
National & Kapodistrian University
of Athens

Department of Physics

Section of Nuclear & Elementary Particle
Physics

The Closed Complex Time
Evolution in Open Quantum

Systems

Supervisors:
Alexandros Karanikas
Fotios Diakonos
Emmanuel Floratos

A Master Thesis by:
Georgios Kordas





Preface

In recent years there has been increasing interest in the consistent de-
scription of the dynamics of open quantum systems [4, 5, 9, 12]. Quantum
decoherence and dissipation are very important phenomena in many differ-
ent areas of physics. A non-exhaustive list includes problems from quantum
optics to many body and field-theoretical systems. Dissipative processes play
a basic role in the quantum theory of lasers and photon detection, and they
are equally important in nuclear fission and the deep inelastic collisions of
heavy ions. More recently, the influence of the environment on a quantum
system emerged as an issue of crucial importance, not only due to its fun-
damental implications, but also due to its practical applications in quantum
information theory [2, 3].

Theoretical studies of decoherence and dissipation in quantum mechan-
ics are centered on the time evolution of the reduced density matrix of a
system embedded in a specific environment. The basic tools for studying
the reduced dynamics are either effective equations of motion, in which the
dynamics of the environment is eliminated, such as the Lindblad master
equation [6,7], or the influence functional technique introduced by Feynman
and Vernon [13]. The latter is based on the path integral approach, and was
used by A. Caldeira and A. Leggett [14] in the study of the quantum Brow-
nian motion more than twenty years ago. In most cases however, neither
the Lindblad equation nor the influence functional can be exactly evaluated,
since the interaction between the system and the environment is too com-
plicated. Therefore, if one is interested in exact expressions, one must rely
on some specific system-environment simple models: a harmonic oscillator
or a two-level quantum mechanical system embedded in a (thermal) bath
of other harmonic oscillators or other spin systems. The main issue of this
thesis is to investigate the possibility to extend the calculational capability of
the Feynman-Vernon path integral approach by adopting and combining def-
inite functional methodological tools already known from different research
fields. The first such tool is a combination of the well-known “closed (real)
time formalism” [18] with the (equally well-known) imaginary time formu-
lation [12] in the context of path integration. The compound result, called
“closed complex time formalism” (or CCT ), enables us to isolate, in a simple
and compact expression, the influence of the environment on the evolution of
the system. Our second suggestion is the application of the so-called “cluster
expansion” in the CCT context. In this way we are led to write down an
expression for the “effective action” that governs the dynamics of the system
after the elimination of the environmental degrees of freedom, which sets the
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scene for exact or approximate calculations. Our ultimate aim is the transfer
of the existent richness of perturbative and non-perturbative path integral
techniques into the realm of open quantum systems. It is worth noting that
our proposal can be extended to systems with an infinite number of degrees
of freedom, such as the electromagnetic field interacting with matter or other
field-theoretical systems.
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Chapter 1

Fundamental Concepts

In this chapter we discuss some of the basic concepts of open quantum
systems, such as mixed states, density matrix, entanglement, Von Neuman
entropy and decoherence. More details one can find in the following [1–3, 8,
11].

1.1 Pure and Mixed States

A pure ensemble is a collection of physical systems each of which is char-
acterized by the same state |ψ〉. As a trivial example consider a beam of
non-interacting spin 1/2 particles in the state |ψ〉 = c+|+〉 + c−|−〉. This
state characterizes a particle whose spin is pointing in some definite direc-
tion: if β and α, is the polar and azimuthal angles, respectively, then we can
obtain c± by solving the equations

c+
c−

=
cos(β/2)

eiα sin(β/2)
, |c+|2 + |c−|2 = 1. (1.1)

We say that the beam is polarized along the specific direction. The above
beam of particles is an example of a system in a pure state.

Now suppose that we have a beam of particles with completely random
spin orientation. For example half of the particles can be polarized along
the positive x direction and the other half along the negative z direction. It
is obvious that it is impossible to find a state vector describing this system.
The only thing we can say is that we have w+ = 0.5 probability to find a
particle of the beam in the state |x+〉 and w− = 0.5 to find it in the state
|−〉 ≡ |z−〉. In this example, our system is in a mixed state. Here we must
notice that the numbers w+, w− ∈ R refer to classical probabilities (we have
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the normalization condition: w+ + w− = 1) and we must not confuse them
with the complex numbers c+, c− ∈ C of the previous paragraph, because
|c+|2, |c−|2 refer to “quantum” probabilities. Mixed state we can, also when
we don’t know exactly the state that characterizes a particle. Let’s see an
example for this case: Suppose we have a particle in the state |ψ〉 = c+|+〉+
c−|−〉, and we know that someone did a measurement in the third axis,
but we don’t know the result of the measurement. The only thing we can
say for sure is that if we do a new measurement in the third axis we have
w+ = |c+|2 probability to find it with spin-up and w− = |c−|2 probability to
find it with spin-down (attention, these are classical probabilities, because
after the first measurement - the result of which is unknown from us - the
initial wavefunction has collapsed). Lets clear the situation: before the fist
measurement the spin of the particle pointed in the direction defined by
equation (1.1), after the first measurement the particle has spin-up or spin-
down in the third axis with probability w+ or w− respectively.

The appropriate formalism to deal with mixed states, is that of density
matrix which is the right tool for describing a system the exact state of
which is not known.

1.2 The Density Matrix

Suppose we have an ensemble of pure states |ψi〉, each of which characterizes
our system with probability wi. We define the density matrix as:

ρ̂ =
∑
i

wi|ψi〉〈ψi|, (1.2)

with the constrain
∑

wi = 1. Here we have to mention that the states |ψi〉
need not to be orthogonal. In the case where our system is in a pure state
|ψj〉, then it has the density matrix: ρ̂ = |ψj〉〈ψj|. In a complete basis {|x〉},
the density matrix takes the form

ρ(x, x′) = 〈x|ρ̂|x′〉 =
∑
i

wi〈x|ψi〉〈ψi|x′〉. (1.3)

It is easy to see that for the density matrix we have the normalization con-
dition Tr(ρ) = 1, indeed

Tr(ρ) ≡
∑
x

ρ(x, x) =
∑
i

∑
x

wi〈x|ψi〉〈ψi|x〉 =
∑
i

wi〈ψi|ψi〉 =
∑
i

wi = 1.
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We can prove that the density matrix is a positive operator, since if we
consider the arbitrary state |ϕ〉 we have

〈ϕ|ρ̂|ϕ〉 =
∑
i

wi〈ϕ|ψi〉〈ψi|ϕ〉 =
∑
i

wi|〈ϕ|ψi〉|2 ≥ 0.

Now we will see the following “purity” criterion: If our system is in the
state |ψj〉 then we have

Tr(ρ2) = Tr(|ψj〉〈ψj|ψj〉〈ψj|) = Tr(|ψj〉〈ψj|) = Tr(ρ) = 1⇒

Tr(ρ2) = 1 (1.4)

that is, when we are in a pure state we have the relation (1.4). Suppose now
that our system is in a mixed state with density matrix (1.2), then

Tr(ρ2) =
∑
x

∑
y

ρ(x, y)ρ(y, x) =
∑
x

∑
y

∑
i

∑
j

wiwj〈x|ψi〉〈ψi|y〉〈y|ψj〉〈ψj|x〉 =

=
∑
i

∑
j

wiwj〈ψi|ψj〉〈ψi|ψj〉 =
∑
i

∑
j

wiwjδij =
∑
i

w2
i <

(∑
i

wi

)2
= 1⇒

Tr(ρ2) < 1 (1.5)

that is, when we are in a mixed state we have the relation (1.5). Let’s see
two examples:

Example 1.2.1. Suppose we have a completely polarized beam in the positive
direction of z, then

ρ = |+〉〈+| =
(

1
0

)(
1 0

)
=

(
1 0
0 0

)
⇒ ρ =

(
1 0
0 0

)
⇒ Tr(ρ2) = 1.�

Example 1.2.2. Now suppose we have an unpolarized beam. This can be
regarded as an incoherent mixture of a spin-up ensemble and a spin down
ensemble with equal weights :

ρ =
1

2
|+〉〈+|+ 1

2
|−〉〈−| = 1

2

(
1 0
0 0

)
+

1

2

(
0 0
0 1

)
=

(
1/2 0
0 1/2

)
⇒

Tr(ρ2) =

(
1/4 0
0 1/4

)
⇒ Tr(ρ2) =

1

2
< 1. �
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Here we must say that the same density matrix may correspond to more
than one ensembles of quantum states. The eigenstates and eigenvalues of
the density matrix indicate one of the many possible ensembles giving rise
to the specific density matrix, and there is no reason to suppose there exists
an especially privileged ensemble. Let’s see an example :

Example 1.2.3. Suppose we have a quantum system with density matrix

ρ =
1

4
|+〉〈+|+ 3

4
|−〉〈−|.

One may consider that our system is in the state |+〉 with probability 0.25
and in the state |−〉 with probability 0.75. However, we would have the same
density matrix if our system was in the state |α〉 with probability 0.5 and in
the state |β〉 with probability 0.5, where

|α〉 ≡
√

1

4
|+〉+

√
3

4
|−〉

|β〉 ≡
√

1

4
|+〉 −

√
3

4
|−〉,

because

ρ =
1

2
|α〉〈α|+ 1

2
|β〉〈β| = 1

4
|+〉〈+|+ 3

4
|−〉〈−|. �

As we are going to see, we can rewrite all the principles of quantum
mechanics, in the language of the density matrix. Suppose that the time
evolution of a closed quantum system is described by the unitary operator
U . If the system was initially in the state |ψi〉 with probability pi, then
after the evolution has occurred the system will be in the state U |ψi〉 with
probability pi. Thus, the evolution of the density operator is described by
the equation

ρ(t0) =
∑
i

pi|ψi〉〈ψi|
U→ ρ(t) =

∑
i

piU(t, t0)|ψi〉〈ψi|U †(t, t0)⇒

ρ(t) = U(t, t0)ρ(t0)U
†(t, t0). (1.6)

From the relation (1.6) with differentiation we have the equation of motion
for the density matrix

d

dt
ρ(t) = − i

~
[H(t), ρ(t)]. (1.7)
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If we write the Hamiltonian of the system in the form H(t) = H0 + HI(t),
then we can write the equation of motion in the interaction picture

d

dt
ρ̃(t) = − i

~
[HI(t), ρ̃(t)], (1.8)

where
ρ̃(t) ≡ e−

i
~HI(t−t0)ρ(t0)e

i
~HI(t−t0) (1.9)

the density matrix in the interaction picture.
Measurements are also described in the density operator language. Sup-

pose we perform a measurement described by measurement operators Mm,
for which we have the completeness relation∑

m

M †
mMm = I.

If the initial state was |ψi〉, then the probability of getting result m is

p(m|i) = 〈ψi|M †
mMm|ψi〉 = Tr(M †

mMm|ψi〉〈ψi|). (1.10)

The probability of obtaining result m is

p(m) =
∑
i

p(m|i)pi =
∑
i

piTr(M
†
mMm|ψi〉〈ψi|) = Tr(M †

mMmρ). (1.11)

The density matrix after the measurement changes: Suppose the initial state
was |ψi〉. After a measurement with result m, the state is

|ψmi 〉 =
Mm|ψi〉√

〈ψi|M †
mMm|ψi〉

.

Thus, after the measurement we have an ensemble of states |ψmi 〉 with cor-
responding probabilities p(m|i). Therefore, the density matrix is

ρm =
∑
i

p(m|i)|ψmi 〉〈ψmi | =
∑
i

p(m|i)Mm|ψi〉〈ψi|M †
m

〈ψi|M †
mMm|ψi〉

.

Taking into account that p(i|m)/p(m|i) = pi/p(m), and using (1.10) and
(1.11) we get

ρm =
∑
i

p(m|i)Mm|ψi〉〈ψi|M †
m

Tr(M †
mMmρ)

=
MmρM

†
m

Tr(M †
mMmρ)

. (1.12)
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1.2.1 The Reduced Density Matrix

One of the most important advantages of the density matrix formalism, is
that it can deal with subsystems of a composite quantum system. The tool
we use in this case is the reduced density matrix. Suppose we have two
quantum systems A and B. The composite system is described by a state
|ψ〉 ∈ HA ⊗ HB, and consequently by a density matrix ρAB = |ψ〉〈ψ|. The
reduced density matrix for the subsystem A is defined as follows

ρA = TrB(ρAB), (1.13)

where TrB is the partial trace over the system B. We defined the partial trace
as

TrB(|α1〉〈α2| ⊗ |β1〉〈β2|) ≡ |α1〉〈α2|Tr(|β1〉〈β2|),

where |α1〉, |α2〉 ∈ HA and |β1〉, |β2〉 ∈ HB.
Here we must notice that it is not obvious that the reduced density matrix
can describe the subsystem A. As we are going to prove the partial trace is
the only operation which gives rise to the consistent description of observable
quantities for subsystems of a composite system. Let’s see first an example:

Example 1.2.4. Suppose we have a two electron system in the state |ψ〉 =
(|+ +〉+ | − −〉)/

√
2. In this case the density matrix is

ρ =
( |+ +〉+ | − −〉√

2

)(〈+ + |+ 〈− − |√
2

)
=

=
|+ +〉〈+ + |+ |+ +〉〈− − |+ | − −〉〈+ + |+ | − −〉〈− − |

2
.

If we take the partial trace over the second electron, we have the reduced
density matrix for the first

ρ1 = Tr2(ρ) =
Tr2(|+ +〉〈+ + |) + Tr2(|+ +〉〈− − |)

2
+

+
Tr2(| − −〉〈+ + |) + Tr2(| − −〉〈− − |)

2
=

=
|+〉〈+|〈+|+〉+ |+〉〈−|〈−|+〉+ |−〉〈+|〈+|−〉+ |−〉〈−|〈−|−〉

2
=

=
|+〉〈+|+ |−〉〈−|

2
=
I

2
. � (1.14)
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Here we can observe that the reduced Density matrix (1.14) correspond
to a mixed state, since Tr(ρ21) = 1/2 < 1. While the total system is in a
pure state (we know exactly its state), the subsystem is in a mixed state (we
don’t have exact knowledge of its state). We will discuss this in detail when
we talk about Entanglement.

Now, let’s see why the reduced density matrix consistently describes a
subsystem. Suppose that M is an observable on the system A, and we have
a measuring devise which can measure it. Let M̃ denote the corresponding
observable for the same measurement, performed on the composite system.
First we must argue that M̃ = M ⊗ IB. If the system AB is prepared in
the state |m〉|ψ〉, where |m〉 is an eigenstate of M with eigenvalue m and
|ψ〉 is any state of B, then the measuring device yield the result m for the
measurement, with probability one. Thus, if Pm = |m〉〈m| is the projector
onto the m eigenspace of the observable M, then the corresponding projector
for M̃ is Pm ⊗ IB. We therefore have

M̃ =
∑
m

mPm ⊗ IB = M ⊗ IB.

Suppose now that we measure on A the observable M. The averages computed
by using ρA or ρAB must be the same

TrA(MρA) = Tr(M̃ρAB) = Tr((M ⊗ IB)ρAB). (1.15)

This equation is satisfied if we choose ρA = TrB(ρAB). In fact, the partial
trace is the unique operation that has this property. To see this, let f be any
map of density operators on AB to density operators on A, such that

Tr(Mf(ρAB)) = Tr((M ⊗ IB)ρAB),

for all observables M. Let Mi be an orthonormal basis of operators for the
space of Hermitian operators, then expanding f(ρAB) in this basis gives

f(ρAB) =
∑
i

MiTr(Mif(ρAB)) =
∑
i

MiTr((Mi ⊗ IBf(ρAB)).

It follows that f is uniquely determined by equation (1.15). Moreover, the
partial trace satisfies (1.15), so it is the unique function having this property.

The time evolution of the reduced density matrix is very interesting since
we can determine how a subsystem is affected from the rest of the system.
We will study this issue in detail below.
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1.3 The Entanglement

Entanglement is one of the most important properties of Nature. It is not
describable in the context of classical physics but it appears naturally within
the mathematical structure of quantum mechanics. A pure state |ψ〉 of a
composite quantum system, lives in a linear Hilbert space, constructed by a
tensor product of Hilbert spaces referring to its subsystems. Such composite
spaces contain state vectors that cannot be written as a tensor product of
vectors that belong to Hilbert subspaces of the subsystems. These states are
called entangled. Speaking more sharply, a pure state |ψ〉 ∈ HA⊗HB ⊗ ...⊗
HN is called entangled if and only if

∀|ϕA〉 ∈ HA,∀|ϕB〉 ∈ HB, ...,∀|ϕN〉 ∈ HN

we have :
|ψ〉 6= |ϕA〉 ⊗ |ϕB〉 ⊗ ...⊗ |ϕN〉.

For the mixed states we say that the density matrix ρ is entangled, if the
ensemble of states, describing the system, contains at least one pure entangled
state.

The following theorem will help us to understand the mathematical basis
of the entanglement:

Theorem 1.3.1. (Schmidt Decomposition) Let a composite system AB
that it is described by a pure state |ψ〉 ∈ HA ⊗HB. Moreover, let {|iA〉} and
{|iB〉} orthonormal basis set of HA and HB, respectively. Then the vectors
{|iA〉|iB〉} forms a basis in HA ⊗HB, so we can write

|ψ〉 =
∑
i

√
λi|iA〉|iB〉, (1.16)

where λi is non negative real numbers that satisfy the relation
∑

i λi = 1 and
is called Schmidt coefficients.

