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Abstract

We obtain heat kernel estimates for higher order operators with singu-
lar /degenerate operators with measurable coefficients. Precise contants are
given, which are sharp for small times.
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1 Introduction

Let
Hf(x)=(-1)" Z Da{aag(x)Dﬁf(x)}, reQcRY
5iom
be a self-adjoint uniformly elliptic operator of order 2m with measurable coefficients
and subject to Dirichlet boundary conditions on 992. In [D2] it was shown that
if 2m > N then the associated heat semigroup e #* has a kernel K(t,z,y) which
satisfies the estimate

K(t2.5)] < et Nmexp { e [P
y Ly Y 1 p 2 tl/(mel) 5

for some positive constants ¢;. Under suitable conditions this was recently [B2]
sharpened to

d z, 2m/(2m—1)
K] < e { (o oD - 0N S )

where o, = (2m — 1)(2m)~2™/Cm=Vgin(r/(4m — 2)), D > 0 depends on the
regularity of the coefficients and dys(x,y) is a Finsler-type metric induced by the
principal symbol of H and depending on the arbitrarily large parameter M; as
M — oo, dy(z,y) increases to a Finsler distance d(z,y), but (1) is valid only
for M < oo. This estimate is sharp as is seen by comparison against the small-
time asymptotics for operators with smooth coefficients obtained in [T] — see (13)
below. In the same direction Dungey [Du| used resolvent estimates to obtain a
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better esimate than (1) for powers of second order operators. He showed in a
general framework that if the self-adjoint operator H satisfies a standard Gaussian
esimate with exponential constant i — € then the heat kernel of H™ satisfies (1)
with D = 0 and M = +o00. For an alternative approach valid also for higher order
systems see [AQ).

In the main theorem of this article we extend (1) in two directions. Primarily,
we consider operators whose coefficients can be singular and/or degenerate on 0€2;
moreover, we do not assume H to be self-adjoint. Concerning the singularity or
degeneracy of H, we assume that there is a positive function a(z) that controls
in a suitable sense the behaviour of the coefficient matrix {a,3} and we then
impose two conditions (H1) and (H2) on a(x). The first is a weighted Sobolev
embedding and the second is a weighted interpolation inequality. These conditions
were introduced in [B1] and led to (non-sharp) off diagonal estimates on the heat
kernel of non-uniformly elliptic self-adjoint operators. Besides conditions (H1) and
(H2) we shall assume that the symbol A(x,&) is close — in a suitable sense — to a
certain class of ‘good’ symbols denoted by G,. These symbols, besides satisfying
(H1) and (H2) correspond to operators that are self-adjoint, their coefficients have
some local regularity, and are strongly convex in the sense of [EP]. We make use of
a certain stability property inherent in our approach and obtain bounds that are
asymptotically sharp: they involve the exponential constant o,, —cD where c is an
absolute constant and D is the distance of the symbol A(z, ) from the class G, in
a certain weighted norm. In particular the constant o, is obtained for symbols in
G,. To our knowledge such estimates are new even if the coefficients are assumed
to be smooth and the symbol lies in G,.

2 Formulation of results

We first fix some notation. Given a multi-index o = (o, ..., ay) we write o! =
aq!. . ol and o) = o + -+ -+ . We write v < « to indicate that v; < o for all
i, in which case we also set ¢ = a!/y!(a —7)!. We use the standard notation D*
for the differential expression (0/0x1)*" ... (0/0xy)*N and for k > 0 we denote by

A

V¥ f the vector (D*f)|aj=k- We denote by f the Fourier transform of a function f,
f(€) = (2m)~N/2 [ €€ f(z)dx. We shall denote by || Al|,—, the norm of an operator
A from LP(Q2) to L9(Q2). The letter ¢ will stand for a positive constant whose value
may change from line to line.

