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Abstract—We propose AVGI, a new Statistical Fault Injec-
tion (SFI)-based methodology, which delivers orders of magni-
tude faster assessment of the Architectural Vulnerability Factor 
(AVF) of a microprocessor chip, while retaining the high accu-
racy of SFI. The proposed methodology is based on three key 
insights about the way that faults traverse complex out-of-order 
microarchitectures: (1) the distribution of the different ways 
that hardware faults manifest at the software (i.e., the first ef-
fects of faults to the software layer) is relatively uniform across 
workloads, (2) the final effects of faults in a specific hardware 
structure (i.e., their effect on the program execution) is rela-
tively uniform for different workloads and depends on the dis-
tribution of the above fault manifestations, and (3) the majority 
of first manifestations occur in certain timeframe from the fault 
occurrence, which is significantly shorter than the complete ex-
ecution of the workload, and depends on the type of hardware 
structure. Based on these insights, the proposed AVGI method-
ology accurately estimates the complete cross-layer vulnerabil-
ity (i.e., AVF) for every hardware structure in fine granularity 
(SDCs and Crashes). Our experimental analysis shows that pre-
serving high levels of accuracy, the proposed AVF assessment 
methodology is up to 337x and 440x faster than an accelerated 
exhaustive SFI, for two different microarchitectures of 64-bit 
Armv8 and 32-bit Armv7 CPU models, respectively. 

Index Terms—microarchitecture; reliability; hardware/soft-
ware interface; microprocessors; microarchitecture-level fault 
injection 

I. INTRODUCTION 
Reliability evaluation in early stages of microprocessor 

designs varies in the level of hardware modelling accuracy, 
the speed of the evaluation, and the granularity of the assess-
ment report. Determining the Architectural Vulnerability 
Factor (AVF) of each individual hardware structure of the 
microprocessor throughout full end-to-end program execu-
tion is the most comprehensive way to measure the vulnera-
bility of the entire system stack, including the microarchitec-
ture, architecture, and software layers. The AVF of a hard-
ware structure is the probability that a transient fault in it will 
affect the program’s output [1] [2]. Typically, designers rely 
either on Statistical Fault Injection (SFI) [1] or on analytical 
methods, such as the Architecturally Correct Execution 
(ACE) analysis [2] [3], to provide insights into the programs’ 
resiliency toward transient faults, because both methods aim 
to report the AVF of hardware structures. However, both 
techniques come with pros and cons: SFI is easier to imple-
ment, provides very accurate AVF but is significantly slow 

since it required several runs to reach high confidence; on the 
other hand, ACE analysis is fast (few runs), but requires very 
high development effort and provides pessimistic AVF over-
estimations. For example, Fig. 1 shows the AVF for SFI and 
ACE analysis on our infrastructure for the physical register 
file of an Arm Cortex-A72-like CPU. The AVFs reported by 
ACE analysis are constantly larger than SFI by 1.2x to 3x. 

At the cost of multiple simulation runs of SFI, AVF meas-
urements provide useful and accurate insights on the suscep-
tibility of programs across the entire system stack (from the 
microarchitecture to the software layer). In an effort to accel-
erate SFI, several methods work at higher (thus faster) levels 
of abstraction (architecture or software), and evaluate the pro-
gram’s vulnerability assuming that the origin of a flipped 
hardware bit is an architecturally visible location (e.g., the 
Program Vulnerability Factor – PVF) [4]-[13]. Vulnerability 
evaluation methods that rely on the software or architecture 
level of abstraction are clearly much faster than the end-to-
end AVF estimations that account for all hardware bits and 
operate at the microarchitecture cycle-accurate detail. Due to 
their speed benefit, high-level vulnerability evaluation meth-
odologies have become common practice. However, a major 
pitfall in microprocessor reliability assessment has been re-
cently demonstrated [14]: high-level fault injection ap-
proaches (i.e., microarchitecture agnostic) mislead the relia-
bility assessment of microprocessors and may instruct de-
signers to take wrong decisions for error protection.  

In this paper we propose AVGI1, a novel microarchitec-
ture-level SFI-based methodology, which accelerates the 
AVF assessment for every hardware structure of a micropro-
cessor and the entire chip (up to 337x faster per structure 
compared to an accelerated typical SFI flow, and 22x for an 

_____________________________________ 
1 AVGI is a Greek word for dawn (in Greek: Αυγή): the first appearance of 
light in the morning followed by sunrise; or figuratively: something new or 
the beginning of a great development. 

Fig. 1. AVF reports comparison between SFI and ACE analy-
sis for the physical register file of Arm Cortex-A72-like CPU. 
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entire 64-bit CPU), while retaining the high accuracy of SFI. 
The proposed methodology accurately delivers fine-grain 
cross-layer AVF assessment for every fault effect, including 
the most critical class of Silent Data Corruptions. The contri-
butions of this paper are the following: 
1. We categorize the hardware faults manifestations to the 

architecture (ISA – Instruction Set Architecture) layer, 
providing eight complete and mutually exclusive ISA 
Manifestation Models (IMMs). The unique set of IMMs 
is a fundamental knob that can refine the accuracy of 
high-level assessment methods. 

2. We experimentally explore, for the first time in the liter-
ature, the relation of the IMMs to the final effect on the 
program output (i.e., what is the eventual “fate” of a fault 
after it is classified in one of the IMM classes), for 12 
major CPU hardware structures. We conduct a microar-
chitecture-dependent analysis and a cross-layer AVF 
analysis, which reveals two key insights of faults behav-
ior: (i) the distribution of IMMs (i.e., first appearance of 
faults to the software) is relatively uniform across pro-
grams, and (ii) the final fault effects classification for 
each hardware structure (i.e., the effects of faults on the 
program output) depends on the IMM distribution. 

3. We experimentally observe that most fault manifesta-
tions (i.e., IMMs) occur within a specific short 
timeframe from the fault occurrence, due to the effective 
residency time of faults in a specific resource. This 
timeframe differs among hardware structures but is sig-
nificantly shorter than the end-to-end execution of the 
workload, which suggests further speedup. 

4. We propose a novel microarchitecture-driven methodol-
ogy for full stack vulnerability assessment that combines 
and leverages the previous insights with fast runtime pro-
filing to eventually elicit the final fault effects without 
running time-consuming AVF evaluations. The pro-
posed methodology provides all AVF classes, by consid-
ering any microarchitecture-level fault occurrence (i.e., 
there is no pruning of the initial fault list), including the 
most important one of Silent Data Corruptions (SDCs) 
and delivers extremely accurate vulnerability results in 
up to 337x shorter time than end-to-end AVF. 

5. We conduct a case-study that considers a different ISA 
and microarchitecture to demonstrate the effectiveness 

of the proposed methodology on a different microarchi-
tecture. In this context, we present AVF and FIT (Fail-
ures in Time) rates, which clearly demonstrate the accu-
racy of vulnerability evaluations for every hardware 
structure of the microprocessor and the entire CPU for 
both ISAs and microarchitectures. 

II. EXPERIMENTAL SETUP 

A. Software Manifestation Models 
Reliability evaluation through Statistical Fault Injection 

either at the hardware or at the software layers, is based on 
injecting faults (bit flips to model transient faults) and simu-
lating to the end of execution to observe their effect on pro-
gram execution. It is, therefore, important to model the way 
that faults propagate from the hardware layer and manifest to 
the software layer. For this purpose, we introduce a complete 
set of mutually exclusive ISA Manifestation Models (IMMs), 
listed in Table I, which define the interface between the hard-
ware and the software as faults traverse the abstraction stack. 
We adopt the coarse-grained fault propagation models from 
[14], but refine them into more distinct groups, considering 
any possible effect of a hardware fault at the software layer. 
As we show in next sections, the set of IMMs is complete and 
mutually exclusive. The proposed methodology leverages 
this classification, and as we discuss in the following sec-
tions, it can effectively elicit the final fault effects (i.e., the 
effects of faults on the program output) through the unique 
properties of the IMM classes. 