The basis {|iA〉} and {|iB〉} are called Schmidt basis for A and B respec-
tively, and the number of non-zero λi is called Schmidt number for the state
|ψ〉. A state is entangled if the Schmidt number is greater than one.

The above mathematical structure describing entanglement has an unex-
pected consequence : the non locality of quantum mechanics. Suppose we
have of two particles described by the entangled state |ψ〉. Next we separate
the particles minimizing any interaction between them and we bring the first
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in the lab A and the second in the lab B. We write the pure state of the total
system with the help of Schmidt decomposition

|ψ〉 =
∑
i

√
λi|iA〉|iB〉,

∑
i

λi = 1.

Now we perform a measurement in the Schmidt basis in each of the labs. The
results of the measurements are random variables, and will be denoted XA

and XB for the outcomes in lab A and B, respectively. In the limit of many
repeated measurements, the relative weight of the outcomes will converge to
the following probability distributions

p(XA = k) = 〈kA|(TrB|ψ〉〈ψ|)|kA〉 = λk

p(XB = k) = 〈kB|(TrA|ψ〉〈ψ|)|kB〉 = λk

Now, the two labs compare their results in order to evaluate the joint prob-
ability :

p(XA, XB = i, j) = 〈iA|〈jB|(|ψ〉〈ψ|)|jB〉|iA〉 = δijλi

6= λiλj = p(XA = i)p(XB = j)

where the inequality, in the last line, holds if at least two of the Schmidt
coefficients are larger than zero. The above result means that the results
of the measurements XA and XB are not independent, although there is no
interaction between the two particles-subsystems! This phenomenon is called
non locality. Let’s see an example

Example 1.3.1. Suppose we let two spin 1/2 particles interact so the total
system is described by the pure state

|ψ〉 =

√
3

2
|+ +〉+

1

2
| − −〉 ≡

√
3

2
|+〉A|+〉B +

1

2
|−〉A|−〉B,

where |±〉 are the eigenstates of Sz. The Schmidt coefficients for this state
are λ+ =

√
3/2 and λ− = 1/2. Now we separate the two particles, so there is

no interaction between them, and bring them to the labs A and B. Now, the
experimentalists in the lab A perform a measurement in the Sz axis and they
find that their particle is in the |+〉A state.After the measurement the total
wavefunction has collapsed into the state

|ψ′〉 = |+ +〉 ≡ |+〉A|+〉B.

This lead them to the definite conclusion that if the experimentalists in lab B
perform the same measurement they will find, with probability one, that their
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particle is in the state |+〉B. One could say that we would have propagation
of information with speed greater than the light speed if, the experimentalists
in lab B had a way to know what had happened in the lab A. �

What we discuss above concern the case where the total system is in a
pure state. But what happens if the total system is in a mixed state? In such
a case, as we will see in the next example, there are also classical correlations
that do not have their origin in entanglement.

Example 1.3.2. Suppose we have a system of two spin 1/2 particles, that
they are prepared with probability 1/2 in the state |+ +〉 and with probability
1/2 in the state |−−〉 (attention these are classical probabilities). The density
matrix of the system is written

ρ =
1

2
|+ +〉〈+ + |+ 1

2
| − −〉〈− − | = 1

2


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 .

Let XA and XB be random variables that represent the measurement outcomes
of spin A and B, respectively. Then we have

p(xA) = p(xB) = 〈xA|TrBρ|xA〉 = 〈xA|
1

2

(
1 0
0 1

)
|xA〉 =

1

2
, ∀xA, xB = 0, 1.

Also, we have

p(xA, xB = i, j) = 〈ij|ρ|ij〉 =
1

2
δij 6= p(xA = i)p(xB = j) =

1

4
.

We observe that, in this particular basis, we have the same correlation as we
would have starting from the Bell state

|ψ〉 =
|+ +〉+ | − −〉√

2
,

but these correlations have not their origin in entanglement, they are classical
correlations. �

1.4 The Quantum Entropies

The aim of this section is to study the quantum entropies, that play impor-
tant role in quantum statistical mechanics and quantum information theory.
We will define the Von Neumann entropy, the relative entropy and the linear
entropy, and we will present their important properties. More details about
the subject may be found in [2, 11].
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1.4.1 The Von Neumann Entropy

The Von Neumann or entanglement entropy for a density matrix is defined
as follows

S(ρ̂) ≡ −Tr{ρ̂ ln ρ̂}, (1.17)

using the spectral decomposition of the density matrix (1.2) we have

S(ρ̂) = −
∑
i

wi lnwi. (1.18)

A statistical mixture which is described by the density matrix (1.2) can be
obtained by mixing pure ensembles described by states |ψi〉 with correspond-
ing weights wi. Then the entropy S(ρ) expresses our uncertainty, or lack
of knowledge about the realization of a particular state |ψi〉 in the mixture.
Let’s see, now, some important properties of the entropy

1. For all density matrices one has

S(ρ) ≥ 0, (1.19)

where the equality sign holds if and only if ρ is a pure state, otherwise
the system is in a mixed state.

2. If the dimension of the Hilbert space is finite, dimH = D < ∞, then
the entropy is bounded from above S(ρ) ≤ lnD, where the equality
holds if and only if ρ is completely mixed ρ = I/D.

3. The Von Neumann entropy is invariant with respect to unitary trans-
formations U of the Hilbert space, that is S(UρU †) = S(ρ).

4. The Von Neumann entropy is a concave functional ρ 7→ S(ρ) on the
space of density matrices. This means that for any collection of densi-
ties ρi and numbers λi ≥ 0, satisfying

∑
i λi = 1, one has the inequality

S

(∑
i

λiρi

)
≥
∑
i

λiS(ρi).

The equality holds if and only if all ρi with vanishing λi are equal to
each other. This property means that our uncertainty about the state
ρ =

∑
i λiρi is greater than or equal to the average uncertainty of the

states ρi that constitute the total mixture.
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5. Consider a composite system with Hilbert space, H = HA ⊗ HB, de-
scribed by the density matrix ρAB. The two subsystems are described
by the density matrices ρA = TrBρ

AB and ρB = TrAρ
AB. Then we

have for the entropy

S(ρAB) ≤ S(ρA) + S(ρB),

where the equality hods if and only if the density matrix of the total
system is of the form ρAB = ρA⊗ ρB. Thus, our uncertainty about the
product state ρA⊗ρB is, in general, greater than the uncertainty about
the state ρAB of the total system. In other words, the partial trace has
as a consequence to lose information about correlations between the
subsystems and thus the entropy is increased. If the total system is
in a pure state then the two density matrices ρA and ρB have the the
same eigenvalues, so they have equal entropies

S(ρA) = S(ρB) ≥ 0,

where the sign of greater than holds strictly if and only if the state
of the total system is an entangled state and the equality holds if the
state is disentangled.

Let’s see a simple example

Example 1.4.1. Suppose we have the pure state

|χ〉 =
1√
2

(|+〉+ eiϕ|−〉)

thus the density matrix is

ρ = |χ〉〈χ| = 1

2

(
1 e−iϕ

eiϕ 1

)
.

In order to calculate the entropy we must write the density matrix in a diag-
onal form

ρdiag =
1

2

(
1 0
0 0

)
,

so, the entropy is

S(ρ) = −
2∑
i=1

wi lnwi = −0 · ln 0− 1 · ln 1 = 0.
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Suppose now we a mixed state, in the following form

σ =
∑
i

wi|ϕi〉〈ϕi|,

where wi ≥ 0 and
∑

iwi = 1. Thus, the entropy is

S(σ) = −Tr{σ lnσ} = −Tr

{∑
i

wi|ϕi〉〈ϕi| ln
∑
i

wi|ϕi〉〈ϕi|

}
=

= −Tr

{∑
i

wi
∑
j

∑
k

ck(pj)
k|ϕi〉〈ϕi|ϕj〉〈ϕj|...

}
= −

∑
i

wi lnwi. �

1.4.2 The Relative Entropy

For a given pair of density matrices ρ and σ the relative entropy is defined
by

S(ρ||σ) ≡ Tr{ρ ln ρ} − Tr{ρ lnσ}. (1.20)

A physical interpretation for the relative entropy can be given if we consider
a composite system that is described by the state ρ. This subsystem consists
of two subsystems A and B that are described by the density matrices ρA =
TrBρ

AB and ρB = TrAρ
AB, respectively. Thus, we have

S(ρAB||ρA ⊗ ρB) = S(ρA) + S(ρB)− S(ρAB).

So, this entropy is a measure of the information encoded into the subsystems
correlation.
Let’s see some important properties of this entropy :

1. The relative entropy fulfils the inequality

S(ρ||σ) ≥ 0

for all density matrices ρ and σ. The equality holds if and only if ρ = σ.

2. The relative entropy is invariant with respect to unitary transforma-
tions U ,

S(UρU †||UσU †) = S(ρ||σ) = S(ρ||σ).

3. The relative entropy is jointly convex in its arguments. This means
that for 0 ≤ λ ≤ 1 we have the inequality

S(ρ||σ) ≤ λS(ρ1||σ1) + (1− λ)S(ρ2||σ2),

where ρ = λρ1 + (1− λ)ρ2 and σ = λσ1 + (1− λ)σ2.
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4. If ρA = TrBρ
AB and σA = TrBσ

AB then we have

S(ρA||σA) ≤ S(ρ||σ)

that is, the partial trace reduces the relative entropy. If the state ρAB

is a tensor product, we have

S(ρA||σA) = S(ρA ⊗ ρB||σA ⊗ σB).

1.4.3 The Linear Entropy

The linear entropy for a density matrix ρ, is defined by

Sl(ρ) = Tr{ρ− ρ2} = 1− Trρ2. (1.21)

We can immediately give an upper and a lower bound for this functional

0 ≤ Sl(ρ) ≤ 1,

where the equality with zero holds if and only if the state is pure.The second
inequality follows from the fact that Trρ2 is a positive operator.
For a D dimensional Hilbert space we have the upper bound

Sl(ρ) ≤ 1− 1

D
.

1.5 Time Evolution of Open Quantum Sys-

tems : An Introduction

In this section we will present the two main formalisms that refer to the time
evolution of the density matrix : the master equation formalism [6,7,10] and
the influence functional formalism [12–14]. The present thesis is based on
the influence functional formalism so we won’t present in detail the master
equation formalism except from what is needed for the comparison of the
two formalisms. In the last subsection, we will present a sort introduction to
Decoherence.

1.5.1 The Master Equation

Here we are going to present an equation giving the time evolution of the
reduced density matrix of a quantum system coupled to an environment. A
schematic picture of the typical situation under study is shown in figure 1.1.
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Figure 1.1: Schematic picture of an open quantum system.

An equation like this, can be obtained from the relation (1.7), if we take the
partial trace, over the degrees of freedom of the environment, on both sides

d

dt
ρ̂s(t) = − i

~
Tre[Ĥ(t), ρ̂(t)], (1.22)

where ρs(t), ρ(t) are the reduced density matrix of the system and the density
matrix of the total system respectively and

Ĥ(t) = Ĥs ⊗ Îe + Îs ⊗ Ĥe + ĤI(t) (1.23)

is the Hamiltonian of the total system. The equation (1.22) is exact, however
in its right side there is the density matrix of the total system (system +
environment), a fact that complicates things : the determination of ρs in some
instant demands the knowledge of ρe(t0), in which we have no access. In other
words, the ρs(t0+dt) does not depend only from the ρs(t0), but also from the
ρs in previous times, since the environment “remembers” that information
and can transfer it back to the system. Thus, we need an equation that does
not incorporate the environment.

In order to construct such an equation, from the underlying Hamiltonian
dynamics of the total system, we will need the following assumptions [4,10]:
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• We assume that the initial state of the total system can be written as a
tensor product and it is pure, ρ̂(t0) = ρ̂s(t0)⊗ ρ̂e(t0). That is, initially
the environment and the system are uncorrelated.

• Markov Approximation. This approximation allows to make the master
equation local in time. We assume that there is a characteristic time τe
for the environment, which is the typical time during which the internal
correlations in the environment exist. This is such a time, that when it
elapses, the state of the environment is practically independent of its
initial state. In other words, τe is the time in which the environment
”forgets” the information that the system gives to it. We are interesting
for times, such that

τe � ∆t. (1.24)

• Born Approximation. The weak-coupling assumption allows us to ex-
pand the exact equation of motion (1.22) for the density matrix to
second order. Also, allows us to write the density matrix of the total
system in the form ρ̂(t) ≈ ρ̂s(t)⊗ ρ̂e(t), for every t > 0.

• Secular approximation. This approximation is consequence of the fact
that we interesting for times, such that

∆t� τi, (1.25)

where τi is a characteristic relaxation time in system s due to inter-
action with environment. This approximation ensures that the master
equation is in Lindbland form (see below).

With these assumptions at hand, we can derive from (1.22) the following
equation of motion for the reduced density matrix

d

dt
ρ̂s(t) = − i

~
[ĤLS, ρ̂s(t)] + D(ρ̂s(t)). (1.26)

which is known as Lindbland equation. The first term, in the right-hand
side of this equation, provides a Hamiltonian contribution to the dynamics.
This term is often called the Lamp shift Hamiltonian since it leads to a
Lamb-type renormalization of the unperturbed energy levels induced by the
system-environment coupling. The second term is called dissipator and it is
responsible for dissipation and decoherence (see below).
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1.5.2 The Feynman-Vernon Theory

The time evolution of an open quantum system can also be examined in
the framework of the well-known Feynman-Vernon path integral formalism.
The total Hamiltonian is of the form (1.23), while the initial state is assumed
to be pure and disentangled. The total system being closed the evolution of
the total density matrix is

ρ̂(t) = Û(t)[ρ̂s(0)⊗ ρ̂e(0)]Û †(t) (1.27)

which in the coordinate representation is written

ρX′,X(t) = 〈X ′|Û(t)ρ̂s(0)⊗ ρ̂e(0)Û †(t)|X〉 ≡

≡ 〈q′, x′|Û(t)ρ̂s(0)⊗ ρ̂e(0)Û †(t)|q, x〉 ⇒

ρX′,X(t) =

∫
dX ′′

∫
dX ′′′〈X ′|Û(t)|X ′′〉〈X ′′|ρ̂s(0)⊗ ρ̂e(0)|X ′′′〉〈X ′′′|Û †(t)|X〉

or

ρX′,X(t) =

∫
dX ′′

∫
dX ′′′ρsx′′x′′′(0)ρeq′′q′′′(0)〈X ′|Û(t)|X ′′〉〈X ′′′|Û †(t)|X〉,

(1.28)
where X ≡ (q, x), with q and x be the coordinates of the environment and
system, respectively. We are interesting in the reduced density matrix of the
open system, so we integrate the degrees of freedom of the environment

ρ̂R(t) = Tre[Û(t)[ρ̂s(0)⊗ ρ̂e(0)]Û †(t)]⇒ (1.29)

ρRx′x(t) =

∫
dq

∫
dx′′

∫
dq′′
∫
dx′′′

∫
dq′′′ρsx′′x′′′(0)ρeq′′q′′′(0)×

×〈x′, q|Û(t)|x′′, q′′〉〈x′′′, q′′′|Û †(t)|x, q〉. (1.30)

Let us write in detail, each of the factors of the above relation:
For the two propagators we have

〈x′, q|Û(t)|x′′, q′′〉 =

x(4)(t)=x′∫
Dx(4)(t)

x(4)(0)=x′′

∫
Dq(4)(t)δ[q(4)(t)− q]δ[q(4)(0)− q′′]×

× exp

{
i

~

∫ t

0

dt′L[q(4), x(4)(t′)]

}
, (1.31)
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〈x′′′, q′′′|Û †(t)|x, q〉 =

x(4)(t)=x∫
Dx(1)(t)

x(4)(0)=x′′′

∫
Dq(1)(t)δ[q(1)(t)− q]δ[q(1)(0)− q′′′]×

× exp

{
i

~

∫ 0

t

dt′L[q(1)(t′), x(1)(t′)]

}
, (1.32)

where L is the Lagrangian of the total system. The numbering we used is for
our later convenience. Now we write the total Lagrangian as L = Ls+Le+LI ,
where the system-environment interaction is incorporated in LI . Combining
the equations (1.31), (1.32) and (1.30) and reorder the terms, so we can write

ρRx′x(t) =

∫
dx′′

∫
dx′′′J(x, x′, x′′, x′′′; t)ρsx′′x′′′(0), (1.33)

where

J(x, x′, x′′, x′′′, : t) ≡
x(4)(t)=x′∫
Dx(4)(t)

x(4)(0)=x′′

x(1)(t)=x∫
Dx(1)(t)

x(1)(0)=x′′′

exp

{
i

~

∫ t

0

dt′Ls[x(4)(t′)]

}
×

× exp

{
− i

~

∫ t

0

dt′Ls[x(1)(t′)]

}
F [x(4)(t), x(1)(t); t]. (1.34)

The last factor is the well-known influence functional which assumes the
form

F [x(4)(t), x(1)(t); t] ≡
∫
dq

∫
dq′′
∫
dq′′′ρeq′′q′′′(0)×

×
q(4)(t)=q∫
Dq(4)(t)

q(4)(0)=q′′

q(1)(t)=q∫
Dq(1)(t)

q(1)(0)=q′′′

exp

{
i

~

∫ t

0

dt′Le+I [q(4)(t′), x(4)(t′)]−

− i
~

∫ t

0

dt′Le+I [q(1)(t′), x(1)(t′)]

}
. (1.35)

If there were no interaction between system and environment, the influ-
ence functional would be unit. Then the relation (1.34) would be written as
the product of two propagators, one forward in time and one backward in
time. In case of interaction the two propagations are coupled by the influence
functional.
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Figure 1.2: The paths q(1) and q(4).

