory), and the timeouts and assertions pre-
sent significantly higher vulnerability than other components.

V. AVF PER TECHNOLOGY NODE – ALL MULTI-BIT FAULTS

In the previous section, we discussed in details the increase
of the vulnerability to individual classes of spatial multi-bit
faults (double, triple) in all six components of our analysis. In
this section, we quantify the aggregate effect of these vulnera-
bilities to the total AVF of each component. Every fabrication
technology node suffers different rates of multi-bit upsets and
patterns. Denser technologies tend to suffer from MBUs in
larger cluster sizes and, depending on the fabrication technol-
ogy, potentially higher rates. FinFET, for instance are reported
to be less prone to faults compared to CMOS [22], [23]. These
attributes are inherited from the technological layer and applied
to our methodology, which accordingly applies the contribution
of each fault-model to the device’s reliability estimation. We uti-
lize the per-component and per multi-bit class vulnerabilities of
the previous section, to calculate the total AVF for every tech-
nology node and every hardware structure.

A. AVF per Hardware Structure

To comprehensively summarize the detailed data and results
of the previous section, we average the AVF of each component
across the 15 different benchmarks. However, instead of calcu-
lating the straightforward arithmetic mean of the AVFs of the
component for the different benchmarks, we weighted the AVFs
according to the execution time of the benchmarks. Thus, very
short benchmarks will have a smaller impact on the component’s
AVF compared to longer ones. The resulting weighted average
AVF takes into consideration the execution time (measured in
clock cycles) of each of the 15 benchmarks. It is calculated by
summing the AVF of all benchmarks, each multiplied by the ex-
ecution time of the corresponding benchmark and divided them
by the sum of the execution time of all the benchmarks, as shown
in equation (2): W () = ∑ AVF () ∙∑ (2)

where, WAVF(c) is the weighted AVF of a c component per fault
number, AVFk(c) is the AVF of a c component per benchmark,
tk is the execution time of each benchmark, and N is the total
number of benchmarks. The AVF numbers in this formula can
be either the single-bit AVFs alone, the double-bit AVFs, alone,
the triple-bit AVFs alone, or finally the aggregate AVFs includ-
ing all cardinalities weighted by the technology rates.

Table V presents the technology-independent weighted av-
erage AVF for the single, double and triple-bit faults separately
for each component. The observations of the previous sections
are also demonstrated in Table V (e.g. that the TLBs are the most
vulnerable components). The vulnerability is increased as we in-
crease the number of injected faults (from single to double and
from double to triple). The TLBs have higher AVF rates than the
other components, even for single fault injection. The probabil-
ity of a fault in the TLB creating an error is always larger than
50%. The Register File has the smallest AVF rates among all
components, while in the case of the cache memories, we can
see that the L1D Cache has the highest AVF rates among all
cache levels. As far as the percentage increases are concerned,
we observe that for every component there is an increase in the

TABLE IV. VULNERABILITY ANALYSIS CONCLUSIONS AND

VULNERABILITY DIFFERENCE PER COMPONENT.

Comments

Vulnerability
Increase

2-bit 3-bit

L1D Cache

 All benchmarks have significantly lower
rate of masked faults compared to single-
bit fault injections

 SDCs have the highest rate among the
other vulnerable cases

 Timeouts and assertions are low

2.4x 2.7x

L1I Cache

 All benchmarks have masked fault rate
greater than 50%

 SDCs have the highest rate among the
other vulnerable cases

 Timeouts and assertions are low

2.3x 3.2x

L2 Cache

 SDC and crash vulnerability have the
highest rates

 It is more vulnerable to multi-bit faults
than L1D and L1I caches

 Timeouts and assertions are low

1.9x 2.4x

Register File

 SDCs and Crashes dominate among the
other vulnerable cases

 It has the smallest (absolute) vulnerabil-
ity increase among all components, re-
porting the highest level of multi-bit fault
tolerance.

 Timeout and assertions are low

2.1x 2.7x

DTLB

 All the benchmarks have masked fault
rate lower than 50%

 It appears to have the worst effect to
multi-bit faults, even in single-bit faults

 Timeouts and Crashes are the most dom-
inant faulty behaviors

1.4x 1.6x

ITLB
 Similar to DTLB, but ITLB has no SDC
 It is relevant to instructions; we observe

virtually zero SDC vulnerability
1.5x 1.5x

AVF as the number of faults increases, but most importantly we
notice that the increase between single- and double-bit faults is
larger for all components compared to triple-bit faults. For ex-
ample, when double-bit faults are injected in Register File, we
observe an AVF increase, which is as high as 70.32%, compared
to single-bit fault injection, and it is the larger increase among
all components. On the other hand, the lowest AVF increase
among all components for triple-bit fault injections compared to
double-bit faults injections is observed in ITLB, which is 5.98%.

These numbers correspond to the vulnerability of Gem5 con-
figuration of the ARM® CortexTM-A9 microarchitecture, and are
independent of the manufacturing process.

B. Aggregate Multi-bit AVFs per Technology Node

Every particle-induced soft-error has a different probability
to result in a multi-bit upset at different fabrication technologies.
These are shown in Table VI. As the multi-bit upset rates for 4-
bit faults and above are very low, we add them to the triple-fault
class. We use the multi-bit upset ratios from 250nm to 22mn
technology nodes, as presented in [1]. For more consistency, we
used a single source for the technological data and thus, we ex-
cluded more recent technologies, such as FinFET 14 nm and 7
nm; our estimation is fully applicable to those nodes as well.

As Table VI shows, in older fabrication technologies, the
probability of appearance of a multi-bit fault are very small. On
the other hand, as the transistor sizes shrink, the probability of
multi-bit faults becomes significantly higher. By combining the
probabilities for each fault class (single, double, triple) with the
corresponding AVF for each component, we calculate the AVF
of the component for each technology node. We use the follow-
ing formula per technology node: () = () ∙ () (3)

where, NodeAVF is the AVF for each technology node, c is the
component, i is the number of injected faults (1, 2, and 3 in our
case), and f is the fault rate of each class.

The calculated AVFs for every technology node are shown
in Fig. 7. Each bar shows the estimated AVF, separated in 2 col-
ors. Green corresponds to single-bit AVF while red color shows
the component’s AVF difference when multi-bit faults are also
considered. For each technology, the single-bit only AVF is the
same as the 250 nm AVF because this is the only node with only
single-bit upsets. The difference of each technology bar (red
color) shows the assessment gap that our analysis measures for
each component: i.e. the actual AVF when all realistic multi-bit
upsets are considered vs. the dry single-bit upset only AVF. This
varies from 11% (DTLB) to 35% (register file) AVF difference
for 22nm. As expected, the AVF of more recent nodes is signif-
icantly higher, due to the fact that the ratio of MBUs is higher
and, in every single case, the AVF of MBUs was estimated
higher compared to single-bit fault AVF. As the ratio of MBUs
is the same for all components in a particular technology, the

TABLE V. WEIGHTED AVF PER COMPONENT FOR 1, 2, AND 3 FAULTS.

Component
Injected
Faults

AVF
Percentage

Increase

L1 D Cache
1 20.32% -

2 29.70% +46.16%

3 36.28% +22.15%

L1 I Cache
1 12.01% -

2 19.57% +62.95%

3 25.14% +28.46%

L2 Cache
1 17.94% -

2 24.83% +38.4%

3 30.13% +21.35%

Register File
1 10.95% -

2 18.65% +70.32%

3 23.01% +23.38%

ITLB
1 50.31% -

2 62.91% +25.04%

3 66.67% +5.98%

DTLB
1 50.66% -

2 61.77% +21.93%

3 67.22% +8.82%

TABLE VI. MULTI-BIT RATES PER NODE.

