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Abstract—Silent Data Corruptions (SDCs) due to defects in
computing chips (CPUs, GPUs, AI accelerators) is a critical threat
to the quality of large-scale computing in different application
domains: cloud computing, high-performance computing, edge
computing. Recent public reports by cloud hyperscalers have
emphasized that apart from the usual suspects for SDCs (memory,
storage, network), the heart of the computations, the processing
elements of all types generate an unexpectedly large rate of SDCs
which can cause erroneous calculations and severe information loss.
We report, in a consolidated form, recent efforts to correlate early
microarchitecture-level simulation-based predictions about the
likelihood, rates, severity, and root causes of SDCs and large-scale
in-field studies in cloud data centers. Early microarchitecture-level
prediction of SDC characteristics (susceptible units, workloads,
instructions) can shed light to the cryptic problem of SDCs.
The findings of a diligent pre-silicon analysis can assist better
understanding of SDCs and can thus drive effective protection
decisions either at the hardware or at the software levels at
deployment stages.

Index Terms—Silent data corruptions, reliability, cloud, HPC,
edge, microprocessors, hardware reliability, large-scale infrastruc-
ture, microarchitectural simulation, fault injection, failure rates.

I. INTRODUCTION

In the ever-growing large-scale computing, in which data
centers serve as the backbone of modern technological infras-
tructures, ensuring the reliability and efficiency of hardware
components is of paramount importance. One particular and
severe threat in this domain is the Silent Data Corruptions
(SDCs), primarily due to manufacturing defects [1]–[4]. SDCs
lie in the heart of computational systems and pose a critical
risk to the integrity and quality of diverse application domains,
spanning cloud computing, high-performance computing, and
edge computing [5]–[7]. Detecting and quantifying silent data
corruptions in microprocessors is challenging due to their
sporadic nature and difficult reproducibility [1], [4]. To mitigate
the impact of on-chip memory errors, error correcting codes
(ECC) are employed for error detection and correction [8].
However, the adoption of ECC techniques introduces additional
storage demands and additional complexity and fails to address
all hardware-induced errors comprehensively [9]. While con-
ventional ECC methods can identify and rectify certain faults,
their efficacy is usually constrained, with the prevalent single
error correction, double error detection (SECDED) method
capable of detecting up to two flipped bits and correcting

only one flipped bit per 64 bits [8], [9]. Moreover, multi-bit
faults are increasingly prevalent in on-chip memory structures,
especially in newer fabrication technologies [10]. Despite the
potential of ECC to reduce failure rates in a few on-chip
memory components, its applicability is not universal across all
functional, control, and memory blocks of the microprocessor
chip. Even with ECC implementation, the specter of silent
data corruption persists, particularly in expansive data center
infrastructures, posing a substantial potential threat to program
integrity [1], [4], [11].

Silent data corruptions pose a significant obstacle for
modern microprocessors and the computing systems they drive.
Nevertheless, researchers have made considerable strides in
tackling this issue by employing advanced error detection
methods and crafting fault-tolerant and error-correcting models
over recent decades. As computing systems grow in complexity
and importance in our daily routines, it is foreseeable that
addressing silent data corruptions will remain a crucial area of
focus for the computing community. It is important to pinpoint
the primary sources of errors that could silently impact program
execution and devise innovative strategies for modeling and
detecting these errors. One approach involves implementing
fault tolerance techniques, such as redundancy or replication,
to ensure the availability of multiple copies of vital data. This
strategy can safeguard system integrity even in the event of
silent data corruption. Another avenue is the utilization of
error-correcting codes capable of automatically identifying
and rectifying errors. These methodologies hold particular
significance in safety-critical systems, where the ramifications
of silent data corruption could be catastrophic. However, driving
any of these strategies requires the identification and evaluation
of such errors.

Microarchitecture-level simulation offers a controlled and
highly granular environment in which thousands of defective
CPUs can be modeled and evaluated [12]–[14]. This approach
provides researchers and engineers with a unique insight into
the complicated nature of SDCs, enabling the exploration of
various scenarios, probabilities, rates, severities, and root causes
with high accuracy. By simulating diverse fault conditions and
their potential effects, researchers can get invaluable predictive
insights long before hardware deployment, facilitating proactive
measures (early at the design stages) to enhance system
resilience [10].



In contrast, real-world CPU fleet experiments conducted
within operational data centers offer a real and concrete view of
the complexities of large-scale computing environments [1]–[4].
These experiments provide invaluable empirical data regarding
the prevalence, manifestations, and real-world consequences
of SDCs in actual deployment scenarios. By analyzing the
performance and reliability of CPU fleets under authentic or
synthetic workload conditions, researchers can gain invaluable
empirical insights that complement and enrich the predictive
capabilities afforded by simulation-based approaches.