Let Q be a domain in RY. We fix an integer m > 1 and consider the operator

Hf(x)=(=1)" > D*{acs(x)D’[(x)} (2)

laf=m
18]=m
subject to Dirichlet boundary conditions on 9€2; the precise definition shall be
given below. The matrix-valued function {a.s} is assumed to be measurable and
to take its values in the set of all complex, v X v-matrices, v being the number of
multi-indices « of length || = m. We assume that each a,s lies in L5 (€2); we do
not assume {aqg} to be self-adjoint.



We define a quadratic form Q(-) on C°(2) by

QU = [ 3 tasl@)D*f@)D*f(w) dz,  f € C2(9).

|a|=m

|B]=m
We assume that there exists a positive weight a(z) with ™! € L$° (Q2) that controls
the size of the matrix {a,g} in the following sense: first,

laas ()] < ca(z), x € Q, (3)
for all multi-indices «, 3; and second, the weighted Garding’s inequality
Re Q(f) = ¢ [ a@)|V"ffda, feCF(Q) (4)
is valid for some ¢ > 0. We also assume the symbol-version of (4), namely
Re A(x,&) > ca(x)[¢]*™, z€Q, £ €RY, (5)

where A(z,€) := Y aqp(x)€TP. Relations (3) and (4) imply in particular that
there exists 3 > 0 such that

RQINI < BRe Q(F), [ e (). (6)

It is easily seen that @) is closable [B1]. The domain of its closure is a weighted
Sobolev space which we denote by W%Q(Q) We retain the same symbol, @, for
the closure of the above form and denote by H the associated accretive operator
on L*(Q), so that (Hf, f) = Q(f), f € Dom(H), and (2) is valid in a weak sense.

We make two hypotheses on the weight a: the first is a weighted Sobolev
inequality and the second is a weighted interpolation inequality.

(H1)  There exists s € [N/2m, 1] and ¢ > 0 such that

Iflle < clRe QUAIZIfILT f € C2(Q). (7)
(H2) There exists a constant ¢ such that

/ abm\VE f1Pde < e/ alV™ f|*dx + ce_k/(m_k)/ |f|*dx, (8)
Q Q Q
forall 0 <e<1, 0 <k <mandall feC*Q).

Both (H1) and (H2) are satisfied when H is uniformly elliptic, in which case the
best value for the constant s is s = N/2m, showing that in the general case we
cannot expect any value that is better (smaller) than N/2m; in particular (H1)
is valid trivially with s = N/2m if a(z) is bounded away from zero. We refer to
[B1] for non-trivial examples for which (H1) and (H2) are satisfied; they involve
suitable powers of either 1+ |z| or dist(x, K') where K is a smooth surface of lower
dimension.

We note that condition (H2) implies that for any &k, with 0 < k, Il < m, k+I <
2m, there exists a constant ¢ so that

(L4 X2 [ QDGR [T fldr < eRe QUF) + e T (14 A2 £, (9)
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for all e € (0,1), A > 0 and all f € C(Q). Indeed, for A =1 (9) is a consequence
of (H2) and the Cauchy-Schwarz inequality; the case A < 1 follows trivially from
the case A = 1; finally writing (9) for A = 1 and replacing € by eA*™=2™ we obtain
the result for A > 1.

We next introduce the distance that shall be used in the heat kernel estimates.
Consider the set

E,={peC®(QNL®Q) : a"/*"VF¢p e L®(Q), 1 <k <m}
and its subset (recall (5))
Eam ={p e C(Q)NL®(Q): Re Az, Vo(zx)) <1,
|VEd(z)| < Ma(z) ™™ 2 <k <m, ae. z€Q}. (10)
Our estimates will be expressed in terms of the distance

dy(z,y) = sup{o(y) — ¢(z) = ¢ € Eanr} (11)
for arbitrarily large but finite M. For M = 400 this reduces to the distance

doo(7,y) = sup{o(y) — () : Re A(z,V(x)) <1, x € Q}.