Technology
Node

Single-bit
Faults

Double-bit
Faults

Triple-bit
Faults

250nm 100.00% 0.00% 0.00%

180nm 96.40% 3.60% 0.00%

130nm 93.40% 4.40% 2.20%

90nm 87.80% 9.60% 2.60%

65nm 81.60% 16.10% 2.30%

45nm 72.20% 23.00% 4.80%

32nm 65.30% 29.10% 5.60%

22nm 55.30% 34.40% 10.30%

Fig. 7. Multi-bit upsets weighted AVF per component for different technology nodes. Green color corresponds to single-bit fault vulnerability,
which matches the vulnerability of 250nm, while red color illustrates the vulnerability due to multi-bit upsets. For example, in the L1I cache

when only single bit upsets are considered, the AVF would be only 12% (the AVF of the 250 nm) while the actual multi-bit AVF in the 22 nm
node is 16%; a very large 33% difference that single-bit assessment (through injection or other methods) misses.

20
.3

%

20
.7

%

2
1.

1%

21
.6

%

2
2.

2%

23
.2

%

2
3.

9%

2
5.

2%

1
2.

0%

1
2.

3%

1
2.

6%

13
.1

%

1
3.

5%

1
4.

4%

14
.9

%

16
.0

%

17
.9

%

18
.2

%

1
8.

5
%

18
.9

%

1
9.

3%

2
0.

1%

2
0

.6
%

2
1.

6%

11
.0

%

11
.2

%

11
.6

%

1
2.

0%

12
.5

%

1
3

.3
%

1
3.

9%

14
.8

%

5
0

.3
%

5
0.

8%

51
.2

%

51
.9

%

52
.7

%

5
4.

0%

5
4.

9%

56
.3

%

5
0.

7%

51
.1

%

5
1.

5%

5
2.

2%

52
.8

%

5
4.

0%

54
.8

%

56
.2

%

0%
10%
20%
30%
40%
50%
60%
70%
80%

2
50

 n
m

1
80

 n
m

1
30

 n
m

90
 n

m

65
 n

m

45
 n

m

32
 n

m

22
 n

m

2
50

 n
m

1
80

 n
m

1
30

 n
m

90
 n

m

65
 n

m

45
 n

m

32
 n

m

22
 n

m

2
50

 n
m

1
80

 n
m

1
30

 n
m

90
 n

m

65
 n

m

45
 n

m

32
 n

m

22
 n

m

2
50

 n
m

1
80

 n
m

1
30

 n
m

90
 n

m

65
 n

m

45
 n

m

32
 n

m

22
 n

m

2
50

 n
m

1
80

 n
m

1
30

 n
m

90
 n

m

65
 n

m

45
 n

m

32
 n

m

22
 n

m

2
50

 n
m

1
80

 n
m

1
30

 n
m

90
 n

m

65
 n

m

45
 n

m

32
 n

m

22
 n

m

L1 D Cache L1 I Cache L2 Cache Register File ITLB DTLB

A
V

F

trends that existed in each component remain unchanged. The
highest vulnerability is reported for the ITLB at 56.3% AVF for
the 22 nm node. This means that typical reliability estimations
that only consider single bit faults would miss as much as 6 per-
centile units (i.e., 11.9% loss) in the AVF estimation. This ap-
plies to all of the studied components, with the minimum devia-
tion observed in L2 cache, at 3.6 percentile units (i.e., 20.2%
loss). We can also observe that the AVF difference of every step
is larger compared to the previous steps (e.g., the difference
from 180nm to 130nm is larger than the difference from 250nm
to 180nm) with an exception of the 45nm to 32nm step, in which
the rates are always smaller than the 65nm to 45nm case.

VI. FAILURES IN TIME ANALYSIS PER TECHNOLOGY NODE

Failures in Time (FIT) rate of a device is the number of fail-
ures that can be expected in one billion (109) device-hours of
operation. For each hardware structure in a microprocessor, a
different FIT is computed using the formula in Eq. 4 below. As
we can see, the FIT of the structure is affected by three compo-
nents: the FITBIT (or raw FIT) rate, which is determined by the
fabrication technology (Table VII) and expresses the fault rate
of a single bit, the number of bits of the structure and the AVF
of the structure, which is affected by the microarchitecture and
the running workload. The raw FIT rate expresses the number of
soft-errors that will be introduced in the component, while the
AVF is the derating factor that quantifies how many of these
upsets will lead to a failure. The product equals to the FIT rate
of a component. The FIT of the entire CPU is calculated by add-
ing the individual FITs of the structures. = × 	× # (4)

For each technology node, we calculate the FIT of the core
by adding the corresponding FIT of all components. For the cal-
culation of the FIT of a component for a specific technology
node, we use the rawFIT rate per bit of Table VII [1]. Notice that
the per-bit FIT rate increases from 250 nm to 130 nm and then
it starts to decrease. Although the devices become more sensi-
tive, the effects of the high-density overpass the decreased reli-
ability, when projected in a bit-size relative format. The size of
each of the six components is listed in Table VIII.

Fig. 8 shows the total CPU FIT rate for each technology node
using our analysis findings. The red color indicates the percent-
age of FIT due to multi-bit faults, which starts from 0% in
250nm node and reaches a high 21% in 22nm. This is the portion
that is normally ignored by single-bit fault estimations. We can
also see that the FIT for each component is increasing until the

point of 130nm. After that, the FIT rate starts to decrease, reach-
ing the lowest FIT values at 22 nm. The trend is aligned with the
rawFIT rates of Table VII. These values correspond to the exact
same microarchitecture with the exact same configuration. The
differences observed are due to the much smaller area that the
chip occupies in the higher density technologies, which results
to a significantly smaller number of particles that will eventually
strike the processor. On the other hand, each of these particles
has a higher probability to cause multi-bit upsets and higher
chances of failures.

VII. CONCLUSION

In this paper, a complete analysis of out-of-order micropro-
cessors vulnerability to realistic spatial multi-bit upsets across
different manufacturing technologies. We reported how MBUs
affect the vulnerability of 6 different microarchitectural compo-
nents, using an enhanced version of the GeFIN fault injector.
Our analysis shows that the vulnerability is significantly higher
on multi-bit faults, up to 3.2x (+220%) between single and tri-
ple-bit fault injection. By considering the ratio for MBUs in sev-
eral fabrication technology nodes, we calculated the complete
realistic AVFs of the hardware components considering all dif-
ferent types of MBUs. The results show that a difference up 35%
in the vulnerability estimation was caused due to MBUs in 22nm
fabrication technology. Using these results along with the soft-
error rates of each technology, we calculated the overall reliabil-
ity (FIT rates) of the entire CPU in 8 different technology nodes.
The results show that the estimated FIT rate can be up to 21%
higher when considering multi-bit faults.

The presented analysis highlights the importance of the con-
tinuously evolving problem of MBUs in microprocessors. It is
generic, and as so, also applicable to other CPU models (e.g., in-
order CPUs) and ISAs (e.g., x86, RISC-V) and can be performed
to post 22nm technology nodes (including current FinFET nodes
and forthcoming technologies) for which we expect the per-
component AVF and the overall microprocessor FIT rates as-
sessment gaps between single-bit and aggregate multi-bit faults
to be even larger because of the higher rates of multi-bit faults
in the CPU structures.

