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Abstract—Miniaturization of integrated circuits brings more 
devices (thus more functionality) on the same silicon area but also 
makes them more vulnerable to soft (transient) errors. Assessment 
and understanding of the magnitude of a microprocessor’s vulner-
ability to soft errors in early stages of the design can steer wise, 
cost-effective protection decision at the hardware or software 
level. In recent fabrication technologies, the effect of radiation 
(neutrons or other particles) is significantly more severe on silicon 
devices and leads to increased numbers of multi-bit upsets. In this 
paper, we analyze the effects of multi-bit upsets in modern micro-
processors, using microarchitecture level fault injection and a 
complete system stack. We present details about the effects of 
multi-bit upsets on 6 major hardware components of an ARM 
Cortex-A9 CPU modeled on Gem5 microarchitectural simulator, 
with 15 workloads across 8 fabrication technology nodes. For the 
purposes of our analysis, we employ and extend the GeFIN (Gem5-
based Fault INjector) framework to model and analyze multi-bit 
faults in the hardware structures of the CPU. The enhanced ver-
sion of the fault injector models multi-bit faults in adjacent areas 
of a structure; a very realistic case when modern silicon chips are 
affected by radiation. Our analysis shows that the architectural 
vulnerability factor (AVF) significantly increases from 1.5x 
(+50%) to 3.2x (+220%) between single and triple-bit faults across 
components. We present the aggregate multi-bit AVF of each 
hardware structure and each technology node from 250nm to 
22nm; our results show significant AVF difference between single 
bit and aggregate multi-bit measurements, up to 35% as the tech-
nology node decreases – this reveals the magnitude of the assess-
ment gap when only single bit errors are considered by any 
method. We report soft error Failures in Time (FIT) rates for the 
entire ARM Cortex-A9 CPU across technology nodes and our re-
sults show that the contribution of multi-bit upsets in the overall 
CPU FIT consistently increases across technologies and reaches 
21% in 22nm. 

Keywords—CPU reliability, soft errors, failures in time, spatial 
MBU, fault injection, microarchitecture simulation 

I. INTRODUCTION 

The constant refinement of semiconductor technologies con-
tinuously (although not always consistently) increases the den-
sity and complexity of modern microprocessor chips in favor of 
performance and functionality. This extreme scaling has a neg-
ative impact on the reliable operation of microprocessors, mak-

ing them more vulnerable to cosmic radiation, latent manufac-
turing defects, device and packaging degradation and low volt-
age operation [13] [14] [15] [16]. As a result, transient faults 
(soft errors) tend to appear more frequently than in previous 
manufacturing generations, which, in turn, makes them a major 
threat to reliable computing system operation. However, not all 
faults will necessarily harm the system stability nor will have the 
same severity for software workloads. Several metrics have been 
proposed to express the system vulnerability against transient 
faults. The Architectural Vulnerability Factor (AVF) [17] was 
proposed by Mukherjee et al. to quantify a microprocessor’s 
vulnerability to transient faults; the AVF of a microprocessor 
hardware structure is the probability that a fault in it will affect 
the correct execution of a program. Similarly, IVF [18] and H-
AVF [19] have been proposed to express the vulnerability of mi-
croprocessor structures to intermittent and permanent (hard) 
faults, respectively. Sridharan and Kaeli later proposed finer lev-
els of abstraction for the AVF, introducing the Hardware Vul-
nerability Factor (HVF) [20] and the Program Vulnerability Fac-
tor (PVF) [21], each to quantify the portion of AVF that can be 
attributed to the Hardware layer (including the microarchitec-
ture) and the Software layer, respectively. 

The assessment of microprocessor vulnerability to soft er-
rors is very crucial during the early design stages to guide effi-
cient error protection. Fault-tolerance mechanisms impose area, 
power and performance overheads, which can, for example, 
vary in a range between 1% and 125% (in terms of extra memory 
capacity) for typical memory error detection and correction [17]. 
Thus, significant effort must be devoted to effectively measure 
the vulnerability of a CPU design as early as possible and make 
cost effective design decisions for error protection.  

Multi-bit transient upsets (MBU) are an increasingly im-
portant challenge in SRAMs [1], [8]. High-energy particles are 
able to deposit charge onto multiple SRAM storage cell because 
of their shrinking dimensions, and this results in upsets in mul-
tiple adjacent bits. This is called a spatial multi-bit fault (sMBF) 
(or multi-bit upset (MBU)). Ibe et al. in [1] show that in a 180nm 
fabrication technology node, about 5.3% of neutron-induced er-
rors in SRAMs are multi-bit upsets, while in 22nm process, this 
ratio is as high as 45%. This increase in multi-bit fault rate is 
projected to continue despite the introduction of technologies 
such as FinFET transistors, which have reduced fault rates [22] 
[23]. Estimating architectural vulnerability factors of micropro-
cessors hardware structures by considering multi-bit faults at 
their rates for a particular technology, allows architects to have 
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a more accurate evaluation of the system’s vulnerability and pro-
tect the structures for realistic upsets rates and cardinalities and 
not only for single-bit faults. Design-time vulnerability estima-
tion techniques (including fault injection and lifetime analytical 
methods) focus on single-bit faults and fail to capture the effects 
of multi-bit faults [3] [6] [28] [33] [34] [35] [36].  

In this paper, we perform a microarchitecture-level reliabil-
ity assessment using fault injection at the full system level. We 
present a comprehensive study and analysis that considers re-
portedly important spatial multi-bit faults, in 6 important micro-
architectural components of an ARM Cortex-A9 CPU, in order 
to quantify the effect of multi-bit upsets in the overall system 
reliability. We employ and extend GeFIN [3] [6], a Gem5-based 
[2] fault injection framework to inject multi-bit faults in the 
hardware structures of the CPU model. We enhance the fault 
mask generator of GeFIN to support the generation of spatial 
multi-bit faults in adjacent areas of a structure. The results of this 
study reveal that, for important hardware structures such as the 
L1I cache, the vulnerability of triple-bit faults increases up to 
3.2x (220%) when compared to single-bit fault injection, for 
22nm fabrication technology; a huge gap in soft error vulnera-
bility assessment that our analysis reveals. We also show that 
the portion of the overall CPU FIT rate that is caused by multi-
bit faults is significant in all technology nodes after 250nm, it 
consistently increases and reaches 21% at 22nm. Even larger 
contributions of multi-bit faults in the CPU FIT rates in latest 
technologies (14nm, 10nm, 7nm) can be safely assumed, calling 
for diligent protection against multi-bit upsets at least in the 
hardware structures that our study identifies as the most vulner-
able. The presented vulnerability estimation methodology can 
be used in all current and future technologies as the supported 
fault models are very flexible and easily configurable.  

