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1 Introduction

Let
Hf(x) = (−1)m

∑
|α|=m
|β|=m

Dα{aαβ(x)Dβf(x)}, x ∈ Ω ⊂ RN

be a self-adjoint uniformly elliptic operator of order 2m with measurable coefficients
and subject to Dirichlet boundary conditions on ∂Ω. In [D2] it was shown that
if 2m > N then the associated heat semigroup e−Ht has a kernel K(t, x, y) which
satisfies the estimate

|K(t, x, y)| < c1t
−N/2m exp

{
−c2

|x− y|2m/(2m−1)

t1/(2m−1)
+ c3t

}

for some positive constants ci. Under suitable conditions this was recently [B2]
sharpened to

|K(t, x, y)| < cεt
−N/2m exp

{
−(σm − cD − ε)

dM(x, y)2m/(2m−1)

t1/(2m−1)
+ cε,M t

}
(1)

where σm = (2m − 1)(2m)−2m/(2m−1) sin(π/(4m − 2)), D ≥ 0 depends on the
regularity of the coefficients and dM(x, y) is a Finsler-type metric induced by the
principal symbol of H and depending on the arbitrarily large parameter M ; as
M → ∞, dM(x, y) increases to a Finsler distance d(x, y), but (1) is valid only
for M < ∞. This estimate is sharp as is seen by comparison against the small-
time asymptotics for operators with smooth coefficients obtained in [T] – see (13)
below. In the same direction Dungey [Du] used resolvent estimates to obtain a
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better esimate than (1) for powers of second order operators. He showed in a
general framework that if the self-adjoint operator H satisfies a standard Gaussian
esimate with exponential constant 1

4
− ε then the heat kernel of Hm satisfies (1)

with D = 0 and M = +∞. For an alternative approach valid also for higher order
systems see [AQ].

In the main theorem of this article we extend (1) in two directions. Primarily,
we consider operators whose coefficients can be singular and/or degenerate on ∂Ω;
moreover, we do not assume H to be self-adjoint. Concerning the singularity or
degeneracy of H, we assume that there is a positive function a(x) that controls
in a suitable sense the behaviour of the coefficient matrix {aαβ} and we then
impose two conditions (H1) and (H2) on a(x). The first is a weighted Sobolev
embedding and the second is a weighted interpolation inequality. These conditions
were introduced in [B1] and led to (non-sharp) off diagonal estimates on the heat
kernel of non-uniformly elliptic self-adjoint operators. Besides conditions (H1) and
(H2) we shall assume that the symbol A(x, ξ) is close – in a suitable sense – to a
certain class of ‘good’ symbols denoted by Ga. These symbols, besides satisfying
(H1) and (H2) correspond to operators that are self-adjoint, their coefficients have
some local regularity, and are strongly convex in the sense of [EP]. We make use of
a certain stability property inherent in our approach and obtain bounds that are
asymptotically sharp: they involve the exponential constant σm− cD where c is an
absolute constant and D is the distance of the symbol A(x, ξ) from the class Ga in
a certain weighted norm. In particular the constant σm is obtained for symbols in
Ga. To our knowledge such estimates are new even if the coefficients are assumed
to be smooth and the symbol lies in Ga.

2 Formulation of results

We first fix some notation. Given a multi-index α = (α1, . . . , αN) we write α! =
α1! . . . αn! and |α| = α1 + · · ·+ αn. We write γ ≤ α to indicate that γi ≤ αi for all
i, in which case we also set cα

γ = α!/γ!(α− γ)!. We use the standard notation Dα

for the differential expression (∂/∂x1)
α1 . . . (∂/∂xN)αN and for k ≥ 0 we denote by

∇kf the vector (Dαf)|α|=k. We denote by f̂ the Fourier transform of a function f ,

f̂(ξ) = (2π)−N/2
∫

eiξ·xf(x)dx. We shall denote by ‖A‖p→q the norm of an operator
A from Lp(Ω) to Lq(Ω). The letter c will stand for a positive constant whose value
may change from line to line.