B. Final Fault Effect Classification 
Any SFI campaign, assumes that the occurrence of a fault 

may influence the eventual output of the program. We clas-
sify the effect on the program output into the following fault 
effect classes (typically used in all fault injection studies at 
any layer of abstraction): 

Masked: Simulation finished with no deviations from a 
fault-free execution, Thus, the fault did not affect the system 
or the application in any observable way. 

Silent Data Corruption (SDC): Simulation finished nor-
mally, but the program output was different than the fault-
free simulation, without any observable indication. 

TABLE I 
THE EIGHT MUTUALLY EXCLUSIVE ISA MANIFESTATION MODELS (IMMS) AND THEIR DESCRIPTION. 

 IMM Description 
 

IFC Instruction Flow Change A different instruction is executed compared to the original program flow due to an incorrect instruction fetching 
IRP Instruction Replacement A different instruction is executed compared to the original program flow due to a corrupted Opcode 

UNO Unknown Operand One or more instruction operand fields are corrupted and are unknown to the ISA 
OFS Operand Forced Switch Register operand(s) and/or immediate value(s) field(s) of the instruction format are corrupted 
DCR Data Corruption The correct resource is used, but the content of the resource (register or memory word) is corrupted 
ETE Execution Time Error The instruction is correct, but it was committed in a wrong clock cycle compared to the fault-free execution 
PRE Pre-Software Crash The execution crashes before the fault affects the ISA due to a high-level condition which is ISA-undefined 
ESC Escaped Faults that corrupt the program output without ever reaching the software layer (see details in section IV.D) 

 



Crash: A simulation that neither reached the end of the 
program nor finished within a certain amount of time, be-
cause it was disturbed by a catastrophic event. As a result, no 
program output was produced.  

C. Statistical Fault Injection Framework 
Fault injection should ideally be based on a real system or 

a very detailed low-level simulator (e.g., RTL). Although 
low-level simulators may provide accurate fault effects, their 
simulation throughput is extremely low to be affordable and 
cannot model long running workloads with OS activity. Our 
methodology relies on microarchitecture-level simulation us-
ing the gem5 simulator [15], which allows deterministic end-
to-end execution of large workloads on top of an operating 
system that is impossible at lower levels. Even if an RTL 
model of a microprocessor was available and the full system 
injection on it was possible, it would only marginally aug-
ment our analysis [16] with the vulnerability of the combina-
tional logic, which has very low raw failure rates compared 
to storage elements on which we focus [17].  

For this reason, we present our methodology harnessing 
the high throughput of microarchitectural modeling in perfor-
mance simulators, such as gem5. We employ GeFIN [18], the 
state-of-the-art microarchitecture-level fault injection frame-
work built on top of the gem5 [15]. GeFIN consists of a mod-
ified gem5 version that allows fault injection along with in-
strumentation for running and controlling simulation cam-
paigns on full-system setup [14] [18]-[20]. 

D. Hardware Structures & Benchmarks 
In this study, we first employ a 64-bit Armv8 ISA, mod-

eling an out-of-order microarchitecture, which is very similar 
to the Arm Cortex-A72 CPU. For a comprehensive analysis, 
our evaluations target 12 important hardware structures: L1 
data and instruction caches (tags and data fields), L2 cache 
(tags and data fields), the Physical Register File, the Load 
Queue (LQ), the Store Queue (SQ), the Reorder Buffer 
(ROB), and the Instruction and Data TLBs. We employ a di-
verse set of 13 workloads consisting of: (a) 3 workloads from 
NAS benchmarks suite [21], and (b) 10 workloads from the 
MiBench benchmarks suite [22] using the largest possible in-
put datasets for all benchmarks. The execution times of the 
benchmarks range from 100 million cycles to 2.2 billion cy-
cles and our experiments include both integer and FP bench-
marks as well as both compute and memory bound bench-
marks.  

In contrast to previous microarchitecture-level reliability 
studies that employ SPEC benchmarks either considering 
only Simpoints of 10 to 100 million cycles (i.e., a very short 
part of the benchmark) or interrupting the simulations during 
a few thousand of cycles after the fault injection [23]-[27], in 
this study, we consider the end-to-end execution of bench-
marks with significantly higher number of cycles (up to 2.2 
billion cycles). MiBench suite is commonly used in reliability 

studies [18]-[20], [28]-[36] as it facilitates complete end-to-
end executions. For each of the 12 components, 2,000 single-
bit faults were randomly generated following the uniform dis-
tribution as defined in [1], resulting in 312,000 faults for all 
13 benchmarks and the 12 different hardware components. 
We follow the widely adopted formulation of [1] for the sta-
tistical fault sampling calculations; our 2,000 fault samples 
correspond to 2.88% error margin with 99% confidence level.  

III. UNDERSTANDING FAULTS BEHAVIOR 
In this section we explore the “fate” of IMMs towards the 

final fault effect in the output of the program for all hardware 
structures. We conduct a complete fast HVF (Hardware Vul-
nerability Factor) analysis [37] (to extract the IMMs classes) 
and a cross-layer AVF analysis [1] (for the final fault effect 
classes) for all benchmarks and hardware structures of a mi-
croprocessor. Combining the insights of both analyses, we 
show how they can be used and influence the microarchitec-
ture-driven assessment presented in Section IV. 

A. Experimental Analysis 
Our analysis employs two experimental steps for the vul-

nerability evaluation of different layers: the HVF assessment 
and the AVF assessment, providing the microarchitecture-de-
pendent vulnerability and the cross-layer vulnerability, re-
spectively. The microarchitecture-dependent evaluation (i.e., 
HVF) focuses on the effects of hardware faults only until they 
first “touch” the software layer and stops at that point. For the 
HVF analysis, we consider as Benign faults, those faults that 
eventually get masked by a microarchitectural operation 
(e.g., a misprediction), and thus, the fault occurrence never 
reach the commit stage. Since the fault occurrence did not 
commit, the fault is not architecturally visible, and it is cate-
gorized as Benign. On the other hand, any fault that reaches 
the commit stage (i.e., architecturally visible), is considered 
as a Corruption. Each Corruption is categorized to one (and 
only one) IMM, from those listed in Table I, depending on 
the type of corruption.  

The diagram of Fig. 2 explains in detail the process we 
follow to classify a hardware fault into one of the IMM clas-
ses; any fault ends up to one and only one class. Each instruc-
tion is associated to the following parameters upon its retire-
ment: (i) the committed cycle, (ii) the Program Counter (PC), 
(iii) the opcode, (iv) the register operands and/or an immedi-
ate field, and (v) the register contents. As shown in the dia-
gram of Fig. 2, any corruption in the commit trace (i.e., the 
“Commit Trace Correct” check is False – left top branch of 
the diagram) can be categorized into only one IMM (six IMM 
nodes exist on the left branch). It is clearly shown by these 
conditions (i.e., six different conditions are checked for a po-
tential commit trace corruption) that one and only one IMM 
class node can be reached (i.e., mutual exclusiveness). Also, 
since these conditions cover any parameter of the instruction, 
there can be no other class for IMM (i.e., completeness). 