TABLE VII. RAW FIT FOR 250NM

TO 22NM NODES.

Node Raw FIT per bit

250 nm 47 x 10-8

180 nm 85 x 10-8
130 nm 106 x 10-8
90 nm 100 x 10-8
65 nm 85 x 10-8
45 nm 58 x 10-8
32 nm 38 x 10-8
22 nm 23 x 10-8

TABLE VIII. COMPONENT SIZES IN

BITS.

Component Size (in bits)

L1D Cache 262144
L1I Cache 262144
L2 Cache 4194304

Register File 2112
ITLB 1024
DTLB 1024

Fig. 8. FIT for the entire CPU core for different technology nodes
(numbers inside the green bars). Red color areas correspond to the
contribution of multi-bit upsets.

.39

.72
.92 .89

.77

.55
.37

.23

1%

3%
6%

8%

13%

16%

21%

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

250 nm 180 nm 130 nm 90 nm 65 nm 45 nm 32 nm 22 nm

F
ai

lu
re

s
in

 T
im

e

Technology Node

REFERENCES
[1] E. Ibe, H. Taniguchi, Y. Yahagi, K. Shimbo, and T. Toba, “Impact of

Scaling on Neutron-Induced Soft Error in SRAMs From a 250 nm to a 22
nm Design Rule,” IEEE Transactions on Electron Devices, vol. 57, no. 7,
pp. 1527–1538, Jul. 2010 [Online]. Available:
http://dx.doi.org/10.1109/TED.2010.2047907

[2] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M.
Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5 simulator,”
SIGARCH Comput. Archit. News, vol. 39, no. 2, pp. 1–7, Aug 2011.
[Online]. Available: http://doi.acm.org/10.1145/2024716.2024718

[3] A. Chatzidimitriou and D. Gizopoulos, “Anatomy of microarchitecture-
level reliability assessment: Throughput and accuracy,” in 2016 IEEE In-
ternational Symposium on Performance Analysis of Systems and Soft-
ware (ISPASS). IEEE, Apr 2016. [Online]. Available:
https://doi.org/10.1109/ispass.2016.7482075

[4] R. Leveugle, A. Calvez, P. Maistri, and P. Vanhauwaert, “Statistical fault
injection: Quantified error and confidence,” in 2009 Design, Automation
& Test in Europe Conference & Exhibition, 2009 [Online]. Available:
http://dx.doi.org/10.1109/DATE.2009.5090716

[5] S. S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt, and T. Austin, “A
Systematic Methodology to Compute the Architectural Vulnerability Fac-
tors for a High-Performance Microprocessor,” in Proceedings of the 36th
Annual IEEE/ACM International Symposium on Microarchitecture.
Washington, DC, USA: IEEE Computer Society, 2003.

[6] M. Kaliorakis, S. Tselonis, A. Chatzidimitriou, N. Foutris, D. Gizopoulos,
“Differential Fault Injection on Microarchitectural Simulators”, IEEE In-
ternational Symposium on Workload Characterization (IISWC 2015), At-
lanta, GA, USA, October 2015.

[7] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and
R. B. Brown, “Mibench: A free, commercially representative embedded
benchmark suite,” in Proceedings of the Fourth Annual IEEE Interna-
tional Workshop on Workload Characterization. WWC-4 (Cat.
No.01EX538), Dec 2001, pp. 3–14.

[8] N. George, C. R. Elks, B. W. Johnson, and J. Lach, “Transient fault mod-
els and AVF estimation revisited,” in 2010 IEEE/IFIP International Con-
ference on Dependable Systems & Networks (DSN), 2010 [Online].
Available: http://dx.doi.org/10.1109/DSN.2010.5544276

[9] D. S. Khudia and S. Mahlke, “Harnessing Soft Computations for Low-
Budget Fault Tolerance,” in 2014 47th Annual IEEE/ACM International
Symposium on Microarchitecture, 2014 [Online]. Available:
http://dx.doi.org/10.1109/MICRO.2014.33

[10] A. A. Nair, L. K. John, and L. Eeckhout, “AVF Stressmark: Towards an
Automated Methodology for Bounding the Worst-Case Vulnerability to
Soft Errors,” in 2010 43rd Annual IEEE/ACM International Symposium
on Microarchitecture, 2010 [Online]. Available:
http://dx.doi.org/10.1109/MICRO.2010.34

[11] Z. Zhao, D. Lee, A. Gerstlauer, L. K. John, “Host-compiled reliability
modeling for fast estimation of architectural vulnerabilities”, SELSE
2015.

[12] J. L. Henning, “Spec cpu2006 benchmark descriptions,” SIGARCH Com-
put. Archit. News, vol. 34, pp. 1–17, Sept. 2006.

[13] R. C. Baumann, “Soft errors in advanced computer systems”, IEEE De-
sign & Test of Comp., vol. 22, no. 3, pp. 258-266, May/June 2005.

[14] Z. Chishti, A. R. Alameldeen, C. Wilkerson, W. Wu, S.-L. Lu, “Improv-
ing cache lifetime reliability at ultra-low voltages”, MICRO 2009.

[15] C. Constantinescu, “Trends and challenges in VLSI circuit reliability”,
IEEE Micro, vol. 23, pp. 14-19, July 2003.

[16] S. Nassif, N. Mehta, and Y. Cao, “A resilience roadmap”, DATE 2010.

[17] Y. Luo, S. Govindan, B. Sharma, M. Santaniello, J. Meza, A. Kansal, J.
Liu, B. Khessib, K. Vaid, and O. Mutlu, “Characterizing Application
Memory Error Vulnerability to Optimize Datacenter Cost via Heteroge-
neous-Reliability Memory,” in 2014 44th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, 2014 [Online]. Avail-
able: http://dx.doi.org/10.1109/DSN.2014.50

[18] S. Pan, Y. Hu, and X. Li, “IVF: Characterizing the Vulnerability of Mi-
croprocessor Structures to Intermittent Faults,” IEEE Transactions on

Very Large Scale Integration (VLSI) Systems, vol. 20, no. 5, pp. 777–
790, May 2012 [Online]. Available:
http://dx.doi.org/10.1109/TVLSI.2011.2134115

[19] F. A. Bower, D. Hower, M. Yilmaz, D. J. Sorin, and S. Ozev, “Applying
architectural vulnerability Analysis to hard faults in the microprocessor,”
ACM SIGMETRICS Performance Evaluation Review, vol. 34, no. 1, p.
375, Jun. 2006 [Online]. Available:
http://dx.doi.org/10.1145/1140103.1140327

[20] V. Sridharan, D. R. Kaeli, “Using hardware vulnerability factors to en-
hance AVF analysis”, ISCA 2010.

[21] V. Sridharan, D. R. Kaeli, “Eliminating microarchitectural dependency
from architectural vulnerability”, IEEE International Symposium on High
Performance Computer Architecture (HPCA-15), 2009.

[22] N. Seifert, B. Gill, S. Jahinuzzaman, J. Basile, V. Ambrose, S. Quan, R.
Allmon, and A. Bramnik, “Soft error susceptibilities of 22nm tri-gate de-
vices,” IEEE Transactions on Nuclear Science, pp. 2666–2673, Dec 2012.

[23] M. Wilkening, V. Sridharan, S. Li, F. Previlon, S. Gurumurthi, and D. R.
Kaeli, “Calculating Architectural Vulnerability Factors for Spatial Multi-
bit Transient Faults”, IEEE/ACM International Symposium on Microar-
chitecture (MICRO), 2014.