However, as shown in Fig. 1, despite their respective merits,
it becomes increasingly evident that real CPU fleet experiments
in data centers are inherently less efficient compared to
microarchitecture-level simulation in certain respects. The
scalability limitations, and resource constraints associated with
deploying and monitoring physical hardware at scale, inevitably
impose practical constraints on the scope and depth of such
experiments. Consequently, while real-world experiments offer
unparalleled authenticity and context, they often fall short in
terms of throughput and scalability compared to their simulation
counterparts.

Nevertheless, the gap between simulation-based predictions
and real-world observations presents a unique opportunity for
synergistic exploration and analysis. By correlating and com-
bining insights gained from both pre-silicon microarchitecture-
level simulation and post-deployment field studies, researchers
can gain a holistic understanding of SDC behavior, spanning the
spectrum from theoretical conjecture to empirical validation.
The synthesis of findings derived from these divergent yet
complementary methodologies holds the potential to drive
effective protection decisions at both the hardware and software
levels, thereby strengthening the resilience of large-scale
computing ecosystems against the growing threat of SDCs.

In this paper, we discuss and review recent efforts aimed at
bridging the gap between microarchitecture-level simulation
and real-world CPU fleet experiments. A particular focus is on
insights and observations about SDCs measured in different
hardware units on the gem5 simulator [15]–[17]. Through a
comprehensive analysis of the findings from this pre-silicon
study, we aim to discuss the challenges, and opportunities
inherent in the pursuit of effective SDC measurements. In such
a way, we endeavor to pave the way toward a more robust,
resilient, and trustworthy foundation for large-scale computing
in the face of evolving threats and challenges.

The following sections are organized as follows. In Section II
we discuss the concept of the silent data corruptions and
why it is an important problem. In the same section, we
also present the basic terminology and the main background
of different types of failures, which are the focus of this
paper. Next, in Section III we present an in-depth discussion
about the measurement of SDCs and explore simulation-based
appraches for assessing them, during both early and late design
stages. In Section IV we present the methodology we follow
to inject faults in (a) array-based hardware components, (b)
functional hardware units, and (c) accelerator designs. Finally,
in Section V we present several experimental results and

efficiency

sp
ee

d

fleet

ideal

gem5 

RTL / post-synthesis

RTL / behavioral

Fig. 1. A motivation graph shows the relation between speed and efficiency
of correct state-of-the-art approaches for unveiling, monitoring, and measuring
the rate of SDCs. An ideal method would be very fast (operating at the speed
of actual systems and hardware) and efficiently identify all SDC root causes
and accurate rates. Real-world (fleet) experiments are naturally very fast and
run at native speed; however, they ”blindly” look for defective chips which can
occasionally lead to SDCs, thus such an approach is less efficient than ideal.
Simulation-based approaches at the RTL (behavioral or detailed post-synthesis)
are extremely accurate and efficient in root causing since they model the
real hardware; however, they are extremely slow (three or more orders of
magnitude than higher-level simulation approaches). We advocate for the value
of microarchitecture-level simulators like gem5 as the most balanced tradeoff
point between hardware accuracy (all on-chip hardware structures are modeled)
and speed of SDCs analysis (three orders of magnitude faster than RTL).

provide essential observations regarding the SDC occurrences
in diverse hardware structures and units. Section VI concludes
the paper.

II. BACKGROUND

A. Silent Data Corruptions (SDCs)

SDCs have emerged as a widespread concern, impacting
critical infrastructures [1]–[3]. They are increasingly associated
with CPU chips alongside memory, storage, and networking.
These corruptions are labeled ’silent’ due to their evasion
of hardware-level detection mechanisms, resulting in errors
that may propagate through the system unnoticed until they
materialize as application-level issues, potentially leading to
data loss [1], [4]. SDCs can originate from various factors
such as soft errors, manufacturing defects, and design flaws.
They often evade detection because software does not con-
sistently check for them, particularly in cloud and datacenter
environments. Redundancy methods, such as duplicating or
triplicating execution, can help mitigate SDCs, but they come
with performance and power costs. Both software and hardware-
based redundancy methods are costly in terms of performance,
power, and design complexities.

