Sharp heat kernel estimates for higher-order operators with singular coefficients

G. Barbatis

Abstract

We obtain heat kernel estimates for higher order operators with singular/degnerate operators with measurable coefficients. Precise constants are given, which are sharp for small times.

AMS Subject Classification: 35K30 47D06 (35K25 35K35)

Keywords: Heat kernels estimates , higher order operators, singular-degenerate coefficients

1 Introduction

Let

\[Hf(x) = (-1)^m \sum_{|\alpha|=m} D^\alpha \{ a_{\alpha\beta}(x) D^{\beta} f(x) \}, \quad x \in \Omega \subset \mathbb{R}^N \]

be a self-adjoint uniformly elliptic operator of order \(2m\) with measurable coefficients and subject to Dirichlet boundary conditions on \(\partial \Omega\). In [D2] it was shown that if \(2m > N\) then the associated heat semigroup \(e^{-Ht}\) has a kernel \(K(t, x, y)\) which satisfies the estimate

\[|K(t, x, y)| < c_1 t^{-N/(2m)} \exp \left\{ -c_2 \frac{|x - y|^{2m/(2m-1)}}{t^{1/(2m-1)}} + c_3 t \right\} \]

for some positive constants \(c_i\). Under suitable conditions this was recently [B2] sharpened to

\[|K(t, x, y)| < c_\epsilon t^{-N/(2m)} \exp \left\{ -c_\epsilon t^{-(\sigma_m - cD - \epsilon) d_M(x, y)^{2m/(2m-1)}} + c_\epsilon t \right\} \] (1)

where \(\sigma_m = (2m - 1)(2m)^{-2m/(2m-1)} \sin(\pi/(4m - 2))\), \(D \geq 0\) depends on the regularity of the coefficients and \(d_M(x, y)\) is a Finsler-type metric induced by the principal symbol of \(H\) and depending on the arbitrarily large parameter \(M\); as \(M \to \infty\), \(d_M(x, y)\) increases to a Finsler distance \(d(x, y)\), but (1) is valid only for \(M < \infty\). This estimate is sharp as is seen by comparison against the small-time asymptotics for operators with smooth coefficients obtained in [T] – see (13) below. In the same direction Dungey [Du] used resolvent estimates to obtain a
better estimate than (1) for powers of second order operators. He showed in a general framework that if the self-adjoint operator H satisfies a standard Gaussian estimate with exponential constant $\frac{1}{4} - \epsilon$ then the heat kernel of H^m satisfies (1) with $D = 0$ and $M = +\infty$. For an alternative approach valid also for higher order systems see [AQ].

In the main theorem of this article we extend (1) in two directions. Primarily, we consider operators whose coefficients can be singular and/or degenerate on $\partial \Omega$; moreover, we do not assume H to be self-adjoint. Concerning the singularity or degeneracy of H, we assume that there is a positive function $a(x)$ that controls in a suitable sense the behaviour of the coefficient matrix $\{a_{\alpha\beta}\}$ and we then impose two conditions (H1) and (H2) on $a(x)$. The first is a weighted Sobolev embedding and the second is a weighted interpolation inequality. These conditions were introduced in [B1] and led to (non-sharp) off diagonal estimates on the heat kernel of non-uniformly elliptic self-adjoint operators. Besides conditions (H1) and (H2) we shall assume that the symbol $A(x, \xi)$ is close – in a suitable sense – to a certain class of ‘good’ symbols denoted by G_a. These symbols, besides satisfying (H1) and (H2) correspond to operators that are self-adjoint, their coefficients have some local regularity, and are strongly convex in the sense of [EP]. We make use of a certain stability property inherent in our approach and obtain bounds that are asymptotically sharp: they involve the exponential constant $\sigma_m - cD$ where c is an absolute constant and D is the distance of the symbol $A(x, \xi)$ from the class G_a in a certain weighted norm. In particular the constant σ_m is obtained for symbols in G_a. To our knowledge such estimates are new even if the coefficients are assumed to be smooth and the symbol lies in G_a.

2 Formulation of results

We first fix some notation. Given a multi-index $\alpha = (\alpha_1, \ldots, \alpha_N)$ we write $\alpha! = \alpha_1! \cdots \alpha_n!$ and $|\alpha| = \alpha_1 + \cdots + \alpha_n$. We write $\gamma \leq \alpha$ to indicate that $\gamma_i \leq \alpha_i$ for all i, in which case we also set $e_\alpha^\gamma = \alpha! / \alpha!(\alpha - \gamma)!$. We use the standard notation D^α for the differential expression $(\partial / \partial x_1)^{\alpha_1} \cdots (\partial / \partial x_N)^{\alpha_N}$ and for $k \geq 0$ we denote by $\nabla^k f$ the vector $(D^\alpha f)_{|\alpha|=k}$. We denote by \hat{f} the Fourier transform of a function f, $\hat{f}(\xi) = (2\pi)^{-N/2} \int e^{ix \cdot \xi} f(x) dx$. We shall denote by $\|A\|_{p,q}$ the norm of an operator A from $L^p(\Omega)$ to $L^q(\Omega)$. The letter c will stand for a positive constant whose value may change from line to line.

Let Ω be a domain in \mathbb{R}^N. We fix an integer $m \geq 1$ and consider the operator

$$Hf(x) = (-1)^m \sum_{|\alpha|=m \atop |\beta|=m} D^\alpha \{a_{\alpha\beta}(x) D^\beta f(x)\}$$

subject to Dirichlet boundary conditions on $\partial \Omega$; the precise definition shall be given below. The matrix-valued function $\{a_{\alpha\beta}\}$ is assumed to be measurable and to take its values in the set of all complex, $\nu \times \nu$-matrices, ν being the number of multi-indices α of length $|\alpha| = m$. We assume that each $a_{\alpha\beta}$ lies in $L^\infty_{loc}(\Omega)$; we do not assume $\{a_{\alpha\beta}\}$ to be self-adjoint.
We define a quadratic form $Q(\cdot)$ on $C_c^\infty(\Omega)$ by

$$Q(f) = \int_{\Omega} \sum_{|\alpha|=m |\beta|=m} a_{\alpha\beta}(x) D^\alpha f(x) D^\beta \bar{f}(x) \, dx, \quad f \in C_c^\infty(\Omega).$$