This is a Finsler distance, induced by the (singular/degenerate) Finsler metric with

length element ( >
dx,n
ds = ds(z,dx) = nselll{% (Re A(z, )7
n#0
We refer the reader to the recent book [BCS] for a comprehensive introduction
to Finsler geometry. The distance d(z,y) relates to the short-time off-diagonal
behaviour of the heat kernel: it was shown in [T] that if Q@ = RN and H is
self adjoint uniformly elliptic with strongly convex symbol (see 14)), then d(-,-)
controls the small-time behaviour of K (¢, z,y) in the sense that

doo (l‘, y)2m/(2m71)
t1/(2m—1)

(12)

log t"?MK (t,2,y) = —0m (1+0o(1)), ast—0 (13)

for x,y fixed and close enough; here and below we have
Om = (2m — 1)(2m) 2™ =D gin(1/(4m — 2)).

Let us now proceed with the definition of the class G,. Let the functions a.(-),
|7| = 2m, be defined by requiring that

Y7 aap(x)¢*t =N cima,y(x)@, reQ, €eRV;
|oe|=m |v]=2m

18]=m

(recall that 2™ = (2m)!/4!). Following [EP] we say that the principal symbol
A(z, &) of H is strongly convex if the quadratic form

P(:L‘,p) - Z aa-&-ﬁ(x)pam’ b= (pa) € Cyv (14)

lal=m

18]=m



is positive semidefinite for a.e. x € €.
Induced by the weight a(z) is the weighted Sobolev space

2m—i

W= (@) = {f € Wi (Q) ¢ [V (a)] < cala) 5, e € Qi<m -1},
(15)

Definition. We say that the symbol A(z,¢) lies in G, if

(i)  A(x,§) is strongly convex
(ii)  {aap} is real and symmetric
(iii)  the coefficients a,p lie in W =12(Q).

We denote by D the distance of the coefficient matrix {a.s} from G, in the
weighted uniform norm

[flla,00 :=sup | f(z)/a(z)],
z€eQ)

that is
D= inf  |{ass} = {Gap}laco, (16)
{aaﬁ}evva,l‘{e7
where, as usual, [[{aag}la,co = || [{@ap}ar@wsxw) lla,00-

Our main result is the following:

Theorem 1 Assume that (H1) and (H2) are satisfied. Then for all 6 € (0,1) and
all M large there exist positive constants cs,csar such that

| K(t,z,y) |< cst™% exp {—(am —cD — 6)dM(x,y)272%1t_ﬁ + 057Mt} (17)
for all z,y € Q and t > 0; the constant c is independent of x,y,t,0, D and M.

In the special case where H is uniformly elliptic and self-adjoint this estimate has
already been obtained in [B2].

3 Proof of Theorem 1

m,2

Given ¢ € &, the mapping f — e?f maps W57 (Q) into itself [B1, Lemma 7].
Hence one can define a sesquilinear form Q4(-, -) with domain W%Q(Q) by

Qo) = Qef.e*f) (18)
= [ X awD (D Pbde, [ EWIPQ). (19)

|a|=m

|B]=m

The associated operator is Hy =e~?He? and has domain Dom(H,) =e ?Dom(H).
The form @4 is a lower order perturbation of @ (cf. (28)) and it is a consequence
of (H2) [B1, Lemma 8] that for all ¢ > 0 and f € W;’}jz(Q) there holds

Q(f) = Qs(f)] < Re Q(f) + ce ™ (1 +p(0))™ |l /2, (20)
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where we have used the seminorm

p(¢) = sup esssup,cqa(a)”*" [V (z)|. (21)
1<k<m
Defining s(¢) = (1 + p(¢))*™ it follows in particular that
Re Qu(f) = —cs(@)lIflz, [ e (), (22)
where ¢ is independent of ¢, and this justifies the definition
iy = inf{Re Qu(f) + f € CTQ), [If]l =1} (23)

The next lemma follows closely an argument used in [BD].
Lemma 2 Assume that (H2) is satisfied. Then for any ¢ € &, there holds
0 e oz < ekq”t' (24)
() |Hpe Hotlfpn < 2 . O kot DS for all § > 0, (25)
where the constant cs is independent of ¢ € £, and t > 0.

Proof. Part (i) is the standard energy estimate that follows by integrating

e fll3 = —2Re (Hye ' £, 7" f) < 2hglle™ e f][5.