B. Defects, Faults, Errors

Faults represent physical phenomena resulting in a deviation
between an expected service and the actual service provided; in
a CPU, this service entails the accurate execution of programs.
Each fault originates from a specific physical cause, with
processor faults commonly attributed to high-energy particles
such as neutrons or alpha particles, as well as defects in silicon



manufacturing or degradation over the device’s lifetime. The
duration of a fault’s manifestation—transient, intermittent, or
permanent—is intricately linked to its underlying physical
cause (where ”bit” refers to either a storage element or a gate
output) [18]–[20]. Various fault types, categorized by their
temporal behavior, are extensively employed. We opt for the
term fault type over fault model to focus solely on the duration
of fault existence, excluding their logical behavior.

In the domain of hardware faults, errors manifest as observ-
able outcomes stemming from faults in hardware resources like
storage elements or gates. Utilizing a defective resource during
computation can result in Silent Data Corruption (SDC), system
crashes, error notifications, or corrections through hardware
resilience mechanisms such as Error Correcting Codes (ECC).
Of these outcomes, SDC poses the greatest risk, potentially
compromising software correctness without any discernible
indication of the error [21], [22]. In the realm of Reliabil-
ity, Availability, and Serviceability (RAS) design for CPUs,
efforts have predominantly focused on mitigating particle-
induced faults, commonly termed as ”soft errors” [23]–[28].
However, recent reports from hyperscalers highlight emerging
fault causes, including marginal defects capable of inducing
faults under specific conditions like temperature, voltage, and
workload patterns [21], [29]–[31]. These defects, coupled with
device degradation in scaled technologies, pose significant
concerns regarding transient, intermittent, and permanent faults
over the processor’s lifespan. To ensure high reliability, it is
imperative to comprehend various physical root causes, their
associated fault types, and the resultant errors based on the
location of these faults within a processor.

C. Microarchitecture-Level Fault Injection

Typically, designers employ either Statistical Fault Injection
(SFI) [32] or analytical methods such as the Architecturally
Correct Execution (ACE) analysis [33] to obtain insights
into program resilience against transient faults1. For transient
faults, both approaches aim to measure the AVF of hardware
structures, yet each has its pros and cons. SFI offers high
accuracy but is slow as it necessitates multiple runs to achieve
high confidence, whereas ACE analysis is swift but demands
substantial development effort and may overestimate AVF (up
to 3x overestimation [34]). Statistical fault injection serves as
a reliability estimation technique capable of providing full-
system AVF estimation by directly accessing the program
output generated with injected faults. It is widely adopted
for reliability assessment, offering accuracy flexibility based
on the statistical sample size and providing failure samples
generated through simulation. However, it entails the drawback
of requiring multiple simulations, which can be time-consuming
and, depending on the level of model detail, may be deemed
impractical.

1ACE analysis is applicable solely to transient faults, whereas fault injection
addresses both transient and permanent faults since it simulates the entire
program execution in the presence of faults.

III. MEASURING SDCS

A. Unveiling Errors at System-Level

Measuring SDC rates presents a significant challenge due
to their silent nature, making them undetectable by hardware
or software error-handling mechanisms [7]. These rates tend
to be low and vary based on both faulty hardware structures
and software workloads. Accurate measurement necessitates
processing extensive data from numerous faulty chips, such as
the billions of bytes handled in typical data center operations.
Specialized equipment like hardware monitors and software-
based profiling tools are essential for this task [35]. Furthermore,
SDC rates are influenced by system configuration, workload,
and environmental factors like harsh conditions or power
fluctuations [36]–[39]. Complex applications can also elevate
SDC rates. Therefore, precise measurement requires extensive
experiments across diverse conditions, a process that is time-
consuming, costly, and feasible primarily for owners of extreme-
scale systems.

Enterprise and cloud data centers are increasingly deploying
complex System-on-Chip (SoC) devices in large quantities,
heightening the risk of undetected faults that can lead to
unexpected crashes or silent data corruptions (SDCs). While
soft errors induced by cosmic rays are well-documented [40],
[41], the expansive nature of data center infrastructure neces-
sitates consideration of SDCs stemming from manufacturing
defects and reliability mechanisms in the field [1], [4], [35].
Detecting defects leading to SDCs is challenging due to the
multiple conditions required for their manifestation, including
specific machine instruction sequences, operating voltage,
frequency, temperature conditions, and platform behaviors
such as interrupts [4]. These complexities lead to limited
repeatability of SDC detection tests and necessitate prolonged
test durations to uncover failures, underscoring the importance
of designing test methods that accommodate this behavior.
One approach involves executing SDC-targeted code multiple
times during tests, while another entails employing pseudo-
random instruction and data sequences in each execution loop
to augment the variety of data sequences applied in tests.