We assume that there exists a positive weight $a(x)$ with $a^{\pm 1} \in L^1_{\text{loc}}(\Omega)$ that controls the size of the matrix $\{a_{\alpha\beta}\}$ in the following sense: first,

$$|a_{\alpha\beta}(x)| \leq ca(x), \quad x \in \Omega,$$

for all multi-indices α, β; and second, the weighted Gårding’s inequality

$$\text{Re } Q(f) \geq c \int_{\Omega} a(x)|\nabla^m f|^2 \, dx, \quad f \in C_c^\infty(\Omega)$$

is valid for some $c > 0$. We also assume the symbol-version of (4), namely

$$\text{Re } A(x, \xi) \geq c a(x)|\xi|^{2m}, \quad x \in \Omega, \; \xi \in \mathbb{R}^N,$$

where $A(x, \xi) := \sum_{\alpha, \beta} a_{\alpha\beta}(x) \xi^{\alpha+\beta}$. Relations (3) and (4) imply in particular that there exists $\beta > 0$ such that

$$|Q(f)| \leq \beta \text{Re } Q(f), \quad f \in C_c^\infty(\Omega).$$

It is easily seen that Q is closable [B1]. The domain of its closure is a weighted Sobolev space which we denote by $W^{m,2}_{a,0}(\Omega)$. We retain the same symbol, Q, for the closure of the above form and denote by H the associated accretive operator on $L^2(\Omega)$, so that $\langle Hf, f \rangle = Q(f)$, $f \in \text{Dom}(H)$, and (2) is valid in a weak sense.

We make two hypotheses on the weight a: the first is a weighted Sobolev inequality and the second is a weighted interpolation inequality.

\begin{enumerate}
 \item [(H1)] There exists $s \in [N/2m, 1]$ and $c > 0$ such that
 $$\|f\|_\infty \leq c|\text{Re } Q(f)|^{s/2} \|f\|_2^{1-s}, \quad f \in C_c^\infty(\Omega).$$
 \item [(H2)] There exists a constant c such that
 $$\int_{\Omega} a^{k/m}|\nabla^k f|^2 \, dx < \epsilon \int_{\Omega} a^m |\nabla f|^2 \, dx + ce^{-k/(m-k)} \int_{\Omega} |f|^2 \, dx,$$
 for all $0 < \epsilon < 1, \; 0 \leq k < m$ and all $f \in C_c^\infty(\Omega)$.
\end{enumerate}

Both (H1) and (H2) are satisfied when H is uniformly elliptic, in which case the best value for the constant s is $s = N/2m$, showing that in the general case we cannot expect any value that is better (smaller) than $N/2m$; in particular (H1) is valid trivially with $s = N/2m$ if $a(x)$ is bounded away from zero. We refer to [B1] for non-trivial examples for which (H1) and (H2) are satisfied; they involve suitable powers of either $1 + |x|$ or $\text{dist}(x, K)$ where K is a smooth surface of lower dimension.

We note that condition (H2) implies that for any k, l with $0 \leq k, l \leq m, \; k+l < 2m$, there exists a constant c so that

$$\int_{\Omega} a^{(k+l)/2m}|\nabla^k f||\nabla^l f| \, dx < c\epsilon |\text{Re } Q(f)| + ce^{-k/(m-k)}(1 + \lambda^{2m}) \|f\|_2^2.$$
for all $\epsilon \in (0, 1)$, $\lambda > 0$ and all $f \in C^\infty_c(\Omega)$. Indeed, for $\lambda = 1$ (9) is a consequence of (H2) and the Cauchy-Schwarz inequality; the case $\lambda < 1$ follows trivially from the case $\lambda = 1$; finally writing (9) for $\lambda = 1$ and replacing ϵ by $\epsilon \lambda^{k-1-2m}$ we obtain the result for $\lambda > 1$.

We next introduce the distance that shall be used in the heat kernel estimates. Consider the set
\[
\mathcal{E}_a = \{ \phi \in C^\infty(\Omega) \cap L^\infty(\Omega) : a^{k/2m} \nabla^k \phi \in L^\infty(\Omega), 1 \leq k \leq m \}
\]
and its subset (recall (5))
\[
\mathcal{E}_{A,M} = \{ \phi \in C^\infty(\Omega) \cap L^\infty(\Omega) : \text{Re} \, A(x, \nabla \phi(x)) \leq 1, \\
|\nabla^k \phi(x)| \leq M a(x)^{-k/2m}, 2 \leq k \leq m, \text{ a.e. } x \in \Omega \}. \tag{10}
\]
Our estimates will be expressed in terms of the distance
\[
d_M(x, y) = \sup_{\phi \in \mathcal{E}_{A,M}} (\phi(y) - \phi(x)) : \phi \in \mathcal{E}_{A,M} \tag{11}
\]
for arbitrarily large but finite M. For $M = +\infty$ this reduces to the distance
\[
d_\infty(x, y) = \sup_{\phi \in \mathcal{E}_{A,M}} (\phi(y) - \phi(x)) : \text{Re} \, A(x, \nabla \phi(x)) \leq 1, \ x \in \Omega.
\]
This is a Finsler distance, induced by the (singular/degenerate) Finsler metric with length element
\[
ds = ds(x, dx) = \sup_{\eta \in \mathbb{R}^N \setminus \{0\}} \frac{\langle dx, \eta \rangle}{(\text{Re} \, A(x, \eta))^{1/2m}}. \tag{12}
\]
We refer the reader to the recent book [BCS] for a comprehensive introduction to Finsler geometry. The distance $d_\infty(x, y)$ relates to the short-time off-diagonal behaviour of the heat kernel: it was shown in [T] that if $\Omega = \mathbb{R}^N$ and H is self adjoint uniformly elliptic with strongly convex symbol (see (14)), then $d_\infty(\cdot, \cdot)$ controls the small-time behaviour of $K(t, x, y)$ in the sense that
\[
\log t^{N/2m} K(t, x, y) = -\sigma_m \frac{d_\infty(x, y)^{2m/(2m-1)}}{t^{1/(2m-1)}} (1 + o(1)), \quad \text{as } t \to 0 \tag{13}
\]
for x, y fixed and close enough; here and below we have
\[
\sigma_m = (2m - 1)(2m)^{-2m/(2m-1)} \sin(\pi/(4m - 2)).
\]