[24] Q. Lu, M. Farahani, J. Wei, A. Thomas, and K. Pattabiraman, “LLFI: An
intermediate code-level fault injection tool for hardware faults,” in 2015
IEEE International Conference on Software Quality, Reliability and Se-
curity, 2015, pp. 11–16.

[25] F. Ayatolahi, B. Sangchoolie, R. Johansson, and J. Karlsson, “A study of
the impact of single bit-flip and double bit-flip errors on program execu-
tion,” in Proceedings of the 32nd International Conference on Computer
Safety, Reliability, and Security, ser. SAFECOMP 2013. Springer-Verlag
New York, Inc., 2013, pp. 265–276.

[26] F. Adamu-Fika and A. Jhumka, “An investigation of the impact of double
bit-flip error variants on program execution,” in Proceedings of the 15th
International Conference on Algorithms and Architectures for Parallel
Processing. Springer International Publishing, 2015, pp. 799–813.

[27] B. Sangchoolie, K. Pattabiraman, and J. Karlsson, “One Bit is (Not)
Enough: An Empirical Study of the Impact of Single and Multiple Bit-
Flip Errors,” in 2017 47th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), 2017.

[28] G. Yalcin, O. S. Unsal, A. Cristal, and M. Valero, “FIMSIM: A fault in-
jection infrastructure for microarchitectural simulators,” in 2011 IEEE
29th International Conference on Computer Design (ICCD). IEEE, Oct
2011. [Online]. Available: https://doi.org/10.1109/iccd.2011.6081435

[29] N. Foutris, D. Gizopoulos, J. Kalamatianos, and V. Sridharan, “Assessing
the impact of hard faults in performance components of modern micro-
processors,” in 2013 IEEE 31st International Conference on Computer
Design (ICCD). IEEE, Oct 2013. [Online]. Available:
https://doi.org/10.1109/iccd.2013.6657044

[30] A. Chatzidimitriou, G. Papadimitriou, D. Gizopoulos, S. Ganapathy, and
J. Kalamatianos, “Analysis and characterization of ultra low power
branch predictors,” in 2018 IEEE International Conference on Computer
Design (ICCD). IEEE, Oct 2018.

[31] A. Chatzidimitriou, G. Panadimitriou, D. Gizopoulos, S. Ganapathy, and
J. Kalamatianos, “Assessing the Effects of Low Voltage in Branch Pre-
diction Units,” in 2019 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), 2019 [Online]. Available:
http://dx.doi.org/10.1109/ISPASS.2019.00020

[32] A. Chatzidimitriou, P. Bodmann, G. Papadimitriou, D. Gizopoulos, and
P. Rech, “Demystifying Soft Error Assessment Strategies on ARM CPUs:
Microarchitectural Fault Injection vs. Neutron Beam Experiments”,
IEEE/IFIP International Conference on Dependable Systems and Net-
works (DSN 2019), Portland, Oregon, USA, June 2019.

[33] C.-K. Chang, S. Lym, N. Kelly, M. B. Sullivan, and M. Erez, “Hamartia:
A fast and accurate error injection framework,” in 2018 48th Annual
IEEE/IFIP International Conference on Dependable Systems and Net-
works Workshops (DSN-W). IEEE, Jun 2018. [Online]. Available:
https://doi.org/10.1109/dsn-w.2018.00046

[34] R. B. Tonetto, G. L. Nazar, and A. C. S. Beck, “Precise evaluation of the
fault sensitivity of OoO superscalar processors,” in 2018 Design, Auto-
mation & Test in Europe Conference & Exhibition (DATE). IEEE, Mar
2018. [Online]. Available: https://doi.org/10.23919/date.2018.8342082

[35] E. Cheng, P. Bose, S. Mitra, S. Mirkhani, L. G. Szafaryn, C.-Y. Cher, H.
Cho, K. Skadron, M. R. Stan, K. Lilja, and J. A. Abraham, “Clear,” in
Proceedings of the 53rd Annual Design Automation Conference on -
DAC '16. ACM Press, 2016. [Online]. Available:
https://doi.org/10.1145/2897937.2897996

[36] V. B. Kleeberger, C. Gimmler-Dumont, C. Weis, A. Herkersdorf, D.
Mueller-Gritschneder, S. R. Nassif, U. Schlichtmann, and N. Wehn, “A
cross-layer technology-based study of how memory errors impact system
resilience,” IEEE Micro, vol. 33, no. 4, pp. 46–55, Jul 2013. [Online].
Available: https://doi.org/10.1109/mm.2013.67

[37] A. Vallero, A. Savino, G. Politano, S. D. Carlo, A. Chatzidimitriou, S.
Tselonis, M. Kaliorakis, D. Gizopoulos, M. Riera, R. Canal, A. Gonzalez,
M. Kooli, A. Bosio, and G. D. Natale, “Cross-layer system reliability as-
sessment framework for hardware faults,” in 2016 IEEE International
Test Conference (ITC). IEEE, Nov 2016. [Online]. Available:
https://doi.org/10.1109/test.2016.7805863

[38] A. Vallero, A. Savino, A. Chatzidimitriou, M. Kaliorakis, M. Kooli, M.
R. Villanueva, G. D. Natale, A. Bosio, R. Canal, D. Gizopoulos, and S.
D. Carlo, “SyRA: Early system reliability analysis for cross-layer soft er-
rors resilience in memory arrays of microprocessor systems,” IEEE
Transactions on Computers, pp. 1–1, 2018. [Online]. Available:
https://doi.org/10.1109/tc.2018.2887225

[39] N. J. George, C. R. Elks, B. W. Johnson, and J. Lach, “Bit-slice logic
interleaving for spatial multi-bit soft-error tolerance,” in Int’l Conference
on Dependable Systems and Networks (DSN), 2010, pp. 141–150.

[40] J. Suh, M. Annavaram, and M. Dubois, “MACAU: A Markov model for
reliability evaluations of caches under single-bit and multi-bit upsets,” in
Int’l Symposium on High-Performance Computer Architecture (HPCA),
2012, pp. 1–12.

[41] A. Dixit and A. Wood, “The impact of new technology on soft error
rates,” in 2011 International Reliability Physics Symposium, 2011
[Online]. Available: http://dx.doi.org/10.1109/irps.2011.5784522

[42] G. Georgakos, P. Huber, M. Ostermayr, E. Amirante, and F. Ruckerbauer,
“Investigation of Increased Multi-Bit Failure Rate Due to Neutron In-
duced SEU in Advanced Embedded SRAMs,” in 2007 IEEE Symposium
on VLSI Circuits, 2007 [Online]. Available:
http://dx.doi.org/10.1109/vlsic.2007.4342774

[43] M. Ebrahimi, A. Evans, M. B. Tahoori, E. Costenaro, D. Alexandrescu,
V. Chandra, and R. Seyyedi, “Comprehensive Analysis of Sequential and
Combinational Soft Errors in an Embedded Processor,” IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems, vol.
34, no. 10, pp. 1586–1599, Oct. 2015 [Online]. Available:
http://dx.doi.org/10.1109/tcad.2015.2422845

[44] J. Maiz, S. Hareland, K. Zhang, and P. Armstrong, “Characterization of
multi-bit soft error events in advanced SRAMs,” in IEEE International
Electron Devices Meeting 2003 [Online]. Available:
http://dx.doi.org/10.1109/iedm.2003.1269335

[45] M. Maniatakos, M. Michael, C. Tirumurti, and Y. Makris, “Revisiting
Vulnerability Analysis in Modern Microprocessors,” IEEE Transactions
on Computers, vol. 64, no. 9, pp. 2664–2674, Sep. 2015 [Online]. Avail-
able: http://dx.doi.org/10.1109/tc.2014.2375232

[46] M. Maniatakos, M. K. Michael, and Y. Makris, “Multiple-Bit Upset Pro-
tection in Microprocessor Memory Arrays Using Vulnerability-Based
Parity Optimization and Interleaving,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 23, no. 11, pp. 2447–2460, Nov.
2015 [Online]. Available: http://dx.doi.org/10.1109/tvlsi.2014.2365032

[47] X. Li, S. V. Adve, P. Bose, J. A. Rivers, “Scaling of Architecture Level
Soft Error Rates for Superscalar Processors,” Proc. 1st Workshop on the
System Effects of Logic Soft Errors (SELSE), April 2005.