Numerous factors can cause faults in an SoC, such as
radiation, electrical marginalities, and manufacturing defects.
Even silicon defects that are not detected (or even exist) during
manufacturing can result in faults [42], [43] in the field. The
way these faults affect the operation of a workload depends
on the circuit where the fault occurs [44], [45]. If the fault
occurs in a circuit that includes error detection and correction,
such as a cache or memory with an error correction code, the
hardware can correct the error.

Silent data corruptions go undetected, do not interrupt the
machine operation, but instead result in data errors. Data errors
are more likely to occur when faults occur in circuits that are not
used for program control, such as the SoC’s integer of floating-
point units [46]. The effects of silent data corruptions are
unpredictable and depend on various factors. While an incorrect
calculation of a single pixel value may not be significant, a
data error in a financial transaction calculation could require



corrective action [35]. Since a single fault can manifest in
different ways over time due to workload variations, managing
faults that can cause SDC at scale is crucial, particularly when
millions of processing cores are installed in a data center or a
supercomputer. Lerner et al. in [35] presented that a data center
of modest size (i.e., 100,000 SoCs) is likely to experience at
least one SDC event per month with a rate of 10 failures in
time (FIT)2. For larger installations, frequent SDC events are
likely, even at 1 FIT. To this end, it is crucial to minimize
the rate of SDC, for example, by periodically testing the data
center infrastructure to identify defective hardware components
that perform wrong calculations [7].

B. Exploring Simulation-Based Approaches for Assessing SDC
Rates

Given the complexities outlined in Section III-A regarding
the measurement of SDC rates, it is not surprising that many
researchers have turned to simulations to investigate such errors.
Simulation-based analysis offers the advantage of assessing
faulty chips without the need for physical access to defective
hardware. However, simulations do have their limitations.
Specifically, measuring SDC rates at the RTL (register-transfer
level) provides exceptional detail and accuracy but comes
at an exorbitant computational cost (see Fig. 1). In reality,
obtaining precise SDC rates at the RTL is virtually unattainable
due to the extensive time requirements, even with the most
powerful contemporary computers available. Table I shows
the most common ways to evaluate the reliability (including
the expected SDC rates) of computing devices, comparing the
time and cost required to complete the study, how many of
the available resources can be accessed (or are modeled), if
the faults are induced by natural processes (i.e., realistic error
rates) or synthetic (i.e., models chosen by the user), if the
study can be performed in the early stages of the project or
only on the final product, and how much information can be
gathered on faults generation and propagation (observability).
Alternatively, researchers may endeavor to measure SDC
rates using real machines. However, this is feasible only for
hyperscalers—entities possessing extensive fleets of computing
machines capable of accurately studying SDC rates [1], [4].
For instance, achieving precise SDC rate measurements may
necessitate billions of machines. Despite the proliferation of
cloud computing and big data platforms, acquiring access
to such vast quantities of machines remains challenging.
Assessing the real probability of failure (or the FIT rate) for

21 FIT equals to one failure every 109 (one billion) hours of operation

microprocessors comprising millions of bits and programs
spanning billions of cycles is extremely difficult. Notably, there
are two stages at which the FIT rate is measured.

Early stages: when both the design of the microprocessor
hardware and the design of the software are under development,
major modifications can be applied. In the early stages, the FIT
rate of a microprocessor, program pair is estimated or predicted
and not measured. This is because there are certain parts of the
hardware structure of the microprocessor that are still unknown
in detail or are deliberately removed from the abstraction to
facilitate the design and simulation of the system. Analysis
of the failure rates at early stages can be only implemented
using architectural (ISA), or microarchitectural models of
the system, both of which are available very early in the
design flow. Architectural models do not include any hardware
information, but only the ISA visible hardware locations
(memory and registers) [47]. Microarchitectural models (also
referred to as performance models) have a significant detail of
the microprocessor hardware: they contain all major hardware
storage components that occupy a considerable part of the
final silicon estate (registers, register files, buffers, queues,
caches, predictors, etc.) but they model the combinational logic
and the random sequential logic (state machines in control)
only functionally. Program executables (assembly/machine
instructions) can run on both an architectural and a microar-
chitectural model. The architectural model is typically around
three orders of magnitude faster to simulate than the more
detailed microarchitectural one. Moreover, microarchitecture-
level models can also be used for bug modeling during the
CPU validation phase, e.g., [43], [48].