When a condition is checked and found false, the remain-
ing (not checked) conditions are “don’t care”. For example, 
for the IRP class node to be reached, the PC must be correct, 
and the opcode must be corrupted. All other parameters that 
are associated with the instruction are “don’t care” (the “64” 
label in the IRP node denotes the number of all combinations 
of the 6 “don’t care” conditions). In another example, for the 
OFS class node to be reached, the PC, and the opcode must 
be correct, all operands must be defined in the ISA, and one 
of the operands must be wrong (but still in the ISA). The re-
maining 4 conditions are “don’t care” (the “16” label in the 
OFS node shows the number of their combinations). The sum 
of all dark labels in the IMM class nodes of Fig. 2 is 256, 
which is the complete number of combinations of the 8 con-
ditions (i.e., 28 = 256 combinations).  

One the other hand, if there is no deviation in the commit 
stage (i.e., the “Commit Trace Correct” check is True – right 
top branch of the diagram in Fig. 2), the categorization de-
pends on the existence of output file. If no output file has been 
generated, this means that the fault may have caused a viola-
tion of a high-level condition, and a simulator assertion check 
has failed (i.e., PRE class). If, on the contrary, an output file 
has been generated there are only two options: if the output 
file does not differ from the fault-free one, the fault is cate-
gorized as Benign. If the output file is different from the fault-
free one, the fault is categorized as ESC. Any fault that 
reaches the software belongs to exactly one of the 8 classes.  

From the AVF point of view, an IMM may affect the pro-
gram’s operation or get masked. A fault that either reaches 
the software and gets masked by a program’s operation (e.g., 
the corrupted register value is never be used) or it is Benign 
(it does not reach the software), it is a Masked fault for the 
AVF classification, since it does not affect the program. On 
the other hand, if the fault reaches the software (in an IMM 
class) and subsequently affects the program’s operation, it is 
classified either as an SDC or as a Crash. 

B. IMMs Distribution 
A major finding of our HVF analysis and IMMs classes 

extraction, is that for each hardware structure, the distribution 
of IMMs is relatively uniform for every different program, 
which means that it is primarily an invariant of the hardware 
structure itself. Assume, for example, the data field array of 
L1 Data Cache or the Physical Register File. Most of the cor-
ruptions in these hardware structures result in DCR IMM, alt-
hough there is a significantly low number of corruptions that 
lead to ETE and IFC IMMs, especially in the Physical Reg-
ister File. This means that most fault occurrences affect the 
contents of registers (for the Register File) or memory words 
that are used for load or store instructions (for the L1 Data 
Cache), and there is a zero probability for any fault to mani-
fest as any of the other IMMs (i.e., IRP, UNO, OFS, or PRE). 

Fig. 3 shows the breakdown of IMMs for six hardware 
structures. Consider, for example, the leftmost graph of Fig. 
3, which presents the IMM distribution for the data field of 
L1 Instruction Cache. It is clearly shown that all benchmarks 
(in the x-axis) provide a uniform distribution of IMM classes 
(the rightmost AVG bar in each graph, shows the arithmetic 
mean for each IMM of all benchmarks). Specifically, we can 
see that the IMM distribution of this hardware structure is as 
follows: 1% IFC, 11% IRP, 10% UNO, 66% OFS, 1% DCR, 
11% ETE, and 0% PRE. In the next subsection we explore 
the probability of these IMMs distribution to result in a spe-
cific final fault effect (i.e., Masked, Crash, SDC). Similarly, 
we can see in the next three graphs of Fig. 3 that all bench-
marks provide relatively uniform IMM distribution for each 
different structure. Very few benchmarks slightly deviate, but 
the difference is always less than the error margin of 2.88%. 
ROB/LQ/SQ are shown together since faults in these struc-
tures manifest only as PRE IMM.  

The IMM distribution strongly depends on the operation 
of hardware structures and their role in the microarchitecture. 
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Fig. 2. Diagram for IMM classification process. 

Fig. 3. Breakdown of IMMs (y-axis) for all benchmarks (x-axis) for (a) the data field of L1 Instruction Cache, (b) the data field of L1 Data 
Cache, (c), the Physical Register File, and (d) the Reorder Buffer (ROB), Load Queue (LQ) and Store Queue (SQ). 

0%

20%

40%

60%

80%

100%

b
f

d
ijk ff
t

g
sm

p
at
r

ae
s

sh
a

b
it
c

e
d
g
e

sm
o
o

C
G

M
G LU

A
V
G

IM
M

 D
is

tr
ib

ut
io

n

L1 Data Cache 

IFC IRP UNO OFS DCR ETE PRE

0%

20%

40%

60%

80%

100%

b
f

d
ijk ff
t

g
sm

p
at
r

ae
s

sh
a

b
it
c

e
d
g
e

sm
o
o

C
G

M
G LU

A
V
G

IM
M

 D
is

tr
ib

ut
io

n

Physical Register File

IFC IRP UNO OFS DCR ETE PRE

0%

20%

40%

60%

80%

100%

b
f

d
ijk ff
t

g
sm

p
at
r

ae
s

sh
a

b
it
c

e
d
g
e

sm
o
o

C
G

M
G LU

A
V
G

IM
M

 D
is

tr
ib

ut
io

n

ROB / LQ / SQ

IFC IRP UNO OFS DCR ETE PRE

0%

20%

40%

60%

80%

100%

b
f

d
ijk ff
t

g
sm

p
at
r

ae
s

sh
a

b
it
c

e
d
g
e

sm
o
o

C
G

M
G LU

A
V
G

IM
M

 D
is

tr
ib

ut
io

n

L1 Instruction Cache 

IFC IRP UNO OFS DCR ETE PRE



Faults in L1 instruction cache are most likely to corrupt the 
operands and/or the immediate field because they both oc-
cupy more bits than the opcode (i.e., high UNO and OFS 
IMM classes). Also, it is likely for a fault to corrupt the op-
code (IRP), and the execution flow (ETE) (since both IMMs 
strongly depend on the executed instructions retrieved from 
the L1 instruction cache). Another example is the Physical 
Register File, which mainly consists of data values and 
memory addresses of inflight instructions. Thus, any corrup-
tion in it will primarily affect the content (i.e., DCR) and in 
very rare cases the execution flow. So, it is totally unlikely 
that a fault in the register file leads to any other IMM (e.g., 
IRP, UNO, OFS, and PRE practically cannot happen). More-
over, faults in the ROB/LQ/SQ lead to 100% PRE IMM class 
because faults in these structures cannot be architecturally 
visible, primarily due to dependence graph checks failures 
before the commit stage. Overall, there are two major in-
sights: (1) different hardware structures provide different 
IMM distribution, and (2) different programs provide rela-
tively uniform IMM distribution for a specific hardware 
structure, with slight differences.  

An important observation is that the difference among 
benchmarks for faults on the same structure is only the abso-
lute number of corruptions (faults that are not benign) and 
not the distribution, because the absolute number depends on 
the program (and on the microarchitecture, but the experi-
ments are conducted for the same microarchitecture). 

C. Final Fault Effects Distribution 
Apart from the IMMs distribution, which, as we demon-

strated, is relatively uniform across all benchmarks we stud-
ied for the same hardware structure, another important insight 
is that different benchmarks provide quite uniform fault ef-
fect classification (Masked, Crash, or SDC), depending on 
the IMM distribution and the hardware structure. Again, there 
may be slight differences among benchmarks, but they are 
around the statistical error margin.  