Now by (20) there holds

Qu(f) — Q)| < Re QU +s@)fI3  feCx(Q), (26)

where, we recall, s(¢) = ¢(1 —l—p(qb) ™) for some fixed ¢ > 0. Hence for any € € (0, 1)
Re Qs(f) = €eRe Qy(f) + (1 —€)Re Qy(f)
> SRe Q(f) — les(@) + (1— k] /13
and hence
Re [Q(f) = Qulf)] < (1= 5)Re Q(f) + [es(@) + (1 — k]| 1.
Fix f € L*(Q) and 0 € (—7/2,7/2) and for p > 0 set f, = exp(—Hype?) f. We
then have
T = —2Re [°Quf,)

= —2cosfRe Q(f,) + 2sinflm Qy(f,) +
+2cosf[Re Q(f,) —Re Q¢>(fp)]

~2cos0Re Q(f,) +25in 6] [(5 + B)Re QF,) + (@) 53] +
+2¢030 (1= £)Re Qf,) + [es(6) + (1 = ol 1]

= [—ecosf+ (26 +1)sin|f|]Re Q(f,) +
+[2cos0{es(¢) + (1 — )y} + 2sin [0]s(¢)] [ £, 13-

IA
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Let a« € (0,7/2) be such that tana = €/(26 + 1). For |0] < « we then have
—ecosf + (26 + 1)sin|f| < 0 and hence

d €
%\\fpl\g < 2cosbles(9) + (1 — e)ky + S(¢)W]pr|!§
< 2(ky + 2es(0)) £, 113
=t 24 f,ll2-
It follows that |[e=#4%||,_y < eA<l*l in the sector |argz| < a. We conclude that
letting 7. = 4= we have

Cos &

| exp{—(Hy + 7e)2}|]2—2 < 1,

and hence [D1, Lemma 2.38|

||(H¢ + Tg)e—(Hq}"‘Tg)t C

|§7a
at

for all ¢ > 0. Multiplying both sides by e¢™' and using the triangle inequality we
obtain

k¢ + 268(¢)

t} + T,
cos a

_ C
[ Hye et |5 < &GXP{

This last expression can be made smaller than the right hand side of (25) provided
€ is chosen small enough; this completes the proof. //

Proposition 3 Assume that (H1) and (H2) are satisfied. Then for any 6 > 0
there exists cs > 0 independent of ¢ € &, such that

e ot mno < cstSeketeds (@O, (27)

Proof. Let f € L*(Q) and set f; = e st f ¢ > 0. Using (H1) we have

Ifillse < clRe QUL

(by (26)) < c[ReQulfy) + (@)A1 1AL
< c[IH Al Al + s@) 102" 1A
s/2
by (25), (21) < o] S @ ps(g)) s

s/2
= ™2 [ @ 4 (0] ]
Taking € to be small enough we conclude that given § > 0 there exists ¢s such that

||e—H¢t ||2_>oO S Cét—s/26k¢te58(¢)t

The same arguments are valid for H = H_4, the constant k4 clearly staying the
same. Hence by duality and the semigroup property (27) follows. //
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In order for Proposition 3 to be useful we need a precise upper estimate on
kg, which amounts to a precise lower estimate on Re Q4(+), cf. (23). This will be
established in Lemma 10 following a series of intermediate lemmas. Recalling that
cg = al/y!(a —y)! it follows immediately from (19) that for A >, ¢ € &, we have

Q,\¢ / Z &ag Z C C(; fy,\(bpg )\¢Da ’nyﬁ af dl’ (28)
o <«
Biom 955

where
p%)\d)(x) — (@) DY [ew(r)]
isa polynomial in various derivatives of A¢. Now, the induction relation P, .. xy =

+ ~ A implies that 2o has the form
N0 + 0, ® li hat P, 54 has the f

el

Pyo(@ Z N i (D) . (D), (29)

where the second sum is taken over all non-zero multiindices 7, ..., 7, such that
Y1+-+-+7 =y and ¢, -, are constants. Hence, recalling that |V*¢| < ca=k2m.