Here we must notice that the only assumption being made, in order to
derive the relation (1.33), is that the initial state can be written as a tensor
product. This is a limiting assumption, but we can easily extend the path
integral formalism (not the influence functional) to deal with entangled initial
conditions [15–17]. Because of the fact that we don’t need many assumptions,
this formalism have used in order to derive exact master equations for the
reduced density matrix (see for example [20–22]).

1.5.3 Decoherence

The interaction of an open quantum system with its environment creates
correlations between the states of the system and those of the environment.
The environment exchanges information with the open system in the form
of these correlations. This process has as a consequence that a certain set of
states of the open system Hilbert space exhibits strong stability properties,
while superpositions of these states are destroyed in the course of time. This
dynamical destruction of quantum coherence is called decoherence.

First, let’s see a simple example showing the results of the decoherence in a
quantum system. Consider the interference effect1 in the two slit experiment.
In the case that there is no environment (see figure 1.3 (a)), the electrons
are emitted from the source S and they create the well-known interference
pattern on the screen. The probability to find an electron in the position x

1Interference experiments has been used in order to study the phenomenon of decoher-
ence, see for example [27,28].
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is

|ψs(x)|2 = |ψ1(x) + ψ2(x)|2 = |ψ1(x)|2 + |ψ2(x)|2 + ψ1(x)ψ∗2(x) + ψ∗1(x)ψ2(x),

where ψ1 is the wavefunction that characterizes the electrons which come
from the slit S1 respectively for ψ2. In the language of the density matrix
the electrons, between the wall with the two slits and the screen, will be
described by the density matrix

ρ̂s =
1

N

2∑
n,m=1

|ψn〉〈ψm|. (1.36)

Suppose, now, that the electrons, in the area between the wall and the screen,
interact with an environment (a photon bath for example) in which we have
no access. In this case the density matrix of the electrons in that area, will
be

ρ̂s = tre

{
|ψs〉|ψe〉〈ψe|〈ψs|

}
, (1.37)

where |ψs〉 characterizes the electrons and |ψe〉 the environment. The time
evolution of the reduced density matrix (1.37) will be described from the
equation (1.26) or (1.33). The decoherence theory says that very fast the
density matrix of the electrons will be

1

N

2∑
n=1

|ψn〉〈ψn| =
1

2
|ψ1〉〈ψ1|+

1

2
|ψ2〉〈ψ2|. (1.38)

That is, the interference terms will be destroyed very fast, so we will have
on the screen the pattern showed in figure 1.3 (b). We would expect such an
image, if the electrons was classical particles.

Let’s examine the situation in detail [4]. Suppose that the total system
is described by a Hamiltonian of the form (1.23). We write the interaction
term in the form

ĤI =
∑
n

|n〉〈n| ⊗ B̂n ≡
∑
n

Ân ⊗ B̂n, (1.39)

where |n〉 is an orthogonal basis of our system and Bn = B†n are arbitrary
operators of the environment. We assume further that the system operators
An are conserved quantities

[Ĥs + Ĥe + ĤI , Ân] = [Ĥs + Ĥe, Ân] = 0. (1.40)
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(a)

(b)

Figure 1.3: The two slit experiment in the case of (a) the absence of envi-
ronment (b) presence of environment.
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Thus, in the interaction picture, the evolution operator is written

Û(t) = T̂ exp

{
− i
~

∫ t

0

dt′
∑
n

|n〉〈n| ⊗ B̂n(t′)

}
. (1.41)

This expression says that the basis |n〉 is not affected by the coupled dynamics
and that the initial state

|ψ(0)〉 =
∑
n

cn|n〉 ⊗ |φ〉, (1.42)

where |φ〉 is an arbitrary environment state, evolves into

|ψ(t)〉 =
∑
n

cn|n〉 ⊗ |φn(t)〉, (1.43)

where

|φn(t)〉 = T̂ exp

{
− i
~

∫ t

0

dt′B̂n(t′)

}
|φ〉. (1.44)

The state (1.43) is an entangled system-environment state given by a su-
perposition of the states |n〉 ⊗ |φn(t)〉. That is, the environment carries
information onto the system state. Thus, the reduced density matrix at a
time t is given by

ρ̂s(t) = Tre{|ψ(t)〉〈ψ(t)|} =
∑
n,m

cnc
∗
m|n〉〈m|〈φm(t)|φn(t)〉.

It follows from (1.44) that 〈φn(t)|φn(t)〉 = 1, and thus, the diagonal elements
of ρ̂s(t) are constant in time. However, the off-diagonal elements ρ̂s(t) do
change with time, in general. The time dependence of the matrix element
〈n|ρ̂s(t)|m〉 is given by the overlap of the corresponding environment states
|φn(t)〉 and |φm(t)〉 which will be written as

|〈φn(t)|φm(t)〉| = exp{Γnm(t)}, Γnm(t) ≤ 0. (1.45)

For n 6= m the quantity Γnm(t) describes the behavior of the off-diagonal
elements of the reduced density matrix.

The time dependence of the function Γnm(t) strongly depends, in general,
on the specific form of the system-environment coupling, on the various pa-
rameters of the underlying microscopic model, and also on the properties of
the initial state. For many physical systems it turns out that the irreversible
dynamics induced by the system-environment interaction leads to a rapid de-
crease of the overlap 〈φm(t)|φn(t)〉 when n 6= m. Consider the extreme case
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in which the overlap of the states |φn(t)〉 and |φm(t)〉 decreases, for n 6= m,
very fast to zero after a time interval large compared to a typical scale τD,
the so-called decoherence time,

〈φn(t)|φm(t)〉 −→ δnm, για t� τD. (1.46)

This leads to a reduced density matrix of the form:

ρ̂s(t)→
∑
n

|cn|2|n〉〈n|. (1.47)

The coherences of the density matrix in the basis |n〉 have disappeared as
a result of the interaction with the environment : After a time t � τD the
state ρ̂s(t) of the reduced system behaves as an incoherent mixture of the
state |n〉, in the sense that interference terms of the form 〈m|Â|n〉, n 6= m, no
longer appear in the expectation value of any observable Â. Superpositions
of the states |n〉 are therefore effectively destroyed locally which means that
they are unobservable for all measurements performed solely on the system
S.

Summarizing, we can say that the interaction between a quantum system
with its environment makes the system to behave more “classical”.

Before we close this paragraph we will introduce a useful tool which allows
us to “see” the decoherence : the Wigner function [9,30]. Let’s examine this
function, first, in a classical level. Consider a classical harmonic oscillator.
Its motion can be completely described by a point in the phase space. For a
large number of identical classical oscillators, one can define the phase-space
probability distribution : a function W (x, p) which indicates the probability
of finding a particle at a certain point in the phase space. This function must,
of course, be non-negative and normalized: its integral over the entire phase
space must be equal to one.

In a quantum mechanical level, however, the notion of a certain point in
the phase space does not make sense because the position and the momen-
tum cannot be measured simultaneously (Heisenberg’s uncertainty principle).
Nevertheless a quantum mechanical Wigner function can be defined. It is real
and normalized but not positive defined. We can calculate this function from
the density matrix, using the relation

W (x, p) =
1

π

∫ ∞
−∞

dy exp

{
2i

~
py

}
ρ(x− y, x+ y). (1.48)

Let’s see, now, how we can use the Wigner function in order to “visualize”
the quantum behavior and decoherence. Suppose we have a superposition of
two Gaussian wave-packet s [9]. In this case, the Wigner function is shown
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in figure 1.4 (a). As we can see, in this graph, there are oscillations which are
characteristic for the quantum behavior : the function takes negative values.
In graph 1.4 (b) we have a snapshot of the time evolution of the Wigner
function, when there is an environment : the oscillations are damped in the
passage of time and the function reminds us the classical phase space. This
behavior is characteristic for the decoherence.
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(a)

(b)

Figure 1.4: The Wigner function of the superposition of two Gaussian wave-
packets (a) in the absence of environment (b) the time evolution in the pres-
ence of environment.
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Chapter 2

The Von Neumann Entropy
and The Replica Method

In this chapter we will present a technique that allows us to calculate the
Von Neuman entropy of a density matrix in the position representation. This
calculation technique is known as replica method [32–34]. We will, also,
give some analytic examples.

2.1 The Replica Method

The entanglement entropy (1.18), as we have seen, is produced from the
eigenvalues of the density matrix:

S = −
∑
i

wi lnwi = −Tr(ρ̂ ln ρ̂). (2.1)

The calculation of entropy is not an easy task even for the simple case of
the two harmonic oscillators (as we will see in the example that follow).
The problem appears to be very hard when you deal with many (or even
infinite [31–34]) degrees of freedom. In this cases the replica method can be
proved very helpful. In order to understand how the replica method works,
we will use a quantum system with one degree of freedom. To calculate the
entropy, we will based on the following observation:

Suppose that we can calculate the trace Trρn :

Trρn =

∫
dx

(1)
2 ...

∫
dx

(n)
2 ρ(x

(1)
2 , x

(2)
2 )ρ(x

(2)
2 , x

(3)
2 )...ρ(x

(n)
2 , x

(1)
2 ). (2.2)

After the calculation of the function f(n) = Trρ̂n for integer n, one considers
the function f(ν) = Trρ̂ν where ν > 0. Using analytic continuation one then
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can find the Von Neumann entropy from the relation:

− ∂

∂ν
f(ν)

∣∣∣∣∣
ν=1

= − lim
ν→1

Trρ̂ν − 1

ν − 1
= −Tr(ρ̂ ln ρ̂) ≡ S (2.3)

since

Trρ̂ν = Treν ln ρ̂ = Tre(ν−1) ln ρ̂ρ̂ = Tr[ρ̂+ (ν − 1) ln ρ̂+O
(
(ν − 1)2

)
] =

= 1 + (ν − 1)Tr(ρ̂ ln ρ̂) +O
(
(ν − 1)2

)
⇒ lim

ν→1

Trρ̂ν − 1

ν − 1
= Tr(ρ̂ ln ρ̂)⇒

S = − ∂

∂ν
Trρν

∣∣∣∣∣
ν=1

.

2.2 A Simple Example: The Two Harmonic

Oscillators

In this section we will see how this method applied in the simple case of
the two coupled harmonic oscillators. In all three examples we are going to
present, we consider that the one harmonic oscillator is the system and the
other is the environment and the total system (system and environment) is
in its ground state. In the first example we consider the coupling to be time
independent, in the second we suppose that the coupling changes suddenly at
t = 0 and in the third the coupling changes adiabatically. In all the examples
we have calculated the reduced density matrix and the Von Neumann entropy.

2.2.1 Time Independent Coupling Constant

We consider a system of two coupled harmonic oscillators [31]:

H =
1

2

(
p21 + p22

)
+

1

2
k0
(
x21 + x22

)
+

1

2
k1
(
x1 − x2

)2
. (2.4)

The normalized ground state wave function is

ψ0(x1, x2) = 4

√
ω+ω−
π2

exp

{
−1

2
(ω+x

2
+ + ω−x

2
−)

}
, (2.5)

where x± = (x1±x2)/
√

2, ω+ =
√
k0 and ω− =

√
k0 + 2k1. We now form the

ground state density matrix, and trace over the first oscillator, resulting in a
reduced density matrix for the second oscillator

ρR(x′2, x2) =

√
γ − β
π

exp
{
− γ

2
(x22 + x′22 ) + βx2x

′
2

}
(2.6)
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where

β =
(ω+ − ω−)2

4(ω+ + ω−)
, γ − β =

2ω+ω−
ω+ + ω−

.

Let’s find, now, the Von Neumann entropy for the reduced density matrix
(2.6). In order to use the relation (2.3) we must first calculate the trace (2.17):

TrρnR =
(γ − β

π

)n/2 ∫
dx

(1)
2 ...

∫
dx

(n)
2 exp

{
− γ

2
(x

(1)
2

2
+ x

(2)
2

2
) + βx

(1)
2 x

(2)
2

}
×

×...× exp
{
− γ

2
(x

(n)
2

2
+ x

(1)
2

2
) + βx

(n)
2 x

(1)
2

}
=

=
(γ − β

π

)n/2 ∫
dx

(1)
2 ...

∫
dx

(n)
2 exp

{
− γ(x

(1)
2

2
+ x

(2)
2

2
+ ...+ x

(n)
2

2
)+

+β(x
(1)
2 x

(2)
2 + x

(2)
2 x

(3)
2 + ...+ x

(n)
2 x

(1)
2 )
}

=

=
(γ − β

π

)n/2 ∫
dx

(1)
2 ...

∫
dx

(n)
2 exp

{
− xTMnx

}
,

where

Mn =



γ −β/2 0 . . . 0 −β/2
−β/2 γ −β/2 . . . 0 0

0 −β/2 γ . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . γ −β/2
−β/2 0 0 . . . −β/2 γ


(2.7)

So the trace takes the form

TrρnR =
(γ − β

π

)n/2 (π)n/2√
det Mn

=
(γ − β)n/2√

det Mn

. (2.8)

In order to calculate the above determinant, we define the matrix [32]

M̃n =



2 −C 0 . . . 0 −C
−C 2 −C . . . 0 0
0 −C 2 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 2 −C
−C 0 0 . . . −C 2


(2.9)
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for which we have

det M̃n =
n∏
r=1

[
2− 2C cos

(2πr

n

)]
= 2n

(1− ξn)2

(1 + ξ2)n
, (2.10)

where C = β/γ = 2ξ
ξ2+1

with ξ = β
γ+α

and α =
√
γ2 − β2. Thus the determi-

nant is

det Mn =
(γ

2

)n
det M̃n = γn

(1− ξ)2

(1 + ξ2)n
.

So from the relation (2.8) we have

TrρnR =
(γ − β

γ

)n/2 (1 + ξ2)n/2

(1− ξn)
=

(1− ξ)n

1− ξn
. (2.11)

The asked entropy arise from the relation (2.11) if we put it in (2.3), thus

S = − ln(1− ξ)− ξ

1− ξ
ln ξ. (2.12)

The above entropy is of course time independent since the total system is in
its ground state, and as we expect it has non zero value.

2.2.2 Sudden Change of the Coupling Constant

Here we will study the time evolution of the Von Neumann entropy, in the
case where the Hamiltonian (2.4), at t0, suddenly changes to :

H̃ =
1

2

(
p21 + p22

)
+

1

2
k̃0
(
x21 + x22

)
+

1

2
k̃1
(
x1 − x2

)2
, (2.13)

that is, we have a suddenly change of the constants k0 → k̃0 and k1 → k̃1.
We suppose again that our system is in its ground state. The density matrix
in a time t > t0 will be

ρt(x
′
1, x
′
2;x1, x2) = 〈x′1, x′2|Û(t)|ψ0〉〈ψ0|Û †(t)|x1, x2〉 =

=

∫
dz′1dz

′
2

∫
dz1dz2〈x′1, x′2|Û(t)|z′1, z′2〉ρ0(z′1, z′2; z1, z2)〈z1, z2|Û †(t)|x1, x2〉,

(2.14)
where ρ0 is the density matrix calculated in the previous subsection. Chang-
ing variables and writing the Hamiltonian as a sum of two independent os-

cillators ˆ̃H = ˆ̃H+ + ˆ̃H− we have

〈x′1, x′2|Û(t)|z′1, z′2〉 = 〈y′1, y′2|e−
i
~
ˆ̃Ht|z′+, z′−〉 = 〈y′1|e−

i
~
ˆ̃H+t|z′+〉〈y′2|e−

i
~
ˆ̃H−t|z′−〉 =
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=

(
−ω̃+ω̃−

4π2~2 sin(ω̃+t) sin(ω̃−t)

)1/2

exp

{
iω̃+

2~ sin(ω̃+t)
[(y′

2
1+z

′2
+) cos(ω̃+t)−2y′1z

′
+]

}
×

× exp

{
iω̃−

2~ sin(ω̃−t)
[(y′

2
2 + z′

2
−) cos(ω̃−t)− 2y′2z

′
−]

}
,

and
〈z1, z2|Û †(t)|x1, x2〉 = 〈y1, y2|Û(t)|z+, z−〉∗ =

=

(
−ω̃+ω̃−

4π2~2 sin(ω̃+t) sin(ω̃−t)

)1/2

exp

{
iω̃+

2~ sin(ω̃+t)
[(y21+z2+) cos(ω̃+t)−2y1z+]

}
×

× exp

{
iω̃−

2~ sin(ω̃−t)
[(y22 + z2−) cos(ω̃−t)− 2y2z−]

}
,

finally the density matrix ρ0 is

ρ0(z
′
+, z

′
−; z+, z−) =

(
ω+ω− sinh2(ω+TE) sinh2(ω−TE)

4π2~2 sinh(2ω+TE) sinh(2ω−TE)

)1/2

×

× exp

{
−ω+

2~ sinh(2ω+TE)
[(z2+ + z′

2
+) cosh(2ω+TE)− 2z+z

′
+]

}
×

× exp

{
−ω−

2~ sinh(2ω−TE)
[(z2− + z′

2
−) cosh(2ω−TE)− 2z−z

′
−]

}
.