In Fig. 4 we can see the final fault effects distribution for 
each IMM for L1 Instruction Cache and for all benchmarks. 

Specifically, at the top graph of Fig. 4 we can see the proba-
bility of each IMM to result in Masked fault effect, at the 
middle graph we can see the probability of each IMM to re-
sult in Crash fault effect, and at the bottom graph of Fig. 4 we 
can see the probability of each IMM to result in SDC. It is 
clearly shown in these graphs that for every IMM (x-axis), 
any benchmark has practically the same probability to result 
in either Masked, SDC, or Crash. Specifically, the standard 
deviation among all benchmarks of any IMM category ranges 
between 0.1% and 2.4%. For example, approximately 35% of 
all IMMs in all benchmarks that are categorized as OFS re-
sults in Masked, while 25% of all IMMs in all benchmarks 
results in Crash. Note that the sum of Masked, SDC and 
Crash probabilities for all IMMs of each benchmark will nat-
urally be 100%. Overall, this new major insight is that all 
benchmarks provide relatively uniform probability of the fi-
nal fault effect classification, which depends on the IMM dis-
tribution. 

D. Putting It All Together – IMM Weights 
Our extensive HVF analysis reveals three major insights, 

as we discussed in the previous subsections, regarding the 
IMM distribution and their correlation to the final fault effect. 
The common point of all insights is that the observations we 
made rely on the fact that the IMM distributions and their 
corresponding final fault effects are relatively uniform for 
any benchmark when the faults reside in a specific hardware 
structure. This means that depending only on the hardware 
structure, it is feasible to elicit the final fault effect classifica-
tion having only the IMM distribution and a predefined 
weighting factor for each IMM. Since different programs pro-
vide different absolute fault numbers for the IMM classes, but 
the same distribution and the probability of each fault effect 
class, it is straightforward to calculate the final AVF (i.e., the 
final fault effect classification) for an unknown workload 
with less that 2.88% accuracy loss (i.e., the same accuracy 
loss as in an exhaustive end-to-end SFI).  

What makes this observation vital is that the simulation 
time for IMM classification (i.e., the HVF measurement) is 
significantly faster than running entire end-to-end AVF ex-
periments. The reason is that for the IMM classification the 
simulation time is determined as the elapsed time between the 
fault injection and the fault manifestation (i.e., when the fault 
reaches the commit stage of an out-of-order microprocessor) 
or equivalently is based on fast HVF measurements. After 
that time, the simulation finishes. On the other hand, for an 
end-to-end AVF analysis, the simulation time is determined 
as the elapsed time between the fault injection and the end of 
the program’s execution, to be able to classify not only Crash 
fault effects, but also any Masked or SDCs.  

However, apart from this observation, which can accu-
rately classify the fault effects of a program (i.e., the AVF 
estimation) and significantly accelerates the simulation pro-
cess, we demonstrate in Section V.A that there is also another 

Fig. 4. The final fault effect probabilities for each IMM, for the L1 
Instruction Cache and for all benchmarks. 

0%
10%
20%
30%
40%
50%

IFC IRP UNO OFS DCR ETE PRE

P
ro

b
ab

il
it
y Masked

0%
10%
20%
30%
40%
50%

IFC IRP UNO OFS DCR ETE PRE

P
ro

b
ab

il
it
y Crash

0%
10%
20%
30%
40%
50%

IFC IRP UNO OFS DCR ETE PRE

P
ro

b
ab

il
it
y SDC blowfish dijkstra fft

gsm patricia rijndael
sha bitcount edge
smooth CG MG
LU



property that can further accelerate the simulation time for 
the IMM classification. Therefore, according to these in-
sights, and since the fault effect classification is relatively 
uniform for each IMM and structure across all benchmarks, 
we can safely consider the IMM classification along with 
some weights per hardware structure and per IMM to elicit 
the final fault effect classification (i.e., the AVF). We simply 
consider as weights the arithmetic mean values (i.e., aver-
ages) for each fault effect of each IMM across all bench-
marks. Fig. 5 presents the arithmetic mean for each fault ef-
fect (i.e., Masked, Crash, SDC) of each IMM across all 
benchmarks. Clearly, since all benchmarks provide relatively 
uniform probability of fault effect classification for each 
IMM with the standard deviation being less than 2.4% (see 
the discussion in subsection III.C and Fig. 4), the arithmetic 
mean shown in Fig. 5 is pretty close to the actual values for 
every benchmark.  

Note that in each graph, the sum of all probabilities should 
be equal to 100%. However, the graph of L2 cache, sum up 
to less than 100% because faults in this structure can also re-
sult in the ESC IMM. The ESC IMM is considered in the 
AVF but is not shown in these graphs because the ESC faults 
cannot be identified as corruptions in the commit trace anal-
ysis (see discussion in subsection IV.D). 

IV. PROPOSED METHODOLOGY 
 In this section, we built on top of the previous insights a 

novel microarchitecture-driven, fast, and accurate vulnerabil-
ity evaluation methodology, which takes the full advantage 
of the SFI accuracy, but significantly increases the simulation 
speed (Section V discusses the speedup calculations). The 
proposed SFI-based methodology consists of five distinct 
phases: (1) Configuration phase, (2) Microarchitecture-De-
tailed Simulation phase, (3) IMM Classification phase, (4) 
Effects Classification phase, and (5) the Final Cross-Layer 
AVF Evaluation phase. The methodology flow is illustrated 
in Fig. 6 and described in the next subsections. 

A. Configuration Phase 
In this phase, the program, the initial fault list, and the 

target hardware structure are defined. The number of faults 
depends on the significance of the statistical sampling, i.e., 
the error margin and the confidence level. To our knowledge, 
there is no other fault injection study or vulnerability evalu-

ation methodology in the literature that considers all hard-
ware structures of a modern microprocessor chip. The pro-
posed SFI-based methodology can effectively be applied to 
any structure of a microprocessor considering as the fault 
origin any hardware bit of a microarchitecture. 

B. Microarchitecture-Detailed Simulation Phase 
In this phase, the program runs in a microarchitecture-de-

tailed simulation on top of gem5, considering all microarchi-
tecture details of each microprocessor model (thus, any po-
tential hardware masking effect of the fault). After the fault 
is injected, the simulation continues until the fault becomes 
visible to the software (i.e., the fault passes the commit 
stage). This corresponds to the clock cycle, in which the first 
instruction that is affected by the fault, commits to the archi-
tectural state. After that moment, the fault can be considered 
to have propagated to the software layer. Such faults, that 
eventually reach the software layer, are categorized through 
the IMMs as described in Section II.A. Faults that did not 
reach the software layer (thus, due to hardware masking, the 
program’s execution will be eventually correct, and the fault 
cannot affect the program; the Fault Case 1 in Fig. 6) are cat-
egorized as Benign faults, since they cannot reach the soft-
ware, and thus, the program’s output. 

To speed-up the simulation, several techniques have been 
implemented in the past to save simulation time in the ab-
sence of faults, both in pre- and post-injection periods with-
out affecting the accuracy of the measurement. For example, 
checkpointing is used to skip the pre-injection period [18]. 
Note that these speed-up techniques are well-known in the 
literature and all the execution times reported in our paper do 
not consider these techniques as a new contribution of ours. 
This means that for a fair comparison between the proposed 
methodology and the exhaustive SFI, we consider in both 
cases these well-known speed-up techniques. Our speedups 
are further steps ahead. 