we can write P, \s(x) = ZM NPy o () where | Py o ()| < ca=1/?™. Tt follows from
(28) that

Qo (f / ST DT N wagsn(x) DY fDO fbda, (30)
laj=m y<a k<]
|Bl=m <8 j<|3

where wagyskj = aagc,‘;‘cgpk@]f’j,_gé satisfies |wagsrj| < ca®m=h+0D/2m - Replacing
~v and § by a — v and 3 — § correspondingly we conclude from (30) the following

Lemma 4 Qxs(f) is a linear combination of terms of the form

T(f) = As/Qw(m)vapﬁfbdx, (31)

[v+4]
zm on ) and

where |w| < ca

(i) s is an integer between 0 and 2m;
(ii) v and § are multiindices with ||, |0| < m;
(iii) s+ |y + 0] < 2m.

Definition. We call the number s + |y + d| the essential order of T

Hence the essential order is an integer between 0 and 2m. We denote by L,
the linear space consisting of (finite) linear combinations of forms whose essential
order is smaller than 2m. In Lemma 9 we will see that terms in £,,, are in a
sense negligible. We also point out for later use that (9) implies the interpolation
inequality

IT(f)] < efRe QU) + NI fI3}, [ € Wag* (), (32)

valid for all terms T'(+) of essential order 2m.
We have the following



Lemma 5 Given ¢ € &, and A > 0 define
Quulf) = [ X X auscc}(A\Vo) (~AVe)' D" fD7 4 f da.

jaj=m <0
|Bl=m 0<8
Then the difference Qxs(f) — Qiro([f) lies in Lo .

Proof. One simply has to recall (28) and observe from (29) that P, 54, considered
as a polynomial in A, has A"/(V¢)? as its highest-degree term. //

3.1 Symbols in G,

At this point and for the whole of this subsection we restrict our attention to
operators H whose symbol belongs to G,. For z € Q, £,n € CV and ¢ € R let
us define

= [sin(n/(4m — 2))] 2"
A(.Z', 67 77) = Z aaﬂ<x>£aﬁﬁa
lo|=[8]=m
S(x,(;€,m) =Re A(x, & —i(,n + i) + k,Re A(z, €).

Lemma 6 Assume that the symbol A(x,§) lies in G,. Then
Re Quas(f) + kn A" | Re Ala, Vo(x)|fdz =
— o [[[ L S@AVeEme S € fn) dudg dn (33)

forall g € E,, X >0 and f € C°(9).
Proof. Writing D7 f(x) = (2) N2 [ (i€)7€€ f(£)dE we have

Qualf) = @™ [[[ 3w 3 el (=idVe) (=iave) x
Biom <5
x0T f(€) f(n) dE dn da
— (2n) ///QxRNxRNH 3 aas(€ — iINVO)*(n — iAV )’

xe €2 f(6) () d€ dp da
= (@2m)N / / /Q o Al = VG(2), 0 + iAVG(2)) X

xe I F(€) () d€ dn dr.
This last integral has the form [, ¢[g]dx where for fixed z € 2

{ (&) = e f(€)d¢

algl = Janwry P(En)g(€)g(n)dE dn
p(&n) = A(z,£ —iAV@(z),n +iAVo(x))
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Since the matrix {ang} is symmetric we have p(&,n) = p(n,§) and therefore

a(9) = favxry P(E,m)9(€)g(n)dé dn. Hence Re q(g) = frnxrn Re p(€,1)dé dn and
integration over x € (2 yields

Re Qo (f) + kum /Q Re A(z, \V(2))| f]? da
— (27) N / / /Q o R [A@ E = iAVO(@), 7 + iAV6()) + kn Al AVE)] X

X! f(€) f(n) d dn da
— (2 *N/// S(a, AV €, )€ £(£) f(n) de dn .
e [[[ S AV &) ) ) de dy //
We now proceed to estimate the triple integral in the right hand side of (33).
It is shown in [EP, Theorem 2.1] that there exist positive numbers wy, ..., wn_2
such that
waf Zws ngg I‘GQC,géRN, (34)

where I'(z,-) is the quadratic form associated to the principal symbol of H (cf.
(14)) and pésg is the vector in R” defined for fixed &, € RY by requiring that