Let us now proceed with the definition of the class \mathcal{G}_a. Let the functions $a_\gamma(\cdot)$, $|\gamma| = 2m$, be defined by requiring that
\[
\sum_{|\alpha| = m, |\beta| = m} a_{\alpha\beta}(x) \xi^{\alpha+\beta} = \sum_{|\gamma| = 2m} c_\gamma^{2m} a_\gamma(x) \xi^\gamma, \quad x \in \Omega, \ \xi \in \mathbb{R}^N;
\]
(recall that $c_\gamma^{2m} = (2m)!/\gamma!$). Following [EP] we say that the principal symbol $A(x, \xi)$ of H is strongly convex if the quadratic form
\[
\Gamma(x, p) = \sum_{|\alpha| = m, |\beta| = m} a_{\alpha+\beta}(x)p_\alpha p_\beta, \quad p = (p_\alpha) \in \mathbb{C}^\nu, \tag{14}
\]
is positive semidefinite for a.e. \(x \in \Omega \).

Induced by the weight \(a(x) \) is the weighted Sobolev space

\[
W^{m-1,\infty}_a(\Omega) = \{ f \in W^{m-1,\infty}_{loc}(\Omega) : |\nabla^i f(x)| \leq ca(x)^{2m-1}, \text{ a.e. } x \in \Omega, i \leq m - 1 \}.
\] (15)

Definition. We say that the symbol \(A(x, \xi) \) lies in \(G_a \) if

(i) \(A(x, \xi) \) is strongly convex

(ii) \(\{ a_{\alpha\beta} \} \) is real and symmetric

(iii) the coefficients \(a_{\alpha\beta} \) lie in \(W^{m-1,\infty}_a(\Omega) \).

We denote by \(D \) the distance of the coefficient matrix \(\{ a_{\alpha\beta} \} \) from \(G_a \) in the weighted uniform norm

\[
\| f \|_{a,\infty} := \sup_{x \in \Omega} |f(x)/a(x)|,
\]

that is

\[
D = \inf_{\{ \tilde{a}_{\alpha\beta} \} \in W^{m-1,\infty}_a} \| \{ a_{\alpha\beta} \} - \{ \tilde{a}_{\alpha\beta} \} \|_{a,\infty},
\] (16)

where, as usual, \(\| \{ a_{\alpha\beta} \} \|_{a,\infty} := \| \{ \alpha_{\alpha\beta} \} \|_{M(\nu \times \nu)} \|_{a,\infty} \).

Our main result is the following:

Theorem 1 Assume that (H1) and (H2) are satisfied. Then for all \(\delta \in (0, 1) \) and all \(M \) large there exist positive constants \(c_\delta, c_{\delta,M} \) such that

\[
|K(t, x, y)| < c_\delta t^{-s} \exp \left\{ - (\sigma_m - cD - \delta)d_M(x, y) \frac{2m}{2m-1} t^{-\frac{1}{2m-1}} + c_{\delta,M} \right\}
\] (17)

for all \(x, y \in \Omega \) and \(t > 0 \); the constant \(c \) is independent of \(x, y, t, \delta, D \) and \(M \).

In the special case where \(H \) is uniformly elliptic and self-adjoint this estimate has already been obtained in [B2].

3 Proof of Theorem 1

Given \(\phi \in \mathcal{E}_a \) the mapping \(f \mapsto e^{\phi}f \) maps \(W^{m,2}_{a,0}(\Omega) \) into itself [B1, Lemma 7]. Hence one can define a sesquilinear form \(Q_\phi(\cdot, \cdot) \) with domain \(W^{m,2}_{a,0}(\Omega) \) by

\[
Q_\phi(f) = Q(e^{\phi}f, e^{-\phi}f) = \int_\Omega \sum_{|\alpha|=m, |\beta|=m} a_{\alpha\beta} D^\alpha(e^{\phi}f) D^\beta(e^{-\phi}f) b dx, \quad f \in W^{m,2}_{a,0}(\Omega).
\] (18)

The associated operator is \(H_\phi = e^{-\phi}He^\phi \) and has domain \(\text{Dom}(H_\phi) = e^{-\phi}\text{Dom}(H) \). The form \(Q_\phi \) is a lower order perturbation of \(Q \) (cf. (28)) and it is a consequence of (H2) [B1, Lemma 8] that for all \(\epsilon > 0 \) and \(f \in W^{m,2}_{a,0}(\Omega) \) there holds

\[
|Q(f) - Q_\phi(f)| < \epsilon \Re Q(f) + \epsilon \Re^{-2m+1}(1 + p(\phi))^{2m} \| f \|_2^2,
\] (20)
where we have used the seminorm
\[
p(φ) := \sup_{1 < k \leq m} \text{ess sup}_{x \in Ω} a(x)^{k/2m}|\nabla^k φ(x)|.
\]
(21)

Defining \(s(φ) = (1 + p(φ))^{2m} \) it follows in particular that
\[
\text{Re } Q_φ(f) \geq -c s(φ)\|f\|_2^2, \quad f \in C_c^∞(Ω),
\]
(22)

where \(c \) is independent of \(φ \), and this justifies the definition
\[-k_φ = \inf \{\text{Re } Q_φ(f) : f \in C_c^∞(Ω), \|f\|_2 = 1\}.
\]
(23)
The next lemma follows closely an argument used in [BD].

Lemma 2 Assume that (H2) is satisfied. Then for any \(φ \in E_a \) there holds
\[
(i) \quad \|e^{-H_φt}f\|_2 \leq e^{k_φt}, \quad (24)
\]
\[
(ii) \quad \|H_φ e^{-H_φt}f\|_2 \leq \frac{c_δ}{t} e^{k_φt} e^{δ s(φ)t}, \quad \text{for all } δ > 0,
\]
(25)

where the constant \(c_δ \) is independent of \(φ \in E_a \) and \(t > 0 \).