Substituting the above result in (2.14), integrating z±, z′± and taking the
limit TE →∞ we find for the density matrix:

ρt(y
′
1, y
′
2; y1, y2) = C(t) exp

{
− (Ω+y

′2
1 + Ω∗+y

2
1 + Ω−y

′2
2 + Ω∗−y

2
2)
}
,

where we denoted

Ω± =
ω̃2
± tan(ω̃±t)

sin2(ω̃±t)[ω± tan(ω̃±t)− iω̃±]
− i ω̃±

tan(ω̃±t)

C(t) is a function of time, which is not necessary for the calculation of en-
tropy. In order, now, to calculate the reduced density matrix for oscillator
2, we go back to the old coordinates and we integrate the coordinates of the
oscillator 1

〈x′2|ρ̂R(t)|x2〉 =

∫
dx1ρt(x1, x

′
2;x1, x2)⇒
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〈x′2|ρ̂R(t)|x2〉 = C̃(t) exp
{
− 1

2
(γ(t)x′

2
2 + γ∗(t)x22) + β(t)x′2x2

}
,

where

γ(t) =
1

2

[
(Ω+ + Ω−)− (Ω+ − Ω−)2

(Ω+ + Ω−) + (Ω+ + Ω−)∗

]
and

β(t) =
1

2

(Ω+ − Ω−)(Ω+ − Ω−)∗

(Ω+ + Ω−) + (Ω+ + Ω−)∗
.

Now to find the entropy we will need the trace (2.17), so we have

TrρnR(t) = [C̃(t)]n
∫
dx

(1)
2 ...

∫
dx

(n)
2 exp

{
−Re(γ(t))(x

(1)
2

2
+ ...+ x

(n)
2

2
)+

+β(t)(x
(1)
2 x

(2)
2 + ...+ x

(n)
2 x

(1)
2 )
}

= [C̃(t)]n
∫
dx

(1)
2 ...

∫
dx

(n)
2 e−x

TMn(t)x.

Thus, we will find the entropy as we did in the previous subsection, that is

S(t) = − ln(1− ξ(t))− ξ(t)

1− ξ(t)
ln ξ(t),

where

ξ(t) =
β(t)

Re(γ(t)) +
√
Re(γ(t))2 − β2(t)

=

(x+ − x−)2 + (y+ − y−)2

(x+ + x−)2 + (y+ − y−)2 + 4x+x− + 4
√
x+x−[(x+ + x−)2 + (y+ − y−)2]

,

with

x± =
ω̃2
±ω±

ω2
± sin2(ω̃±t) + ω̃2

± cos2(ω̃±t)

and

y± =
ω̃3
± − ω̃±[ω2

± sin2(ω̃±t) + ω̃2
± cos2(ω̃±t)]

tan(ω̃±t)[ω2
± sin2(ω̃±t) + ω̃2

± cos2(ω̃±t)]
.

In figure 2.1 we see the graph of entropy as a function of time, for several
values of the Hamiltonian’s parameters. In graphs (a) and (b) we have choose
k1 = 0. In such a case initially there is no coupling between the two oscil-
lators, and on time t0 = 0 we “switch on” the coupling. In graph (a) we
kept the constant k0 unchanged, so the entropy has one period (as we can
see in graph 2.2 (a)). In graph (b) we changed also the constant k0, so we
have two periods (see graph 2.2 (b)), as we expect since our problem has now
two frequencies. The red line indicates the mean value of the entropy. As
we can see the mean entropy for t > 0 takes higher value than the entropy
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(a) (b) (c) (d) (e) (f)

k0 1 1 1 1 4 1
k1 0 0 4 4 2.5 4

k̃0 1 4 1 4 1 1.0201

k̃1 7.5 6 12 6 17.5 4.02

k̃0/k0 1 4 1 4 0.25 1.0201

k̃1/k1 3 1.5 7 1.005

Table 2.1: The parameters of the Hamiltonian.

for t < 0 (in that case S = 0). In graph 2.1 (c) and (d) we have non zero
coupling constant for t < 0. In this case the entropy initially has a constant
non zero value. In graph (d) we see that the mean entropy has lower value
than the entropy for t < 0. This is because k0 increases more than k1 (we
have k̃0/k0 = 4 and k̃1/k1 = 1.5). In graph (e) we have choose the constant
k0 to decrease, while k1 increases. Now we have several periods (as we can
see in graph 2.2 (e)) and, of course, the mean entropy increases. Finally, in
graph (d) we choose the constants to increase a little, with k0 to increase
more than k1 (we have k̃0/k0 = 1.0201 and k̃1/k1 = 1.005).

Let’s see now, the origin of the oscillations appearing in these graphs.
We assumed that initially our total system was in the ground state of the
Hamiltonian (2.4), that is Ĥ|ψ0〉 = E0|ψ0〉, so the density matrix of the total
system for t = 0 is ρ̂(0) = |ψ0〉〈ψ0|. At the time t = 0 the Hamiltonian
changes suddenly to (2.13), so our state starts to change with time :

e−i
ˆ̃Ht|ψ0〉 = e−i

ˆ̃Ht
∑
n

an|ψ̃n〉 =
∑
n

ane
−iẼnt|ψ̃n〉,

where Ẽn, |ψ̃n〉 the eigenvalues and eigenstates of the Hamiltonian (2.13).
Thus for times t > 0 the density matrix of the total system evolves according
to the following equation:

ρ̂(t) = e−i
ˆ̃Ht|ψ0〉〈ψ0|ei

ˆ̃Ht =
∑
n

∑
m

ana
∗
me
−i(Ẽn−Ẽm)t|ψ̃n〉〈ψ̃m|,

so if we take the partial trace of the above density matrix, we have the
reduced density matrix

ρ̂R(t) = Treρ̂(t) =
∑
n

∑
m

ana
∗
me
−i(Ẽn−Ẽm)tTre(|ψ̃n〉〈ψ̃m|).

From the above relation it is obvious that the time evolution, of the reduced
density matrix (and consequently the entropy), has its cause in the complex
exponential, which oscillates with time.
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(a) ω+ = 1, ω̃+ = 1, ω− = 1, ω̃− = 4 (b) ω+ = 1, ω̃+ = 2, ω− = 1, ω̃− = 4

(c) ω+ = 1, ω̃+ = 1, ω− = 3, ω̃− = 5 (d) ω+ = 1, ω̃+ = 2, ω− = 3, ω̃− = 4

(e) ω+ = 2, ω̃+ = 1, ω− = 3, ω̃− = 6 (f) ω+ = 1, ω̃+ = 1.01, ω− = 3, ω̃− =
3.01

Figure 2.1: The diagrams of entropy as a function of time, for different values
of the parameters. The red line is the mean entropy.
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(a) ω+ = 1, ω̃+ = 1, ω− = 1, ω̃− = 4 (b) ω+ = 1, ω̃+ = 2, ω− = 1, ω̃− = 4

(c) ω+ = 1, ω̃+ = 1, ω− = 3, ω̃− = 5 (d) ω+ = 1, ω̃+ = 2, ω− = 3, ω̃− = 4

(e) ω+ = 2, ω̃+ = 1, ω− = 3, ω̃− = 6 (f) ω+ = 1, ω̃+ = 1.01, ω− = 3, ω̃− =
3.01

Figure 2.2: The graphs (S(t), Ṡ(t)) for several values of the parameters.
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2.2.3 Adiabatic Change of the Coupling Constant

Now we will see, how we can translate the adiabatic theorem (for a closed
system) in the language of the reduced density matrix and entanglement
entropy. Our system remains that of the two coupled harmonic oscillators,
but now the coupling constant k1 is a function of time, of the form k1(t) =

k1 tanh
(
t
τ

)
where k1 and τ are constants. The coupling of the two oscillators

for t ≤ 0 is zero, while for t ≥ 0 is a function that changes slow in time (for
appropriate τ) and for t → ∞ takes the constant value k1. For t ≤ 0 our
system is in the ground state |ψ0〉 = |0〉1 ⊗ |0〉2 of the Hamiltonian

H0 =
1

2
(p21 + p22) +

1

2
k0(x

2
1 + x22).

As a first step we are going to calculate the time evolution, for t ≥ 0, of
the reduced density matrix and the entanglement entropy for one harmonic
oscillator, considering the other as environment, for any function k1(t). Next,
we shall examine the condition under which the adiabatic theorem can be
considered as valid.

For t ≥ 0 the Hamiltonian assumes the form

H(t) =
1

2
(p21 + p22) +

1

2
k0(x

2
1 + x22) +

1

2
k1(t)(x1 − x2)2. (2.15)

and the density matrix can be read from (2.14). The evolution operator is
now represented by

〈x′1, x′2|Û(t)|z′1, z′2〉 = 〈y′1|e−
i
~H+t|z′+〉〈y′2|e−

i
~
∫ t
0 dsH−(s)|z′−〉.

The left part of the right-hand side of the last equation has the standard
form, while right part reads

〈y′2|U−(t)|z′−〉 =

x(t)=z′−∫
Dx(s)

x(0)=y′2

exp

{
i

~

∫ t

0

ds
1

2
[ẋ2(s)− ω2

−(s)x2(s)]

}

with ω−(t) =
√
k0 + 2k1(t). The result of the path integration can be written

in the form [24]

〈y′2|U−(t)|z′−〉 =
1√

2π~iD0(t)
exp

{ i
~

1

2D0(t)
[z′

2
−Ḋ0(t)− y′22Ḋ(0)− 2z′−y

′
2]
}

where the functions D0, Ḋ0 and D are solutions of the differential equations(
d2

ds2
+ ω2

−(s)

)
D0(s) = 0 (2.16)
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with initial conditions D0(0) = 0, Ḋ0(0) = 1 and(
d2

ds2
+ ω2

−(s)

)
D(s) = 0 (2.17)

with final conditions D(t) = 0, Ḋ(t) = −1.
Finally, the density matrix is written

ρt(y
′
1, y
′
2; y1, y2) =

ω2
+

8π3~3 sin(ω+t)D0(t)

sinh2(ω+TE)

sinh(2ω+TE)
×

×
∫
dz′+dz

′
−dz+dz− exp

{
iω+

2~ sin(ω+t)
[(y′

2
1 + z′

2
+) cos(ω+t)− 2y′1z

′
+]

}
×

× exp

{
i

2~D0(t)
[z′

2
−Ḋ0(t)− y′22Ḋ(0)− 2z′−y

′
2]

}
×

× exp

{
−ω+

2~ sinh(2ω+TE)
[(z2+ + z′

2
+) cosh(2ω+TE)− 2z+z

′
+]

}
×

× exp

{
−ω−

2~ sinh(2ω−TE)
[(z2− + z′

2
−) cosh(2ω−TE)− 2z−z

′
−]

}
×

exp

{
−iω+

2~ sin(ω+t)
[(y21 + z2+) cos(ω+t)− 2y1z+]

}
×

× exp

{
i

2~D0(t)
[z2−Ḋ0(t)− y22Ḋ(0)− 2z−y2]

}
We calculate the integrals and we take the limit TE →∞ we have

ρt(y
′
1, y
′
2; y1, y2) = C(t) exp

{
− (Ω+y

′2
1 + Ω∗+y

2
1 + Ω−y

′2
2 + Ω∗−y

2
2)
}
,

where
Ω+ = ω+,

Ω− =
ω+

D2
0(t)

(
ω2
+ +

(
Ḋ0(t)
D0(t)

)2) + i

[
Ḋ(0)

D0(t)
+

Ḋ0(t)
D0(t)

D2
0(t)

(
ω2
+ +

(
Ḋ0(t)
D0(t)

)2)
]

and C(t) is a function of time, not necessary for the calculation of entropy.
In order, now, to calculate the reduced density matrix for the oscillator 2,
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we go back to the old coordinates and we integrate the coordinates of the
oscillator 1

〈x′2|ρ̂R(t)|x2〉 =

∫
dx1ρt(x1, x

′
2;x1, x2)⇒

〈x′2|ρ̂R(t)|x2〉 = C̃(t) exp
{
− 1

2
(γ(t)x′

2
2 + γ∗(t)x22) + β(t)x′2x2

}
,

where

γ(t) =
1

2

[
(Ω+ + Ω−)− (Ω+ − Ω−)2

(Ω+ + Ω−) + (Ω+ + Ω−)∗

]
and

β(t) =
1

2

(Ω+ − Ω−)(Ω+ − Ω−)∗

(Ω+ + Ω−) + (Ω+ + Ω−)∗
.

As above, we have for the Von Neumann entropy

S(t) = − ln(1− ξ(t))− ξ(t)

1− ξ(t)
ln ξ(t),

where

ξ(t) =
β(t)

Re(γ(t)) +
√
Re(γ(t))2 − β2(t)

.

For the final result we arithmetically1 solve the differential equations (2.16)
and (2.17) using the expression:

k1(t) = k1 tanh
( t
τ

)
. (2.18)

In graphs 2.3 (a) - (f) we show the entropy as a function of time for τ = 1
and τ = 10 and various values for k1. As we can see the entropy after a
definite time interval oscillates with a constant amplitude d. As τ increases
the amplitude d decreases, as it can be seen in the graph 2.4 where we show
the amplitude d as a function of the parameter τ , for 150 different τ . In
graph 2.4 (b) and (d) we fit the points in a curve of the form d(τ) = b/τ and
we find b = 4.29 for k1 = 1.5 and b = 1.034 for k1 = 10 as we can see there
is a very good agreement between the curve and the points (error of order
10−4). Thus, we can say that in the limit τ → ∞ the amplitude d goes to
zero. As we are going to see, this behavior confirms the adiabatic theorem.

Let’s discuss now the adiabatic theorem. We consider the Hamiltonian
Ĥ(λt), where the parameter λt depends from the time. We notice as |n(λt)〉
the instantaneous eigenstates of the time dependent Hamiltonian at time t :

Ĥ(λt)|n(λt)〉 = En(λt)|n(λt)〉.
1The program codes we have used are in Appendix C.
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The adiabatic theorem stays, that if the parameter λt changes slow enough
with time and at the time t0 = 0 our (closed) system is in an eigenstate of the
Hamiltonian |n(λ0)〉, then at time t our system will be in a state proportional
to |n(λt)〉.

In the example of the two oscillators, discussed above, time dependent
is the coupling constant k1(t). At the time t0 = 0 the system of the two
harmonic oscillators is in the ground state of the Hamiltonian Ĥ(k1(0) = 0),
thus if the evolution of k1(t) is slow enough we expect that at time t the
two harmonic oscillators will be in a state proportional to the ground state
of the Hamiltonian Ĥ(k1(t)). In the language of density matrix, initially our
system is characterized by the density matrix ρ̂0 = |0(k1(0))〉〈0(k1(0))| =
|0〉2|0〉11〈0|2〈0|. If the conditions of the adiabatic theorem are fulfilled, after
time t the two oscillators will de described by ρ̂0 = |0(k1(t))〉〈0(k1(t))| (The
phases that appear from the adiabatic theorem it is supposed to cancel each
other). What happens with the open system? Initially the open system is
described by the reduced density matrix ρ̂R0 = Tr1(|0(k1(0))〉〈0(k1(0))|) =
|0〉22〈0|, so the entanglement entropy is zero. If we use for the parameter the
relation (2.18) and consider the limit t/τ � 1 the coupling constant will take
the constant value k1(t → ∞) = k1. Thus, after this time the open system
will be characterized by ρ̂Rt = Tr1(|0(k1)〉〈0(k1)|), while the Hamiltonian will
not change with time. So, in this case, we expect the entropy to be a non
zero constant. The results of our calculation seems to confirm this picture,
since as we saw, from graphs 2.3 and 2.4, in the limit τ →∞ the oscillation
of the entropy goes to zero and the entropy takes a constant non zero value.

The oscillating behavior we observe, is related to the off-diagonal geomet-
rical phases that disappear only at the strict limit τ →∞ [35].
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(a) (b)

(c) (d)

(e) (f)

Figure 2.3: In this graphs,S = S(t), we use k0 = 1
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(a) (b)

(c) (d)

Figure 2.4: The graphs of the oscillation amplitude of the entropy d as a
function of the parameter τ and the fit for τ ≥ 50. We use k0 = 1.
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Chapter 3

The Influence Functional and
The Closed Complex Time
Formalism

In this chapter we shall develop a systematic way for the study of the time
evolution of the reduced density matrix of an open quantum system, under
the influence of its environment. Our formalism is based on that of Feynman
and Vernon [13], and it is an extension of the “closed time” formalism [18,19].

3.1 The Closed Complex Time Formalism

The starting point to develop our formalism is the relation (1.33). We
consider an open quantum system in interaction with its environment. We
suppose that the total system is closed so its evolution is unitary. We also
assume that the density matrix of the total system can be written in the
following form

ρ̂(0) = ρ̂s(0)⊗ ρ̂e(0), (3.1)

that is, our system and the environment are initially in a pure and disentan-
gled state. The relation (1.33), gives us the reduced density matrix of the
open system at any time t > 0.

The first assumption we will make is that the environment, initially, is in
its ground state, so it is characterized (according to the relation (A.13)) by
the density matrix

ρex′′x′′′(0) =
1

Ze

∫
Dq(3)(τ)

q(3)(−0)=q′′

∫
Dq(2)(τ)

q(2)(+0)=x′′′

exp

{
− 1

~

∫ −0
−∞

dτLe,E[q(3)(τ)]

}
×
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Figure 3.1: The paths q(2) and q(3). Notice the discontinuity of the two paths
in zero and their equality in the complex infinite.