C. IMM Classification Phase 
When a fault reaches a visible point of the ISA layer, it is 

considered in the IMM classes, and there is no need to pro-
ceed with the simulation. For example, as we can see at the 
bottom of Fig. 6, every committed instruction is compared to 
its corresponding fault-free one (i.e., Fault Case 2). In this 
example, there is a deviation between the fault-free and faulty 
execution. The executed instruction (i.e., in Fault Case 2) has 
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committed in the correct cycle, with a correct Program Coun-
ter, but due to the fault occurrence, the committed instruction 
is different than the fault-free case. Apparently, the destina-
tion register contents are also wrong, but this is due to the 
execution of wrong instruction. In that case, this corruption 
in the commit stage will be categorized as an IRP (Table I). 
In this phase, the proposed methodology considers only the 
IMMs (i.e., the faults that eventually reach the software 
layer). The IMM classifier, organizes the faults into IMM 
groups as discussed in subsection III.A. 

D. Effects Classification Phase 
In this phase, the classifier will automatically categorize 

the fault effects as Masked, or Crash or SDC by applying to 
each IMM group, which was provided by the phase 3, the 
corresponding weighting factor depending on the target hard-
ware structure (as discussed in subsection III.D). However, 
in this phase it is also required to consider the potential Es-
caped (ESC) IMM shown in the last row of Table I.  

The ESC IMM was initially defined in [14] and deter-
mines the effect of a group of faults that hit a part of the pro-
gram’s output which is exposed in any cache level (only the 
cache arrays that store data) but will not pass again through 
the program trace. Assume that a fault happens on a modified 
cache line which contains data that are part of the program 
output. If the data of the cache line are not used again by the 
program (i.e., they are not read again by an instruction), they 
will be eventually written back without ever being read again 
by the microprocessor (i.e., they will not pass again through 
the program trace) and there is no further masking oppor-
tunity neither at the microarchitecture nor at the software 
layer. Since these data are part of the program output, the I/O 
device accesses this chunk of data, through a DMA control-
ler, and thus, the program’s output will be certainly corrupted 
(i.e., SDC). Therefore, any ESC IMM can only be considered 
in a cache level and can only result in either Masked (i.e., if 
the fault does not affect the output data) or SDC (i.e., if the 
fault does affect the output data). Faults (in a cache level 
only) that result in ESC IMM are impossible to be identified 

during phase 3 of the proposed methodology. The reason is 
that faults that eventually result in ESC IMM are initially de-
termined as Benign faults (since the fault occurrence will not 
pass through the program trace, so there is no detection capa-
bility at the hardware or software).  

Therefore, to identify and consider any ESC IMM that its 
fault effect (i.e., SDC) will eventually affect the final fault 
effect classification, under normal circumstances, it would be 
necessary to run the program until the end for all Benign fault 
cases. On average, Benign faults in the L1 Data Cache are 
half (or more) of the total faults, and for the L2 cache they 
are 80% (or more) of the total faults. Therefore, a complete 
end-to-end execution of a workload for each Benign fault to 
detect any potential ESC IMM, which occur in the cache ar-
rays of the microprocessor, would require extensively long 
simulation time. However, we experimentally found that the 
amount of ESC IMM that results in SDC, has a strong corre-
lation to the output data size of each program, and apparently 
to the number of Benign faults that each program provides 
for each hardware structure. 	

When the program’s output is very small (e.g., sha and 
bitcount benchmarks have total output size less than 1KB), 
the probability of an ESC IMM to affect the program’s output 
is zero. The reason is that a cache level stores only a small 
part of the total output at every given moment, so since the 
total output size is relatively small, it is extremely unlikely 
for a fault to hit those (few) words that are stored in cache 
just before they are written in the output file. On the other 
hand, when the program’s output is relatively large (e.g., 
blowfish and rijndael have output data greater than 3MB), the 
probability of an ESC IMM to affect the program’s output is 
getting higher as the output size gets high (i.e., the probability 
is proportional to the output size). This process is performed 
offline during the phase 4 of the proposed methodology. We 
use the following empirical equation to estimate the percent-
age of Benign faults that will eventually turn into ESC faults. 
The equation shows that the ESC faults percentage depends 
on the output size (in KBs) and on the Benign faults counts 
for a pair of structure and benchmark.  

Fig. 6. Microarchitecture-Driven methodology illustration. 
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Consider, for example, blowfish and rijndael benchmarks 
which have virtually the same output data size (i.e., 3.16MB 
and 3.17MB respectively), however, blowfish has a larger 
number of Benign faults than rijndael. To this end, blowfish 
provides more ESC faults, which, in turn, result in SDCs. 
This is considered in phase 5 of the methodology to augment 
the final estimation considering the ESC IMM as well. We 
consider both the count of Benign faults and the output size 
of the benchmark together. Therefore, since the number of 
Benign faults strongly depends on the microarchitecture, 
given a specific benchmark, the accuracy of the equation 
above should hold true for every different microarchitecture. 
Fig. 7 demonstrates (in absolute fault numbers) the accuracy 
of predicted ESC faults for each benchmark for both the tag 
and data fields of L1 Data Cache and for L2 Cache (since the 
ESC faults can only occur in data cache arrays). Each dot in 
all graphs represents a benchmark. In the ideal scenario, all 
dots should be on the diagonal line. However, as we can see 
in Fig. 7, there are small divergences between the real and the 
predicted values. We will demonstrate in Section V that these 
small divergences do not affect the final AVF estimation. 

E. Final Cross-Layer Vulnerability (AVF) 
In this phase, the final AVF evaluation results are getting 

parsed and recorded to a results file. 

V. EVALUATION & SPEED-UP 

A. Further Speed-Up Opportunities 
In the previous sections, we demonstrated how the pro-

posed methodology can elicit the final AVF from the IMM 
categorization of each program for any target structure. Cat-
egorizing all fault occurrences that provide corruptions in the 
commit stage into IMMs (i.e., there is a deviation in a com-
mitted instruction compared to the fault-free execution), re-
quires significantly less simulation time than end-to-end 
AVF calculation, since the simulations run until the first cor-
ruption in the commit stage and not until the end of the pro-
gram’s execution. This process significantly reduces the total 
simulation time. However, this process is still missing im-
portant portions of the fault simulation timeline. As we dis-
cussed, a fault occurrence can also be characterized as Benign 
during the IMMs classification phase.  

However, since Benign faults do not corrupt any micro-
architectural or software resource, there is no deviation in the 
commit stage (i.e., there is no IMM categorization). There-
fore, the simulation should run until the end of the program. 
The number of Benign faults is relatively large, although it is 
different across workloads and hardware structures. This 
means that there are many injected faults that still require 
end-to-end simulated executions. An important aspect that 
may virtually eliminate the simulation time of any Benign 
fault for any hardware structure, is the effective residency 
time of a fault in a hardware resource: the time between the 
fault occurrence and its manifestation [18]. Faults in hard-
ware structures that are located deep in the microprocessor’s 
pipeline (e.g., register file, ROB, LQ, SQ, and TLBs) have 
significantly less effective residency time than in other struc-
tures that are out of the critical path (e.g., cache memories 
and especially the lower cache levels). Based on both the ex-
perimental study in Section III and the effective residency 
time, we gathered a set of important observations, which sug-
gest opportunities to further speedup the assessment. 