Proof. Part (i) is the standard energy estimate that follows by integrating
\[
\frac{d}{dt}\|e^{-H_φt}f\|_2^2 = -2\text{Re } (H_φ e^{-H_φt}f, e^{-H_φt}f) \leq 2k_φ\|e^{-H_φt}f\|_2^2.
\]
Now by (20) there holds
\[
|Q_φ(f) - Q(f)| \leq \frac{1}{2} \text{Re } Q(f) + s(φ)\|f\|_2^2, \quad f \in C_c^∞(Ω),
\]
(26)

where, we recall, \(s(φ) = c(1 + p(φ)^{2m}) \) for some fixed \(c > 0 \). Hence for any \(ε \in (0,1) \)
\[
\text{Re } Q_φ(f) = ε\text{Re } Q_φ(f) + (1 - ε)\text{Re } Q(f)
\]
\[
\geq \frac{ε}{2} \text{Re } Q(f) - [εs(φ) + (1 - ε)k_φ]\|f\|_2^2
\]
and hence
\[
\text{Re } [Q(f) - Q_φ(f)] \leq (1 - \frac{ε}{2})\text{Re } Q(f) + [εs(φ) + (1 - ε)k_φ]\|f\|_2^2.
\]

Fix \(f \in L^2(Ω) \) and \(θ \in (-π/2, π/2) \) and for \(ρ > 0 \) set \(f_ρ = \exp(-H_φ ρ e^{iθ})f \). We then have
\[
\frac{d}{dρ}\|f_ρ\|_2^2 = -2\text{Re } [e^{iθ} Q_φ(f_ρ)]
\]
\[
= -2\cos θ \text{Re } Q(f_ρ) + 2\sin θ \text{Im } Q_φ(f_ρ) + \]
\[
+2\cos θ \left[\text{Re } Q(f_ρ) - \text{Re } Q_φ(f_ρ)\right] + \]
\[
\leq -2\cos θ \text{Re } Q(f_ρ) + 2\sin |θ| \left[\frac{1}{2} + β\right] \text{Re } Q(f_ρ) + s(φ)\|f_ρ\|_2^2 + \]
\[
+2\cos θ \left[(1 - \frac{ε}{2}) \text{Re } Q(f_ρ) + [εs(φ) + (1 - ε)k_φ]\|f_ρ\|_2^2\right] + \]
\[
\leq [-ε \cos θ + (2β + 1)\sin |θ|] \text{Re } Q(f_ρ) + \]
\[
+ [2\cos θ\{εs(φ) + (1 - ε)k_φ\} + 2\sin |θ|s(φ)]\|f_ρ\|_2^2.
\]
Let $\alpha \in (0, \pi/2)$ be such that $\tan \alpha = \epsilon/(2\beta + 1)$. For $|\theta| \leq \alpha$ we then have $-\epsilon \cos \theta + (2\beta + 1) \sin |\theta| \leq 0$ and hence

\[
\frac{d}{d\rho} \|f_\rho\|_2^2 \leq 2 \cos \theta[\epsilon s(\phi) + (1 - \epsilon)k_\phi + s(\phi)\frac{\epsilon}{2\beta + 1}]\|f_\rho\|_2^2 \\
\leq 2(k_\phi + 2\epsilon s(\phi))\|f_\rho\|_2^2 \\
=: 2A\|f_\rho\|_2^2.
\]

It follows that $\|e^{-H_\phi z}\|_2 \leq e^{A\|z\|}$ in the sector $|\arg z| \leq \alpha$. We conclude that letting $\tau = \frac{A}{\cos \alpha}$ we have

\[
\|\exp\{-\phi + \tau_0\}z\|_2 \leq 1,
\]

and hence [D1, Lemma 2.38]

\[
\|(H_\phi + \tau_0)\|e^{-\phi + \tau_0}t\| \leq \frac{c}{\alpha t},
\]

for all $t > 0$. Multiplying both sides by $e^{\tau_0 t}$ and using the triangle inequality we obtain

\[
\|H_\phi e^{-\phi t}\|_2 \leq \frac{c}{\alpha t} \exp\{\frac{k_\phi + 2\epsilon s(\phi)}{\cos \alpha}t\} + \tau_0 e^{k_\phi t}.
\]

This last expression can be made smaller than the right hand side of (25) provided ϵ is chosen small enough; this completes the proof.

\begin{proposition}
Assume that (H1) and (H2) are satisfied. Then for any $\delta > 0$ there exists $c_\delta > 0$ independent of $\phi \in \mathcal{E}_\alpha$ such that

\[
\|e^{-H_\phi t}\|_1 \leq c_\delta t^{-\delta} e^{k_\phi t} e^{s(\phi)t}.
\]

\end{proposition}

\begin{proof}
Let $f \in L^2(\Omega)$ and set $f_t = e^{-H_\phi t}f$, $t > 0$. Using (H1) we have

\[
\|f_t\|_\infty \leq c[\operatorname{Re} Q(f_t)]^{s/2}\|f_t\|_2^{1-s} \\
\quad \text{(by (26))} \leq c \left[\operatorname{Re} Q_\phi(f_t) + s(\phi)\|f_t\|_2\right]^{s/2}\|f_t\|_2^{1-s} \\
\quad \leq c \left[\|H_\phi f_t\|_2\|f_t\|_2 + s(\phi)\|f_t\|_2\right]^{s/2}\|f_t\|_2^{1-s} \\
\quad \text{(by (25), (24))} \leq c \left[c_\delta^{s/2}e^{s(\phi)t} + s(\phi)\right]^{s/2}\|f_t\|_2 \\
\quad = c_\delta^{s/2} \left[c_\delta e^{s(\phi)t} + s(\phi)\right]^{s/2} e^{k_\phi t}\|f\|_2.
\]

Taking ϵ to be small enough we conclude that given $\delta > 0$ there exists c_δ such that

\[
\|e^{-H_\phi t}\|_2 \leq c_\delta t^{-\delta} e^{k_\phi t} e^{s(\phi)t}.
\]

The same arguments are valid for $H_\phi^* = H_{-\phi}$; the constant k_ϕ clearly staying the same. Hence by duality and the semigroup property (27) follows.