[48] A. Chatzidimitriou, M. Kaliorakis, D. Gizopoulos, M. Iacaruso, M. Pip-
ponzi, R. Mariani, S. Di Carlo, “RT Level vs. Microarchitecture-Level
Reliability Assessment: Case Study on ARM(R) Cortex(R)-A9 CPU,” in
2017 47th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks Workshops (DSN-W), 2017 [Online]. Available:
http://dx.doi.org/10.1109/DSN-W.2017.16

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AbadiMT-CondensedLight
 /ACaslon-Italic
 /ACaslon-Regular
 /ACaslon-Semibold
 /ACaslon-SemiboldItalic
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /AGaramond-Bold
 /AGaramond-BoldItalic
 /AGaramond-Italic
 /AGaramond-Regular
 /AGaramond-Semibold
 /AGaramond-SemiboldItalic
 /AgencyFB-Bold
 /AgencyFB-Reg
 /AGOldFace-Outline
 /AharoniBold
 /Algerian
 /Americana
 /Americana-ExtraBold
 /AndaleMono
 /AndaleMonoIPA
 /AngsanaNew
 /AngsanaNew-Bold
 /AngsanaNew-BoldItalic
 /AngsanaNew-Italic
 /AngsanaUPC
 /AngsanaUPC-Bold
 /AngsanaUPC-BoldItalic
 /AngsanaUPC-Italic
 /Anna
 /ArialAlternative
 /ArialAlternativeSymbol
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialMT-Black
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /ArrusBT-Bold
 /ArrusBT-BoldItalic
 /ArrusBT-Italic
 /ArrusBT-Roman
 /AvantGarde-Book
 /AvantGarde-BookOblique
 /AvantGarde-Demi
 /AvantGarde-DemiOblique
 /AvantGardeITCbyBT-Book
 /AvantGardeITCbyBT-BookOblique
 /BakerSignet
 /BankGothicBT-Medium
 /Barmeno-Bold
 /Barmeno-ExtraBold
 /Barmeno-Medium
 /Barmeno-Regular
 /Baskerville
 /BaskervilleBE-Italic
 /BaskervilleBE-Medium
 /BaskervilleBE-MediumItalic
 /BaskervilleBE-Regular
 /Baskerville-Bold
 /Baskerville-BoldItalic
 /Baskerville-Italic
 /BaskOldFace
 /Batang
 /BatangChe
 /Bauhaus93
 /Bellevue
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlingAntiqua-Bold
 /BerlingAntiqua-BoldItalic
 /BerlingAntiqua-Italic
 /BerlingAntiqua-Roman
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /BernhardModernBT-Italic
 /BernhardModernBT-Roman
 /BiffoMT
 /BinnerD
 /BinnerGothic
 /BlackadderITC-Regular
 /Blackoak
 /blex
 /blsy
 /Bodoni
 /Bodoni-Bold
 /Bodoni-BoldItalic
 /Bodoni-Italic
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /Bodoni-Poster
 /Bodoni-PosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /Bookman-Demi
 /Bookman-DemiItalic
 /Bookman-Light
 /Bookman-LightItalic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolOne-Regular
 /BookshelfSymbolSeven
 /BookshelfSymbolThree-Regular
 /BookshelfSymbolTwo-Regular
 /Botanical
 /Boton-Italic
 /Boton-Medium
 /Boton-MediumItalic
 /Boton-Regular
 /Boulevard
 /BradleyHandITC
 /Braggadocio
 /BritannicBold
 /Broadway
 /BrowalliaNew
 /BrowalliaNew-Bold
 /BrowalliaNew-BoldItalic
 /BrowalliaNew-Italic
 /BrowalliaUPC
 /BrowalliaUPC-Bold
 /BrowalliaUPC-BoldItalic
 /BrowalliaUPC-Italic
 /BrushScript
 /BrushScriptMT
 /CaflischScript-Bold
 /CaflischScript-Regular
 /Calibri
 /Calibri-Bold
 /Calibri-BoldItalic
 /Calibri-Italic
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Candara
 /Candara-Bold
 /Candara-BoldItalic
 /Candara-Italic
 /Carta
 /CaslonOpenfaceBT-Regular
 /Castellar
 /CastellarMT
 /Centaur
 /Centaur-Italic
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchL-Bold
 /CenturySchL-BoldItal
 /CenturySchL-Ital
 /CenturySchL-Roma
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /CGTimes-Bold
 /CGTimes-BoldItalic
 /CGTimes-Italic
 /CGTimes-Regular
 /CharterBT-Bold
 /CharterBT-BoldItalic
 /CharterBT-Italic
 /CharterBT-Roman
 /CheltenhamITCbyBT-Bold
 /CheltenhamITCbyBT-BoldItalic
 /CheltenhamITCbyBT-Book
 /CheltenhamITCbyBT-BookItalic
 /Chiller-Regular
 /Cmb10
 /CMB10
 /Cmbsy10
 /CMBSY10
 /CMBSY5
 /CMBSY6
 /CMBSY7
 /CMBSY8
 /CMBSY9
 /Cmbx10
 /CMBX10
 /Cmbx12
 /CMBX12
 /Cmbx5
 /CMBX5
 /Cmbx6
 /CMBX6
 /Cmbx7
 /CMBX7
 /Cmbx8
 /CMBX8
 /Cmbx9
 /CMBX9
 /Cmbxsl10
 /CMBXSL10
 /Cmbxti10
 /CMBXTI10
 /Cmcsc10
 /CMCSC10
 /Cmcsc8
 /CMCSC8
 /Cmcsc9
 /CMCSC9
 /Cmdunh10
 /CMDUNH10
 /Cmex10
 /CMEX10
 /CMEX7
 /CMEX8
 /CMEX9
 /Cmff10
 /CMFF10
 /Cmfi10
 /CMFI10
 /Cmfib8
 /CMFIB8
 /Cminch
 /CMINCH
 /Cmitt10
 /CMITT10
 /Cmmi10
 /CMMI10
 /Cmmi12
 /CMMI12
 /Cmmi5
 /CMMI5
 /Cmmi6
 /CMMI6
 /Cmmi7
 /CMMI7
 /Cmmi8
 /CMMI8
 /Cmmi9
 /CMMI9
 /Cmmib10
 /CMMIB10
 /CMMIB5
 /CMMIB6
 /CMMIB7
 /CMMIB8
 /CMMIB9
 /Cmr10
 /CMR10
 /Cmr12
 /CMR12
 /Cmr17
 /CMR17
 /Cmr5
 /CMR5
 /Cmr6
 /CMR6
 /Cmr7
 /CMR7
 /Cmr8
 /CMR8
 /Cmr9
 /CMR9
 /Cmsl10
 /CMSL10
 /Cmsl12
 /CMSL12
 /Cmsl8
 /CMSL8
 /Cmsl9
 /CMSL9
 /Cmsltt10
 /CMSLTT10
 /Cmss10
 /CMSS10
 /Cmss12
 /CMSS12
 /Cmss17
 /CMSS17
 /Cmss8
 /CMSS8
 /Cmss9
 /CMSS9
 /Cmssbx10
 /CMSSBX10
 /Cmssdc10
 /CMSSDC10
 /Cmssi10
 /CMSSI10
 /Cmssi12
 /CMSSI12
 /Cmssi17
 /CMSSI17
 /Cmssi8
 /CMSSI8
 /Cmssi9
 /CMSSI9
 /Cmssq8
 /CMSSQ8
 /Cmssqi8
 /CMSSQI8
 /Cmsy10
 /CMSY10
 /Cmsy5
 /CMSY5
 /Cmsy6
 /CMSY6
 /Cmsy7
 /CMSY7
 /Cmsy8
 /CMSY8
 /Cmsy9
 /CMSY9
 /Cmtcsc10
 /CMTCSC10
 /Cmtex10
 /CMTEX10
 /Cmtex8
 /CMTEX8
 /Cmtex9
 /CMTEX9
 /Cmti10
 /CMTI10
 /Cmti12
 /CMTI12
 /Cmti7
 /CMTI7
 /Cmti8
 /CMTI8
 /Cmti9
 /CMTI9
 /Cmtt10
 /CMTT10
 /Cmtt12
 /CMTT12
 /Cmtt8
 /CMTT8
 /Cmtt9
 /CMTT9
 /Cmu10
 /CMU10
 /Cmvtt10
 /CMVTT10
 /ColonnaMT
 /Colossalis-Bold
 /ComicSansMS
 /ComicSansMS-Bold
 /Consolas