Consider, for example, the Physical Register File. Typi-
cally, two source and one destination registers are allocated 
for each instruction. The true dependencies are addressed 
when a static instruction is renamed, and its operands may 
change to temporal operand resources (i.e., register identifi-
ers). During the commit stage, the order is restored, and the 
rename map is changed to reflect the current architectural 
state. So, the primary distinction between architectural and 
physical registers is the effective residency time. Architectur-
ally mapped registers, which are part of the architectural 
state, may be used millions of cycles later since their alloca-
tion, or not at all. Physical registers, on the other hand, remain 
active during the lifetime of their corresponding instruction 
in the pipeline (usually a few clock cycles in total). This 
means that any fault in a physical register (which is the case 
in any microarchitecture-level reliability study) has a small 
probability (i.e., a short timeframe) to corrupt the architec-
tural state (similar observations are made in [18]).  

As a matter of fact, according to our experiments, we 
found that in the Physical Register File any potential corrup-
tion can be detected within a maximum interval of 1M cycles 
from the fault injection time. ROB, LQ, and SQ, which are 
also located deep in the pipeline, are assigned to support the 
order and the dependency resolution of all inflight instruc-
tions into the pipeline. However, we found that the residency 
time for these structures depends on the execution time of 
each benchmark, and it is at most 3% of its total cycles. Sim-
ilarly, for TLBs any potential corruption can be detected dur-
ing 5M cycles since the fault injection. 

Similar observations are valid for the L1 instruction 
cache. During the fetch stage, an instruction word is fetched 
from the L1 instruction cache. If the fetched instruction is not 
a control instruction (i.e., there is a probability to be mispre-
dicted), there is high probability to be used by the program Fig. 7. Accuracy of predicted ESC faults that result in SDC. 
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flow, and thus, to commit shortly. We experimentally found 
that any corruption in L1 instruction cache can be detected 
during 7M cycles since the fault injection. Fig. 8 presents a 
comparison of IMM distribution when considering the entire 
program's execution (shown with inclusive label in the x-axis 
of Fig. 8) and when considering only the necessary fault man-
ifestation period of 7M cycles (shown with exclusive label in 
the x-axis of Fig. 8) for the L1 Instruction Cache. It is clearly 
shown in Fig. 8 that for each benchmark the IMM distribution 
is virtually the same between inclusive and exclusive cases.  

Therefore, by stopping the fault injection simulations for 
each structure during the clock cycles that are suggested by 
the effective residency time analysis, there should not be any 
significant accuracy loss in the IMM distribution results. On 
the other hand, the effective residency time for the L1 Data 
Cache and L2 Cache is longer than the deep pipeline struc-
tures. The requests in these memory structures are primarily 
related to the memory operations of each workload, in which 
prefetching requests or unresolved memory access dependen-
cies can also occur. For that reason, we found that any poten-
tial corruption in L1 Data Cache can be detected during up to 
50M cycles, and in L2 Cache during up to 80M cycles. Fig. 
9 shows an illustrative example for this process. As we can 
see, the simulation time after the defined residency time for 
each memory structure cannot offer any additional infor-
mation for the corruption. It is only required for the exhaus-
tive AVF analysis to consider all Masked and SDC cases. The 
proposed methodology does not require the simulation to run 

until the program finishes, because any fault manifestation 
(i.e., the first fault effect to the software layer) occurs until 
the defined effective residency time (ERT Stop). 

Note that all the above timeframes for each structure (i.e., 
the maximum clock cycles needed until the fault commits 
based on the effective residency analysis; shown in Table II) 
constitute pessimistic timeframes and are related to programs 
with very large input datasets. This means that all previously 
determined timeframes cover a high percentage of any fault 
occurrence in any program used in this study, although we 
have found that most fault occurrences can be detected during 
significantly shorter intervals, which suggests even shorter 
simulation times. However, this study aims at high accuracy 
of IMM categorization and of AVF estimation, so we choose 
to consider the most pessimistic cases paying the price of a 
bit longer simulation time. 

B. AVF Evaluation Speed-Up 
Table II summarizes the findings discussed in the previ-

ous subsections. It presents the 12 hardware structures, the 
maximum simulation cycles for each structure (based on the 
effective residency time), the total AVF evaluation time con-
sidering the proposed methodology and the traditional (accel-
erated; see subsection IV.B) SFI flow, the speedup of the pro-
posed methodology (separately, according to the contribution 
of each insight), and the speedup of the proposed methodol-
ogy in orders of magnitude. All presented times are shown in 
days, using 192 computational cores of two servers with two 
AMD EPYCTM 7402 microprocessors each (i.e., the rack 
servers where all experiments of this study have been con-
ducted). Each row of the table consists of the time needed for 
all 13 benchmarks and 2,000 fault injections (i.e., for each 
structure 26,000 injections for the proposed methodology and 

TABLE II 
AVF ASSESSMENT TIME FOR THE PROPOSED METHODOLOGY AND AN ACCELERATED TRADITIONAL SFI-BASED METHODOLOGY. 

 
 Maximum Sim 

Cycles 
AVGI 
 (Days) 

Traditional SFI 
(Days) 

Speedup Orders of 
Magnitude  Insight 1&2 Insight 3 

  
RF  1M 0.11 37.08 6.2x 330.8x 2.5 

DTLB  5M 0.38 36.96 8.6x 88.4x 2.0 
ITLB  5M 0.44 38.25 6.9x 80.1x 1.9 

L1I (Data)  7M 0.60 30.23 7.2x 42.8x 1.7 
L1D (Tag)  10M 0.76 27.91 7.1x 29.9x 1.6 

ROB  3% 1.19 36.28 6.0x 24.0x 1.5 
SQ  3% 1.19 35.67 5.9x 24.1x 1.5 
LQ  3% 1.19 35.73 5.9x 24.1x 1.5 

L1I (Tag)  1M 0.79 27.13 7.3x 36.7x 1.5 
L2 (Tag)  20M 2.27 36.47 6.2x 9.8x 1.2 

L1D (Data)  50M 3.23 33.59 6.5x 3.5x 1.0 
L2 (Data)  80M 6.72 39.21 5.5x 0.5x 0.8 

  Total (Days) 18.9 414.5  
 

Start Injection ERT Stop
Manifestation

End

Effective Residency Time (ERT)

Benign

Corruption

Proposed Exhaustive AVF

Fig. 9. Effective residency time illustration. 

Fig. 8. IMM distribution for the entire execution (inclusive) and only 
for the necessary manifestation period (exclusive). 
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26,000 for the traditional SFI). Consequently, we can see that 
in total for all 12 hardware structures for 13 benchmarks, we 
need 18.9 days based on the proposed methodology, while 
based on an already accelerated traditional SFI-based AVF 
assessment (see the related discussion in subsection IV.B), 
we needed about 14 months (414.5 days). Apparently, using 
more servers for the simulations, both numbers would be pro-
portionally reduced depending on the available computa-
tional cores. Therefore, the effective speedup, without com-
promising the accuracy of the final estimations (section V.C), 
ranges between 6x to 337x depending on the structure, com-
pared to the accelerated SFI, while for the entire CPU is 22x.  

The first two insights (Insight 1&2 in Table II) account 
for the speedup achieved because the simulation is stopped at 
the time when the first corruption occurs. This means that all 
Benign faults do not take any speedup advantage of both In-
sights 1 and 2 over the exhaustive SFI. The reason is that 
there is no deviation from the fault-free execution, and thus, 
the simulation needs to run until the end of the program (In-
sight 3 solves this problem). We have previously discussed 
that aspect in Section V.A. It is important to stress, however, 
that all three insights constitute the entire proposed method-
ology and cannot be used separately. Specifically, the main 
reason why we can leverage insight 3, is because the pro-
posed methodology keeps track only the first corruption of 
faults at the software level, it categorizes them into IMM clas-
ses, and then it elicits the final fault effects through the IMM 
categorization. On the contrary, we cannot apply only insight 
3 on the exhaustive SFI methodology, because there is no ob-
servation point during the assessment that could lead the es-
timation to stop after a few clock cycles. In the typical ex-
haustive AVF assessment, all experiments need to run until 
completion to provide the output file and decide for Masked 
or SDC outcome. 