II. RELATED WORK 

The majority of early vulnerability estimation studies focus 
on single bit faults and only a few consider the impact of multi-
bit faults in SRAMs and logic [8] [23] [24] [25] [26] [27]. 
George et al. in [8] modeled only spatial double-bit faults using  
microarchitecture level fault injection on PTLsim simulator and 
reported the AVF of only two hardware components (the regis-
ter file and reorder buffer), while the multi-bit rates across tech-
nologies have not been taken into consideration to quantify the 
contribution of multi-bit faults in the overall AVF and FIT meas-
urement. In [23], the authors propose the use of ACE analysis to 
capture the vulnerability of multi-bit faults, assuming the exist-
ence of hardware protection. They also use GPU fault injection 
to validate the assumption that bit ACEness (importance for ar-
chitecturally correct execution) is not affected by neighboring 
bits in a structure. In this work, we do not make assumptions of 
hardware protection as we consider that this is the scope of per-
forming a reliability evaluation in early design phases – based 
on the findings of our analysis informed multi-bit error protec-
tion can be implemented in a CPU design.  

The authors in [24] [25] [26] [27] perform multi-bit reliabil-
ity analysis at the software or architecture level (not the actual 
hardware or microarchitecture level that we focus on). Lu et al. 
in [24] compare the results of single-bit faults to double-bit 
faults in a single word and in different words at the LLVM com-
piler’s intermediate code level. They find that there is not much 
variation between the error resilience of the different models. 

The main focus of the work is on the fault injection tool rather 
than a thorough study of the impact of multiple bit-flip errors. 
Ayatolahi et al. in [25] compare the single bit-flip model with 
the double bit-flip model at the assembly-level code. In their 
study, double bit-flip errors are only injected into a single word 
(i.e., register or memory location). They also find that the SDC 
results obtained for the two fault models are only marginally dif-
ferent. Adamu-Fika and Jhumka in [26] compare the results of 
injecting double-bit faults in a single word to those into different 
words at the LLVM compiler’s intermediate code level. Similar 
to the previous studies, the results of their experiments show 
that, on average, the difference between the percentages of data 
failures for the two models is marginal. On the contrary, Sang-
choolie et al. in [27] presented that the single-bit fault experi-
ments can give results close to multi-bit fault experiments, while 
they propose that at most triple-bit faults are reasonable. 

At the manufacturing technology level multi-bit fault studies 
have clearly revealed the importance of accounting and design-
ing for multi-bit faults in modern hardware. The authors of [1] 
[41] [42] [43] [44] [45] analyze the ways that multi-bit upsets 
affect SRAM cells, while in [39] [46], the authors examine pro-
tection options for spatial multi-bit faults. Suh et al. [40] intro-
duce a periodic autoregressive moving average (PARMA) 
framework to compute the mean time to failure (MTTF) of 
caches from single-bit faults and multi-bit upsets. In [47], the 
authors consider several design characteristics and apply soft-
error rates in different technology nodes to showcase how the 
error rates affect the same design on different technologies. 

  Microarchitecture level fault injection has been used in var-
ious studies [3] [6] [28] for assessing reliability on hardware 
components basis, but also for capturing the performance devi-
ation caused by the presence of faults in speculative components 
[29] [30] [31] [32]. There are also studies [33] [34] [35] [36] 
[37] [38] that spread their focus beyond a single abstraction layer 
and aim to exploit the benefits of multiple abstraction layers to 
either accelerate the evaluation process or deliver cross-layer re-
liability evaluation.  

In this work, we move beyond previous studies and present 
a complete analysis of realistic multi-bit failure rates which ag-
gregates the effects of multi-bit upsets (single, double, triple) for 
8 different technologies, 6 major microprocessor components 
and 15 different workloads. We quantify in fine granularity the 
AVF and FIT rates of all the above combinations (technology, 
component, workload) in an out-of-order ARM CPU model and 
demonstrate the significant gap between single-bit analysis and 
realistic multi-bit vulnerability analysis which corresponds to 
the actual failure modes that a real CPU experiences in the field.  

III. EXPERIMENTAL SETUP 

Using a very extensive fault injection, simulation-based 
study, we collected a set of interesting observations that demon-
strate the accuracy improvement we contribute to the vulnera-
bility estimation process of modern microprocessors. Our 
benchmarks base consists of 15 benchmarks, simulated for 6 
hardware components in an ARM Cortex-A9 with one, two and 
three faults injected per run for each component. This corre-
sponds to 540,000 injections for all components and bench-
marks used in this study (details for the statistical properties of 
the fault injection campaigns follow in the next subsections). 



 

A. Platform 

Among the available abstraction models, microarchitecture 
level is the only one that comes with sufficient hardware detail 
and is capable of running full-system simulation including the 
operating system. While RTL is closer to the hardware, its ex-
tremely small simulation throughput does not allow running of 
multiple fault injection simulations of a full system stack that 
includes an operating system and transactions with I/O periph-
eral devices [48]. Our microarchitectural modeling is based on 
Gem5 simulator, the state-of-the-art, flexible full system cycle-
accurate simulator [2]. Gem5 fully supports ARM ISA and 
comes along with a detailed out-of-order core implementation. 
The CPU core was configured to resemble the microarchitecture 
of ARM® CortexTM-A9. Table I presents the configuration of the 
Gem5 CPU core.   