× exp

{
− 1

~

∫ +∞

+0

dτLe,E[q(2)(τ)]

}
, (3.2)

where Le,E is the Euclidian Lagrangian of the environment. Thus, inserting
equations (1.35) into (3.2), we have for the influence functional

F [x(4)(t), x(1)(t); t] ≡
∫
Dq(4)(t)

∫
Dq(3)(τ)

∫
Dq(2)(τ)

∫
Dq(1)(t)×

×δ[q(4)(t)− q(1)(t)]δ[q(4)(0)− q(2)(+0)]δ[q(3)(−0)− q(1)(0)]×

× exp

{
i

~

∫ t

0

dt′Le+I [q(4)(t′), x(4)(t′)]−
1

~

∫ −0
−∞

dτLe,E[q(3)(τ)]−

−1

~

∫ +∞

+0

dτLe,E[q(2)(τ)] +
i

~

∫ 0

t

dt′Le+I [q(1)(t′), x(1)(t′)]

}
(3.3)

Assuming now that the system-environment interaction is linear, so (3.3)
reads:

F [x(4)(t), x(1)(t); t] =

∫
Dq(4)(t)

∫
Dq(3)(τ)

∫
Dq(2)(τ)

∫
Dq(1)(t)×
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×δ[q(4)(t)− q(1)(t)]δ[q(4)(0)− q(2)(+0)]δ[q(3)(−0)− q(1)(0)]×

× exp

{
i

~

∫ t

0

dt′

(
Le[q(4)(t′)] + gq(4)(t′)x(4)(t′)

)
− 1

~

∫ −0
−∞

dτLe,E[q(3)(τ)]−

−1

~

∫ +∞

+0

dτLe,E[q(2)(τ)] +
i

~

∫ 0

t

dt′
{
Le[q(1)(t′)] + gq(1)(t′)x(1)(t′)

}}
(3.4)

The above expression for the influence functional can be considerably simpli-
fied if we introduce the complex variable z defined on the contour C shown
in figure 3.2(a). This contour consists of four different lines :

• The line L1 goes parallel to the real axis from the point z = t − i0 to
point z = 0− i0. For this line we have

S1 =
i

~

∫
L1

dz
{
Le[qL1(z)] + LI [qL1(z), xL1(z)]

}
=

=
i

~

0−i0∫
dz

t−i0

{
Le[qL1(z)] + LI [qL1(z), xL1(z)]

}
=

=
z=t′−i0

i

~

∫ 0

t

dt′
{
Le[x(1)(t′)] + LI [x(1)(t′), q(1)(t′)]

}
.

• The Line L2 goes parallel to the imaginary axis from the point z = 0− i0
to point z = 0− i∞. For this line we have

S2 =
i

~

∫
L2

dzLe[qL2(z)] =
i

~

0−i∞∫
dz

0−i0

Le[qL2(z)] =

=
z=0−iτ

i

~

∫ ∞
0

(−i)dτ(−1)Le,E[q(2)(τ)] = −1

~

∫ ∞
0

dτLe,E[q(2)(τ)].

• The line L3 goes parallel to the imaginary axis from the point z = 0 + i∞
to point z = 0 + i0. For this line we have

S3 =
i

~

∫
L3

dzLe[qL3(z)] =
i

~

0+i0∫
dz

0+i∞

Le[qL3(z)] =

=
z=0−iτ

i

~

∫ ∞
0

(−i)dτ(−1)Le,E[q(3)(τ)] = −1

~

∫ −0
−∞

dτLe,E[q(3)(τ)].
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(a) (b)

Figure 3.2: (a) The Contour C in the Complex Plane. (b) How the Paths
are Stitching Together.

• The line L4 goes parallel to the real axis from the point z = 0 + i0 to point
z = t+ i0. For this line we have

S4 =
i

~

∫
L4

dz
{
L[qL4(z)] + LI [qL4(z), xL4(z)]

}
=

=
i

~

t+i0∫
dz

0+i0

{
Le[qL4(z)] + LI [qL4(z), xL4(z)]

}
=

=
z=t′+i0

i

~

∫ t

0

dt′
{
Le[q(4)(t′)] + LI [q(4)(t′)x(4)(t′)]

}
.

It is now easy to be proved that the “action” in the influence functional
(3.4) can be written

S̃ = S1 + S2 + S3 + S4 =

∫
C

dz
{
Le[qc(z)] + LI [qc(z), xc(z)]

}
. (3.5)

Imposing the boundary condition

qc(−i∞) = qc(+i∞) (3.6)
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we get the following compact expression for the influence functional

F [x(1)(t), x(4)(t); t] =
1

Ze

∫
Dqc(z)

qc(t−i0)=qc(t+i0)

exp

{
i

~

∫
C

dz
{
Le[qc(z)]+LI [qc(z), xc(z)]

}}
=

≡

〈
exp

{
i

~

∫
C

dzLI [qc(z), xc(z)]

}〉
q

≡ exp

{
i

~
SFV [xc]

}
, (3.7)

Here we can observe that, if there was no interaction, the influence functional
become unit, as expected since there is no interaction between system and
environment.

As it is obvious from the above expression the introduction of the com-
plex time z defined on the contour C has enabled us to interpret the influence
functional as an integral over continuous paths with periodic boundary con-
ditions. Any step further strongly depends on the dynamical details of the
environment as well as on the specific form of the interaction between the
latter and the system (here we have assumed that this interaction is linear).
In any case the compact formulation, indicated in equation (3.7), can be
combined with all the existent calculational technologies to produce concrete
results in the field of open quantum systems.

3.1.1 The Cluster Expansion

In this framework it is very convenient to use a well-known and very pow-
erful technique: The so-called cluster or cumulant expansion 1. This
fundamental technique is widely used in a great variety of problems, from
statistical physics to quantum field theories [36–38]. The methodology has
been extensively used in areas such as the resummation of perturbative series
and non-perturbative estimations, among others, and has been proven to be
a very useful tool.

In our case, the cluster expansion theorem can be read from the relation〈
exp

{
i

~

∫
C

dzLI [qc(z)]

}〉
q

=

= exp

{
∞∑
n=1

( i
~

)n ∫
C

dzn...

∫
C

dz1θc(zn, ..., z1)K
(n)(zn, ..., z1)

}
, (3.8)

1The cumulant expansion have been used in the theory of open quantum systems in a
completely different context [29].
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where the functions K(i) are the cumulants, the form of which depends in the
form of the interaction term. We shall make the rather general (and conve-
nient) assumption that the coupling between the system and the environment
is the minimal one

LI [qc, xc] = gcqcxc,

where gc is a contour dependent coupling, such that gL1 = gL4 = g and
gL2 = gL3 = 0. In this case the cumulants are given from the expressions:

K(1)(z1) ≡ 〈LI [qc(z1)]〉q = gc(z1)xc(z1)〈qc(z1)〉q,

K(2)(z2, z1) ≡ 〈LI [qc(z2)]LI [qc(z1)]〉q − 〈LI [qc(z2)]〉q〈LI [qc(z1)]〉q =

= gc(z2)gc(z1)xc(z2)xc(z1)
[
〈qc(z2)qc(z1)〉q − 〈qc(z2)〉q〈qc(z1)〉q

]
,

K(3)(z3, z2, z1) ≡ 〈LI [qc(z3)]LI [qc(z2)]LI [qc(z1)]〉q−

−
{
〈LI [qc(z3)]〉q〈LI [qc(z2)]LI [qc(z1)]〉q + perms

}
+

+〈LI [qc(z3)]〈LI [qc(z2)]〉q〈LI [qc(z1)]〉q,

.........etc......... (3.9)

In equation (3.8) we have introduced the chain of path dependent step func-
tions

θc(zn, ..., z1) = θc(zn − zn−1)...θc(z2 − z1), (3.10)

which takes care of the time ordering needed whenever the variables zi are
integrated along the same line. The path dependent step functions that
appear in the above expression can be defined with the help of a proper
parametrization of the contour C with a real parameter σ ∈ [0, 1], such that
z(0) = t− i0 and z(1) = t+ i0 :

0 ≤ σ ≤ σ1 : xL1 , z =
σ1 − σ
σ1

t− i0 , z(0) = t− i0, z(σ1) = 0− i0

σ1 ≤ σ ≤ σ2 : xL2 , z = 0− iTE
σ1 − σ
σ1 − σ2

, z(σ1) = 0− i0, z(σ2) = 0− iTE

σ3 ≤ σ ≤ σ4 : xL3 , z = 0 + iTE
σ − σ4
σ3 − σ4

, z(σ3) = 0 + iTE, z(σ4) = 0 + i0

σ4 ≤ σ ≤ 1 : xL4 , z =
σ − σ4
1− σ4

t+ i0 , z(σ4) = 0 + i0, z(1) = t+ i0
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so, the total time is

T̃ =

∮
C

ds =

∫ σ2

0

dσż(σ)+

∫ 1

σ3

dσż(σ) = z(σ2)−z(0)+z(1)−z(σ3) = −2iTE.

Since the time flow, follow different directions along different lines we have
introduced the following definition

θc(z − z′) = θc(z(σ)− z(σ′)) =

{
θ(σ − σ′), when C = L2,4 .
θ(σ′ − σ), when C = L1,3

(3.11)

When the variables z are integrated along different lines the step functions
become identically 1 or 0: For example, if z ∈ L1 and z′ ∈ L4 we define
θL1∪L4(z − z′) = 1, because the time along the line L1 decreases, and this
happens after its growth along the line L4.

The validity of equation (3.8) can be readily proven by expanding the
corresponding exponentials. The proof can also be easily extended to the
case of non-commutating quadratic matrices with the help of a proper time
ordering.

With the above conventions it is easy to transfer every well-known result
of the conventional path integration into the complex time framework as is
defined by the expressions (3.7), (3.8) and (3.9).

From the preceding analysis we saw that the influence of the environment
has been incorporated into the correlators

(i~)n−1∆
(n)
C (zn, ..., z1) ≡ 〈qc(zn)...qc(z1)〉q. (3.12)

As it is evident from the definition of the path integral in equation (3.7), non
trivial correlations can exist only along the same line or among the lines L1

and L4. However, it is apparent that the cluster expansion is useful only if the
infinite series appearing in the exponent in the right-hand side of equation
(3.8) can be approximated by keeping only the first few terms. This issue
will be discussed in a following subsection. For now it is important to note
that the complex time formalism in the form we have used it till now can
also be applied in cases where the initial state cannot be factorized as we
have assumed. In such a case non trivial correlations can exist among all of
the lines of the contour C.

We can enlighten the properties of the fundamental functions (3.12) by
discussing, at this point, some of the properties of the two point correlator
∆

(2)
C . A first observation is that it must have a non vanishing imaginary part

due to the imaginary period over which it is defined. To be concrete let us
consider the propagation along the line L1:

∆
(2)
L1

(t2 − t1) ≡ GR(t2 − t1) + iGI(t2 − t1). (3.13)
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Along the line L4 the time flow is reversed and consequently:

∆
(2)
L4

(t2 − t1) ≡ GR(t1 − t2) + iGI(t1 − t2) = ∆
(2)
L1

(t1 − t2). (3.14)

At this point we can appeal to the hermiticity of the density matrix: The
influence functional must remain the same if we interchange x(1) and x(4)

while taking the complex conjugate. The last action reverses the time order-
ing along the contour C and consequently the function ∆

(2)
L1

must be anti-
hermitian:

[∆
(2)
L1

(t1 − t2)]∗ = −∆
(2)
L1

(t2 − t1). (3.15)

Thus we immediately conclude that the real part of the propagator (3.13) is
an odd function while its imaginary part is an even function of time:

GR(t2 − t1) = −GR(t1 − t2), GI(t2 − t1) = GI(t1 − t2). (3.16)

The exchange contributions can also be deduced with the same reasoning:
Since, as we have discussed, the time along L1 is after the time along L4

the exchange from the line L4 to the line L1 is controlled by a function
∆

(2)
L4∪L1

(t2 − t1) in which t2 < t1 while the exchange from the line L1 to the

line L4 must be controlled by a function ∆
(2)
L1∪L4

(t2 − t1) in which t2 > t1.
Clearly the relation

∆
(2)
L1∪L4

(t2 − t1) = −[∆
(2)
L4∪L1

(t1 − t2)]∗ (3.17)

must hold. The trace of the reduced density matrix must be equal to one,
and, consequently, the Feynman-Vernon action must go to zero as x(4) → x(1).
This can happen only if the (forward) propagation L4 → L1 exactly cancels
the (forward) propagation along L4 and the (backward) propagation L1 → L4

exactly cancels the (backward) propagation along L1:

∆
(2)
L4∪L1

(t2 − t1) = GR(t1 − t2)− iGI(t1 − t2) (3.18)

and
∆

(2)
L1∪L4

(t2 − t1) = −GR(t2 − t1)− iGI(t2 − t1). (3.19)

After these arguments it is clear that, quite generally, the order g2 contribu-
tion to the Feynman-Vernon action:

i

~
S
(2)
FV = −1

~

∫ t

0

dt2

∫ t2

0

dt1[x
(1)(t2)− x(4)(t2)]GI(t2 − t1)[x(1)(t1)− x(4)(t1)]+

+
i

~

∫ t

0

dt2

∫ t2

0

dt1[x
(1)(t2)− x(4)(t2)]GR(t2 − t1)[x(1)(t1) + x(4)(t1)]. (3.20)
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It is now readily evident that the Feynman-Vernon action considerably changes
the dynamics of the central quantum system. Its fluctuating part, which is
connected to the imaginary part of the line propagator, lessens coherence.
Its real part, which is connected to the real part of the line propagator, it
is customary and convenient to be re-expressed with the help of an even
function γ(t2 − t1) = γ(t1 − t2) through the relation [4, 12]:

GR(t2 − t1) =
∂

∂t2
γ(t2 − t1). (3.21)

The function γ introduces in the Feynman-Vernon action a term which, on
the classical level, can be understood as a damping or “friction” term.

In the next subsection we give a simple example in order to see how
this formalism works: we consider the case of one harmonic oscillator as an
environment.

3.1.2 One Harmonic Oscillator as Environment

As a specific example let us compute, in the framework of the preceding
analysis, the influence functional for the case in which the environment is
just a simple harmonic oscillator. In this case, the environment Lagrangian
is

Le[q̇, q] =
me

2
q̇2 − 1

2
meω

2
eq

2. (3.22)

For this Lagrangian, only one term appears in the right-hand side of (3.8),
so the Feynman-Vernon action is

i

~
SFV = − 1

~2

∫
C

dz2gc(z2)xc(z2)

∫
C

dz1gc(z1)xc(z1)θc(z2−z1)〈qc(z2)qc(z1)〉q =

= − 1

~2

∫
C

dz2gc(z2)xc(z2)

∫
C

dz1gc(z1)xc(z1)θc(z2 − z1)∆(2)
C (z2 − z1). (3.23)

The Green function that appears in the last equation obeys periodic bound-
ary conditions and assumes the well-known form

∆
(2)
C (z2 − z1) = − 1

2meωe

cos[ωe(|z2 − z1|c − T̃ /2)]

sin(ωeT̃ /2)
, (3.24)

with
|z2 − z1|c = (z2 − z1)[θc(z2 − z1)− θc(z1 − z2)]. (3.25)

The period is obviously imaginary T̃ = −2iTE, and consequently

∆
(2)
C (z2 − z1) =

1

2meωe

cos[ωe(|z2 − z1|c + iTE)]

sin(iωeTE)
=
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=
1

2meωe

cos[ωe|z2 − z1|c] cos(iωeTE)

sin(iωeTE)
− 1

2meωe
sin[ωe|z2 − z1|c] ⇒

TE→∞

∆
(2)
C (z2 − z1) = − 1

2meωe
[i cos(ωe|z2 − z1|c) + sin(ωe|z2 − z1|c)]. (3.26)

Given that gL1 = gL4 = g and gL2 = gL3 = 0, the integral in (3.23) can
be split as follows∫

C

dz2gc(z2)xc(z2)

∫
C

dz1gc(z1)xc(z1)θc(z2 − z1)∆(2)
C (z2 − z1) =

= g2
∫
L1

dz2

∫
L1

dz1xL1(z2)xL1(z1)θL1(z2 − z1)∆
(2)
L1

(z2 − z1)+

+g2
∫
L4

dz2

∫
L4

dz1xL4(z2)xL4(z1)θL4(z2 − z1)∆
(2)
L4

(z2 − z1)+

+g2
∫
L1

dz2

∫
L4

dz1xL1(z2)xL4(z1)θL1∪L4(z2 − z1)∆
(2)
L1∪L4

(z2 − z1)+

+g2
∫
L4

dz2

∫
L1

dz1xL4(z2)xL1(z1)θL4∪L1(z2 − z1)∆
(2)
L4∪L1

(z2 − z1), (3.27)

the last integral obviously is zero, since for z2 ∈ L4 and z1 ∈ L1 we have
θL4∪L1(z2 − z1) = 0. Thus, the Feynman-Vernon action can be written

SFV = I11 + I44 + I14, (3.28)

where

I11 = −g2
∫
L1

dz2

∫
L1

dz1xL1(z2)xL1(z1)θL1(z2 − z1)∆
(2)
L1

(z2 − z1) =

= g2
∫ 0

t

dt2

∫ 0

t

dt1θ(t1−t2)x(1)(t2)x(1)(t1)

[
i
cosωe(t2 − t1)

2meωe
+

sinωe(t2 − t1)
2meωe

]
=

=

∫ t

0

dt2

∫ t

0

dt1θ(t2 − t1)y(t2)y(t1)[iGI(t2 − t1) +GR(t2 − t1)], (3.29)

in the last integral we have defined

GI(t2 − t1) ≡
g2

2meωe
cosωe(t2 − t1) (3.30)

and

GR(t2 − t1) ≡ −
g2

2meωe
sinωe(t2 − t1). (3.31)
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The second integral is written

I44 = −g2
∫
L4

dz2

∫
L4

dz1xL4(z2)xL4(z1)θL4(z2 − z1)∆
(2)
L4

(z2 − z1) =

= g2
∫ t

0

dt2

∫ t

0

dt1θ(t2−t1)x(4)(t2)x(4)(t1)

[
i
cosωe(t2 − t1)

2meωe
+

sinωe(t2 − t1)
2meωe

]
=

=

∫ t

0

dt2

∫ t

0

dt1θ(t2 − t1)x(4)(t2)x(4)(t1)[iGI(t2 − t1)−GR(t2 − t1)]. (3.32)

