Sandro Wimberger \& Georgios Kordas Complex Dynamics in Quantum Systems Institut für Theoretische Physik, Universität Heidelberg Philosophenweg 19, D-69120 Heidelberg
Email: s.wimberger@thphys.uni-heidelberg.de g.kordas@thphys.uni-heidelberg.de

Phone: $(++49-(0) 6221) 54-9449$ $(++49-(0) 6221) 54-9319$

Tutorial on Quantum Chaos

nHS, Phil.weg 12, Wednesday 14:15-16:00 (SS 2012)

Problem Sheet 5

Problem 10 - Kicked Rotor

Given the time-dependent Hamiltonian

$$
H(p, q, t)=H_{0}(p)+V(q) T \sum_{n=-\infty}^{\infty} \delta(t-n T),
$$

how must one choose $H_{0}(p), V(q)$ and T such that the following mapping corresponds to the Standard Map (see next problem (1))?

$$
\binom{p_{n}}{q_{n}} \mapsto\binom{p_{n+1}}{q_{n+1}} \text { with }\binom{p_{n}}{q_{n}}=\lim _{\delta \rightarrow 0^{+}}\binom{p(t=n T-\delta)}{q(t=n T-\delta)}
$$

Problem 11 - Chaos and Stochasticity

The Standard Map is defined as

$$
\begin{align*}
& p \mapsto p^{\prime}=p+K \sin (q) \\
& q \mapsto q^{\prime}=q+p^{\prime} \tag{1}
\end{align*}
$$

In this problem we do not take the modulus operation in the evolution of momenta p (in the evolution of q it might as well be taken, why?).
a) For $K=10$, compute numerically how the energy $p^{2} / 2$ increases with the number of iterations of the map. To do so define ca. 1000 initial points at $p=0$, with equidistant values $q \in[1.0001,1.0002, \ldots, 1.1]$. What kind of stochastic-like motion do you observe?
b) Calculate analytically how, for large $K \gg 1$, the energy $p^{2} / 2$ increases on average with the number of iterations of the map. You should express p_{n} as a function of p_{0} and $q_{0}, q_{1}, \ldots, q_{n-1}$. Use the fact that the iterated values of $\sin q$ are (in good approximation) uncorrelated for large $|p|$.

Problem 12 - Resonance Islands and Self-Similarity

The usual form of the Standard Map is the following:

$$
\begin{align*}
p \mapsto p^{\prime} & =p+K \sin (q) \quad(\bmod 2 \pi) \\
q \mapsto q^{\prime} & =q+p^{\prime} \quad(\bmod 2 \pi) . \tag{2}
\end{align*}
$$

Plot the phase space for $K=-1.5$ in the regions
a) $q \in[-3,-2], p \in[1,2]$
b) $q \in[-2.7,-2.6], p \in[1.2,1.4]$
c) $q \in[-2.65,-2.64], p \in[1.25,1.26]$
d) $q \in[-2.6475,-2.6465], p \in[1.253,1.2535]$
for 100 initial points equidistantly distributed in the given regions (plotting only iterated points within the region). For a good resolution you need ca. 5000 iterations in a), 20000 in b), 10^{5} in c), and 5×10^{5} in d).

What do you observe in this case of mixed regular-chaotic dynamics?