 /Consolas-Bold
 /Consolas-BoldItalic
 /Consolas-Italic
 /Constantia
 /Constantia-Bold
 /Constantia-BoldItalic
 /Constantia-Italic
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Copperplate-ThirtyThreeBC
 /Corbel
 /Corbel-Bold
 /Corbel-BoldItalic
 /Corbel-Italic
 /CordiaNew
 /CordiaNew-Bold
 /CordiaNew-BoldItalic
 /CordiaNew-Italic
 /CordiaUPC
 /CordiaUPC-Bold
 /CordiaUPC-BoldItalic
 /CordiaUPC-Italic
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /CourierX-Bold
 /CourierX-BoldOblique
 /CourierX-Oblique
 /CourierX-Regular
 /CreepyRegular
 /CurlzMT
 /David-Bold
 /David-Reg
 /DavidTransparent
 /Dcb10
 /Dcbx10
 /Dcbxsl10
 /Dcbxti10
 /Dccsc10
 /Dcitt10
 /Dcr10
 /Desdemona
 /DilleniaUPC
 /DilleniaUPCBold
 /DilleniaUPCBoldItalic
 /DilleniaUPCItalic
 /Dingbats
 /DomCasual
 /Dotum
 /DotumChe
 /DoulosSIL
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversGothicBT-Regular
 /EngraversMT
 /EraserDust
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /ErieBlackPSMT
 /ErieLightPSMT
 /EriePSMT
 /EstrangeloEdessa
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /Euclid-Italic
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /EucrosiaUPC
 /EucrosiaUPCBold
 /EucrosiaUPCBoldItalic
 /EucrosiaUPCItalic
 /EUEX10
 /EUEX7
 /EUEX8
 /EUEX9
 /EUFB10
 /EUFB5
 /EUFB7
 /EUFM10
 /EUFM5
 /EUFM7
 /EURB10
 /EURB5
 /EURB7
 /EURM10
 /EURM5
 /EURM7
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /EUSB10
 /EUSB5
 /EUSB7
 /EUSM10
 /EUSM5
 /EUSM7
 /FelixTitlingMT
 /Fences
 /FencesPlain
 /FigaroMT
 /FixedMiriamTransparent
 /FootlightMTLight
 /Formata-Italic
 /Formata-Medium
 /Formata-MediumItalic
 /Formata-Regular
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothicITCbyBT-Book
 /FranklinGothicITCbyBT-BookItal
 /FranklinGothicITCbyBT-Demi
 /FranklinGothicITCbyBT-DemiItal
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FrankRuehl
 /FreesiaUPC
 /FreesiaUPCBold
 /FreesiaUPCBoldItalic
 /FreesiaUPCItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Frutiger-Black
 /Frutiger-BlackCn
 /Frutiger-BlackItalic
 /Frutiger-Bold
 /Frutiger-BoldCn
 /Frutiger-BoldItalic
 /Frutiger-Cn
 /Frutiger-ExtraBlackCn
 /Frutiger-Italic
 /Frutiger-Light
 /Frutiger-LightCn
 /Frutiger-LightItalic
 /Frutiger-Roman
 /Frutiger-UltraBlack
 /Futura-Bold
 /Futura-BoldOblique
 /Futura-Book
 /Futura-BookOblique
 /FuturaBT-Bold
 /FuturaBT-BoldItalic
 /FuturaBT-Book
 /FuturaBT-BookItalic
 /FuturaBT-Medium
 /FuturaBT-MediumItalic
 /Futura-Light
 /Futura-LightOblique
 /GalliardITCbyBT-Bold
 /GalliardITCbyBT-BoldItalic
 /GalliardITCbyBT-Italic
 /GalliardITCbyBT-Roman
 /Garamond
 /Garamond-Bold
 /Garamond-BoldCondensed
 /Garamond-BoldCondensedItalic
 /Garamond-BoldItalic
 /Garamond-BookCondensed
 /Garamond-BookCondensedItalic
 /Garamond-Italic
 /Garamond-LightCondensed
 /Garamond-LightCondensedItalic
 /Gautami
 /GeometricSlab703BT-Light
 /GeometricSlab703BT-LightItalic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /GeorgiaRef
 /Giddyup
 /Giddyup-Thangs
 /Gigi-Regular
 /GillSans
 /GillSans-Bold
 /GillSans-BoldItalic
 /GillSans-Condensed
 /GillSans-CondensedBold
 /GillSans-Italic
 /GillSans-Light
 /GillSans-LightItalic
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /Gothic-Thirteen
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /GoudyTextMT-LombardicCapitals
 /GSIDefaultSymbols
 /Gulim
 /GulimChe
 /Gungsuh
 /GungsuhChe
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /Helvetica
 /Helvetica-Black
 /Helvetica-BlackOblique
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Condensed
 /Helvetica-Condensed-Black
 /Helvetica-Condensed-BlackObl
 /Helvetica-Condensed-Bold
 /Helvetica-Condensed-BoldObl
 /Helvetica-Condensed-Light
 /Helvetica-Condensed-LightObl
 /Helvetica-Condensed-Oblique
 /Helvetica-Fraction
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Humanist521BT-BoldCondensed
 /Humanist521BT-Light
 /Humanist521BT-LightItalic
 /Humanist521BT-RomanCondensed
 /Imago-ExtraBold
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /IrisUPC
 /IrisUPCBold
 /IrisUPCBoldItalic
 /IrisUPCItalic
 /Ironwood
 /ItcEras-Medium
 /ItcKabel-Bold
 /ItcKabel-Book
 /ItcKabel-Demi
 /ItcKabel-Medium
 /ItcKabel-Ultra
 /JasmineUPC
 /JasmineUPC-Bold
 /JasmineUPC-BoldItalic
 /JasmineUPC-Italic
 /JoannaMT
 /JoannaMT-Italic
 /Jokerman-Regular
 /JuiceITC-Regular
 /Kartika
 /Kaufmann
 /KaufmannBT-Bold
 /KaufmannBT-Regular
 /KidTYPEPaint
 /KinoMT
 /KodchiangUPC
 /KodchiangUPC-Bold
 /KodchiangUPC-BoldItalic
 /KodchiangUPC-Italic
 /KorinnaITCbyBT-Regular
 /KristenITC-Regular
 /KrutiDev040Bold
 /KrutiDev040BoldItalic
 /KrutiDev040Condensed
 /KrutiDev040Italic
 /KrutiDev040Thin
 /KrutiDev040Wide
 /KrutiDev060
 /KrutiDev060Bold
 /KrutiDev060BoldItalic
 /KrutiDev060Condensed
 /KrutiDev060Italic
 /KrutiDev060Thin
 /KrutiDev060Wide
 /KrutiDev070
 /KrutiDev070Condensed
 /KrutiDev070Italic
 /KrutiDev070Thin
 /KrutiDev070Wide
 /KrutiDev080
 /KrutiDev080Condensed
 /KrutiDev080Italic
 /KrutiDev080Wide
 /KrutiDev090
 /KrutiDev090Bold
 /KrutiDev090BoldItalic
 /KrutiDev090Condensed
 /KrutiDev090Italic
 /KrutiDev090Thin
 /KrutiDev090Wide
 /KrutiDev100
 /KrutiDev100Bold