Finally, the last integral in equation (3.29) is

I14 = −g2
∫
L1

dz2

∫
L4

dz1xL1(z2)xL4(z1)θL1∪L4(z2 − z1)∆
(2)
L1∪L4

(z2 − z1) =

= g2
∫ t

0

dt2

∫ t

0

dt1[θ(t2−t1)−θ(t1−t2)]x(4)(t2)x(1)(t1)

[
−icosωe(t1 − t2)

2meωe
−sinωe(t1 − t2)

2meωe

]
=

= −
∫ t

0

dt2

∫ t

0

dt1θ(t2 − t1)x(4)(t2)x(1)(t1)[iGI(t2 − t1) +GR(t2 − t1)]−

−
∫ t

0

dt2

∫ t

0

dt1θ(t1 − t2)x(4)(t2)x(1)(t1)[iGI(t1 − t2)−GR(t1 − t2)]. (3.33)

Inserting (3.29),(3.32) and (3.33) into (3.29) we confirm the general result
(3.20) with the specific expressions (3.30) and (3.31) for the real and the
imaginary part of the line propagator. These forms can be readily extended
to the case of collection of N harmonic oscillators

GR(t2 − t1) = −
N∑
n=1

g2n
2meωne

sin[ωne(t2 − t1)] (3.34)

and

GI(t2 − t1) =
N∑
n=1

g2n
2meωne

cosωne(t2 − t1)]. (3.35)

The last expressions are obviously the T → 0 limit of the well known result for
an environment consisting of a collection of harmonic oscillators in thermal
equilibrium [14].
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3.2 The Stochastic Environment

As we have discussed in the previous section the cluster expansion helps
us to interpret the Feynman-Vernon action and consequently the influence
functional as an infinite series over all possible correlations among the envi-
ronmental degrees of freedom. It is, however, evident that such an interpreta-
tion can be useful only if this infinite series can be truncated with negligible
error. The case of weak coupling between the system and its environment is
a first an obvious example; we shall not discuss this case in this work but it
is worth to be noted that the use of cluster expansion facilitates the ressuma-
tion of the perturbative series. In this section we will focus on the case of
an environment the dynamics of which establish a characteristic time scale
τe after which the internal correlations decay exponentially fast

GI(t) = GI

(
|t|
τe

)
−→
|t|>τe

0, (3.36)

γ(t) = γ

(
|t|
τe

)
−→
|t|>τe

0. (3.37)

One could say that τe is such a time interval that when it elapses the envi-
ronment returns to its initial state. Our next assumption is that there exists
a second time scale τi, characterizing the interaction between the two parts
of the entire system and, consequently, the evolution of the reduced density
matrix. To be concrete let us assign an order of magnitude ||K(2)|| to the
second order cumulant appearing in equation (3.9). We shall consider as
stochastic the limit

τe
~

√
||K(2)|| → 0. (3.38)

It is apparent from its definition that ||K(2)|| is a measure of the aver-
age ”strength” of the interaction between the system and its environment:√
||K(2)|| ∼ 〈V 〉. Defining the time scale τi as τi ∼ ~/〈V 〉 the limit indicated

in equation (3.38) can be obviously rephrased as τe/τi → 0.
Let us now examine how the cluster expansion is formed in the stochastic

limit. Assuming that 〈qc〉q = 0 the first term in the expansion (3.8) disap-
pears and consequently the first non-vanishing term in the expansion is the
second order term which assumes the quite general form

i

~
SFV = − i

~

∫
C

dz2gc(z2)xc(z2)

∫
C

dz1gc(z1)xc(z1)θc(z2 − z1)∆C(z2 − z1) =

= − 1

2~

∫ t

0

dt2

∫ t

0

dt1[x
(1)(t2)− x(4)(t2)]GI(t2 − t1)[x(1)(t1)− x(4)(t1)]+
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+
i

2~

∫ t

0

dt2

∫ t

0

dt1[x
(1)(t2)− x(4)(t2)]γ(t2 − t1)[ẋ(1)(t1) + ẋ(4)(t1)]−

− i
~
γ(0)

∫ t

0

dt1

[(
x(1)(t2)

)2 − (x(4)(t2))2]+
+
i

~
[x(1)(0) + x(4)(0)]

∫ t

0

dt1[x
(1)(t1)− x(4)(t1)]γ(t1). (3.39)

Being interested for t� τe we take into account equations (3.36), (3.37) and
(3.38), we make the expansion

x(i)(t2) ' x(i)(t1) +O(t2 − t1) (3.40)

and we get∫ t

0

dt2[x
(1)(t2)− x(4)(t2)]GI(t2 − t1) ≈ σ[x(1)(t1)− x(4)(t1)], (3.41)

where we have written

σ ≡
∫ ∞
−∞

dt2GI(t2). (3.42)

In the same way the second term in the right-hand side of equation (3.39)
can be approximated as follows∫ t

0

dt2[x
(1)(t2)− x(4)(t2)]γ(t2 − t1) ≈ λ[x(1)(t1)− x(4)(t1)], (3.43)

with

λ ≡
∫ ∞
−∞

dt2γ(t2). (3.44)

After a time rescaling ti = τet̃i, the defining relation for the γ function, (3.21)
supports the estimation that

λ/σ ∝ τe → 0. (3.45)

After the preceding approximations the second order contribution to the
Feynman-Vernon action reads

i

~
S
(2)
FV = − σ

2~

∫ t

0

dt1[x
(1)(t1)−x(4)(t1)]2+

iλ

2~

∫ t

0

dt1[x
(1)(t1)−x(4)(t1)][ẋ(1)(t1)+ẋ(4)(t1)]−

− i
~
γ(0)

∫ t

0

dt1

[(
x(1)(t1)

)2−(x(4)(t1))2]+ iλ

2~

[(
x(1)(0)

)2−(x(4)(0)
)2]

. (3.46)
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Our claim is that at the stochastic limit the above expression is that the dom-
inant contribution to the cluster expansion (3.8) that defines the Feynman-
Vernon action. Indeed, each term

I(n) =

∫ t

0

dtn...

∫ t

0

dt1K
(n)(tn, ..., t1) (3.47)

represents a cumulant the main contribution of which comes from time in-
tervals |t1 − ti| ∼ τe, i = 2, 3, .... Expanding the intergrand as we have done
in equations (3.41) and (3.43) we conclude that

I(n)

I(n−1)
= O

(
τe
τi

)
. (3.48)

This conclusion can be used to give concrete meaning to the environment
characterized as stochastic: It is the environment the influence of which can
be approximated be keeping only the second order correlator in the cluster
expansion.

Put it in other words, the Feynman-Vernon action, at the stochastic limit,
can be approximated as follows:

SFV ≈ S
(2)
FV +O

(
τe
τi

)
. (3.49)

Finally, we can write the influence functional

F [x(4)(t), x(1)(t); t] ≈ 1

Ze
exp

{
i

~
S
(2)
FV [x(1)(t), x(4)(t)]

}
. (3.50)

The dynamics behind such a behavior are, of course, strongly depended on
the specific “environment” under consideration and, no need to be said can
be extremely complicated. We shall not discuss any special case in this
work in which the undertaken task is, so to speak, “phenomenological”: The
approximation (3.49) being given for the influence of the environment, we
try to estimate the consequences on the central system.

At this point we must underline the strong resemblance of our result (3.46)
to the case of the, so-called, ohmic environment. The latter case is simulated
by a collection of harmonic oscillators the frequencies of which are Gaussian
distributed: ∼ ωe−ω

2τ2e leading to correlators of the form GI(t) ≺ Tδ(t) and
γ(t) ≺ δ(t). Despite the fact that the expressions for the Feynman-Vernon
action are, in both cases, formally the same our results are supposed to valid
at zero temperature and for an environment exhibiting stochastic behavior.
The parameters appearing in equation (3.46) are not phenomenological, but
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they are strictly related to the two-point correlation function of the envi-
ronment, and, in principle, can be calculated at least numerically. In the
same context, the expression (3.7) which is approximated by (3.48), does not
represent the introduction of a random complex-valued Gaussian stochastic
force: It is the specific environment under consideration and its dynamics
that justify the stochastic approximation. Having in mind the extension of
our work to infinite degrees of freedom, the non-Abelian gauge theories [39]
constitute the primary example of such a stochastic behavior.

In any case the result (3.49) considerably facilitates the road to the re-
duced density matrix even if the final result does strongly depend on the
initial state of our system. In what follows we shall consider the case in
which our system begins from its ground state

|ψs〉 = |0s〉, (3.51)

in this case we can use for ρs(0) an expression analogous to (3.2), thus we
can write

ρsx′′x′′′(0) =
1

Zs

∫
Dx(3)(τ)

x(3)(−0)=x′′

∫
Dx(2)(τ)

x(2)(+0)=x′′′

exp

{
− 1

~

∫ −0
−∞

dτLs,E[x(3)(τ)]

}
×

× exp

{
− 1

~

∫ +∞

+0

dτLs,E[x(2)(τ)]

}
. (3.52)

Inserting the relations (1.34),(3.50) and (3.52) into (1.33) we have

ρRx′x(t) ≈
1

ZsZe

∫
dx′′

∫
dx′′′

∫
Dx(t)

x(t)=x′

∫
Dx(1)(t)
x(1)(t)=x

∫
Dx(2)(τ)

∫
Dx(3)(τ)×

×δ[x(4)(0)− x′′]δ[x(1)(0)− x′′′]δ[x(3)(−0)− x′′]δ[x(2)(+0)− x′′′]×

× exp

{
i

~

∫ t

0

dt′Ls[x(4)(t′)] +
i

~

∫ 0

t

dt′Ls[x(1)(t′)]−
1

~

∫ −0
−∞

dτLs,E[x(3)(τ)]−

−1

~

∫ ∞
0

dτLs,E[x(2)(τ)] +
i

~
S
(2)
FV [x(4)(t), x(1)(t)]

}
,

thus, using the closed complex time formalism, we can write the reduced
density matrix in the following compact form

ρRx′x(t) ≈
1

ZsZe

xc(t+i0)=x′∫
Dxc(z)

xc(t−i0)=x

exp

{
i

~

∫
c

dzLs[xc(z)] +
i

~
S
(2)
FV [xc(z)]

}
. (3.53)
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3.2.1 The System as One Harmonic Oscillator

The result (3.53) for the reduced density matrix as it is expressed in the last
equation is simple and compact. This is due to the complex parametrization
of the paths under integration. To obtain the final result, the integration
over the central degrees of freedom must be performed and, obviously, this
is a task that cannot be exactly accomplished in the general case: Some
kind of approximation is needed. In any case equation (3.53) sets the scene
on which any available approximation technique can be performed. We can
demonstrate the calculational abilities of our formalism by considering the
zero order approximation i.e., the simple case in which the system is just one
simple harmonic oscillator:

Ls[xc(z)] =
1

2
mẋ2c −

1

2
mω2x2c . (3.54)

Since the contribution from the Feynman-Vernon action is also quadratic,
it is obvious that the dependence of the reduced density matrix on the bound-
ary values x and x′ can be deduced just from the classical path :

m

(
d2

dz2
+ ω2

)
xcl.c (z) =

δS
(2)
FV [xcl.c ]

δxcl.c (z)
, xcl.c (t+ i0) = x′, xcl.c (t− i0) = x. (3.55)

The right-hand side of the last equation must be read in terms of the stochas-
tic limit (3.38). Thus, we readily obtain

ρRx′x(t) ∼ exp

{
im

2~
[x′sẋ

cl.
c (t+ i0)− xsẋcl.c (t− i0)]

}
×

× exp

{
− i

2~

∫
C

dzxcl.c (z)
δS

(2)
FV [xcl.c ]

δxcl.c (z)
+
i

~
S
(2)
FV [xcl.c ]

}
. (3.56)

The last two terms appearing in the right-hand side of (3.56), cancel each
other due to the quadratic nature of the truncated Feynman-Vernon action
S
(2)
FV . Thus we conclude

ρRx′x(t) ∼ exp

{
im

2~
[x′ẋcl.c (t+ i0)− xẋcl.c (t− i0)]

}
=

= exp

{
im

2~
[x′ẋ

(4)
cl. (t)− xẋ

(1)
cl. (t)]

}
. (3.57)

62



The appearance of the classical trajectory in the last equation calls for the
solution of the equation of motion (3.55). This is a lengthy but straightfor-
ward task which is presented in full detail in Appendix B. At this point it is
enough to observe that the dependence of the classical solution on the bound-
ary values x and x′ is easily determined using the quite general ansartz:

ẋ
(4)
cl. (t) =

1

2
α(t)x′ +

1

2
β(t)x, (3.58)

ẋ
(1)
cl. (t) =

1

2
γ(t)x′ +

1

2
δ(t)x. (3.59)

In the Appendix B we present the integral equations that determine the
coefficients in the above relations. It is also confirmed, in the same Appendix,
the validity of the relations

δ(t) = α∗(t), γ(t) = β∗(t),

which are necessary for the hermiticity of the reduced density matrix. In-
serting expressions (3.58) in equation (3.57) we find that

ρRx′x(t) = C(t) exp

{
im

2~

[
x′2α(t)− x2α∗(t) + x′x

(
β(t)− β∗(t)

)]}
, (3.60)

The suppression of the off-diagonal terms in the representation (3.60) of the
reduced density matrix is obviously related to the non-zero imaginary part of
the function α(t) which in turn, as we confirm in the Appendix A, is related
to the non-vanishing imaginary part of the environmental correlations. The
normalization factor in equation (3.60) is now determined by demanding:

C(t)

∫ ∞
−∞

dx exp

{
− m

2~
x2=

(
α(t) + β(t)

)}
= 1. (3.61)

The explicit calculations presented in Appendix B, show that

=(α(t) + β(t)) = 0 (3.62)

yielding the conclusion that C = 1/L→ 0 where L is the volume of the space
in which the system lives. In this case the reduced density matrix reads:

ρRx′x(t) ∼ exp

{
im

4~
<α(t)(x′2 − x2)

}
exp

{m
4~
=α(t)(x′ − x)2

}
. (3.63)

The explicit form of the function α(t) is presented in Appendix B. Here it is
enough to note that =α is a positive definite increasing function of time. It
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is strictly related to the imaginary part of the environmental second order
correlator since =α ∝ σ. Thus, the real factor of the density matrix (3.63) is
formally the density matrix of a free particle in a heat bath of temperature
kBT = 1

2
=α ∝ σ.

The exact time dependence of the function α(t) is tied with the value of
the quantity:

q2 =
λ2

4m
+ 2

γ(0)

m
− ω2. (3.64)

If q2 > 0, α(t) becomes time independent for t|q| � 1 and

=α ≈ σ

m

1

|q|
, <α ≈ λ

m
+ 2|q|. (3.65)

For q2 = 0 and for (ω − λ/m)t� 1, α(t) is again time independent:

=α ≈ σ

m

2

ω − λ/m
, <α ≈ 2ω. (3.66)

If q2 ≡ −k2 < 0, and for kt� 1, =α remains an increasing function of time:

=α(t) ≈ σ

m

k2 + (ω − λ/2m)2

[(ω − λ/2m) sin kt+ k cos kt]2
t. (3.67)

The Von Neumann Entropy

The calculation of the reduced density matrix can play a key role for the
determination of the system properties that we interest for. Let’s calculate,
for example, the Von Neumann entropy

S(t) = −Trs{ρ̂R(t) ln ρ̂R(t)}, (3.68)

for the density matrix (3.63). The calculation can be performed with the
help of the replica method, we have introduced in the second chapter:

We calculate the following function f(n), for the reduced density matrix
(3.63)

f(n) =

∫
dx(1)

∫
dx(2)...

∫
dx(n)ρRx(1)x(2)ρ

R
x(2)x(3) ...ρ

R
x(n)x(1) =

= Cn

(
n∏
i=1

∫
dx(i)

)
n∏
i=1

exp
{
−m

4~
=α(t)(x(i+1) − x(i))2

}
, (3.69)
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where x(n+1) = x(n). Consider now the propagation of a free particle with
mass m from the point x to the point x′ in the Euclidean time interval
tE = 2/=α(t):

x(tE)=x′∫
Dx

x(0)=x

exp

{
−m

2

∫ tE

0

dτẋ(τ)

}
=

√
m=α(t)

4π~
exp

{
−m

4~
=α(t)(x′ − x)2

}
.

(3.70)
Inserting the last expression into eq. (3.69) we find that:

f(n) =

[
4π~

m=α(t)L2

]n/2 ∫
Dx

x(0)=x(ntE)

exp

−m2
ntE∫
0

dτ ẋ(τ)

 , (3.71)

where the last integral must be performed over periodic trajectories with pe-
riod ntE. The path integral in the right-hand side of (3.71) can be calculated
easily:

∫
Dx

x(0)=x(ntE)

exp

−m2
ntE∫
0

dτ ẋ(τ)

 =

∫
d`

x(ntE)=`∫
Dx

x(0)=`

exp

−m2
ntE∫
0

dτ ẋ(τ)

 =

=

[
m=α(t)

4π~n

]1/2 ∫
d` =

[
m=α(t)

4π~n

]1/2
L. (3.72)

Thus we can immediately conclude that:

f(n) =

[
4π~

m=α(t)L2

]n/2 [
m=α(t)L2

4π~n

]1/2
. (3.73)

The Von Neumann entropy is now easily computed with the help of eq. (2.3):

S(t) = −1

2
ln

[
4π~

m=α(t)L2

]
+

1

2
. (3.74)

It is worth to be noted the well-known fact that the entanglement entropy
S ∼ lnL is not an extensive quantity: Contrary to the thermal entropy is
not analogous to the volume of the space in which the subsystem lives.