GeFIN fault injection framework [3] was used on top of 
Gem5 for the reliability assessment. We have extended the Ge-
FIN infrastructure with a new fault generator to inject spatial 
multi-bit upsets of different geometries and cardinalities during 
the simulation of the system. The faults were injected in 6 im-
portant components that correspond to more than 94% of the 
memory cells of the CPU: L2 Cache, L1 Data and Instruction 
Caches, Physical Register file, Data and Instruction Translation 
Lookaside Buffers (TLB). For each of the 6 components, three 
sets of 2,000 single-bit faults, 2,000 double-bit faults, and 2,000 
triple-bit faults were generated, resulting in 36,000 fault injec-
tion simulations per workload (or 540,000 fault injections for all 
15 benchmarks together). We follow the widely adopted formu-
lation of [4] for the statistical fault sampling calculations; our 
2,000 faults samples choice corresponds to 2.88% error margin 
with 99% confidence level. This estimation corresponds to an 
initial unknown AVF estimation [5], which, as suggested by [4], 
is set to p = 0.5 in order to maximize the fault sample. After the 
execution of simulation campaign, however, we can re-adjust 
the p variable in the formula with the result of the estimation, 
shifted by the maximum error margin. This gives us a better es-
timation of the actual error margin for each combination of 
workload/component, which in our results is between 2.88% and 
2.4% with 99% confidence.  

Microarchitecture level fault injection offers high observa-
bility, allowing distinction of where exactly the faults strike 
(e.g., whether it was on kernel or user mode or data, whether the 
corrupted entry was used or not, etc.) but also detailed infor-
mation of what was the system effect as we describe in the fol-
lowing subsection. 

B. Fault Modeling 

Spatial multi-bit faults can affect both neighboring cells that 
share a p-well or an n-well as well as memory cells in a nearby 
area. Based on the findings of [1] and [43], we have created a 
new fault generator for GeFIN that implements the concept of a 
fault cluster [1]. For a given cluster size of X rows and Y col-
umns, the generator creates N random faults (bit flips) inside this 
array. The cluster is then placed in a random position inside the 
SRAM array, where it marks where the faults should be injected. 
Cluster sizes and fault numbers can be configured to resemble 
observed patterns of fabrication technologies. The vulnerability 
of each cluster is quantified separately and its contribution to the 
overall AVF of a device is weighted according to the technology 
characteristics. This level of configuration allows assessment of 
current and future technology nodes. 

Our experiments consist of single-bit, double-bit and triple-
bit faults generated in a 3x3 cluster (quadruple-bit and larger 
rates are virtually zero as reported in [1]). A generated fault 
mask contains a multi-bit fault that is injected to the hardware of 
the CPU. This means that for each experiment we virtually iso-
late a 3x3 cluster of a structure. Then, we randomly select which 
are the faulty cells in this cluster and perform the injection. We 
know that those bits are placed in adjacent areas, very similarly 
to what is performed during accelerates beam testing where the 
multi-bit faults are observed in adjacent areas of memory blocks. 
Table II shows some examples of single-bit, double-bit and tri-
ple-bit upsets in a 3x3 cluster produced by our faults generator. 
Notice that, unlike MBU code that is used in [1], which defines 
as cluster size the smallest possible region that can fit all faults, 
for the fault generation we can also have series of faults that can 
fit in smaller clusters (e.g., the first example of double-bit could 
fit in a 2x2 cluster). This way we model more realistic results 
with all smaller sub-clusters included in our analysis. 

TABLE II. EXAMPLES OF MULTI-BIT UPSET CATEGORIES IN A 3 X 3 CLUSTER 

USED IN OUR ANALYSIS. 

Category Error Bit Pattern Example 

Single-bit Fault 
           

           

           
 

Double-bit Fault 
           

           

          
 

Triple-bit Fault 
           

           

          
 

C. Fault Effect Classification 

The GeFIN injector classifies the outcomes of each fault 
simulation based on the impact of the fault on the simulated sys-
tem. Five classes are used for the fault effects classification for 
AVF measurements: 

Masked: Masked includes the fault injection runs in which 
the fault does not affect the execution of the application (which 
is executed through its end) or the system. The result of a simu-
lation with a masked fault is identical to the fault-free simulation 
in terms of the output of the application and any exceptions gen-
erated during execution. 

TABLE I. SUMMARY OF SETUP ATTRIBUTES. 

Microarchitectural attribute Value 

ISA / Core ARMv7 / Out-of-Order 
L1 Data cache 32KB 4-way 

Clock Frequency 2 GHz 
L1 Instruction cache 32KB 4-way 

L2 cache 512KB 8-way 
Data / Instruction TLB 32 entries 
Physical Register File 56 registers 

Instruction queue 32 
Reorder buffer 40 

Fetch / Execute / Writeback width 2 / 4 / 4 



 

Silent Data Corruption (SDC): Silent Data Corruption in-
cludes the fault injection runs for which the final output of the 
program that is written to an output file is corrupted (differs from 
the output of the fault-free execution) and no other indication of 
the fault has been recorded (an abnormal event such as an ex-
ception, etc.). 

Crash: Crash includes any case that results in an unrecover-
able situation that stops the simulated program. Crashes involve: 
a process crash, where the simulated program was abnormally 
terminated and a system crash (kernel panic), where the simu-
lated full-system was unable to recover. 

Timeout: Timeout includes all the cases where the simula-
tion did not finish within a certain amount of time, that lead to 
either a Deadlock (a condition in which the program flow has 
been trapped -due to the injected fault- and can’t commit any 
further instructions) or a Livelock (a situation where the pro-
gram flow has been redirected -due to the injected fault- and 
continues the execution of instructions on random code areas). 
The execution timeout limit to monitor these cases is four times 
equal to the fault-free execution of each benchmark. 

Assert: Assert includes all the cases where the simulation 
was unexpectedly terminated due to a simulator failure. If the 

simulator crashes or reaches a high-level condition that is unable 
to handle, it raises an assertion to stop the simulation. 

D. Benchmarks 

In our experiments we use 15 workloads from the MiBench 
benchmarks suite [7], as shown in Table III. The suite is com-
monly used in reliability studies [3] [6] [8] [9] [10] [11], as it 
combines benchmarks with reasonable execution (thus simula-
tion) time and facilitates complete end-to-end executions for the 
thousands of fault injections required in our comprehensive 
analysis. The suite also includes programs from diverse applica-
tion domains that share data and control flow characteristics 
with SPEC benchmark suite [12]. AVF is estimated using the 
program output and thus, complete execution of the workloads 
is required.  