Late stages: when the microprocessor design, as well as
the program design, are very close to completion and design
changes (particularly to the hardware) are either impossible
or extremely costly. At these stages, the failure rate of a
microprocessor, program pair can be measured because almost
all details of the hardware design are in place, unlike the
early models. In the late stages, measurement of the failure
rates is mainly employed for validation purposes. Late-stage
measurements can be realized when the program runs on two
setups: a gate-level (RT level) model of the microprocessor
design, and a manufactured silicon chip. Unfortunately, the
simulation speed of such fine-grained late-stage models is
prohibitive to run reasonably long programs. The simulation
throughput of the gate-level models is typically three or
more orders of magnitude slower than the microarchitecture
(performance) models. Therefore, the combined effect of the

TABLE I
SILENT DATA CORRUPTION RATE MEASUREMENT METHODOLOGIES [14].

Evaluation Method Time Needed Cost Accessible Resources Fault Source Availability Observability
Field, Lifetime data months/years very high all natural final product limited

Beam testing hours high all natural final product limited
Software-level fault injection hours low limited synthetic early/final product medium

Architecture-level fault injection days low limited synthetic early medium
Microarchitecture-level fault injection days/weeks low most synthetic early very high

RTL fault injection years low all synthetic late very high



hardware design and software design on the failure rate of the
system cannot be measured at the gate or the RTL.

Finally, the measurement of the failure rate on actually
manufactured chips is the only true physical experiment that
runs at the true speed of silicon. The major drawback of this
experiment is it requires expensive accelerating testing of the
chips with dense beams of particles. Such particles (neutrons
or others) blindly hit the chip when the program runs, and the
failing executions (output corruptions or abnormal terminations)
are recorded. There is no way to isolate the hardware spot that
was affected and the bits that were flipped. However, the failure
rates of such physical beaming experiments are employed by
the industry to better emulate the actual physical conditions in
an accelerated setup to reach statistically significant results for
the failure rates.

Summary: Typically, RAS architects rely either on Statistical
Fault Injection (SFI) [32] or on analytical methods, such as
the Architecturally Correct Execution (ACE) analysis [33], to
provide insights into the programs’ resiliency toward transient
faults because both methods aim to report the cross-layer
vulnerability. Unlike lower-level simulation models (e.g., gate
and RTL), microarchitecture-level fault-injection based on per-
formance models allows deterministic end-to-end execution of
large workloads on top of an operating system, i.e., full system
analysis, which is impossible at lower levels [45], [47]. Further,
injection on RTL models [49] would marginally augment
vulnerability analyses with combinational logic vulnerability,
since logic has very low raw failure rates compared to storage
elements.

IV. METHODOLOGY

In this section, we provide an overview of the methodology
we follow to obtain the results in Section V.

A. Array Component Fault Injection

Our microarchitectural fault injection framework [45],
whether targeting array components, functional units, or
accelerators, comprises three main modules.

1) The Fault Mask Generator module produces fault masks
used during the injection campaign. This is a one-step
process for each combination of hardware structure and
benchmark. The Fault Mask Generator can generate a
random set of fault masks for any type of fault (transient,
intermittent, permanent) for the entire simulation time of
the benchmark, based on user-defined parameters. A fault
mask contains information about: (i) the processor core in
which the fault will be injected (applicable in multicore
architectures), (ii) the microarchitecture structure for fault
injection, (iii) the exact bit (or gate) position of the
injection, (iv) the specific simulation cycle or instruction
when injection occurs (for transient or intermittent faults),
(v) the type of fault, and finally, (vi) the population of
faults (single or multiple). All generated fault masks are
stored in a ”masks repository” from which the Injection
Campaign Controller selects fault masks to apply.

2) Once the ”mask repository” is provided, the actual
fault injection campaign can commence. The Injection
Campaign Controller retrieves the masks from the repos-
itory and dispatches injection requests to the Injector
Dispatcher, which communicates directly with the gem5
simulator. The interface between the Injection Campaign
Controller and the individual Injection Dispatcher facili-
tates the transfer of user-defined parameters related to the
injection (derived from the fault-mask; e.g., bit (or gate)
position etc.) to the microarchitectural simulators, as well
as the transmission of the results of the fault injection
experiments from the microarchitectural simulator back
to the Injection Campaign Controller. The final task of the
Injection Campaign Controller is to archive the injection
results in a ”logs repository,” which contains all log files
for further processing by the Parser.

3) The final stage of the fault injection campaign involves
processing the injection results and generating fault
effects classification. This process utilizes a Parser, which
is a configurable script responsible for categorizing faults
according to their final effect. In this paper, we provide
only the SDC fault effect to provide meaningful results
for this category. The Parser analyzes the fault injection
results and assigns them to appropriate categories based
on predefined criteria.

