Sandro Wimberger \& Georgios Kordas Complex Dynamics in Quantum Systems Institut für Theoretische Physik, Universität Heidelberg Philosophenweg 19, D-69120 Heidelberg
Email: s.wimberger@thphys.uni-heidelberg.de g.kordas@thphys.uni-heidelberg.de
Phone: (++49-(0)6221) 54-9449 (++49-(0)6221) 54-9319

Tutorial on Quantum Chaos

nHS, Phil.weg 12, Wednesday 14:15-16:00 (SS 2012)

Problem Sheet 10

Problem 21 - Quantum Kicked Rotor (QKR)

The QKR is described by the following kick-to-kick time evolution operator (Floquet operator):

$$
\begin{equation*}
\hat{U}=\hat{K} \hat{F}, \quad \text { with } \hat{K}=e^{-i k \cos (\hat{\theta})} \text { and } \hat{F}=e^{-i T \hat{n}^{2} / 2} . \tag{1}
\end{equation*}
$$

k and T are two independent parameters characterizing the kick strength and period, respectively. For a rotor, periodic boundary conditions are assumed, i.e. in position/angle representation we have for all times $\psi(\theta=0)=\psi(\theta=2 \pi)$.
(a) Compute the matrix elements of \hat{K} in the position (or angle θ) representation for a finite basis of length N and a grid $\theta_{i}=$ $\frac{2 \pi}{N} i$, for $i=1,2, \ldots, N$.
(b) Compute the matrix elements of \hat{K} in the angular momentum representation for a finite basis of length N and a grid $n=-N / 2,-N / 2+1, \ldots, N / 2$.
(c) For $k=5$ and $\tau=1$ and an initial state in momentum representation of the form $\psi(n)=\delta_{0, n}$, compute numerically the temporal evolution induced by \hat{U}, i.e. compute

$$
\begin{equation*}
\psi(t)=\hat{U}^{t} \psi(0), \tag{2}
\end{equation*}
$$

for $t=1,2, \ldots, 200$.
(d) Plot the angular momentum distribution $|\psi(n, t)|^{2}$ for $t=1$, $5,10,50,100,200$ kicks, making sure that your wavefunction is properly normalized, i.e. that $\sum_{n}|\psi(n, t)|^{2}=1$ for all times t.
(e) Compute the second moment of the angular momentum distribution, i.e. the expectation value of the energy $E(t)=$ $\langle\psi(n, t)| \frac{n^{2}}{2}|\psi(n, t)\rangle$ for all $t=1,2, \ldots, 200$, and plot it versus t.
(f) For a better interpretation of your results, plot also the timeaveraged quantities corresponding to (d) and (e), i.e. the quantities $X(t)=\sum_{t^{\prime}=1}^{t} Y\left(t^{\prime}\right) / t$, for $Y(t)=|\psi(n, t)|^{2}$ or $Y(t)=E(t)$, again as a function of t.

Hints for the time evolution in (c):

1) First compute $\hat{F} \psi(0)$ in momentum respresentation, then use a Fast Fourier Transform (FFT) into position representation before computing $\hat{K} \hat{F} \psi(0)$. Then use the inverse FFT to get back to position representation to compute $\hat{F} \hat{K} \hat{F} \psi(0)$, and continue now this procedure iteratively. Choose a grid which is adequate for applying FFT, i.e. $N=2^{x}$ for some integer x.
2) Make sure that the matrix dimension N is large enough to guarentee a numerically exact evolution. You can directly check this by looking at $|\psi(n, t)|^{2}$ versus n for various values of $N=2^{x}$ and $x=7,8,9,10,11, \ldots$.