To have a broad analysis and avoid the bias of results on spe-
cific applications, we have chosen benchmarks with different 
computational characteristics. Table III lists the benchmarks and 
shows the execution time for each benchmark. 

IV. FINE-GRAIN EXPERIMENTAL RESULTS 

In this section, we present the detailed results from our ex-
periments. The results report the vulnerability (AVF) for differ-
ent microprocessor components (L1D, L1I, L2 caches, Register 
File, DTLB and ITLB) of the analyzed out-of-order CPU (ARM 
Cortex-A9) for 8 technology nodes, and the FIT of each compo-
nent and technology node. The AVF of different components 
scales differently from single-bit to multi-bit faults and we elab-
orate on these differences. 

A. L1 Data (L1D) Cache 

As we can see in the single-bit fault bars of Fig. 1, the 
masked faults vary between 53.7% (cjpeg) and 94.5% 
(stringsearch), and the SDC vulnerability between 39.4% 
(cjpeg) and 1.1% (dijkstra). SDC is the dominant fault effect 
class, while the crashes are estimated between 2-3% for most of 
the cases. The vulnerability of the remaining two classes (Assert 
and Timeout) is extremely low, with the only exception of qsort, 
in which the Timeouts account for 5.5% of the total. 

In the double-bit fault bars of Fig. 1, the masked faults vary 
between 39.2% (rijndael_dec) and 92.1% (stringsearch). We ob-
serve that, in double-bit fault experiments, all the benchmarks 
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Fig. 1. AVF for single-bit, double-bit and triple-bit fault injection campaigns for 15 benchmarks for L1 Data Cache (L1D Cache).

TABLE III. BENCHMARK EXECUTION TIME. 

Benchmark 
Execution Time 

(clock cycles) 

CRC32 132,195,721 

FFT 48,339,852 

ADPCM decode 53,690,367 

basicmath 67,556,250 

jpeg C 26,126,843 

dijkstra 41,643,556 

jpeg D 10,105,853 

gsm_dec 12,862,888 

qsort 31,326,716 

rijndael D 33,327,494 

sha 12,141,593 

stringSearch 1,082,451 

susan_c 2,150,961 

usan_e 2,876,202 

susan_s 13,750,557 



 

report higher vulnerability compared to the single-bit fault injec-
tion. SDC is estimated between 56.3% (rijndael_dec) and 1% 
(dijkstra). Crash vulnerability varies between 10.6% (qsort) and 
1.3% (susan_s), however, only one benchmark (cjpeg) has a 
crash rate higher than 10% (10.5%). Although the vulnerability 
increases in double-bit faults, the balance between fault-effect 
classes is not changed.  

The highest vulnerability is reported in triple-bit fault bars of 
Fig. 1, where the masked faults vary between 29.7% 
(rijndael_dec) and 88.9% (stringsearch). Similarly to the double-
bit faults,  SDCs dominate among the vulnerable classes, which 
varies between 62.5% (rijdnael_dec) and 1.5% (dijkstra). Crash 
vulnerability varies between 13.4% (qsort) and 1.8% (CRC32). 
For the two remaining classes (Assert and Timeout) the vulner-
ability is extremely low, except for the case of qsort, in which 
there is a 12.3% of timeouts, which is higher than SDC (10%), 
and slightly lower than crash (13.4%).  

B. L1 Instruction (L1I) Cache 

Fig. 2 presents the AVF results of L1 instruction cache for 
single, double and triple-faults. In the single-fault results, the 
masked faults vary between 76.3% (rijdnael_dec) and 95.1% 
(susan_e). Crash is the most prominent faulty behavior among 
the vulnerable cases, as faults in L1I Cache affect the instruc-
tions and immediate values, while the SDC vulnerability is ex-
tremely low for most of the benchmarks. Specifically, the crash 
vulnerability varies between 14.3% (adpcm_dec) and 3.3% (su-
san_e), and 6 out of 15 benchmarks provide a rate higher than 
10%. The SDC vulnerability varies between 8.6% (rijdnael_dec) 
and 0.1% (stringsearch). Similar to L1D cache, the fault rates for 
the rest of the classes are extremely low (i.e., Timeouts) or vir-
tually zero for the Assert class. 

 As we can see in the double-bit fault bars of Fig. 2, the 
masked faults vary between 63% (rijdnael_dec) and 89.3% (su-
san_c). The vulnerability is significantly lower compared to 
L1D Cache, where we can benchmarks with AVF more than 
50%. Similarly, double-bit AVF is always higher compared to 
single-bit faults. The crash vulnerability varies between 23.4% 
(rijndael_dec) and 7.2% (CRC32), and SDCs vulnerability is 
lower than 10% in all cases except for rijndael_dec, which pro-
vides an SDC vulnerability of 11.1%. Assertions are extremely 
low (lower than 1% in all cases), while Timeouts are lower than 
4% for all benchmarks. 

In the triple-bit fault bars of Fig. 2, the masked faults vary 
between 55.4% (rijndael_dec) and 86.7% (susan_c). Interest-
ingly, the measured vulnerability is never more than 50%, even 
for triple-bit faults. The crash vulnerability varies between 
30.2% (rijndael_dec) and 9.7% (susan_c). Compared to the sin-
gle-bit fault injections crashes escalate to almost 2x for most 
benchmarks, while for the cases where the vulnerability is low, 
we observe a 3x increase in crash vulnerability (susan_e from 
3.3% to 11.6%). SDC cases vary between 12.1% (rijndael_dec) 
and 0.5% (stringsearch), with all the cases, except for 
rijndael_dec, to be under 10%. We can also see a timeout ratio 
of 4.8% for adpcm_dec. Assertions in the instruction cache are 
marginal.  

C. L2 Cache 

L2 cache vulnerability is presented in Fig. 3. Single-bit AVF 
varies between 47.8% (adpcm_dec) and 4.2% (stringsearch), 
sharing similarities with L1 Data cache. SDC and Crashes are 
the dominant fault effect classes. SDC vulnerability varies be-
tween 44.4% (adpcm_dec) and 0.1% (sha), while crashes vul-
nerability varies between 4.7% (susan_s) and 1.9% (rinjn-
dael_dec). Timeout and assertions are negligible. 