\end{proof}
In order for Proposition 3 to be useful we need a precise upper estimate on k_ϕ, which amounts to a precise lower estimate on $\text{Re } Q_\phi(\cdot)$, cf. (23). This will be established in Lemma 10 following a series of intermediate lemmas. Recalling that $c_\gamma^a = a!/\gamma!(\alpha - \gamma)!$ it follows immediately from (19) that for $\lambda >, \phi \in E_a$ we have

$$Q_{\lambda \phi}(f) = \int_{\Omega} \sum_{|\alpha| = m} a_{\alpha \beta} \sum_{\gamma \leq \alpha} c_\gamma^a c_\delta^\beta P_{\gamma, \lambda \phi} P_{\delta, -\lambda \phi} D^{\alpha - \gamma} f D^{\beta - \delta} \tilde{f} dx,$$

where

$$P_{\gamma, \lambda \phi}(x) := e^{-\lambda \phi(x)} D^\gamma [e^{\lambda \phi(x)}]$$

is a polynomial in various derivatives of $\lambda \phi$. Now, the induction relation $P_{\gamma + s, \lambda \phi} = (\lambda \partial_j \phi + \partial_j) P_{\gamma, \lambda \phi}$ implies that $P_{\gamma, \lambda \phi}$ has the form

$$P_{\gamma, \lambda \phi}(x) = \sum_{k=1}^{[\gamma]} \lambda^k \sum_{\gamma_1, \ldots, \gamma_k} (D^{\gamma_1} \phi) \cdots (D^{\gamma_k} \phi),$$

where the second sum is taken over all non-zero multiindices $\gamma_1, \ldots, \gamma_k$ such that $\gamma_1 + \cdots + \gamma_k = \gamma$ and $c_{\gamma_1, \ldots, \gamma_k}$ are constants. Hence, recalling that $|\nabla^k \phi| \leq c a^{-k/2m}$, we can write $P_{\gamma, \lambda \phi}(x) = \sum_{k=1}^{[\gamma]} \lambda^k \tilde{P}_{k, \phi}(x)$ where $|\tilde{P}_{k, \phi}(x)| \leq c a^{-[\gamma]/2m}$. It follows from (28) that

$$Q_{\lambda \phi}(f) = \int_{\Omega} \sum_{|\alpha| = m} \sum_{\gamma \leq \alpha} \sum_{\delta \leq \beta} \sum_{j \leq |\delta|} \lambda^{k+j} w_{\alpha \beta \gamma \delta k j}(x) D^{\alpha - \gamma} f D^{\beta - \delta} \tilde{f} b dx,$$

where $w_{\alpha \beta \gamma \delta k j} := a_{\alpha \beta} c_\gamma^a c_\delta^\beta \tilde{P}_{k, \phi} \tilde{P}_{j, -\phi}$ satisfies $|w_{\alpha \beta \gamma \delta k j}| \leq c a^{(2m - [\gamma + \delta])/2m}$. Replacing γ and δ by $\alpha - \gamma$ and $\beta - \delta$ correspondingly we conclude from (30) the following

Lemma 4 $Q_{\lambda \phi}(f)$ is a linear combination of terms of the form

$$T(f) = \lambda^s \int_{\Omega} w(x) D^\gamma f D^\delta \tilde{f} b dx,$$

where $|w| \leq c a^{[\gamma + \delta]/2m}$ on Ω and

(i) s is an integer between 0 and $2m$;
(ii) γ and δ are multiindices with $|\gamma|, |\delta| \leq m$;
(iii) $s + [\gamma + \delta] \leq 2m$.

Definition. We call the number $s + [\gamma + \delta]$ the essential order of T.

Hence the essential order is an integer between 0 and $2m$. We denote by $L_{a,m}$ the linear space consisting of (finite) linear combinations of forms whose essential order is smaller than $2m$. In Lemma 9 we will see that terms in $L_{a,m}$ are in a sense negligible. We also point out for later use that (9) implies the interpolation inequality

$$|T(f)| < c \{ \text{Re } Q(f) + \lambda^{2m} \|f\|_2^2 \}, \quad f \in W_{a,0}^{m,2}(\Omega),$$

valid for all terms $T(\cdot)$ of essential order $2m$.

We have the following
Lemma 5. Given \(\phi \in \mathcal{E}_a \) and \(\lambda > 0 \) define

\[
Q_{1,\lambda \phi}(f) = \int_\Omega \sum_{|\alpha| = m} \sum_{7 \leq \alpha \leq \beta} a_{\alpha \beta} c^\alpha c^\beta (\lambda \nabla \phi)^\gamma (-\lambda \nabla \phi)^\delta D^{a-\gamma} D^{\beta-\delta} \tilde{f} dx.
\]

Then the difference \(Q_{\lambda \phi}(f) - Q_{1,\lambda \phi}(f) \) lies in \(\mathcal{L}_{a,m} \).

Proof. One simply has to recall (28) and observe from (29) that \(P_{\gamma,\lambda \phi} \), considered as a polynomial in \(\lambda \), has \(\lambda^{\gamma}(\nabla \phi)^{\gamma} \) as its highest-degree term. //

3.1 Symbols in \(\mathcal{G}_a \)

At this point and for the whole of this subsection we restrict our attention to operators \(H \) whose symbol belongs to \(\mathcal{G}_a \). For \(x \in \Omega, \xi, \eta \in C^N \) and \(\zeta \in R^N \) let us define

\[
k_m = \lfloor \sin(\pi/(4m-2)) \rfloor^{-2m+1},
\]

\[
A(x, \xi, \eta) = \sum_{|\alpha| = |\beta| = m} a_{\alpha \beta}(x) \xi^\alpha \eta^\beta,
\]

\[
S(x, \zeta; \xi, \eta) = Re \ A(x, \xi - i\zeta, \eta + i\zeta) + k_m Re \ A(x, \zeta).
\]

Lemma 6. Assume that the symbol \(A(x, \xi) \) lies in \(\mathcal{G}_a \). Then

\[
Re \ Q_{1,\lambda \phi}(f) + k_m \lambda^{2m} \int_\Omega Re \ A(x, \nabla \phi(x)) |f|^2 dx = (2\pi)^{-N} \int \int_{\Omega \times R^N \times R^N} S(x, \lambda \nabla \phi; \xi, \eta)e^{i(\xi - \eta) \cdot x} \hat{f}(\xi) \hat{f}(\eta) dx d\xi d\eta
\]

for all \(\phi \in \mathcal{E}_a, \lambda > 0 \) and \(f \in C_\infty(\Omega) \).