C. Methodology Accuracy Evaluation 
In this section, we demonstrate the accuracy of results of 

the proposed methodology. Fig. 10 presents the accuracy 
evaluation between the real AVF assessment retrieved from 
the exhaustive traditional SFI-based AVF analysis (“Real” 
labels in the x-axes), and the AVF assessment provided by 
the proposed AVGI methodology (“AVGI” labels in the x-
axes), as it is described in Section IV. Each graph in Fig. 10 
represents the comparative results for each hardware struc-
ture and for all benchmarks. It is clearly shown in these 
graphs, that the accuracy of the proposed methodology is 

high, although it does not consider any pruning technique 
(every injected fault is individually considered – but faster). 
This means that the proposed methodology provides an ex-
haustive SFI, and thus, it retains the statistical significance of 
the experiments and keeps the statistical error margin at the 
lowest levels. As we can see in all graphs of Fig. 10, the 
Masked, SDC, and Crash fault effect probabilities are virtu-
ally the same between the results of the proposed AVGI 
methodology and the traditional SFI. Moreover, it is essential 
to note that the calculated SDC fault effect probabilities by 
the proposed methodology are very close to the real ones.  

Fig. 11 shows the Failures in Time (FIT) rate for each 
structure and for the entire microprocessor chip (the right-
most graph). FIT rate of a device estimates the number of 
failures that can be expected in one billion (109) device-hours 
of operation. The FIT rate of the entire microprocessor chip 
is calculated by adding the individual FITs of the structures. 
For the calculation of the FIT, we use the raw FIT rate per 
bit, which is 9.39×10−6 FIT/bit for Cortex-A72-like, as pro-
posed in [38]. FIT rates can provide a clearer view of the pro-
posed methodology’s accuracy since they combine all im-
portant reliability metrics of all hardware structures and the 
entire chip for all benchmarks consolidated. It is clearly 
shown in Fig. 11 that the accuracy loss of our methodology 
compared to the exhaustive AVF analysis is extremely low. 
Specifically, for any hardware structure the difference is at 
most 1.45%, and for the entire chip evaluation it is 0.2%.  

VI. A CASE STUDY ON A DIFFERENT ISA & 
MICROARCHITECTURE 

To further support the effectiveness of the proposed meth-
odology across ISAs and microarchitectures, we conduct a 
case study employing a different ISA and microarchitecture. 
We model an Armv7 ISA, considering the Arm Cortex-A15-
like microarchitecture, using the same 10 MiBench bench-
marks (see subsection II.D). From the faults behavior and 
AVF point of view of each benchmark, there are several dif-
ferences between the two CPU models. We conduct the case 
study for the same 12 hardware structures for Arm Cortex-
A15, however, due to space limitations we present the graphs 
for only 3 but important structures, the L1 Instruction and 
Data Caches, and the Register File. 

Fig. 12 shows the comparative AVF evaluation results for 
the 3 major structures for Armv7 ISA and for all benchmarks. 
Each graph represents one structure, showing the AVF results 
using the exhaustive SFI (“Real” label in the x-axes) and the 

Fig. 10. Accuracy evaluation of the proposed methodology compared to the real AVF from exhaustive AVF analysis. 

0%

20%

40%

60%

80%

100%

R
ea

l
A
V
G
I

R
ea

l
A
V
G
I

R
ea

l
A
V
G
I

R
ea

l
A
V
G
I

R
ea

l
A
V
G
I

R
ea

l
A
V
G
I

R
ea

l
A
V
G
I

R
ea

l
A
V
G
I

R
ea

l
A
V
G
I

R
ea

l
A
V
G
I

R
ea

l
A
V
G
I

R
ea

l
A
V
G
I

R
ea

l
A
V
G
I

bf dijk fft gsm patr aes sha bitc edgesmoo CG MG LU

A
V

F 
[%

]

L1 Instruction Cache (Data Field)

Masked
Crash
SDC

70%
75%
80%
85%
90%
95%

100%

R
ea

l
A
V
G
I

R
ea

l
A
V
G
I

R
ea

l
A
V
G
I

R
ea

l
A
V
G
I

R
ea

l
A
V
G
I

R
ea

l
A
V
G
I

R
ea

l
A
V
G
I

R
ea

l
A
V
G
I

R
ea

l
A
V
G
I

R
ea

l
A
V
G
I

R
ea

l
A
V
G
I

R
ea

l
A
V
G
I

R
ea

l
A
V
G
I

bf dijk fft gsm patr aes sha bitc edgesmoo CG MG LU

A
V

F 
[%

]

L2 Cache (Data Field)

Masked
Crash
SDC

70%
75%
80%
85%
90%
95%

100%

R
ea

l
A
V
G
I

R
ea

l
A
V
G
I

R
ea

l
A
V
G
I

R
ea

l
A
V
G
I

R
ea

l
A
V
G
I

R
ea

l
A
V
G
I

R
ea

l
A
V
G
I

R
ea

l
A
V
G
I

R
ea

l
A
V
G
I

R
ea

l
A
V
G
I

R
ea

l
A
V
G
I

R
ea

l
A
V
G
I

R
ea

l
A
V
G
I

bf dijk fft gsm patr aes sha bitc edgesmoo CG MG LU

A
V

F 
[%

]

Physical Register File

Masked
Crash
SDC



proposed SFI-based methodology (“Predict” label in the x-
axes). For the proposed methodology’s results, we use the 
proposed methodology as it is discussed in Section IV. As we 
can see in Fig. 12, all benchmarks for all hardware structures 
provide extremely high accuracy of the AVF results (i.e., the 
fault effects classification of the full stack vulnerability) us-
ing the proposed methodology.  

There are some divergencies between the AVF results of 
the proposed methodology and the exhaustive AVF SFI-
based flow, however, they are in most of the cases lower than 
the statistical error margin of SFI. More importantly, we can 
see that the important SDC fault effect class is virtually equal 
to the ground-truth value provided by the exhaustive AVF 
analysis. This means, that the proposed methodology can ef-
fectively assess the AVF for any benchmark and structure of 
a modern microprocessor chip with high accuracy levels, but 
in extremely shorter time. Particularly, the proposed method-
ology can provide the AVF in up to 440x shorter time (for the 
Physical Register File) than an already accelerated SFI-based 
flow regarding the Armv7 experiments. Note that the speedup 
depends on the underlying microarchitecture, which affects 
both the execution time of the benchmarks and the elapsed 
time between the fault occurrence and its first deviation in 
commit stage. This is the reason that the proposed methodol-
ogy on Cortex-A15 provide higher speedup than Cortex-A72. 