When considering double-bit fault bars of Fig. 3, the masked 
faults vary between 40% (adpcm_dec) and 91.7% (sha), show-
ing a difference of over 50% between these two corner cases. 
adpcm_dec is the only benchmark with a vulnerability greater 
than 50%. L1D Cache had 4 benchmarks in the same category, 
while L1I has none. SDC vulnerability varies between 54.4% 
(adpcm_dec) and 0% (susan_s). This actually shows a reduction 
in SDCs for susan_s, from 0.2% in single-bit faults to 0% in 
double-bit faults. Crash vulnerability varies between 9.6% (su-
san_s) and 3.3% (qsort). As a result, given that susan_s provides 
zero SDC vulnerability, this leads to a 2x increase of crash vul-
nerability (from 4.7% to 9.6%). Timeouts vary between 2% 
(qsort and susan_c) and 0.75% (cjpeg). 

 As we can see in the triple-bit fault bars of Fig. 3, the 
masked faults vary between 30.2% (adpcm_dec) and 89.8% 
(stringsearch). Compared to single and double-bit fault injection 
campaigns, for the L1D Cache and the L1I Cache, we can notice 
that the L2 cache has similar behavior to the L1D Cache, making 
the L1I Cache less vulnerable. In L1I Cache, we notice only 2 
benchmarks out of 15, with a rate lower than 50% for the masked 
faults, which is far better than L1D Cache’s rate, in which 5 
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Fig. 2. AVF for single-bit, double-bit and triple-bit fault injection campaigns for 15 benchmarks for L1 Instruction Cache (L1I Cache).



 

benchmarks has masked faults lower than 50%. SDC vulnera-
bility varies between 62.1% (adpcm_dec) and 0.2% (susan_s), 
while crash vulnerability varies between 10.9% (susan_s) and 
4.4% (qsort). Timeouts vary between 2.7% (qsort) and 1% 
(adpcm_dec), while assertions continue holding negligible rates, 
with a maximum of 0.5% for FFT; lower than single- and dou-
ble-bit fault injection campaigns. 

D. Register File 

The register file is the only pipeline structure in our study. 
Fig. 4 shows that the masked signle-bit faults vary between 
84.2% (sha) and 94.4% (susan_c). The register file is less vul-
nerable compared to all other components. Similarly to the 
cache memories, SDCs and Crashes dominate among the other 
vulnerable classes. More specifically, crashes vary between 
9.3% (susan_s) and 3.1% (stringsearch), and SDCs between 
11% (sha) and 0.5% (susan_c). Timeouts and assertions have 
very low rates, with timeouts reaching as large as 2.4% 
(stringsearch) and assertions have 0% for 13 out of 15 bench-
marks. 

Double-bit fault bars show that the masked faults vary be-
tween 74% (sha) and 89.7% (stringsearch). In 13 out of 15 
benchmarks, crashes are the most prominent faulty behavior 
among the other vulnerable cases, which varies between 14.9% 
(susan_s) and 5% (stringsearch). SDC vulnerability varies be-
tween 15.5% (sha) and 0.7% (stringsearch). Timeouts vary be-
tween 4.5% (stringsearch) and 1.3% (FFT).  

As we can see in the triple-bit fault bars of Fig. 4, the masked 
faults vary between 69.1% (sha) and 85.5% (stringsearch). The 
AVF difference among single, double and triple0bit faults is the 
smallest, compared to the other components. The highest re-
ported vulnerability (69.1%) is also the lowest among the six 
components for multi-bit faults. The second most frequent fault 
effect is a Crash. Crashes vary between 18.4% (susan_s) and 
7.7% (stringsearch), with 14 out of 15 benchmarks having ratios 
higher than 10%. SDCs vary between 18.5% (sha) and 0.8% (su-
san_c). Timeouts vary between 5.7% (stringsearch) and 2.1% 
(gsm_dec), and assertions reach a high of 0.3% for stringsearch. 

E. Data Translation Look-Aside Buffer (DTLB) 

TLBs do not directly participate in data transactions of a pro-
gram, but instead, they facilitate address translation. Faults in 
TLBs can primarily lead to multiple incorrect memory accesses. 
Both TLBs are highly vulnerable to all of the evaluated fault 
models. As we can see in the single-bit fault bars of Fig. 5, the 
AVF varies between 57.6% (basicmath) and 39.2% (qsort). We 
notice that 7 out of 15 benchmarks have AVF higher than 50%. 
The most frequent failure sourcing in DTLB faults appears to be 
the Crashes followed by Timeouts. Crashes vary between 32.8% 
(FFT) and 16.7% (qsort). Interestingly, we observe high rates 
for timeouts which vary between 23.1% (stringsearch) and 6.3% 
(cjpeg), while SDCs have lower rates for most of the cases, 
which range between 17.1% (basicmath) and 1.5% (sha). For the 
DTLB we also observe higher ratios for assertions compared to 
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Fig. 4. AVF for single-bit, double-bit and triple-bit fault injection campaigns for 15 benchmarks for the Register File.

Fig. 3. AVF for single-bit, double-bit and triple-bit fault injection campaigns for 15 benchmarks for L2 Cache.
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the previous components, with a maximum value of 3.50% for 
CRC32. 

For double-bit faults, the vulnerability is between 67.9% 
(basicmath) and 50.3% (qsort). In all cases, AVF is higher than 
50%. We observe a vulnerability escalation similar to the other 
components. Crashes vary between 37.2% (djpeg) and 16.2% 
(stringsearch). Timeouts vary between 32.8% (stringsearch) and 
10.2% (cjpeg). SDCs vary between 14.1% (basimath and qsort) 
and 0.6% (sha). Interestingly, in most benchmarks (14 out of 15) 
the highest SDC rates are reported in single-bit faults. Assertions 
vary between 8.6% (CRC32) and 2.3% (stringsearch), which is 
approximately 2x the single-bit campaign for most of the cases. 

As we can see in the triple-bit fault bars of Fig. 5, the vulner-
ability increases, from 55.9% (qsort) to 71.5% (basimath). 
Timeouts vary between 37.5% (stringsearch) and 14.8% (cjpeg). 
SDCs vary between 13.4% (qsort) and 0.7% (sha). As the num-
ber of faults increases, we observe a reduction on SDC rates 
(similar to double-bit faults), in which 11 out of 15 benchmarks 
have lower rates compared to the double-bit fault injection cam-
paigns. DTLB reports the worst rates for assertions compared to 
other components since faults in the DTLB can cause a physical 
address request that is not part of the system map. We can see a 
variation from 8.9% (CRC32) to 2.5% (cjpeg). Assertions are 
more frequent than SDCs for 6 out of 15 benchmarks.  