Proof. Writing \(D^\gamma f(x) = (2\pi)^{-N/2} \int_{R^N} (i\xi)^\gamma e^{i\xi \cdot x} \hat{f}(\xi) d\xi \) we have

\[
Q_{1,\lambda \phi}(f) = (2\pi)^{-N} \int \int_{\Omega \times R^N \times R^N} \sum_{|\alpha| = m} \sum_{7 \leq \alpha \leq \beta} a_{\alpha \beta} c^\alpha c^\beta (\lambda \nabla \phi)^\gamma (-i\lambda \nabla \phi)^\delta \times
\]

\[
\times \xi^\alpha \eta^\beta e^{i(\xi - \eta) \cdot x} \hat{f}(\xi) \hat{f}(\eta) d\xi d\eta dx
\]

\[
= (2\pi)^{-N} \int \int_{\Omega \times R^N \times R^N} \sum_{|\alpha| = |\beta| = m} a_{\alpha \beta} (\xi - i\lambda \nabla \phi)^\alpha (\eta - i\lambda \nabla \phi)^\beta \times
\]

\[
\times e^{i(\xi - \eta) \cdot x} \hat{f}(\xi) \hat{f}(\eta) d\xi d\eta dx
\]

\[
= (2\pi)^{-N} \int \int_{\Omega \times R^N \times R^N} A(x, \xi - i\lambda \nabla \phi(x), \eta + i\lambda \nabla \phi(x)) \times
\]

\[
\times e^{i(\xi - \eta) \cdot x} \hat{f}(\xi) \hat{f}(\eta) d\xi d\eta dx.
\]

This last integral has the form \(\int_\Omega q[g]dx \) where for fixed \(x \in \Omega \)

\[
\begin{cases}
g(\xi) = e^{i\xi \cdot x} \hat{f}(\xi) d\xi \\
q[g] = \int_{R^N \times R^N} p(\xi, \eta) g(\xi) \overline{g(\eta)} d\xi d\eta \\
p(\xi, \eta) = A(x, \xi - i\lambda \nabla \phi(x), \eta + i\lambda \nabla \phi(x))
\end{cases}
\]
Since the matrix \(\{ a_{\alpha \beta} \} \) is symmetric we have \(p(\xi, \eta) = p(\eta, \xi) \) and therefore \(q(g) = \int_{\mathbb{R}^N} \overline{p(\xi, \eta)} q(\xi) g(\eta) d\xi d\eta. \) Hence \(\text{Re} \ q(g) = \int_{\mathbb{R}^N} \text{Re} \ p(\xi, \eta) d\xi d\eta \) and integration over \(x \in \Omega \) yields

\[
\text{Re} \ Q_{1, \phi}(f) + k_m \int_\Omega \text{Re} \ A(x, \lambda \nabla \phi(x)) |f|^2 \, dx \\
= (2\pi)^{-N} \int_\Omega \int_{\mathbb{R}^N} \text{Re} \ [A(x, \xi - i \lambda \nabla \phi(x), \eta + i \lambda \nabla \phi(x)) + k_m A(x, \lambda \nabla \phi)] \times \\
\times e^{i(\xi - \eta) \cdot x} \hat{f}(\xi) \overline{\hat{f}(\eta)} \, d\xi d\eta dx \\
= (2\pi)^{-N} \int_\Omega \int_{\mathbb{R}^N} S(x, \lambda \nabla \phi; \xi, \eta) e^{i(\xi - \eta) \cdot x} \hat{f}(\xi) \overline{\hat{f}(\eta)} \, d\xi d\eta dx.
\]

We now proceed to estimate the triple integral in the right hand side of (33). It is shown in [EP, Theorem 2.1] that there exist positive numbers \(w_0, \ldots, w_{m-2} \) such that

\[
S(x, \zeta; \xi, \eta) = \sum_{s=0}^{m-2} w_s \Gamma(x, p_{\xi, \zeta}^{(s)}), \quad x \in \Omega, \ \zeta, \xi \in \mathbb{R}^N,
\]

(34)

where \(\Gamma(x, \cdot; \cdot) \) is the quadratic form associated to the principal symbol of \(H \) (cf. (14)) and \(p_{\xi, \zeta}^{(s)} \) is the vector in \(\mathbb{R}^p \) defined for fixed \(\xi, \zeta \in \mathbb{R}^N \) by requiring that

\[
\sum_{|a|=m} p_{\xi, \zeta}^{(s)} a^\alpha = (\sin \theta_m)^{-s-2} (\xi \cdot a)^{m-s-2} (\zeta \cdot a)^s \left\{ (\sin \theta_m)^2 (\xi \cdot a)^2 - (\cos \theta_m)^2 (\zeta \cdot a)^2 \right\}
\]

for all \(a \in \mathbb{R}^N \); here \(\theta_m = \pi/(4m - 2) \). To simplify the notation let us define the sesquilinear forms \(\Gamma(x, \cdot, \cdot) \) on \(\mathbb{C}^{m-1} \otimes \mathbb{C}^p \cong \mathbb{C}^{p(m-1)} \) by

\[
\Gamma(x, u, v) = \sum_{s=0}^{m-2} w_s \Gamma(x, u^{(s)}, v^{(s)}) = \sum_{s=0}^{m-2} \sum_{|a|=m} \sum_{|\beta|=m} w_s a_{\alpha+\beta}(x) u^{(s)}_{\alpha} v^{(s)}_{\beta}
\]

for all \(u = (u^{(s)}), \ v = (v^{(s)}) \in \mathbb{C}^{p(m-1)}. \) Then \(\Gamma \) is positive semi-definite by the strong convexity of \(A(x, \xi). \) To handle the above expressions we introduce two auxiliary elliptic differential forms \(S_{\lambda \phi} \) and \(\Gamma_{\lambda \phi} \) on \(L^2(\Omega). \) They have common domain \(W^{m,2}_{a,0}(\Omega) \) and are given by

\[
S_{\lambda \phi}(f) = (2\pi)^{-N} \int_\Omega \int_{\mathbb{R}^N} S(x, \lambda \nabla \phi; \xi, \eta) e^{i(\xi - \eta) \cdot x} \hat{f}(\xi) \overline{\hat{f}(\eta)} \, d\xi d\eta dx,
\]

(36)

\[
\Gamma_{\lambda \phi}(f) = (2\pi)^{-N} \int_\Omega \int_{\mathbb{R}^N} \Gamma(x, p_{\xi, \lambda \nabla \phi}, p_{\eta, \lambda \nabla \phi}) e^{i(\xi - \eta) \cdot x} \hat{f}(\xi) \overline{\hat{f}(\eta)} \, d\xi d\eta dx
\]

(37)

where \(p_{\xi, \lambda \nabla \phi} = (p_{(\xi, \lambda \nabla \phi, \alpha)}^{(s)})_{|a|=m} \) is defined by (35).