VII. DISCUSSION 

A. Multi-Core & Multi-Bit Faults  
We claim that AVGI can be employed to estimate the vul-

nerability to spatial multiple-bit faults, as well as for multi-
threaded applications running on multicore microprocessors. 
It has been observed through physical experiments of accel-
erated beam testing [20] [39] that on-chip storage arrays can 
suffer multiple-bit flips in adjacent areas. Therefore, multi-
ple-bit faults can affect neighboring bits of a hardware struc-
ture. This means that, even if a multiple-bit flip occurs, it can-

not affect two different instructions at the same time. For ex-
ample, it is unlikely due to the geometry of multiple-bit faults 
to affect both the content of a register (i.e., DCR) and the op-
code of that instruction at the same time (i.e., IRP). Once the 
corruption occurs, it will certainly be considered by AVGI 
with the same estimation accuracy, as in the single-bit fault 
case. The final estimation results for multiple-bit fault will 
be, of course, higher than the single-bit faults, because the 
probability of a corruption in increased. However, it is likely 
for multiple-bit faults to affect neighboring bits of two neigh-
boring words (e.g., in a cache line). In such a case, it AVGI 
may not consider the effects of both corruptions. The reason 
is that the proposed methodology strongly relies on the dis-
tribution of fault manifestations (i.e., the effects of hardware 
faults until they “touch” the software layer). Overall, consid-
ering either single-bit or multiple-bit faults, or single-core or 
multicore configuration, the eventual fault manifestations 
will be considered by the proposed methodology and can ac-
curately deliver the AVF measurements. 

B. Accuracy Discussion for Different Microarchitetures 
The proposed methodology for AVF estimation strongly 

depends on the distribution of fault corruptions that are archi-
tecturally visible (i.e., affect the software), which is, by defi-
nition, based on (i) the microarchitecture, (ii) the workload, 
and (iii) the faults distribution. A fault occurrence is architec-
turally visible, if and only if, it does not get masked at the 
microarchitecture layer (i.e., hardware masking – Benign 
Faults). Hardware masking can occur if any of the following 
three conditions holds: (i) the fault affects an “invalid” entry 
(e.g., a physical register which is not currently mapped, or a 
prefetched cache line which is never used, etc.), (ii) the fault 
in an entry gets overwritten by another normal operation be-
fore it is used, (iii) the fault affects a mis-speculated instruc-
tion (i.e., the fault is discarded due to a pipeline flush). In any 
other case, a fault in a hardware structure will eventually be 
architecturally visible.  

Consequently, given a certain workload, different micro-
architectures can only affect the population of the Benign 
faults (and thus the absolute number of corruptions, since be-
nign faults are complementary to corruptions) and not the sta-
tistical distribution of IMMs (i.e., fault manifestations). The 
reason is that, for a given workload, different microarchitec-
tures can only affect the hardware masking. However, since 
hardware masking is unavoidable and depends only on the 
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Fig. 12. Accuracy evaluation of the proposed methodology compared to exhaustive AVF analysis for Arm Cortex-A15. 

Fig. 11. Failure in Time (FIT) rates for each structure and the entire 
microprocessor chip (rightmost graph). 
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microarchitecture (for a given workload and fault distribu-
tion), assume, for example, a microarchitecture “M1” with 
different branch prediction algorithm than microarchitecture 
“M2”, and M1’s branch prediction is less accurate than M2’s 
(i.e., M1 has higher misprediction rate than M2). M1 will lead 
to more benign faults due to larger number of mispredictions, 
and thus, M1 and M2 have different hardware masking lev-
els. However, even if the absolute number of corruptions is 
different between two microarchitectures, the statistical dis-
tribution of fault manifestations should not be changed due to 
the different hardware masking between M1 and M2 (within 
the range of the statistical error margin of 2.88%).  

On the other hand, an architecturally visible fault may af-
fect the program’s output, if and only if, it does not get 
masked by the software [2] [3]. Software/Logical masking 
only depends on the program’s flow and can occur when a 
corrupted register content or memory word do not affect the 
result of computations. Assume the following instruction: 
and x0, x1, #0. If the content of register x1 was cor-
rupted in any of the 32 least significant bits, the computa-
tion’s result will be correct (i.e., Masked). Consequently, by 
categorizing the fault manifestations into IMMs, the final es-
timation is highly predictable (see sections III.C and III.D) 
because the distribution of the final fault effects (not the ab-
solute number) of each IMM is relatively uniform for any 
workload of a certain hardware structure. 

VIII. RELATED WORK & COMPARISON 
Microarchitecture-Level SFI: Kaliorakis et al. in [23] 

propose the MeRLiN methodology for accelerating AVF 
evaluation by using a combination of ACE analysis and fault 
injection. The main concept of MeRLiN is to use ACE anal-
ysis to get fast the cycle windows which are vulnerable, and 
then analyze the static instructions to even reduce the fault 
injection locations. To this end, MeRLiN can reduce the time 
needed for each fault injection campaign, since as the initial 
number of generated faults increases, the number of the re-
maining faults that will be used will be the same. This as-
sumption, however, induces several errors in the final effects 
classification, since different number of loop iterations can 
provide different vulnerability effects, depending on the cy-
cle, the dynamic instruction, the corrupted data, and the com-
bination of them. On the other hand, in our methodology, in 
which no pruning or coarse-grained grouping is considered, 
the total simulation time needed is significantly low, and 
guarantees correct vulnerability results compared to the ex-
haustive AVF assessment, for any number of faults. How-
ever, our methodology could be complementary to MeR-
LiN’s providing further speedups. Since our methodology 
only needs the potential deviations in the commit stage, it can 
complement MeRLiN to further reduce the simulation time 
by avoiding end-to-end executions that MeRLiN unneces-
sarily performs. 

Another limitation of MeRLiN is that it requires extensive 
development effort for the implementation of ACE analysis 
not only for the register file, but also for the cache arrays, 
especially for their tag fields [40]. Its practicality and effi-
ciency for address-based and instruction-based structures is 
questionable. On the other hand, our methodology requires 
significantly low development effort because only fault injec-
tion is required, and it can be easily applied to any hardware 
structure without any major modifications of the simulator 
and without any risky pruning phase.  

ISA- and Software-Level SFI: ISA- or Software-level 
fault injection methods are widely used to evaluate the vul-
nerability at native speeds [6]-[13], [41]-[47]. To this end, 
several studies focus on detecting hardware faults by moni-
toring the software behavior [25] [48]-[50]. Although these 
techniques allow for long and realistic workload assessments, 
they completely fail to capture the faults behavior consider-
ing the underlying hardware because the starting point of the 
experiment (i.e., the origin of the injected fault) is a corrupted 
instruction (not a microarchitectural structure). It is recently 
demonstrated in [14] that any ISA- or software-level reliabil-
ity evaluation method provides diverging vulnerability re-
sults. Therefore, even if such methods provide extremely fast 
the evaluation results, the final vulnerability measurements 
may be misleading and may instruct designers to take wrong 
decisions for protection schemes either at the software or at 
the hardware level. 

IX. CONCLUSION 
In this paper, we proposed AVGI, a novel AVF evaluation 

methodology, which is SFI-based and accurately delivers the 
cross-layer vulnerability assessment (i.e., AVF) for important 
microprocessor structures and every fault effect class. The 
proposed methodology is microarchitecture-driven and is 
based on three key insights of faults behavior: (1) the distri-
bution of the introduced complete and mutually exclusive 
IMMs, (2) the final effects of faults on a specific hardware 
structure, and (3) the timeframe between the fault occurrence 
and its first corruption. We demonstrated that the proposed 
methodology delivers accurate per component and full CPU 
AVF measurements for two different ISAs, an Armv8 and an 
Armv7, in up to 337x and up to 440x, respectively, shorter 
time compared to an already accelerated exhaustive SFI. The 
proposed methodology also preserves the statistical signifi-
cance of the experiments since no pruning of the initial fault 
list is employed. 
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