> pELaa® = (sin0,) (6 )" (¢ a)* {(sin0,) (€ - 0)* = (c0s0,)7(C - a)*}

|oo|=m

(35)
for all @ € RY; here 6,, = 7/(4m — 2). To simplify the notation let us define the
sesquilinear forms I'(z, -,-) on C™~! @ C¥ ~ C*(™~1) by

m—2 m—2 N
L(z,u,v) = Y wl(z,u? v) =3 Y wsaa+5(x)u((j)vés)
s=0 s=0 |o¢‘:m

18]=m

for all u = (ul)), v = (’Ugs)) € C"m=Y_ Then T is positive semi-definite by the
strong convexity of A(x,&). To handle the above expressions we introduce two
auxiliary elliptic differential forms Sys and I'ys on L?(Q2). They have common
domain W;};Q(Q) and are given by

Sulh) =0 [[[ S@aVeie eI f(e) fn) dg dydr,  (36)

Do(f) = @0 [[[ T peavs paave)e S f(€)f(m) dE dnde (37

where p¢ \vy = (péfz\v¢7a)(‘)°‘§|:glm,2 € CY(m=1) is defined by (35).

Lemma 7 Assume that the symbol A(z,§) lies in G,. Then the form Sxs(-)—T'xs(+)
lies in Lg .
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Proof. 1t follows from (34) that S)s and I'y, have integral kernels which are poly-
nomials of ¢ and n and whose values coincide for £ = 7. Using the inverse Fourier
transform this implies that the difference Sys(f) — I'xs(f) is a linear combination
of terms of the form

T(f) = [ w(@)[D™fD°F = (~1)"D f D™ lda, (38)

where w is some function and « is a multi-index of length || < m — 1. In fact,
recalling (33) and the definition of @1, we see that w = a,z(V$)* where |u| = s
and v+ +k+p = a+ 3. Since anz € W12(Q) € Wi >(Q) we can integrate
by parts || times and use Leibnitz’ rule to obtain

T(f) = (- 3 e /Q Dfw DY f DS Fy (39)

0<r1<kK
We estimate D"'w: clearly

) | |
|D™ (aas(Vo))| < ¢ [V ans| [V (V)| in §.

1=0

Recalling the definition of €4, it is easily seen that |Vi(V¢)#| < ca=(kl+0/2m,
recalling also from (15) the definition of the space W™ 1°°(Q) where the a,gs lie
we conclude that

2m—|rq+p| [Y+d+K—r1]

D" (aas(V6))| < exrale) ™ F = cppa ™50

Hence (39) implies that 7" has essential order s+ |y+d+ Kk — k1| < 2m, as required.

//

Proposition 8 Let A(x,&) € G,. Then for any ¢ € E,, A >0 and all f € CX(Q),
there holds

Re Qulf) = ~knd?" | A(w, Vo(a))|fdz +T(f) (40)
where T'(+) € Lgm.

Proof. Combining Lemmas 5, 6 and 7 we have

Re Qxo(f) + Fm /Q Re A(z, AVo(2))|f[*dz = Tao(f) + T(f). (41)

for a form T(-) € Lom. Now let u(z) = [gn PeaveeS?f(€)dE (a C*™V-valued
integral defined component-wise); it follows immediately from definition (37) that

Daolf) = [ Do, u(a), u(@))da (42)

and hence I'),(-) is non-negative by the strong convexity of A(z,§). //
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3.2 The general case

We now remove the assumption A € G, and return to the general setting described
in Section 2. We recall that the quantity D measures the distance of A from G,
and has been defined in (16).

Lemma 9 Let T € L,,,. Then for any e € (0,1) there holds

T(f)] < e{Re QF) + X" £115} + cell £13 (43)
for all X >0 and f € CX(Q).