Lemma 7 Assume that the symbol \(A(x, \xi) \) lies in \(\mathcal{G}_a. \) Then the form \(S_{\lambda \phi}(\cdot) - \Gamma_{\lambda \phi}(\cdot) \) lies in \(\mathcal{L}_{a,m}. \)
Proof. It follows from (34) that $S_{\lambda \phi}$ and $\Gamma_{\lambda \phi}$ have integral kernels which are polynomials of ξ and η and whose values coincide for $\xi = \eta$. Using the inverse Fourier transform this implies that the difference $S_{\lambda \phi}(f) - \Gamma_{\lambda \phi}(f)$ is a linear combination of terms of the form

$$T(f) = \lambda^s \int_\Omega w(x)[D^{\gamma+\kappa} f D^{\delta} \mathcal{T} - (-1)^\epsilon D^{\gamma} f D^{\delta+\kappa} \mathcal{T}]dx,$$

where w is some function and κ is a multi-index of length $|\kappa| \leq m - 1$. In fact, recalling (33) and the definition of $Q_{1,\lambda \phi}$ we see that $w = a_{\alpha \beta}(\nabla \phi)\mu$ where $|\mu| = s$ and $\gamma + \delta + \kappa + \mu = \alpha + \beta$. Since $a_{\alpha \beta} \in W^{m-1,\infty}_a(\Omega) \subset W^{m-1,\infty}_{\text{loc}}(\Omega)$ we can integrate by parts $|\kappa|$ times and use Leibnitz’ rule to obtain

$$T(f) = (-1)^{|\kappa|} \lambda^s \sum_{0 < \kappa_1 \leq \kappa} c_{\kappa_1} \epsilon_1 \int_{\Omega} D^{\kappa_1} w D^{\gamma} f D^{\delta+\kappa_1} \mathcal{T}dx. \quad (39)$$

We estimate $D^{\kappa_1} w$: clearly

$$|D^{\kappa_1}(a_{\alpha \beta}(\nabla \phi)\mu)| \leq c \sum_{i=0}^{\kappa_1} |\nabla^{i}\nabla \phi| |\nabla^{i}(\nabla \phi)\mu| \quad \text{in } \Omega.$$

Recalling the definition of $E_{A,M}$ it is easily seen that $|\nabla^{i}(\nabla \phi)\mu| \leq ca^{-((i+1)/2m)}$; recalling also from (15) the definition of the space $W^{m-1,\infty}_a(\Omega)$ where the $a_{\alpha \beta}$ lie we conclude that

$$|D^{\kappa_1}(a_{\alpha \beta}(\nabla \phi)\mu)| \leq c_M a(x) \frac{2m-|\kappa_1+\mu|}{2m} = c_M a^{||\gamma+\delta+\kappa_1||_{2m}}.$$

Hence (39) implies that T has essential order $s + |\gamma + \delta + \kappa - \kappa_1| < 2m$, as required. \\

//

Proposition 8 Let $A(x, \xi) \in G_a$. Then for any $\phi \in E_a$, $\lambda > 0$ and all $f \in C_{\text{c}}(\Omega)$, there holds

$$\text{Re } Q_{\lambda \phi}(f) \geq -k_m \lambda^{2m} \int_{\Omega} A(x, \nabla \phi(x))|f|^2dx + T(f) \quad (40)$$

where $T(\cdot) \in L_{a,m}$.

Proof. Combining Lemmas 5, 6 and 7 we have

$$\text{Re } Q_{\lambda \phi}(f) + k_m \int_{\Omega} \text{Re } A(x, \lambda \nabla \phi(x))|f|^2dx = \Gamma_{\lambda \phi}(f) + T(f), \quad (41)$$

for a form $T(\cdot) \in L_{a,m}$. Now let $u(x) = \int_{\mathbb{R}^N} p_{\xi, \lambda \nabla \phi} e^{i\xi \cdot x} f(\xi)d\xi$ (a $C^{(m-1)}$-valued integral defined component-wise); it follows immediately from definition (37) that

$$\Gamma_{\lambda \phi}(f) = \int_{\Omega} \Gamma(x, u(x), u(x))dx \quad (42)$$

and hence $\Gamma_{\lambda \phi}(\cdot)$ is non-negative by the strong convexity of $A(x, \xi)$. //
3.2 The general case

We now remove the assumption $A \in \mathcal{G}_a$ and return to the general setting described in Section 2. We recall that the quantity D measures the distance of A from \mathcal{G}_a and has been defined in (16).

Lemma 9 Let $T \in \mathcal{L}_{a,m}$. Then for any $\epsilon \in (0,1)$ there holds

$$|T(f)| < \epsilon \{\text{Re } Q(f) + \lambda^{2m} \|f\|^2_2 + c_\epsilon \|f\|^2_2 \}$$

for all $\lambda > 0$ and $f \in C_c^\infty (\Omega)$.