F. Instruction Translation Look-Aside Buffer (ITLB) 

Like the DTLB, ITLB guides the translation of the instruc-
tion fetch requests. Faults can result to incorrect physical address 

translation that are used in the program counter. Single-bit fault 
bars of Fig. 6 show that AVF varies between 41.9% 
(rijndael_dec) and 62% (basicmath). We observe that similarly 
to the DTLB, 6 out of 15 benchmarks the AVF is more than 
50%. Crashes are the most frequent fault effect, estimated be-
tween 43.1% (djpeg) and 1.5% (stringsearch). On the other 
hand, timeouts are estimated between 16.2% (qsort) and 44.2% 
(stringsearch). Interestingly, the while the stringsearch bench-
mark has the lowest ratio of crashes, it has the highest ratio of 
timeouts. Faults in ITLB are expected to lead to either a crash of 
the benchmark because of a virtual address in the TLB that does 
not correspond to a mapped physical address or to a Timeout if 
the program counter is guided to a random set of instructions. 
Thus, it is unlikely to have an SDC. Most of the benchmarks (10 
out of 15) have zero SDCs, while the highest rate is just 0.4% (8 
out of 2000 runs led to an SDC) for sha benchmark. Assertions 
also appear in small rates, with a maximum of 1.3% for CRC32. 

Similarly to the DTLB, all the benchmarks have a vulnera-
bility greater than 50% in the double-bit fault bars of Fig. 6, the 
AVF varies between 54% (rijdnael_dec) and 69.8% (basic-
math). Crashes are estimated from 1.5% (stringsearch) to 44.3% 
(djpeg), while timeouts vary between 55.5% (stringsearch) and 
22.1% (djpeg). SDCs, still hold negligible rates while assertions 
reach a high of 2.1% for CRC32. 

ITLB is the most vulnerable among all other components. 
Crash vulnerability varies between 46.4% (basimath) and 1.4% 
(stringsearch) for triple-bit faults, while timeouts vary between 

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

CRC32 FFT adpcm_dec basicmath cjpeg dijkstra djpeg gsm_dec qsort rijndael_dec sha stringsearch susan_c susan_e susan_s

A
V

F
Data TLB

Masked Crash SDC Timeout Assert

Fig. 5. AVF for single-bit, double-bit and triple-bit fault injection campaigns for 15 benchmarks for Data TLB (DTLB). 

Fig. 6. AVF for single-bit, double-bit and triple-bit fault injection campaigns for 15 benchmarks for Instruction TLB (ITLB).
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62.8% (stringsearch) and 25.4% (basimath). Interestingly, with 
triple-bit fault campaigns, we did not observe any SDCs apart 
from a single exception  in all in 30,000 runs, showing that faults 
in ITLBs cannot really result in SDCs. Assertions appear to have 
the highest ratio of 3.4% for CRC32 (almost 3x higher than the 
single-bit fault campaign). 

G. Summary and Observations 

Table IV summarizes the observations of the previous sub-
sections regarding the AVF estimation, for each component 
across all benchmarks between single- and double-bit faults (2-
bit column) and between single- and triple-bit faults (3-bit col-
umn). Table IV clearly shows that the L1I cache suffers the most 
from triple-bit faults, as the vulnerability is 3.2x higher (220% 
increase) compared to single-bit faults, while the most sensitive 
component to double-bit faults is the L1D cache, which is 2.4x 
more vulnerable (140% increase) than in single-bit faults. On the 
contrary, the DTLB is the most resistant in double-bit fault in-
jections among all other components (1.4x increase), and the 
ITLB shows the smallest effect of triple-bit faults (1.5x in-
crease). Another important observation is that the TLBs show a 
different faulty behavior than other components, in which we 
observe a lower SDC rate (because faults in TLBs primarily lead 
to incorrect memory accesses, and thus, wrong fetched data or 
instructions from memory), and the timeouts and assertions pre-
sent significantly higher vulnerability than other components. 

V. AVF PER TECHNOLOGY NODE – ALL MULTI-BIT FAULTS 

In the previous section, we discussed in details the increase 
of the vulnerability to individual classes of spatial multi-bit 
faults (double, triple) in all six components of our analysis. In 
this section, we quantify the aggregate effect of these vulnera-
bilities to the total AVF of each component. Every fabrication 
technology node suffers different rates of multi-bit upsets and 
patterns. Denser technologies tend to suffer from MBUs in 
larger cluster sizes and, depending on the fabrication technol-
ogy, potentially higher rates. FinFET, for instance are reported 
to be less prone to faults compared to CMOS [22], [23]. These 
attributes are inherited from the technological layer and applied 
to our methodology, which accordingly applies the contribution 
of each fault-model to the device’s reliability estimation. We uti-
lize the per-component and per multi-bit class vulnerabilities of 
the previous section, to calculate the total AVF for every tech-
nology node and every hardware structure. 

A. AVF per Hardware Structure 

To comprehensively summarize the detailed data and results 
of the previous section, we average the AVF of each component 
across the 15 different benchmarks. However, instead of calcu-
lating the straightforward arithmetic mean of the AVFs of the 
component for the different benchmarks, we weighted the AVFs 
according to the execution time of the benchmarks. Thus, very 
short benchmarks will have a smaller impact on the component’s 
AVF compared to longer ones.  The resulting weighted average 
AVF takes into consideration the execution time (measured in 
clock cycles) of each of the 15 benchmarks. It is calculated by 
summing the AVF of all benchmarks, each multiplied by the ex-
ecution time of the corresponding benchmark and divided them 
by the sum of the execution time of all the benchmarks, as shown 
in equation (2): W ( ) = ∑ AVF ( ) ∙∑  (2)

where, WAVF(c) is the weighted AVF of a c component per fault 
number, AVFk(c) is the AVF of a c component per benchmark, 
tk is the execution time of each benchmark, and N is the total 
number of benchmarks. The AVF numbers in this formula can 
be either the single-bit AVFs alone, the double-bit AVFs, alone, 
the triple-bit AVFs alone, or finally the aggregate AVFs includ-
ing all cardinalities weighted by the technology rates. 

