Sandro Wimberger \& Georgios Kordas Complex Dynamics in Quantum Systems Institut für Theoretische Physik, Universität Heidelberg Philosophenweg 19, D-69120 Heidelberg
Email: s.wimberger@thphys.uni-heidelberg.de g.kordas@thphys.uni-heidelberg.de

Phone: $(++49-(0) 6221) 54-9449$ $(++49-(0) 6221) 54-9319$

HGSFP
Heidelberg Graduate School of Fundamental Physics

Tutorial on Quantum Chaos

nHS, Phil.weg 12, Wednesday 14:15-16:00 (SS 2012)

Problem Sheet 7

Problem 15 - WKB approximation

Given the 1D potentials

$$
\begin{align*}
& V_{1}(x)= \begin{cases}\frac{1}{2} m \omega^{2} x^{2}, x>0 \\
\infty, & x<0\end{cases} \tag{1}\\
& V_{2}(x)= \begin{cases}\alpha x, & x>0 \\
\infty, & x<0\end{cases} \tag{2}
\end{align*}
$$

a) show that for the outer turning point a

$$
\int_{0}^{a} p(x) d x=\pi \hbar\left(n+\frac{3}{4}\right) \quad\left(n \in \mathbb{N}_{0}\right)
$$

implicitly defines the WKB-quantized energy levels.
b) compute the two series of WKB energy levels $E(n)$ and extract the scaling of the density of states (the inverse level distance) with the energy E.
c) Imagine a point mass with $m=0.1 \mathrm{~kg}$; in which quantum state n would it be if you let it fall from a height of $h=1 \mathrm{~m}$ above the floor? How large would h be in the quantum mechanical ground state with $n=0$?

Problem 16 - EKB quantization

For $V(r)=-\frac{e^{2}}{r}$ we get in spherical coordinates (r, θ, ϕ), with $r \in[0, \infty), \theta \in[0, \pi], \phi \in[0,2 \pi)]$, the following Hamiltonian

$$
H=\frac{\vec{p}^{2}}{2 m}-\frac{e^{2}}{r}=\frac{1}{2 m}\left(p_{r}^{2}+\frac{p_{\theta}^{2}}{r^{2}}+\frac{p_{\phi}^{2}}{r^{2} \sin ^{2} \theta}\right)-\frac{e^{2}}{r} .
$$

a) Show that

$$
p_{r}=m \dot{r} \quad, \quad p_{\theta}=m r^{2} \dot{\theta} \quad, \quad p_{\phi}=m r^{2} \sin (\theta) \dot{\phi}\left(=L_{z}\right) .
$$

b) Show that the system is integrable by finding three constants of the motion.
c) Compute for $E<0$:

$$
I_{r}=\frac{1}{2 \pi} \oint p_{r} d r, \quad I_{\theta}=\frac{1}{2 \pi} \oint p_{\theta} d \theta, \quad I_{\phi}=\frac{1}{2 \pi} \oint p_{\phi} d \phi
$$

Hints:
Determine first the turning points for the motion corresponding to the tori actions $I_{r, \theta, \phi}$, i.e. for $V_{\text {eff }}(r)=-\frac{e^{2}}{r}+\frac{L^{2}}{2 m r^{2}}$ with $\left(\vec{L}^{2}=L^{2}\right)$, from $\sin ^{2} \theta_{1,2}=\left(L_{z} / L\right)^{2} \leq 1$, and for the cyclic (!) coordinate ϕ.
d) Use the identities

$$
\vec{L}^{2}=L^{2}=p_{\theta}^{2}+\frac{p_{\phi}^{2}}{\sin ^{2} \theta}=p_{\theta}^{2}+\frac{L_{z}^{2}}{\sin ^{2} \theta} \quad\left(L \leq 0, \quad-L \leq L_{z} \leq L\right)
$$

to obtain the quantized energies in the form

$$
E=-\frac{m e^{4}}{2} \frac{1}{\left(I_{r}+I_{\theta}+I_{\phi}\right)^{2}}
$$

Use now the quantization conditions of EKB to arrive at the usual well-known quantum mechanical eigenenergies of the Coulomb problem.