3.3 Conclusions

In this chapter we have introduced two basic methodological tools for calcu-
lating the time evolution of the reduced density matrix and, consequently, the
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dynamics of an open quantum system. The first is the closed complex time
(CCT) formalism which combines in a single set-up two known approaches:
The closed time formalism and the complex time one. This formalism en-
abled us to express the influence functional of Feynman and Vernon (which
encloses the time dependence of the reduced density matrix), in terms of a
compact path integral in which the paths are parametrized on a closed con-
tour on the complex plane. Our second suggestion was the introduction of the
cluster expansion which is a very powerful tool, being tested in a variety of
problems, when the environmental details can be successfully approximated
by keeping only the two-point correlators. In this combined CCT-cluster
expansion framework, we examined the case of the so-called stochastic envi-
ronment in which the correlations are decaying very “fast”. In order to check
our tools and examine the consequences of a stochastic environment, we per-
formed a detailed “zero-order” calculation for the simple case in which the
system is a harmonic oscillator. We found the explicit form of the reduced
density matrix as a function of time and we calculated the entanglement en-
tropy. Depending on the details of the environment the entropy is either a
constantly increasing function of time or an increasing function of time that
saturates to a constant value.
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Appendix A

The Density Matrix of the
Ground State in the Language
of Path Integrals

The quantity which is the basis for our analysis is the propagator, that
defined from the relation

G(x′, t′;x, t) = H〈x′, t′|x, t〉H = 〈x′| exp
[
− i

~
(t′ − t)Ĥ

]
|x〉 (A.1)

In the above equation |x, t〉H are the eigenstates of the position operator in
the Heisenberg picture. The last equality assumes that the Hamiltonian is
time independent.

We suppose that the Hamiltonian has a complete system of eigenstates
and we write:

G(x′, t′;x, t) =
∑
n

〈x′| exp
[
− i
~

(t′−t)Ĥ
]
|n〉〈n|x〉 =

∑
n

e−
i
~ (t
′−t)Enφn(x′)φ∗n(x)

(A.2)
The above expression allows us to study the propagator as a mathematical
function of the variable t. Making the change

tE = it (A.3)

we rewrite equation (A.2) as:

G(x′, t′E;x, tE) =
∑
n

e(t
′
E−tE)En/~φn(x′)φ∗n(x) (A.4)

Now, we write tE = −TE,t′E = 0 and consider the limit TE → ∞. In this
limit the dominant term that appear in the right-hand side of (A.4) is the
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term with the lowest energy, the ground state :

G(x′, 0;x,−TE) = φ0(x
′)φ∗0(x)e−TEE0/~

[
1 +O(e−TE(En−E0)/~)

]
(A.5)

The only assumption we have used is that the ground state is unique.
From the equation (A.5) we can find immediately that:∫

dxG(x′, 0;x,−TE) =

∫
dxφ0(x

′)φ∗0(x)e−TEE0/~ =

= φ0(x
′)

∫
dxφ∗0(x)e−TEE0/~ ≡ Nφ0(x

′)⇒

φ0(x
′) =

1

N

∫
dxG(x′, 0;x,−TE) (A.6)

where we have introduced the normalization constant:

N =
(∫

dxφ∗0(x)
)
e−TEE0/~ =

(∫
dxφ∗0(x)

)∫
dxG(x, 0;x,−TE)⇒

N =
(∫

dxφ∗0(x)
)
TrĜ(0,−TE). (A.7)

For the last result we observed that∫
dxG(x, 0;x,−TE) =

∫
dxφ0(x)φ∗0(x)e−TEE0/~ =

= e−TEE0/~
∫
dx|φ0(x)|2 = e−TEE0/~ ⇒ TrĜ(0,−TE) = e−TEE0/~

The relation (A.6) indicates that the ground state , can be found through
the propagator with the help of the procedure we have introduced.

The next step, is to write the propagator as a path integral :

G(x′, 0;x,−TE) =

∫
Dx

x(0)=x′

x(−TE)=x

(τ) exp

{
− 1

~

∫ 0

−TE
dτLE[x(τ)]

}
=

=

∫
Dx(τ)δ(x(0)− x′)δ(x(−TE)− x) exp

{
− 1

~

∫ 0

−TE
dτLE[x(τ)]

}
. (A.8)

Let’s clear, here, our notation: The weight with which every path con-
tributes to the path integral is exp( i~S[x]) where S[x] is the classical ac-
tion that corresponds to the particular path. If, for example, the Hamilto-
nian of a particle is H = p2

2m
+ V (x) then the corresponding action will be
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S =
∫ T
0

(
m
2
ẋ2(t) + V (x(t))

)
. In our case, we have made the change (A.3) so

the weight in the path integral (A.8) is

exp

[
i

~

∫ iT

0

(−idtE)
(
− m

2
ẋ2(tE) + V (x(tE))

)]
=

= exp

[
−1

~

∫ TE

0

dtE

(
−m

2
ẋ2(tE)+V (x(tE))

)]
≡ exp

[
−1

~

∫ TE

0

dtELE[x(tE)]

]
This notation is introduced in equation (A.8) together with a compactness
in writing. Inserting, now, equation (A.8) into (A.6) we have:

φ0(x
′) =

1

N

∫
dxG(x′, 0;x,−TE) =

=
1

N

∫
dx

∫
Dx(tE)δ(x(0)−x′)δ(x(−TE)−x) exp

{
−1

~

∫ TE

0

dtELE[x(tE)]

}
⇒

φ0(x
′) =

1

N

∫
Dx(tE)δ(x(0)− x′)

{∫ TE

0

dtELE[x(tE)]

}
(A.9)

We can go, now, back to (A.4) and play the same game. We will write
t′E = TE →∞,tE = 0. The relation (A.5) will become:

G(x′, TE;x, 0) = φ0(x
′)φ∗0(x)e−TEE0/~

[
1 +O(e−TE(En−E0)/~)

]
(A.10)

and thus :

φ∗0(x) =
1

N̄

∫
Dx(τ)δ(x(0)− x) exp

{
− 1

~

∫ TE

0

dτLE[x(τ)]

}
. (A.11)

The normalization constant is:

N̄ =
(∫

dxφ0(x)
)
TrĜ(TE, 0) (A.12)

If we combine the relations (A.9) and (A.11) we can write the density
matrix of the system (: the particle that is in its ground state):

ρ(x′, x) ≡ φ0(x
′)φ∗0(x) =

1

NN̄

∫
Dx(τ)

∫
Dx̃(τ)δ(x(0)− x′)δ(x̃(0)− x)×

× exp

{
− 1

~

∫ 0

−TE
dτLE[x(τ)]− 1

~

∫ TE

0

dτLE[x̃(τ)]

}
. (A.13)
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We define, now, a new function:

z(τ) =

{
x(τ), −TE < τ < 0
x̃(τ), 0 < τ < TE

(A.14)

which is obviously non continuous :

z(−0) = x(0) = x′ 6= z(+0) = x̃(0) = x. (A.15)

With the help of this function, the density matrix takes the form:

ρ(x′, x) =
1

Z

∫
Dz(τ)δ(z(−0)− x′)δ(z(+0)− x)×

× exp

{
− 1

~

∫ 0

−TE
dτLE[z(τ)]− 1

~

∫ TE

0

dτLE[z(τ)]

}
. (A.16)

The normalization constant can be determined from the relation:∫
dxρ(x, x) = Trρ̂ = 1⇒

1

Z

∫
dx

∫
Dz(τ)δ(z(−0)−x)δ(z(+0)−x) exp

{
−1

~

∫ 0

−TE
dτLE[z(τ)]−1

~

∫ TE

0

dτLE[z(τ)]

}
⇒

1

Z

∫
dx

∫
Dz(τ)δ(z(+0)−z(−0)) exp

{
−1

~

∫ 0

−TE
dτLE[z(τ)]−1

~

∫ TE

0

dτLE[z(τ)]

}
⇒

Z =

∫
Dz(τ)

z(+0)=z(−0)

exp

{
− 1

~

∫ TE

−TE
dτLE[z(τ)]

}
. (A.17)

Here we must say that, we could conclude to the same result if we use
(A.4) and put t′E = TE,tE = −TE,TE →∞:

G(x′, TE;x,−TE) = φ0(x
′)φ∗0(x)e−2TEE0/~

[
1 +O(e−2TE(En−E0)/~)

]
. (A.18)

Thus

ρ(x′, x) =
1

A
G(x′, TE;x,−TE) =

1

Z

∫
Dz(τ)δ(z(−TE)− x)δ(z(TE)− x′)×

× exp

{
− 1

~

∫ TE

−TE
dτLE[z(τ)]

}
. (A.19)
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The identity of the two expressions (A.16) and (A.19) can be shown if we
write ∫ TE

−TE
dτLE[z(τ)] =

∫ TE

0

dτLE[z(τ)] +

∫ 0

−TE
dτLE[z(τ)].

and then make the change τ = τ̃ − TE in the first integral and the change
τ = τ̃ + TE in the second:∫ TE

−TE
dτLE[z(τ)]→

∫ TE

0

dτ̃LE[z(τ̃)] +

∫ 0

−TE
dτ̃LE[z(τ̃)].

Of course, we must change, also, the boundary conditions indicated in (A.19):
z(−TE)→ z(+0) and z(TE)→ z(−0). With these changes it is obvious that
we will conclude to (A.16). After this observation it is obvious that the two
expressions (A.16) and (A.19) are equivalent.
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Appendix B

The Non-Local Classical
Equations of Motion

In this Appendix we shall determine the functions α(t) and β(t) beginning
from the classical equation of motion

m

(
d2

dz2
+ ω2

)
xcl.c (z) =

δS
(2)
FV [xcl.c ]

δxcl.c (z)
(B.1)

Due to its nonlocal character the above equation must be examined indepen-
dently in every segment of the contour C.

Along the line L4 the classical equation takes the form:

m

(
d2

dt′2
− Ω2

)
x
(4)
cl. (t

′) = iσx
(4)
cl. (t

′)−
(
λ
d

dt′
+ iσ

)
x
(1)
cl. (t

′), (B.2)

where we defined
mΩ2 ≡ −mω2 + 2γ(0). (B.3)

Along the lines L3 and L2 we have

m

(
d2

dτ 2
− ω2

)
x
(3)
cl. (τ) = 0 (B.4)

and

m

(
d2

dτ 2
− ω2

)
x
(2)
cl. (τ) = 0. (B.5)

The last part of the classical equation refers to the line L1:

m

(
d2

dt′2
− Ω2

)
x
(1)
cl. (t

′) = −iσx(1)cl. (t
′)−

(
λ
d

dt′
− iσ

)
x
(4)
cl. (t

′). (B.6)
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Seeking for continuous and differentiable solutions of the above system of
classical equations we impose the following boundary conditions:

x
(4)
cl. (t) = x′, x

(4)
cl. (0) = x

(3)
cl. (0)

x
(3)
cl. (−∞) = 0, x

(3)
cl. (0) = x

(4)
cl. (0)

x
(2)
cl. (0) = x

(1)
cl. (0), x

(2)
cl. (+∞) = 0

x
(1)
cl. (t) = x, x

(1)
cl. (0) = x

(2)
cl. (0)

(B.7)

and

ẋ
(4)
cl. (0) = ẋ

(3)
cl. (0), ẋ

(2)
cl. (0) = −ẋ(1)cl. (0), ẋ

(3)
cl. (−∞) = ẋ

(2)
cl. (∞). (B.8)

Equations (B.4) and (B.5) can be readily solved with the help of the above
indicated boundary conditions:

x
(3)
cl. (τ) = x

(4)
cl. (0)eωτ , x

(2)
cl. (τ) = x

(1)
cl. (0)e−ωτ . (B.9)

Using once again the boundary conditions (B.8) we find that:

ωx
(4)
cl. (0) = ẋ

(4)
cl. (0), ωx

(1)
cl. (0) = ẋ

(1)
cl. (0). (B.10)

Introducing the combinations

y(±) =
1

2
(x

(4)
cl. ± x

(1)
cl. ), (B.11)

the system of eqs. (B.2) and (B.4) can be considerably simplified:(
d2

dt′2
− λ

m

d

dt′
− Ω2

)
y(+)(t′) = 2i

σ

m
y(−)(t′), (B.12)

(
d2

dt′2
− λ

m

d

dt′
− Ω2

)
y(−)(t′) = 0. (B.13)

The solutions y(±) of the last equations are now trivially obtained and they
lead us immediately to the result:

x
(4)
cl. (t

′) = A1ϕ
(4)
+ (t′) + A2ϕ

(4)
− (t′) + A3e

α+t′ + A4e
−α−t′ , (B.14)

x
(1)
cl. (t

′) = A1ϕ
(1)
+ (t′) + A2ϕ

(1)
− (t′) + A3e

α+t′ + A4e
−α−t′ . (B.15)

In the above expression we have written:

ϕ
(4)
+ (t′) = eα+t′ − 2i

σ

m

∫ t

0

dt′′G(t′, t′′)eα+t′′ , (B.16)
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ϕ
(4)
− (t′) = e−α−t

′ − 2i
σ

m

∫ t

0

dt′′G(t′, t′′)e−α−t
′′
, (B.17)

ϕ
(1)
+ (t′) = eα+t′ + 2i

σ

m

∫ t

0

dt′′G(t′, t′′)eα+t′′ , (B.18)

ϕ
(1)
− (t′) = e−α−t

′
+ 2i

σ

m

∫ t

0

dt′′G(t′, t′′)e−α−t
′′
, (B.19)

α± = ± λ

2m
+

√
λ2

4m2
+

2γ(0)

m
− ω2. (B.20)

In eqs. (A.16) - (A.19) we used the Green’s function(
d2

dt′2
− λ

m

d

dt′
− Ω2

)
G(t′, t′′) = −δ(t′ − t′′), G(t, t′′) = G(0, t′′) = 0 (B.21)

which assumes the form:

G(t′, t′′) =
e(α++α−)t/2−α+t′′ − e−(α++α−)t/2+α−t′′

2(α+ + α−) sinh[(α+ + α−)t/2]
(eα+t′ − e−α−t′)θ(t′′ − t′)+

+
e(α++α−)t/2−α−t′ − e−(α++α−)t/2+α+t′

2(α− + α+) sinh[(α+ + α−)t/2]
(eα−t

′′ − e−α+t′′)θ(t′ − t′′). (B.22)

The coefficients in eqs.(B.14) and (B.15) can straightforwardly be obtained
with the help of the boundary conditions (B.7) and (B.10):

A1(t) = −λ−(t)

D(t)

x′ − x
2

, (B.23)

A2(t) =
λ+(t)

D(t)

x′ − x
2

, (B.24)

A3(t) =
α− + ω

D̃(t)

x′ + x

2
+
µ+(t)λ−(t)− µ−(t)λ+(t)

D̃(t)D(t)
e−α−t

x′ − x
2

, (B.25)

A4(t) =
α+ − ω
D̃(t)

x′ + x

2
− µ+(t)λ−(t)− µ−(t)λ+(t)

D̃(t)D(t)
eα+t

x′ − x
2

, (B.26)

with

D(t) = λ+(t)e−α−t−λ−(t)eα+t, D̃(t) = (α+−ω)e−α−t+(α−+ω)eα+t, (B.27)
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λ±(t) = ϕ̇
(4)
± (0) + ϕ̇

(1)
± (0)− 2ω, µ± =

1

2
(ϕ̇

(4)
± (0)− ϕ̇(1)

± (0)). (B.28)

Inserting (B.22) and (B.23) into (B.14) and (B.15) we determine:

α(t) =
λ+(t)ϕ̇

(4)
− (t)− λ−(t)ϕ̇

(4)
+ (t)

D(t)
+(α+−α−)

µ+(t)λ−(t)− µ−(t)λ+(t)

D̃(t)D(t)
e(α+−α−)t+

+
α+(α− + ω)eα+t − α−(α+ − ω)e−α−t

D̃(t)
, (B.29)

β(t) = −λ+(t)ϕ̇
(4)
− (t)− λ−(t)ϕ̇

(4)
+ (t)

D(t)
−(α+−α−)

µ+(t)λ−(t)− µ−(t)λ+(t)

D̃(t)D(t)
e(α+−α−)t+

+
α+(α− + ω)eα+t − α−(α+ − ω)e−α−t

D̃(t)
, (B.30)

γ(t) = −λ+(t)ϕ̇
(1)
− (t)− λ−(t)ϕ̇

(1)
+ (t)

D(t)
+(α+−α−)

µ+(t)λ−(t)− µ−(t)λ+(t)

D̃(t)D(t)
e(α+−α−)t+

+
α+(α− + ω)eα+t − α−(α+ − ω)e−α−t

D̃(t)
, (B.31)

δ(t) =
λ+(t)ϕ̇

(1)
− (t)− λ−(t)ϕ̇

(1)
+ (t)

D(t)
−(α+−α−)

µ+(t)λ−(t)− µ−(t)λ+(t)

D̃(t)D(t)
e(α+−α−)t+

+
α+(α− + ω)eα+t − α−(α+ − ω)e−α−t

D̃(t)
. (B.32)

(The argument in all the functions is the instant t.)
At this point we are ready to confirm some of the claims presented in the

main text. We must distinguish two cases. The first is when:

λ2

4m2
≥ ω2 − 2

γ(0)

m
(B.33)

In such a case α± are real and consequently ϕ
(4)
± = (ϕ

(1)
± )∗. Observing that

λ± = λ∗±, µ± = −µ∗± we immediately see that:

γ∗ = β, δ∗ = α (B.34)

and
=α(t) = −=β(t). (B.35)
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When
λ2

4m2
< ω2 − 2

γ(0)

m
(B.36)

we observe that α+ = −α∗−, ϕ
(4)
± = (ϕ

(1)
∓ )∗, and since λ±, µ± turn out to be

the same as in the case (B.33), we verify once again the relations (B.34) and
(B.35).