Table V presents the technology-independent weighted av-
erage AVF for the single, double and triple-bit faults separately 
for each component. The observations of the previous sections 
are also demonstrated in Table V (e.g. that the TLBs are the most 
vulnerable components). The vulnerability is increased as we in-
crease the number of injected faults (from single to double and 
from double to triple). The TLBs have higher AVF rates than the 
other components, even for single fault injection. The probabil-
ity of a fault in the TLB creating an error is always larger than 
50%. The Register File has the smallest AVF rates among all 
components, while in the case of the cache memories, we can 
see that the L1D Cache has the highest AVF rates among all 
cache levels. As far as the percentage increases are concerned, 
we observe that for every component there is an increase in the 

TABLE IV. VULNERABILITY ANALYSIS CONCLUSIONS AND 

VULNERABILITY DIFFERENCE PER COMPONENT. 

 
Comments 

Vulnerability 
Increase 

2-bit 3-bit 

L1D Cache 

 All benchmarks have significantly lower 
rate of masked faults compared to single-
bit fault injections 

 SDCs have the highest rate among the 
other vulnerable cases 

 Timeouts and assertions are low 

2.4x 2.7x 

L1I Cache 

 All benchmarks have masked fault rate 
greater than 50% 

 SDCs have the highest rate among the 
other vulnerable cases 

 Timeouts and assertions are low 

2.3x 3.2x 

L2 Cache 

 SDC and crash vulnerability have the 
highest rates 

 It is more vulnerable to multi-bit faults 
than L1D and L1I caches 

 Timeouts and assertions are low 

1.9x 2.4x 

Register File 

 SDCs and Crashes dominate among the 
other vulnerable cases 

 It has the smallest (absolute) vulnerabil-
ity increase among all components, re-
porting the highest level of multi-bit fault 
tolerance. 

 Timeout and assertions are low 

2.1x 2.7x 

DTLB 

 All the benchmarks have masked fault 
rate lower than 50% 

 It appears to have the worst effect to 
multi-bit faults, even in single-bit faults 

 Timeouts and Crashes are the most dom-
inant faulty behaviors 

1.4x 1.6x 

ITLB 
 Similar to DTLB, but ITLB has no SDC 
 It is relevant to instructions; we observe 

virtually zero SDC vulnerability 
1.5x 1.5x 



 

AVF as the number of faults increases, but most importantly we 
notice that the increase between single- and double-bit faults is 
larger for all components compared to triple-bit faults. For ex-
ample, when double-bit faults are injected in Register File, we 
observe an AVF increase, which is as high as 70.32%, compared 
to single-bit fault injection, and it is the larger increase among 
all components. On the other hand, the lowest AVF increase 
among all components for triple-bit fault injections compared to 
double-bit faults injections is observed in ITLB, which is 5.98%. 

These numbers correspond to the vulnerability of Gem5 con-
figuration of the ARM® CortexTM-A9 microarchitecture, and are 
independent of the manufacturing process.  

B. Aggregate Multi-bit AVFs per Technology Node 

Every particle-induced soft-error has a different probability 
to result in a multi-bit upset at different fabrication technologies. 
These are shown in Table VI. As the multi-bit upset rates for 4-
bit faults and above are very low, we add them to the triple-fault 
class. We use the multi-bit upset ratios from 250nm to 22mn 
technology nodes, as presented in [1]. For more consistency, we 
used a single source for the technological data and thus, we ex-
cluded more recent technologies, such as FinFET 14 nm and 7 
nm; our estimation is fully applicable to those nodes as well.  

As Table VI shows, in older fabrication technologies, the 
probability of appearance of a multi-bit fault are very small. On 
the other hand, as the transistor sizes shrink, the probability of 
multi-bit faults becomes significantly higher. By combining the 
probabilities for each fault class (single, double, triple) with the 
corresponding AVF for each component, we calculate the AVF 
of the component for each technology node. We use the follow-
ing formula per technology node: ( ) = ( ) ∙ ( ) (3)

where, NodeAVF is the AVF for each technology node, c is the 
component, i is the number of injected faults (1, 2, and 3 in our 
case), and f is the fault rate of each class. 

The calculated AVFs for every technology node are shown 
in Fig. 7. Each bar shows the estimated AVF, separated in 2 col-
ors. Green corresponds to single-bit AVF while red color shows 
the component’s AVF difference when multi-bit faults are also 
considered. For each technology, the single-bit only AVF is the 
same as the 250 nm AVF because this is the only node with only 
single-bit upsets. The difference of each technology bar (red 
color) shows the assessment gap that our analysis measures for 
each component: i.e. the actual AVF when all realistic multi-bit 
upsets are considered vs. the dry single-bit upset only AVF. This 
varies from 11% (DTLB) to 35% (register file) AVF difference 
for 22nm. As expected, the AVF of more recent nodes is signif-
icantly higher, due to the fact that the ratio of MBUs is higher 
and, in every single case, the AVF of MBUs was estimated 
higher compared to single-bit fault AVF. As the ratio of MBUs 
is the same for all components in a particular technology, the 

TABLE V. WEIGHTED AVF PER COMPONENT FOR 1, 2, AND 3 FAULTS. 

Component 
Injected 
Faults 

AVF 
Percentage 

Increase 

L1 D Cache 
1 20.32% - 

2 29.70% +46.16% 

3 36.28% +22.15% 

L1 I Cache 
1 12.01% - 

2 19.57% +62.95% 

3 25.14% +28.46% 

L2 Cache 
1 17.94% - 

2 24.83% +38.4% 

3 30.13% +21.35% 

Register File 
1 10.95% - 

2 18.65% +70.32% 

3 23.01% +23.38% 

ITLB 
1 50.31% - 

2 62.91% +25.04% 

3 66.67% +5.98% 

DTLB 
1 50.66% - 

2 61.77% +21.93% 

3 67.22% +8.82% 

TABLE VI. MULTI-BIT RATES PER NODE. 