B. Functional Unit Injection

The gem5 simulator, while providing a configurable OoO
(out-of-order) engine that models all the array components
of interest in sufficient detail (caches, register files, queues,
etc.), offers a fundamental view of functional units, where
arithmetic unit operations are implemented at a functional level,
neglecting structural and intrinsic operation details. To perform
Statistical Fault Injection (SFI) on functional unit logic gates
and observe their impact on workload execution, we follow the
following steps: (i)) generate gate-level models of functional
units in C++ for seamless integration into gem5, (ii) instrument
these models to enable fault injection on any gate, initially
demonstrating permanent (stuck-at) faults but adaptable to
other fault types, and (iii) integrate gate-level models into gem5
using a hybrid approach to minimize simulation throughput loss.
These enhancements made to gem5 are directly compatible with
the fault injection process detailed in the previous subsection,
Section IV-A.

C. Accelerator Fault Injection

Several recent endeavors have aimed to integrate domain-
specific accelerator (DSA) models into the gem5 simulation
environment.Some examples are the gem5-Aladdin [50], the
PARADE [51], and the addition of SystemC support [52].
Although these approaches offer either pre-RTL or RTL-based
solutions, they each present notable drawbacks such as limited
design space exploration, low simulation fidelity, or high design
effort. To mitigate these challenges, for our fault injection
purposes, we utilize gem5-SALAM [53], leveraging a dynamic



graph execution engine based on LLVM. gem5-SALAM accu-
rately models accelerator datapaths through LLVM IR analysis,
provides cycle-level modeling and enables exploration of the
design space while seamlessly interacting with other gem5
system modules. Architecturally, gem5-SALAM comprises
a Compute Unit for datapath execution and a Communica-
tions Interface for memory access and control, facilitating
efficient communication between accelerators and the host CPU.
Through memory-mapped registers and DMA transactions
between system memory and accelerator (accelerator memory
arrays, i.e., Scratchpad Memories (SPMs) and Register Banks
(RegBanks)), data transfer and computation synchronization
are facilitated, enhancing the versatility and performance of
accelerator designs within the gem5 environment. Similarly
to functional units, the same fault injection infrastructure is
utilized.

V. RESULTS

In this section, we showcase the effects of Transient and
Permanent faults on program execution. We focus on SDC
outcomes, showing the probability that a fault in a specific
hardware unit results in an SDC. The basic parameters of the
gem5 configuration we use in this paper can be seen in Table II.

A. SDCs due to Permanent Faults in Array Components

1) L1 Instruction Cache: Fig. 2 illustrates the SDC prob-
ability outcomes for permanent faults in the L1 Instruction
Cache across fifteen benchmarks of the MiBench [54] suite for
the three ISAs (Arm, x86, RISC-V). As shown in Fig. 2, the
SDC probability ranges from 0.1% to 2.3% for Arm ISA, 0.1%
to 1.3% for x86, and 0.3% to 2.7% for RISC-V ISA. These
results are expected, in the sense that a workload running with
a persistent fault in any level of cache memory that stores
instructions is very unlikely to survive to the end and produce
a corrupted output. Faults in most fields of instruction will
primarily impact the execution flow or the instruction operands,
and thus, lead to a crash [5]. On average across all benchmarks,
the x86 ISA demonstrates the lowest SDC probability among
the ISAs studied in this paper, while the RISC-V ISA shows
the highest SDC probability in most benchmarks.

2) L1 Data Cache: Fig. 3 displays the SDC probability
results for permanent faults in the L1 Data Cache across the
same fifteen MiBench benchmarks for the three ISAs (Arm, x86,
RISC-V). As shown in Fig. 3, the SDC probability varies from
5.1% to 53.3% for Arm ISA, 4.4% to 64.7% for x86, and 4.4%

TABLE II
MAJOR SIMULATOR CONFIGURATIONS FOR EACH ISA.

Parameter Value

ISA RISC-V / Arm / x86
Pipeline 64-bit OoO (8-issue)

L1 Instruction Cache 32KB, 64B line, 128 sets, 4-way
L1 Data Cache 32KB, 64B line, 128 sets, 4-way

L2 Cache 1MB, 64B line, 2048 sets, 8-way
Physical Register File 128 Int; 128 FP

LQ/SQ/IQ/ROB entries 32/32/64/128
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Fig. 2. SDC probability due to permanent faults in L1 instruction cache [45].

to 70.8% for RISC-V ISA. On average across all benchmarks,
the RISC-V ISA exhibits the highest SDC probability among
all ISAs studied in this paper. It is important to note that the
L1 Data Cache is considered unprotected in our experiments,
i.e., there is no ECC-related protection scheme. In real systems,
the actual SDC probability can be much lower due to these
protection mechanisms.