Proof. By definition, $T(f)$ is a finite linear combination of expressions of the form

$$I(f) = \lambda^s \int_{\Omega} w(x) D^\gamma f(x) D^\delta \bar{f}(x) dx,$$

where $|w(x)| \leq c a(x)^{\gamma+\delta}/2m$ and $s + |\gamma + \delta| \leq 2m - 1$. Setting $\mu^{2m - |\gamma + \delta|} = \lambda^s$ and recalling (9) we have

$$|I(f)| \leq \epsilon \mu^{2m - |\gamma + \delta|} \int_{\Omega} a(x)^{\gamma+\delta}/2m |D^{\gamma} f| |D^{\delta} \bar{f}| dx$$

$$\leq \epsilon \text{Re } Q(f) + c \epsilon^{-2m+1}(1 + \mu^{2m}) \|f\|^2_2$$

$$\leq \epsilon \text{Re } Q(f) + c \epsilon^{-2m+1}(1 + \lambda^{2m-1}) \|f\|^2_2$$

$$\leq \epsilon \{\text{Re } Q(f) + \lambda^{2m} \|f\|^2_2 \} + c \epsilon^{-4m^2+1} \|f\|^2_2. \quad \checkmark$$

Remark. It is seen from the proof that the size of the constant c_ϵ in (43) depends only on $\epsilon > 0$ and the (finite) quantity $\max_I \sup \{|w(x)|a(x)^{-|\gamma + \delta|}/2m\}$ where the max is taken over all forms $I(\cdot)$ that make up $T(\cdot)$. In particular, when we restrict our attention to functions $\phi \in \mathcal{E}_{A,M}$ we obtain a constant $c_\epsilon = c_{\epsilon,M}$ which is otherwise independent of ϕ.

Lemma 10 For any $\phi \in \mathcal{E}_{A,M}$, $\lambda > 0$ and $\epsilon > 0$ and all γ, there holds

$$\text{Re } Q_{\lambda \phi}(f) \geq -\left\{\left(k_m + cD + \epsilon \right) \lambda^{2m} + c_{\epsilon,M}\right\} \|f\|^2_2, \quad f \in C_c^\infty (\Omega). \quad (44)$$

where the constant c is independent of D, M, ϵ, λ and ϕ and the constant $c_{M,D,\epsilon}$ is independent of λ and ϕ.

Proof. Let $\hat{A} \in \mathcal{G}_a$ be such that $\|A - \hat{A}\|_{a,\infty} \leq 2D$. It follows from (32) that

$$\left\{\begin{array}{l}
|\text{Re } \hat{Q}_{\lambda \phi}(f) - \text{Re } Q_{\lambda \phi}(f)| < cD \{\text{Re } Q(f) + \lambda^{2m} \|f\|^2_2\} \\
\lambda^{2m} \int_{\Omega} [A(x, \nabla \phi(x)) - \hat{A}(x, \nabla \phi(x))] dx < cD \{\text{Re } Q(f) + \lambda^{2m} \|f\|^2_2\}.
\end{array}\right.$$

Combining these relations with (40) – as applied to the operator \hat{H} – we obtain

$$\text{Re } Q_{\lambda \phi}(f) \geq -k_m \lambda^{2m} \int_{\Omega} \text{Re } A(x, \nabla \phi(x)) |f|^2 dx - cD \{\text{Re } Q(f) + \lambda^{2m} \|f\|^2_2\} + T(f).$$
We have $\text{Re} \ A(x, \nabla \phi(x)) \leq 1$ and therefore (allowing c to change from line to line and ϵ to rescale)

$$\text{Re} \ Q_\phi(f) \geq -k_m \lambda^{2m} \|f\|_2^2 - cD \{\text{Re} \ Q(f) + \lambda^{2m} \|f\|_2^2\} + T(f)$$

(by (43))

$$\geq -k_m \lambda^{2m} \|f\|_2^2 - (cD + \epsilon)\{\text{Re} \ Q(f) + \lambda^{2m} \|f\|_2^2\} - c_{\epsilon,M} \|f\|_2^2$$

(by (26))

Now, either $\text{Re} \ Q_\phi(f)$ is positive, in which case (44) is true, or it is non-positive, in which case it can be discarded from the right hand side of the last inequality. This completes the proof.

Proof of Theorem 1. The rest of the proof is standard. Combining Proposition 3 with (44) and using the relation $K_{\lambda\phi}(t, x, y) = e^{-\lambda\phi(x)}K(t, x, y)e^{-\lambda\phi(y)}$ we obtain

$$|K(t, x, y)| < c_3 t^{-s} \exp \left\{ \lambda[\phi(y) - \phi(x)] + (k_m + cD + \delta)\lambda^{2m} + c_{\delta,M} \right\} t$$

Optimizing over $\phi \in \mathcal{E}_{A,M}$ introduces $d_M(x, y)$ and choosing $\lambda = (d_M(x, y))^{1/(2m-1)}$ we obtain

$$-\lambda d_M(x, y) + k_m \lambda^{2m} t = -\sigma_m \frac{d_M(x, y)^{2m/(2m-1)}}{t^{1/(2m-1)}},$$

which completes the proof.

Remark. It is shown in [B2] that the term cD cannot be eliminated from (44). Thus for it to be removed from Theorem 1 a radically different approach is needed – if indeed the term is removable at all.

Remark. We point out that the above method can also work for operators of the form $H + W$, where W is a lower-order perturbation of H. It is clear that the estimate of Theorem 1 is valid for $H + W$ provided $W_{\lambda\phi}$ can be estimated as a form by

$$|W_{\lambda\phi}(f)| < \epsilon \{\text{Re} \ Q(f) + \lambda^{2m} \|f\|_2^2\} + c_{\epsilon,M} \|f\|_2^2$$

for all $\phi \in \mathcal{E}_\phi$ and $\lambda > 0$ and any $\epsilon > 0$. Such estimates can be obtained by means of weighted Hardy- and Sobolev-type inequalities. We do not elaborate on this and prove a theorem for zero-order perturbations.

Proposition 11 Let $V = V_+ - V_-$ where $V_+ \in L^1_{\text{loc}}(\Omega)$ and $V_- \in L^1(\Omega)$. Then the heat kernel of $H + V$ satisfies the estimate of Theorem 1.

Proof. We have

$$\int_\Omega V_- \|f\|^2 \leq \|V_-\|_1 \|f\|_2^2$$

(by (H1))

$$\leq c \|\text{Re} \ Q(f)\|_1^2 \|f\|_2^{2s}$$

(hence $H + V$ is defined with form domain the same as for $H + V_+$). Moreover $(H + V)_{\lambda\phi} = H_{\lambda\phi} + V \geq H_{\lambda\phi} - V_-$. Hence the estimate of Lemma 10 is also valid for $H + V$ and the rest of the argument goes through. //
References

Gerassimos Barbatis
Department of Mathematics
University of Ioannina
45110 Ioannina
Greece
gbarbati@cc.uoi.gr