Technology 
Node 

Single-bit 
Faults 

Double-bit 
Faults 

Triple-bit 
Faults 

250nm 100.00% 0.00% 0.00% 

180nm 96.40% 3.60% 0.00% 

130nm 93.40% 4.40% 2.20% 

90nm 87.80% 9.60% 2.60% 

65nm 81.60% 16.10% 2.30% 

45nm 72.20% 23.00% 4.80% 

32nm 65.30% 29.10% 5.60% 

22nm 55.30% 34.40% 10.30% 

Fig. 7. Multi-bit upsets weighted AVF per component for different technology nodes. Green color corresponds to single-bit fault vulnerability, 
which matches the vulnerability of 250nm, while red color illustrates the vulnerability due to multi-bit upsets. For example, in the L1I cache 

when only single bit upsets are considered, the AVF would be only 12% (the AVF of the 250 nm) while the actual multi-bit AVF in the 22 nm 
node is 16%; a very large 33% difference that single-bit assessment (through injection or other methods) misses.
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trends that existed in each component remain unchanged. The 
highest vulnerability is reported for the ITLB at 56.3% AVF for 
the 22 nm node. This means that typical reliability estimations 
that only consider single bit faults would miss as much as 6 per-
centile units (i.e., 11.9% loss) in the AVF estimation. This ap-
plies to all of the studied components, with the minimum devia-
tion observed in L2 cache, at 3.6 percentile units (i.e., 20.2% 
loss). We can also observe that the AVF difference of every step 
is larger compared to the previous steps (e.g., the difference 
from 180nm to 130nm is larger than the difference from 250nm 
to 180nm) with an exception of the 45nm to 32nm step, in which 
the rates are always smaller than the 65nm to 45nm case. 

VI. FAILURES IN TIME ANALYSIS PER TECHNOLOGY NODE 

Failures in Time (FIT) rate of a device is the number of fail-
ures that can be expected in one billion (109) device-hours of 
operation. For each hardware structure in a microprocessor, a 
different FIT is computed using the formula in Eq. 4 below. As 
we can see, the FIT of the structure is affected by three compo-
nents: the FITBIT (or raw FIT) rate, which is determined by the 
fabrication technology (Table VII) and expresses the fault rate 
of a single bit, the number of bits of the structure and the AVF 
of the structure, which is affected by the microarchitecture and 
the running workload. The raw FIT rate expresses the number of 
soft-errors that will be introduced in the component, while the 
AVF is the derating factor that quantifies how many of these 
upsets will lead to a failure. The product equals to the FIT rate 
of a component. The FIT of the entire CPU is calculated by add-
ing the individual FITs of the structures. = × 	× #  (4)

For each technology node, we calculate the FIT of the core 
by adding the corresponding FIT of all components. For the cal-
culation of the FIT of a component for a specific technology 
node, we use the rawFIT rate per bit of Table VII [1]. Notice that 
the per-bit FIT rate increases from 250 nm to 130 nm and then 
it starts to decrease. Although the devices become more sensi-
tive, the effects of the high-density overpass the decreased reli-
ability, when projected in a bit-size relative format. The size of 
each of the six components is listed in Table VIII.  

Fig. 8 shows the total CPU FIT rate for each technology node 
using our analysis findings. The red color indicates the percent-
age of FIT due to multi-bit faults, which starts from 0% in 
250nm node and reaches a high 21% in 22nm. This is the portion 
that is normally ignored by single-bit fault estimations. We can 
also see that the FIT for each component is increasing until the 

point of 130nm. After that, the FIT rate starts to decrease, reach-
ing the lowest FIT values at 22 nm. The trend is aligned with the 
rawFIT rates of Table VII. These values correspond to the exact 
same microarchitecture with the exact same configuration. The 
differences observed are due to the much smaller area that the 
chip occupies in the higher density technologies, which results 
to a significantly smaller number of particles that will eventually 
strike the processor. On the other hand, each of these particles 
has a higher probability to cause multi-bit upsets and higher 
chances of failures.  

VII. CONCLUSION 

In this paper, a complete analysis of out-of-order micropro-
cessors vulnerability to realistic spatial multi-bit upsets across 
different manufacturing technologies. We reported how MBUs 
affect the vulnerability of 6 different microarchitectural compo-
nents, using an enhanced version of the GeFIN fault injector. 
Our analysis shows that the vulnerability is significantly higher 
on multi-bit faults, up to 3.2x (+220%) between single and tri-
ple-bit fault injection. By considering the ratio for MBUs in sev-
eral fabrication technology nodes, we calculated the complete 
realistic AVFs of the hardware components considering all dif-
ferent types of MBUs. The results show that a difference up 35% 
in the vulnerability estimation was caused due to MBUs in 22nm 
fabrication technology. Using these results along with the soft-
error rates of each technology, we calculated the overall reliabil-
ity (FIT rates) of the entire CPU in 8 different technology nodes. 
The results show that the estimated FIT rate can be up to 21% 
higher when considering multi-bit faults.  

The presented analysis highlights the importance of the con-
tinuously evolving problem of MBUs in microprocessors. It is 
generic, and as so, also applicable to other CPU models (e.g., in-
order CPUs) and ISAs (e.g., x86, RISC-V) and can be performed 
to post 22nm technology nodes (including current FinFET nodes 
and forthcoming technologies) for which we expect the per-
component AVF and the overall microprocessor FIT rates as-
sessment gaps between single-bit and aggregate multi-bit faults 
to be even larger because of the higher rates of multi-bit faults 
in the CPU structures.  

TABLE VII. RAW FIT FOR 250NM 

TO 22NM NODES. 

Node Raw FIT per bit  

250 nm 47 x 10-8 

180 nm 85 x 10-8 
130 nm 106 x 10-8 
90 nm 100 x 10-8 
65 nm 85 x 10-8 
45 nm 58 x 10-8 
32 nm 38 x 10-8 
22 nm 23 x 10-8 

TABLE VIII. COMPONENT SIZES IN 

BITS. 

Component Size (in bits) 

L1D Cache 262144 
L1I Cache 262144 
L2 Cache 4194304 

Register File 2112 
ITLB 1024 
DTLB 1024 

 

Fig. 8. FIT for the entire CPU core for different technology nodes 
(numbers inside the green bars). Red color areas correspond to the 
contribution of multi-bit upsets.  
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