Overall, for the microarchitecture and workloads analyzed,
the RISC-V ISA demonstrates a significantly higher probability
of SDCs due to permanent faults compared to the other ISAs,
i.e., Arm and x86.

B. SDCs due to Permanent Faults in Functional Units

As mentioned in the previous subsections, array components
like L1 cache memories are typically protected by some type
of error-correcting code (ECC) [8]. For example, when a cache
memory employs an ECC code, (e.g., a SECDED scheme -
single error correction double error detection), single-bit upsets
cannot cause corruption in the data that reside in a cache
memory; they are corrected by the protection scheme employed.
Even in the case of a two-bit upset, the error is detected
(without being corrected) and recorded in the system logs, so
the resulting corruption is not silent.

On the other hand, functional units are usually unprotected
by error detection and correction mechanisms. The reasoning
for this choice is the following: implementing a type of ECC
for functional units would increase their latency, possibly to
unacceptable values. This latency is part of the processor’s
critical path, negatively affecting the maximum attainable clock
speed, resulting in an overall slower processor design. Moreover,
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the complexity of the design increases as the error detection,
correction, and handling mechanisms must be embedded deep
in the processor pipeline (contrary to being implemented as
part of the memory subsystem) where die space and power
budgets are of the utmost importance.

Subsequently, functional units cannot detect or correct
corruption in their computations, and thus they are good
candidates for source of SDCs, posing an unmitigated risk for
data corruption. In this subsection, we present SDC probabilities
for 4 types of arithmetic units of a modern CPU and twenty-
one workloads. The workloads are simulated on a modern
microarchitectural configuration of x86 ISA, since the majority
of data centers utilize x86 CPUs.

We employ a permanent gate-level fault model for these
experiments on the gem5 simulator, targeting individual gates in
the gate-level model of the functional units. The fault-injected
gate is simulated either stuck-at-0 or stuck-at-1 for the entire
program execution. Transient faults in functional units’ logic
are very likely to be masked. The results we present are related
to the following arithmetic units: (i) integer adders, (ii) integer
multipliers, (iii) vector floating-point adders, and (iv) vector
floating-point multipliers.

Integer adders are of the utmost importance for any type of
workload; control flow decisions (i.e., comparisons), as well
as address calculations (performed by the integer adders), are
present in nearly every program. Corruptions in an integer
adder calculation have a substantial probability of affecting
a control flow decision or memory access, which in most
cases results in a program crash. This observation explains the
main layout of Fig. 4. All workloads have high utilization of
the integer adder, however very few exhibit substantial SDC
probability. The physical characteristics of the integer adder’s
usage combined with the nature of permanent faults result in

a high probability of crashes.

The only benchmarks exhibiting slightly higher probabilities
for SDC are sha256 (around 16%) and opensslsha at 20.2%.
This is due to the canonical control flow of these workloads,
and their heavy utilization of the integer adder for data flow,
unlike the behavior observed in the rest of the workloads.

The results for the integer multiplier shown in Fig. 5 exhibit
a similar trend to the results for the integer adder; however,
the probabilities are increased across the board, with FFT and
iFFT (inverse FFT) reaching nearly 35%. This increase is
expected, due to the integer multiplier being used for data flow
operations more often than the adder on average. This means
that crashes, when a permanent fault occurs in the integer
multiplier, are not as frequent as in the integer adder.

In this paper, we also present experimental results for
the two vector floating-point components, the adder, and the
multiplier. In contrast to their integer and scalar counterparts,
most applications do not widely use vector floating-point
components. More specifically, the gray-labeled benchmarks
in the x-axes of Fig. 6 and Fig. 7 do not use the vectorized
floating-point components at all. These components’ workloads
with extensive usage are usually numerical or linear algebra
algorithms operating on floating-point data. In our experiments,
the workloads with the highest probabilities for SDC in the
VFADD and VFMUL components fit this description: matrix
multiplication (GEMM) with 98.7% in the adder and 49.6%
in the multiplier, singular value decomposition (SVD) with
61.7% in the adder and 45.6% in the multiplier, sparse linear
system solving (sparse) with 97.4% in the adder and 44.8% in
the multiplier and FFT and inverse FFT with approximately
30% and 25% for the adder and multiplier respectively.