 /KrutiDev100BoldItalic
 /KrutiDev100Condensed
 /KrutiDev100Italic
 /KrutiDev100Thin
 /KrutiDev100Wide
 /KrutiDev120
 /KrutiDev120Condensed
 /KrutiDev120Thin
 /KrutiDev120Wide
 /KrutiDev130
 /KrutiDev130Condensed
 /KrutiDev130Thin
 /KrutiDev130Wide
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothic
 /LetterGothic-Bold
 /LetterGothic-BoldOblique
 /LetterGothic-BoldSlanted
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LetterGothic-Slanted
 /LevenimMT
 /LevenimMTBold
 /LilyUPC
 /LilyUPCBold
 /LilyUPCBoldItalic
 /LilyUPCItalic
 /Lithos-Black
 /Lithos-Regular
 /LotusWPBox-Roman
 /LotusWPIcon-Roman
 /LotusWPIntA-Roman
 /LotusWPIntB-Roman
 /LotusWPType-Roman
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Lydian
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /Map-Symbols
 /MathA
 /MathB
 /MathC
 /Mathematica1
 /Mathematica1-Bold
 /Mathematica1Mono
 /Mathematica1Mono-Bold
 /Mathematica2
 /Mathematica2-Bold
 /Mathematica2Mono
 /Mathematica2Mono-Bold
 /Mathematica3
 /Mathematica3-Bold
 /Mathematica3Mono
 /Mathematica3Mono-Bold
 /Mathematica4
 /Mathematica4-Bold
 /Mathematica4Mono
 /Mathematica4Mono-Bold
 /Mathematica5
 /Mathematica5-Bold
 /Mathematica5Mono
 /Mathematica5Mono-Bold
 /Mathematica6
 /Mathematica6Bold
 /Mathematica6Mono
 /Mathematica6MonoBold
 /Mathematica7
 /Mathematica7Bold
 /Mathematica7Mono
 /Mathematica7MonoBold
 /MatisseITC-Regular
 /MaturaMTScriptCapitals
 /Mesquite
 /Mezz-Black
 /Mezz-Regular
 /MICR
 /MicrosoftSansSerif
 /MingLiU
 /Minion-BoldCondensed
 /Minion-BoldCondensedItalic
 /Minion-Condensed
 /Minion-CondensedItalic
 /Minion-Ornaments
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /Miriam
 /MiriamFixed
 /MiriamTransparent
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MonotypeSorts
 /MSAM10
 /MSAM5
 /MSAM6
 /MSAM7
 /MSAM8
 /MSAM9
 /MSBM10
 /MSBM5
 /MSBM6
 /MSBM7
 /MSBM8
 /MSBM9
 /MS-Gothic
 /MSHei
 /MSLineDrawPSMT
 /MS-Mincho
 /MSOutlook
 /MS-PGothic
 /MS-PMincho
 /MSReference1
 /MSReference2
 /MSReferenceSansSerif
 /MSReferenceSansSerif-Bold
 /MSReferenceSansSerif-BoldItalic
 /MSReferenceSansSerif-Italic
 /MSReferenceSerif
 /MSReferenceSerif-Bold
 /MSReferenceSerif-BoldItalic
 /MSReferenceSerif-Italic
 /MSReferenceSpecialty
 /MSSong
 /MS-UIGothic
 /MT-Extra
 /MTExtraTiger
 /MT-Symbol
 /MT-Symbol-Italic
 /MVBoli
 /Myriad-Bold
 /Myriad-BoldItalic
 /Myriad-Italic
 /Myriad-Roman
 /Narkisim
 /NewCenturySchlbk-Bold
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /NewMilleniumSchlbk-BoldItalicSH
 /NewsGothic
 /NewsGothic-Bold
 /NewsGothicBT-Bold
 /NewsGothicBT-BoldItalic
 /NewsGothicBT-Italic
 /NewsGothicBT-Roman
 /NewsGothic-Condensed
 /NewsGothic-Italic
 /NewsGothicMT
 /NewsGothicMT-Bold
 /NewsGothicMT-Italic
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NimbusMonL-Bold
 /NimbusMonL-BoldObli
 /NimbusMonL-Regu
 /NimbusMonL-ReguObli
 /NimbusRomNo9L-Medi
 /NimbusRomNo9L-MediItal
 /NimbusRomNo9L-Regu
 /NimbusRomNo9L-ReguItal
 /NimbusSanL-Bold
 /NimbusSanL-BoldCond
 /NimbusSanL-BoldCondItal
 /NimbusSanL-BoldItal
 /NimbusSanL-Regu
 /NimbusSanL-ReguCond
 /NimbusSanL-ReguCondItal
 /NimbusSanL-ReguItal
 /Nimrod
 /Nimrod-Bold
 /Nimrod-BoldItalic
 /Nimrod-Italic
 /NSimSun
 /Nueva-BoldExtended
 /Nueva-BoldExtendedItalic
 /Nueva-Italic
 /Nueva-Roman
 /NuptialScript
 /OCRA
 /OCRA-Alternate
 /OCRAExtended
 /OCRB
 /OCRB-Alternate
 /OfficinaSans-Bold
 /OfficinaSans-BoldItalic
 /OfficinaSans-Book
 /OfficinaSans-BookItalic
 /OfficinaSerif-Bold
 /OfficinaSerif-BoldItalic
 /OfficinaSerif-Book
 /OfficinaSerif-BookItalic
 /OldEnglishTextMT
 /Onyx
 /OnyxBT-Regular
 /OzHandicraftBT-Roman
 /PalaceScriptMT
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Palatino-Roman
 /PapyrusPlain
 /Papyrus-Regular
 /Parchment-Regular
 /Parisian
 /ParkAvenue
 /Penumbra-SemiboldFlare
 /Penumbra-SemiboldSans
 /Penumbra-SemiboldSerif
 /PepitaMT
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /PhotinaCasualBlack
 /Playbill
 /PMingLiU
 /Poetica-SuppOrnaments
 /PoorRichard-Regular
 /PopplLaudatio-Italic
 /PopplLaudatio-Medium
 /PopplLaudatio-MediumItalic
 /PopplLaudatio-Regular
 /PrestigeElite
 /Pristina-Regular
 /PTBarnumBT-Regular
 /Raavi
 /RageItalic
 /Ravie
 /RefSpecialty
 /Ribbon131BT-Bold
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /Rockwell-Light
 /Rockwell-LightItalic
 /Rod
 /RodTransparent
 /RunicMT-Condensed
 /Sanvito-Light
 /Sanvito-Roman
 /ScriptC
 /ScriptMTBold
 /SegoeUI
 /SegoeUI-Bold
 /SegoeUI-BoldItalic
 /SegoeUI-Italic
 /Serpentine-BoldOblique
 /ShelleyVolanteBT-Regular
 /ShowcardGothic-Reg
 /Shruti
 /SILDoulosIPA
 /SimHei
 /SimSun
 /SimSun-PUA
 /SnapITC-Regular
 /StandardSymL
 /Stencil
 /StoneSans
 /StoneSans-Bold
 /StoneSans-BoldItalic
 /StoneSans-Italic
 /StoneSans-Semibold
 /StoneSans-SemiboldItalic
 /Stop
 /Swiss721BT-BlackExtended
 /Sylfaen
 /Symbol
 /SymbolMT
 /SymbolTiger
 /SymbolTigerExpert
 /Tahoma
 /Tahoma-Bold
 /Tci1
 /Tci1Bold
 /Tci1BoldItalic
 /Tci1Italic
 /Tci2
 /Tci2Bold
 /Tci2BoldItalic
 /Tci2Italic
 /Tci3
 /Tci3Bold
 /Tci3BoldItalic
 /Tci3Italic
 /Tci4
 /Tci4Bold
 /Tci4BoldItalic
 /Tci4Italic
 /TechnicalItalic
 /TechnicalPlain
 /Tekton
 /Tekton-Bold
