Sandro Wimberger \& Georgios Kordas Complex Dynamics in Quantum Systems Institut für Theoretische Physik, Universität Heidelberg Philosophenweg 19, D-69120 Heidelberg
Email: s.wimberger@thphys.uni-heidelberg.de g.kordas@thphys.uni-heidelberg.de

Phone: $(++49-(0) 6221) 54-9449$ $(++49-(0) 6221) 54-9319$

Tutorial on Quantum Chaos

nHS, Phil.weg 12, Wednesday 14:15-16:00 (SS 2012)

Problem Sheet 4

Problem 9 - Henon-Heiles Problem - Poincaré Surface of Section

The Henon-Heiles Hamiltonian is defined as follows

$$
H=\frac{1}{2}\left(p_{x}^{2}+p_{y}^{2}\right)+\frac{1}{2}\left(x^{2}+y^{2}\right)+x^{2} y-\frac{1}{3} y^{3} .
$$

a) Draw the contour lines of the potential $V(x, y)$ in the (x, y) plane.
b) For $E>0$, the Poincaré surface of section is defined by the condition $x=0$. Plot $\left(p_{y}, y\right)$ in this plane intersecting the full dynamical phase space for the following set of energies: $E=$ $0.01, E=0.1, E=0.12, E=0.14, E=0.16$, and $E=1 / 6$.

Hints:

1. For fixed E define a grid of possible initial conditions in phase space, e.g. by $x(t=0)=0, y(0)=-0.5,-0.4, \ldots, 1$ and $p_{y}(0)=0, \pm 0.1, \ldots, \pm 0.5$ (for very small $E \leq 0.01$ you may eventually have to use a finer grid). Choose initial points for which $V(x, y)+p_{y}^{2} / 2 \leq E$ and, particularly, p_{x} by requiring that the total energy equals E.
2. Compute numerically the trajectories starting with the initial conditions defined in (1.) up to a time for which ca. 500 crossings with the surface of section have occurred.
3. The values for $\left(p_{y}, y\right)$ at the crossing point are best obtained by a linear interpolation at the two points at which x is changing sign.
4. The equations of motion can be integrated, e.g., by a RungeKutta method, as described, for instance, in Numerical Recipes (available online for free!).