When α± are real we straightforwardly obtain:

=α(t) =
σ

m

[
e(α+−α−)t/2

D(t)
f1(t) +

e(α+−α−)t

D2(t)
f2(t)

]
, (B.37)

<α(t) = 2
d

dt
lnD(t), (B.38)

with

f1(t) =
1

sinh[(α+ + α−)t/2]

{
(α+ − ω)

[
t− 1− e−(α++α−)t

(α+ + α−)

]
+

+(α− + ω)

[
e(α++α−)t − 1

(α+ + α−)
− t
]}

(B.39)

and

f2(t) =
α+ + α−

sinh[(α+ + α−)t/2]

{
(α−+ω)

[
te(α++α−)t/2 − 2

sinh[(α+ + α−)t/2]

α+ + α−

]
+

+(α+ − ω)

[
2

sinh[(α+ + α−)t/2]

α+ + α−
− te−(α++α−)t/2

]
. (B.40)

The last relations confirm that =α > 0. For tα± � 1 it is easy to check that
=α and <α become constants:

=α ≈ 2σ

m

1

α+ + α−
, <α ≈ 2α+. (B.41)

The last relation holds as long as α+ + α− 6= 0. If α+ + α− = 0 that is if

λ2

4m2
+ 2

γ(0)

m
= ω2 (B.42)

we immediately find that

=α =
σ

m

2t

1 + (ω − λ/2m)
≈
t→∞

σ

m

2

ω − λ/m
, (B.43)
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<α = 2
ω + t(ω − λ/2m)λ/2m

1 + t(ω − λ/2m)
≈
t→∞

2ω. (B.44)

When α± are complex we find that:

=α(t) =
σ

m

1

[(ω − λ/2m) sin kt+ k cos kt]2

{[
k2 + (ω − λ/2m)2

]
t+

+2(ω − λ/2m) sin2 kt+
[
k2 − (ω − λ/2m)2

] sin 2kt

2k

}
. (B.45)

Using the fact x/ sinx ≥ 1 once again we can verify that =α(t) > 0. It also
straightforward to see that:

<α(t) = 2
d

dt
lnD(t) = 2

[
λ
2m

(ω − λ/2m)− k2
]

sin kt+ k cos kt

(ω − λ/2m) sin kt+ k cos kt
, (B.46)

where we have noted

k2 = ω2 − 2γ(0)

m
− λ2

4m2
. (B.47)
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Appendix C

FORTRAN Codes

In this appendix we give the FORTRAN 77 programs, we have used in the
numerical calculations.

C.1 The Entropy in the Adiabatic Approach

program adiabatic

implicit real*8(a-h,o-z)

real*8 ksi

dimension y(2),dy(2),ysc(2)

dimension yi(2),dyi(2),ysci(2)

dimension ysol1(10000),ysol2(10000),tsol(10000)

dimension ysoli1(10000),ysoli2(10000)

common/delay/tinv

common/flag/iflag

common/param/p1,p2,tau

external derivs

open(8,file=’K1L10T1.dat’)

p1=1.d0

p2=5.d0

tau=1

istmax=1000

t 0=0

t f=20 ! Is the tau we define

htry=(t f-t 0)/dble(istmax)
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epsi=1.d-6

do i=1,2

ysc(i)=1.d0

enddo

t r=0.d0

y(1)=0.d0

y(2)=1.d0

iflag=0

istep=0

1 istep=istep+1

call derivs(t r,y,dy)

call bsstep(y,dy,2,t r,htry,epsi,ysc,hdid,hnext)

tsol(istep)=t r

ysol1(istep)=y(1)

ysol2(istep)=y(2)

if(istep.lt.istmax) goto 1

iflag=1

do j=1,istmax

t i=0.d0

yi(1)=0.d0

yi(2)=1.d0

do i=1,2

ysci(i)=1.d0

enddo

tinv=tsol(j)

jstmax=j

jstep=0

2 jstep=jstep+1

call derivs(t i,yi,dyi)

call bsstep(yi,dyi,2,t i,htry,epsi,ysci,hdid,hnext)

if(jstep.lt.jstmax) goto 2

ysoli1(j)=yi(1)

ysoli2(j)=yi(2)

print*,j,t i,tsol(jstmax)

enddo
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do i=1,istmax

! The type of entropy is :

t=tsol(i)

d0=ysol1(i)

d0d=ysol2(i)

di=ysoli1(i)

did=-ysoli2(i)

s1=(1.d0+d0d*did)**2

s2=2.d0+d0d**2+did**2

s3=d0**2+d0d**2

sh=4.d0*dsqrt((d0**4+s1+d0**2*s2)/(d0**2*s3**2))

snom=d0**4+s1+d0**2*(-4.d0+s2)

sden=s1+d0**4*(1.d0+sh)+d0**2*(6.d0+did**2+d0d**2*(1.d0+sh))

ksi=snom/sden

s=-dlog(1.d0-ksi)-((dlog(ksi)*ksi)/(1.d0-ksi))

write(8,15) t,ksi,s

enddo

15 format(3(4x,g13.7))

close(8)

stop

end

SUBROUTINE BSSTEP(Y,DYDX,NV,X,HTRY,EPS,YSCAL,HDID,HNEXT)

IMPLICIT REAL*8(A-H,O-Z)

PARAMETER (NMAX=10,IMAX=11,NUSE=7,ONE=1.D0,SHRINK=.95D0,GROW=1.2D0

*)

DIMENSION Y(NV),DYDX(NV),YSCAL(NV),YERR(NMAX),

* YSAV(NMAX),DYSAV(NMAX),YSEQ(NMAX),NSEQ(IMAX)

DATA NSEQ /2,4,6,8,12,16,24,32,48,64,96/

H=HTRY

XSAV=X

DO 11 I=1,NV

YSAV(I)=Y(I)

DYSAV(I)=DYDX(I)

11 CONTINUE

1 DO 10 I=1,IMAX

CALL MMID(YSAV,DYSAV,NV,XSAV,H,NSEQ(I),YSEQ)
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XEST=(H/NSEQ(I))**2

CALL RZEXTR(I,XEST,YSEQ,Y,YERR,NV,NUSE)

ERRMAX=0.D0

DO 12 J=1,NV

ERRMAX=DMAX1(ERRMAX,DABS(YERR(J)/YSCAL(J)))

12 CONTINUE

ERRMAX=ERRMAX/EPS

IF(ERRMAX.LT.ONE) THEN

X=X+H

HDID=H

IF(I.EQ.NUSE)THEN

HNEXT=H*SHRINK

ELSE IF(I.EQ.NUSE-1)THEN

HNEXT=H*GROW

ELSE

HNEXT=(H*NSEQ(NUSE-1))/NSEQ(I)

ENDIF

RETURN

ENDIF

10 CONTINUE

H=0.25D0*H/2**((IMAX-NUSE)/2)

IF(X+H.EQ.X)PAUSE ’Step size underflow.’

GOTO 1

END

SUBROUTINE MMID(Y,DYDX,NVAR,XS,HTOT,NSTEP,YOUT)

IMPLICIT REAL*8(A-H,O-Z)

PARAMETER (NMAX=10)

DIMENSION Y(NVAR),DYDX(NVAR),YOUT(NVAR),YM(NMAX),YN(NMAX)

H=HTOT/NSTEP

DO 11 I=1,NVAR

YM(I)=Y(I)

YN(I)=Y(I)+H*DYDX(I)

11 CONTINUE

X=XS+H

CALL DERIVS(X,YN,YOUT)

H2=2.D0*H

DO 13 N=2,NSTEP

DO 12 I=1,NVAR

SWAP=YM(I)+H2*YOUT(I)

YM(I)=YN(I)

81



YN(I)=SWAP

12 CONTINUE

X=X+H

CALL DERIVS(X,YN,YOUT)

13 CONTINUE

DO 14 I=1,NVAR

YOUT(I)=0.5D0*(YM(I)+YN(I)+H*YOUT(I))

14 CONTINUE

RETURN

END

SUBROUTINE RZEXTR(IEST,XEST,YEST,YZ,DY,NV,NUSE)

IMPLICIT REAL*8(A-H,O-Z)

PARAMETER (IMAX=11,NMAX=10,NCOL=7)

DIMENSION X(IMAX),YEST(NV),YZ(NV),DY(NV),D(NMAX,NCOL),FX(NCOL)

X(IEST)=XEST

IF(IEST.EQ.1) THEN

DO 11 J=1,NV

YZ(J)=YEST(J)

D(J,1)=YEST(J)

DY(J)=YEST(J)

11 CONTINUE

ELSE

M1=MIN(IEST,NUSE)

DO 12 K=1,M1-1

FX(K+1)=X(IEST-K)/XEST

12 CONTINUE

DO 14 J=1,NV

YY=YEST(J)

V=D(J,1)

C=YY

D(J,1)=YY

DO 13 K=2,M1

B1=FX(K)*V

B=B1-C

IF(B.NE.0.D0) THEN

B=(C-V)/B

DDY=C*B

C=B1*B

ELSE

DDY=V
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ENDIF

V=D(J,K)

D(J,K)=DDY

YY=YY+DDY

13 CONTINUE

DY(J)=DDY

YZ(J)=YY

14 CONTINUE

ENDIF

RETURN

END

SUBROUTINE DERIVS(T,YN,DYN)

IMPLICIT REAL*8(A-H,O-Z)

DIMENSION YN(2),DYN(2)

common/delay/tinv

common/flag/iflag

common/param/p1,p2,tau

if(iflag.eq.0) then

DYN(1)=YN(2)

DYN(2)=-(p1+p2*dtanh(T/tau))*YN(1)

else

DYN(1)=YN(2)

DYN(2)=-(p1+p2*dtanh((tinv-T)/tau))*YN(1)

endif

RETURN

END

C.2 The Oscillation Amplitude of Entropy in

the Adiabatic Approximation

program adiamp

implicit real*8(a-h,o-z)

real*8 ksi,smin,smax,sdif

real ::ss(30000)

real ::vima

integer ::ii

dimension y(2),dy(2),ysc(2)

dimension yi(2),dyi(2),ysci(2)
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dimension ysol1(30000),ysol2(30000),tsol(30000)

dimension ysoli1(30000),ysoli2(30000)

common/delay/tinv

common/flag/iflag

common/param/p1,p2,tau

external derivs

open (9,file=’new1150.dat’)

p1=1.d0

p2=10.d0

tau=1

vima=1

do ii=1,50

tau=tau+vima

istmax=10000

t 0=0.d0

t f=200.d0 ! Is the tau we define

htry=(t f-t 0)/dble(istmax)

epsi=1.d-6

do i=1,2

ysc(i)=1.d0

enddo

t r=0.d0

y(1)=0.d0

y(2)=1.d0

iflag=0

istep=0

1 istep=istep+1

call derivs(t r,y,dy)

call bsstep(y,dy,2,t r,htry,epsi,ysc,hdid,hnext)

tsol(istep)=t r

ysol1(istep)=y(1)

ysol2(istep)=y(2)

if(istep.lt.istmax) goto 1
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iflag=1

do j=1,istmax

t i=0.d0

yi(1)=0.d0

yi(2)=1.d0

do i=1,2

ysci(i)=1.d0

enddo

tinv=tsol(j)

jstmax=j

jstep=0

2 jstep=jstep+1

call derivs(t i,yi,dyi)

call bsstep(yi,dyi,2,t i,htry,epsi,ysci,hdid,hnext)

if(jstep.lt.jstmax) goto 2

ysoli1(j)=yi(1)

ysoli2(j)=yi(2)

enddo

textcolor[rgb]0.00,0.00,1.00do i=1,istmax

! The Entropy Is :

t=tsol(i)

d0=ysol1(i)

d0d=ysol2(i)

di=ysoli1(i)

did=-ysoli2(i)

s1=(1.d0+d0d*did)**2

s2=2.d0+d0d**2+did**2

s3=d0**2+d0d**2

sh=4.d0*dsqrt((d0**4+s1+d0**2*s2)/(d0**2*s3**2))

snom=d0**4+s1+d0**2*(-4.d0+s2)

sden=s1+d0**4*(1.d0+sh)+d0**2*(6.d0+did**2+d0d**2*(1.d0+sh))

ksi=snom/sden

ss(i)=s

enddo

15 format(3(4x,g13.7))
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do i=1,istmax-2

if (ss(i)<ss(i+1).and.ss(i+1)>ss(i+2)) then

smax=ss(i+1)

end if

if (ss(i)>ss(i+1).and.ss(i+1)<ss(i+2)) then

smin=ss(i+1)

end if

end do

sdif=(smax-smin)/2

print*,ii,tau,sdif

write (9,*) tau,sdif

end do

stop

end

SUBROUTINE BSSTEP(Y,DYDX,NV,X,HTRY,EPS,YSCAL,HDID,HNEXT)

IMPLICIT REAL*8(A-H,O-Z)

PARAMETER (NMAX=10,IMAX=11,NUSE=7,ONE=1.D0,SHRINK=.95D0,GROW=1.2D0

*)

DIMENSION Y(NV),DYDX(NV),YSCAL(NV),YERR(NMAX),

* YSAV(NMAX),DYSAV(NMAX),YSEQ(NMAX),NSEQ(IMAX)

DATA NSEQ /2,4,6,8,12,16,24,32,48,64,96/

H=HTRY

XSAV=X

DO 11 I=1,NV

YSAV(I)=Y(I)

DYSAV(I)=DYDX(I)

11 CONTINUE

1 DO 10 I=1,IMAX

CALL MMID(YSAV,DYSAV,NV,XSAV,H,NSEQ(I),YSEQ)

XEST=(H/NSEQ(I))**2

CALL RZEXTR(I,XEST,YSEQ,Y,YERR,NV,NUSE)

ERRMAX=0.D0

DO 12 J=1,NV

ERRMAX=DMAX1(ERRMAX,DABS(YERR(J)/YSCAL(J)))

12 CONTINUE

ERRMAX=ERRMAX/EPS

IF(ERRMAX.LT.ONE) THEN

X=X+H
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HDID=H

IF(I.EQ.NUSE)THEN

HNEXT=H*SHRINK

ELSE IF(I.EQ.NUSE-1)THEN

HNEXT=H*GROW

ELSE

HNEXT=(H*NSEQ(NUSE-1))/NSEQ(I)

ENDIF

RETURN

ENDIF

10 CONTINUE

H=0.25D0*H/2**((IMAX-NUSE)/2)

IF(X+H.EQ.X)PAUSE ’Step size underflow.’

GOTO 1

END

SUBROUTINE MMID(Y,DYDX,NVAR,XS,HTOT,NSTEP,YOUT)

IMPLICIT REAL*8(A-H,O-Z)

PARAMETER (NMAX=10)

DIMENSION Y(NVAR),DYDX(NVAR),YOUT(NVAR),YM(NMAX),YN(NMAX)

H=HTOT/NSTEP

DO 11 I=1,NVAR

YM(I)=Y(I)

YN(I)=Y(I)+H*DYDX(I)

11 CONTINUE

X=XS+H

CALL DERIVS(X,YN,YOUT)

H2=2.D0*H

DO 13 N=2,NSTEP

DO 12 I=1,NVAR

SWAP=YM(I)+H2*YOUT(I)

YM(I)=YN(I)

YN(I)=SWAP

12 CONTINUE

X=X+H

CALL DERIVS(X,YN,YOUT)

13 CONTINUE

DO 14 I=1,NVAR

YOUT(I)=0.5D0*(YM(I)+YN(I)+H*YOUT(I))

14 CONTINUE

RETURN
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END

SUBROUTINE RZEXTR(IEST,XEST,YEST,YZ,DY,NV,NUSE)

IMPLICIT REAL*8(A-H,O-Z)

PARAMETER (IMAX=11,NMAX=10,NCOL=7)

DIMENSION X(IMAX),YEST(NV),YZ(NV),DY(NV),D(NMAX,NCOL),FX(NCOL)

X(IEST)=XEST

IF(IEST.EQ.1) THEN

DO 11 J=1,NV

YZ(J)=YEST(J)

D(J,1)=YEST(J)

DY(J)=YEST(J)

11 CONTINUE

ELSE

M1=MIN(IEST,NUSE)

DO 12 K=1,M1-1

FX(K+1)=X(IEST-K)/XEST

12 CONTINUE

DO 14 J=1,NV

YY=YEST(J)

V=D(J,1)

C=YY

D(J,1)=YY

DO 13 K=2,M1

B1=FX(K)*V

B=B1-C

IF(B.NE.0.D0) THEN

B=(C-V)/B

DDY=C*B

C=B1*B

ELSE

DDY=V

ENDIF

V=D(J,K)

D(J,K)=DDY

YY=YY+DDY

13 CONTINUE

DY(J)=DDY

YZ(J)=YY

14 CONTINUE

ENDIF
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RETURN

END

SUBROUTINE DERIVS(T,YN,DYN)

IMPLICIT REAL*8(A-H,O-Z)

DIMENSION YN(2),DYN(2)

common/delay/tinv

common/flag/iflag

common/param/p1,p2,tau

if(iflag.eq.0) then

DYN(1)=YN(2)

DYN(2)=-(p1+p2*dtanh(T/tau))*YN(1)

else

DYN(1)=YN(2)

DYN(2)=-(p1+p2*dtanh((tinv-T)/tau)*YN(1))

endif

RETURN

END
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