 /TektonMM
 /Tempo-HeavyCondensed
 /Tempo-HeavyCondensedItalic
 /TempusSansITC
 /Tiger
 /TigerExpert
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldItalicOsF
 /Times-BoldSC
 /Times-ExtraBold
 /Times-Italic
 /Times-ItalicOsF
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Times-RomanSC
 /Trajan-Bold
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-CondensedMedium
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Univers-Bold
 /Univers-BoldItalic
 /UniversCondensed-Bold
 /UniversCondensed-BoldItalic
 /UniversCondensed-Medium
 /UniversCondensed-MediumItalic
 /Univers-Medium
 /Univers-MediumItalic
 /URWBookmanL-DemiBold
 /URWBookmanL-DemiBoldItal
 /URWBookmanL-Ligh
 /URWBookmanL-LighItal
 /URWChanceryL-MediItal
 /URWGothicL-Book
 /URWGothicL-BookObli
 /URWGothicL-Demi
 /URWGothicL-DemiObli
 /URWPalladioL-Bold
 /URWPalladioL-BoldItal
 /URWPalladioL-Ital
 /URWPalladioL-Roma
 /USPSBarCode
 /VAGRounded-Black
 /VAGRounded-Bold
 /VAGRounded-Light
 /VAGRounded-Thin
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VerdanaRef
 /VinerHandITC
 /Viva-BoldExtraExtended
 /Vivaldii
 /Viva-LightCondensed
 /Viva-Regular
 /VladimirScript
 /Vrinda
 /Webdings
 /Westminster
 /Willow
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WNCYB10
 /WNCYI10
 /WNCYR10
 /WNCYSC10
 /WNCYSS10
 /WoodtypeOrnaments-One
 /WoodtypeOrnaments-Two
 /WP-ArabicScriptSihafa
 /WP-ArabicSihafa
 /WP-BoxDrawing
 /WP-CyrillicA
 /WP-CyrillicB
 /WP-GreekCentury
 /WP-GreekCourier
 /WP-GreekHelve
 /WP-HebrewDavid
 /WP-IconicSymbolsA
 /WP-IconicSymbolsB
 /WP-Japanese
 /WP-MathA
 /WP-MathB
 /WP-MathExtendedA
 /WP-MathExtendedB
 /WP-MultinationalAHelve
 /WP-MultinationalARoman
 /WP-MultinationalBCourier
 /WP-MultinationalBHelve
 /WP-MultinationalBRoman
 /WP-MultinationalCourier
 /WP-Phonetic
 /WPTypographicSymbols
 /XYATIP10
 /XYBSQL10
 /XYBTIP10
 /XYCIRC10
 /XYCMAT10
 /XYCMBT10
 /XYDASH10
 /XYEUAT10
 /XYEUBT10
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZapfHumanist601BT-Bold
 /ZapfHumanist601BT-BoldItalic
 /ZapfHumanist601BT-Demi
 /ZapfHumanist601BT-DemiItalic
 /ZapfHumanist601BT-Italic
 /ZapfHumanist601BT-Roman
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064506390020064506420627064A064A0633002006390631063600200648063706280627063906290020062706440648062B0627062606420020062706440645062A062F062706480644062900200641064A00200645062C062706440627062A002006270644062306390645062706440020062706440645062E062A064406410629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd00630068002000700072006f002000730070006f006c00650068006c0069007600e90020007a006f006200720061007a006f007600e1006e00ed002000610020007400690073006b0020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003b103be03b903cc03c003b903c303c403b7002003c003c103bf03b203bf03bb03ae002003ba03b103b9002003b503ba03c403cd03c003c903c303b7002003b503c003b903c703b503b903c103b703bc03b103c403b903ba03ce03bd002003b503b303b303c103ac03c603c903bd002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405E605D205D4002005D505D405D305E405E105D4002005D005DE05D905E005D4002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D905D505EA05E8002E002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata pogodnih za pouzdani prikaz i ispis poslovnih dokumenata koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF00410020006800690076006100740061006c006f007300200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d0065006700740065006b0069006e007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200073007a00e1006e0074002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c00200068006f007a006800610074006a00610020006c00e9007400720065002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f0020006e00690065007a00610077006f0064006e00650067006f002000770079015b0077006900650074006c0061006e00690061002000690020006400720075006b006f00770061006e0069006100200064006f006b0075006d0065006e007400f300770020006600690072006d006f0077007900630068002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e007400720075002000760069007a00750061006c0069007a00610072006500610020015f006900200074006900700103007200690072006500610020006c0061002000630061006c006900740061007400650020007300750070006500720069006f0061007201030020006100200064006f00630075006d0065006e00740065006c006f007200200064006500200061006600610063006500720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f043e04340445043e0434044f04490438044500200434043b044f0020043d0430043404350436043d043e0433043e0020043f0440043e0441043c043e044204400430002004380020043f04350447043004420438002004340435043b043e0432044b044500200434043e043a0443043c0435043d0442043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020007000720069006d00650072006e006900680020007a00610020007a0061006e00650073006c006a00690076006f0020006f0067006c00650064006f00760061006e006a006500200069006e0020007400690073006b0061006e006a006500200070006f0073006c006f0076006e0069006800200064006f006b0075006d0065006e0074006f0076002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005400690063006100720069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900720020015f0065006b0069006c006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