co
rn

er
s

zs
td

ed
ge

s
sp

ar
se sv
d

ge
m

m
di

jk
st

ra
cr

c3
2

qs
or

t
pa

tr
ic

ia
jp

eg
bi

tc
ou

nt
un

to
as

t
sm

oo
th

ba
si

cm
at

h ff
t

iff
t

to
as

t
sh

a2
56

op
en

ss
ls

ha
0

20

SD
C

 P
ro

b
ab

il
it

y

0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.3 0.4 0.5 1.3 1.3 1.4 1.8 2.0 2.9 3.3 3.4

15.8
20.2ADD

Fig. 4. SDC probability due to permanent stuck-at faults in an integer addition arithmetic unit.
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C. SDCs due to Transient Faults in Accelerator Memory Arrays

In this subsection, we present the probability of SDC
obtained from fault injection on eight distinct DSA designs,
targeting their large on-chip SRAMs: scratchpad memories
(SPMs) and register banks (RegBanks). These components
store input, output data, and intermediate results of accelerated
algorithms. For each DSA, we select representative SPMs and
RegBanks for independent fault injection campaigns to assess
their SDC likelihood, as shown in Table III. Fig. 8 shows these
results, for all designs.

The BFS accelerator design employs two distinct RegBanks
for accessing the EDGES and the NODES of the input graph,
and does not utilize any SPMs. The SDC probability of both
the EDGES RegBank and the NODES RegBank is 0%. This
is because nearly all fault effects of BFS are Crashes. This is
attributed to data from both RegBanks being utilized as indices
for graph traversals by the accelerator hardware. Consequently,
faults in any RegBank result in either excessively long execution
times or out-of-bounds memory accesses that exceed the size
of the system’s physical memory. The FFT design employs
two SPMs to store the imaginary (i.e., IMG) and REAL
components of the algorithm’s output. The IMG SPM has
an SDC probability of 44.5%, while the REAL SPM has an
SDC probability of 45.1%. These numbers are quite similar
because a fault in either the imaginary or real part of the FFT
result has an equal probability of corrupting the accelerator
output. Since the SPM data is not utilized by any accelerator
control logic or used as indices for memory accesses, all faults
are either masked or result in SDCs. The same pattern is also
observed in the GEMM and MERGESORT designs. GEMM
stores the input data of one of the matrices to be multiplied in

one SPM and the result of the matrix multiplication in another
SPM, while MERGESORT employs two SPMs to store the
main array data and temporary intermediate values. As shown
in Fig. 8, the output SPM (i.e., MATRIX3) of GEMM exhibits
a significantly lower SDC likelihood than the input SPM. This
can be attributed to the injected faults in the output SPM being
overwritten much more often because the input SPM gets
written to only once by the DMA device when the accelerator
is initialized, whereas the output SPM gets written to for the
entire accelerator runtime. For MERGESORT, the TEMP SPM
demonstrates a significantly lower SDC probability than the
MAIN SPM, which can be attributed to the overwriting of

TABLE III
TARGET INJECTION COMPONENTS FOR EACH DESIGN-SPECIFIC

ACCELERATOR DESIGN.

Accelerator Component Memory Size (Bytes) Memory Type

BFS
EDGES 16,384 RegBank
NODES 2,048 RegBank

FFT
IMG 8,192 SPM

REAL 8,192 SPM

GEMM
MATRIX1 32,768 SPM
MATRIX3 32,768 SPM

MD KNN
NLADDR 16,384 SPM
FORCEX 2,048 SPM

MERGESORT
MAIN 8,192 SPM
TEMP 8,192 SPM

SPMV
VAL 13,328 SPM

COLS 6,664 SPM

STENCIL2D
ORIG 32,768 SPM
SOL 32,768 SPM

FILTER 360 RegBank

STENCIL3D
ORIG 65,536 SPM
SOL 65,536 SPM

C VAR 8 RegBank
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Fig. 8. SDC probability due to transient faults in accelerator memory array
components [45].

numerous faults due to the continuous stream of memory writes
to the SPM. Similar observations also hold for the remaining
DSA designs.

VI. CONCLUSION

Silent Data Corruptions (SDCs) arising from defects in
computing chips have emerged as a critical threat to the
integrity of large-scale computing across various application
domains, including cloud computing, high-performance com-
puting, and edge computing. Recent public reports from cloud
hyperscalers have highlighted the significant role of processing
elements in generating SDCs, alongside traditional issues like
memory, storage, and network components. In this paper, we
presented a consolidated review based on recent endeavors to
link early microarchitecture-level simulations with real-world
observations from cloud data centers, aiming to understand the
probability, rates, severity, and root causes of SDCs. Insights
gained from diligent pre-silicon analysis, summarized in this
paper, can shed light on the complex nature of SDCs, aiding in
the development of more effective protection strategies, either
at the hardware or software levels, during deployment phases.
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