Proof. By definition, T'(f) is a finite linear combination of expressions of the form
I(f) = »° / w(@) D f () D f(z)da,
Q

where |w(z)| < ca(x)P /2™ and s + |y + ] < 2m — 1. Setting 2™+ = \* and
recalling (9) we have

1] < a9 [ afw) 02 D || D flda

eRe Q(f) 4 ce 2™ (1 + 2™ £ |12
eRe Q(f) + ce ™ 1+ X" || f]5

e{Re Q(f) + N[ 13} + ce ™1 £|12. //

Remark. It is seen from the proof that the size of the constant ¢, in (43) depends
only on ¢ > 0 and the (finite) quantity max; sup{|w(z)|a(x)~"*+/2m} where the
max is taken over all forms /(-) that make up 7°(+). In particular, when we restrict
our attention to functions ¢ € €4 we obtain a constant ¢, = c.p which is
otherwise independent of ¢.

(VAN VAN VAN VAN

Lemma 10 For any ¢ € Eam, A > 0 and € > 0 and all , there holds

Re Qus(f) = —{(km +cD+ X" +con | FI3, fECT(Q).  (44)

where the constant c is independent of D, M, e, X and ¢ and the constant cyrp.c 15
independent of X and ¢.

Proof. Let A € G, be such that ||A — A, < 2D. It follows from (32) that

[Re Qxs(f) = Re Quo(f)| < eD{Re Q(f) + X" f3}
X2 ol A(x, Vo(x)) — A(x, Vo(x))]de| < eD{Re Q(f) + A" fII3}.

Combining these relations with (40) — as applied to the operator H — we obtain
Re Qus(f) = —knA?" | Re A(a, V()| f[*dz — eD{Re Q(f) + X" 3} +T(f).
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We have Re A(z, Vo(z)) < 1 and therefore (allowing ¢ to change from line to line
and € to rescale)

Re Quo(f) = kX[ f]2 — eD{Re Q(f) + A" f13} + T(f)
(by 43)) > —kn X" fI2 = (D + ){Re Q(f) + NI I3} — cenrl f113
(by (26)) = —kn X" fII2 = (cD + e){Re Quo(f) + X" 112} — cnllfII2-

Now, either Re Q,4(f) is positive, in which case (44) is true, or it is non-positive,
in which case it can be discarded from the right hand side of the last inequality.
This completes the proof. //
Proof of Theorem 1. The rest of the proof is standard. Combining Proposition
3 with (44) and using the relation K4(t, z,y) = e ?*@ K (t, 2, y)e ¥ we obtain

|K(t,z,y)| < cst™exp {)\[gb(y) —o(z)] + [(km +eD 4+ HNP" + 057M} t}

M)l/@m—l)

Optimizing over ¢ € £4 p introduces dys(z,y) and choosing A = ( ey

we obtain

dM((L’, y)2m/(2m—l)

£1/(2m—1) ’

which completes the proof. //
Remark. It is shown in [B2] that the term ¢D cannot be eliminated from (44).
Thus for it to be removed from Theorem 1 a radically different approach is needed
— if indeed the term is removable at all.

Remark. We point out that the above method can also work for operators of the
form H + W, where W is a lower-order perturbation of H. It is clear that the
estimate of Theorem 1 is valid for H + W provided W), can be estimated as a
form by

(2, y) + kA2t = —0

(Was(F)l < e{Re Q(f) + NI £112} + el fII2

for all ¢ € £, and A > 0 and any € > 0. Such estimates can be obtained by means
of weighted Hardy- and Sobolev-type inequalities. We do not elaborate on this and
prove a theorem for zero-order perturbations.

Proposition 11 Let V =V, —V_ where V. € L} .(Q) and V_ € L' (). Then the
heat kernel of H + V' satisfies the estimate of Theorem 1.

Proof. We have

LVAIsE < vl
(by (HL)) < V- llRe QUAFISIE >
< Re Q) + v If13

(hence H + V is defined with form domain the same as for H + V). Moreover
(H+V)rxp = Hyy+V > Hy, — V_. Hence the estimate of Lemma 10 is also valid
for H + V and the rest of the argument goes through. //
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