Let Ω be a domain in RN . We fix an integer m ≥ 1 and consider the operator

Hf(x) = (−1)m
∑
|α|=m
|β|=m

Dα{aαβ(x)Dβf(x)} (2)

subject to Dirichlet boundary conditions on ∂Ω; the precise definition shall be
given below. The matrix-valued function {aαβ} is assumed to be measurable and
to take its values in the set of all complex, ν × ν-matrices, ν being the number of
multi-indices α of length |α| = m. We assume that each aαβ lies in L∞loc(Ω); we do
not assume {aαβ} to be self-adjoint.
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We define a quadratic form Q(·) on C∞
c (Ω) by

Q(f) =
∫
Ω

∑
|α|=m
|β|=m

aαβ(x)Dαf(x)Dβ f̄(x) dx, f ∈ C∞
c (Ω).

We assume that there exists a positive weight a(x) with a±1 ∈ L∞loc(Ω) that controls
the size of the matrix {aαβ} in the following sense: first,

|aαβ(x)| ≤ ca(x), x ∈ Ω, (3)

for all multi-indices α, β; and second, the weighted G̊arding’s inequality

Re Q(f) ≥ c
∫
Ω

a(x)|∇mf |2dx, f ∈ C∞
c (Ω) (4)

is valid for some c > 0. We also assume the symbol-version of (4), namely

Re A(x, ξ) ≥ c a(x)|ξ|2m, x ∈ Ω, ξ ∈ RN , (5)

where A(x, ξ) :=
∑

aαβ(x)ξα+β. Relations (3) and (4) imply in particular that
there exists β > 0 such that

|Q(f)| ≤ β Re Q(f), f ∈ C∞
c (Ω). (6)

It is easily seen that Q is closable [B1]. The domain of its closure is a weighted
Sobolev space which we denote by Wm,2

a,0 (Ω). We retain the same symbol, Q, for
the closure of the above form and denote by H the associated accretive operator
on L2(Ω), so that 〈Hf, f〉 = Q(f), f ∈ Dom(H), and (2) is valid in a weak sense.

We make two hypotheses on the weight a: the first is a weighted Sobolev
inequality and the second is a weighted interpolation inequality.

(H1) There exists s ∈ [N/2m, 1] and c > 0 such that

‖f‖∞ ≤ c[Re Q(f)]s/2‖f‖1−s
2 , f ∈ C∞

c (Ω). (7)

(H2) There exists a constant c such that∫
Ω

ak/m|∇kf |2dx < ε
∫
Ω

a|∇mf |2dx + cε−k/(m−k)
∫
Ω
|f |2dx, (8)

for all 0 < ε < 1, 0 ≤ k < m and all f ∈ C∞
c (Ω).

Both (H1) and (H2) are satisfied when H is uniformly elliptic, in which case the
best value for the constant s is s = N/2m, showing that in the general case we
cannot expect any value that is better (smaller) than N/2m; in particular (H1)
is valid trivially with s = N/2m if a(x) is bounded away from zero. We refer to
[B1] for non-trivial examples for which (H1) and (H2) are satisfied; they involve
suitable powers of either 1+ |x| or dist(x, K) where K is a smooth surface of lower
dimension.

We note that condition (H2) implies that for any k, l with 0 ≤ k, l ≤ m, k+l <
2m, there exists a constant c so that

(1+λ2m−k−l)
∫
Ω

a(k+l)/2m|∇kf ||∇lf |dx < εRe Q(f)+ cε−
k+l

2m−k−l (1+λ2m)‖f‖2
2, (9)
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for all ε ∈ (0, 1), λ > 0 and all f ∈ C∞
c (Ω). Indeed, for λ = 1 (9) is a consequence

of (H2) and the Cauchy-Schwarz inequality; the case λ < 1 follows trivially from
the case λ = 1; finally writing (9) for λ = 1 and replacing ε by ελk+l−2m we obtain
the result for λ > 1.

We next introduce the distance that shall be used in the heat kernel estimates.
Consider the set

Ea = {φ ∈ C∞(Ω) ∩ L∞(Ω) : ak/2m∇kφ ∈ L∞(Ω), 1 ≤ k ≤ m}

and its subset (recall (5))

EA,M = {φ ∈ C∞(Ω) ∩ L∞(Ω) : Re A(x,∇φ(x)) ≤ 1,

|∇kφ(x)| ≤ Ma(x)−k/2m, 2 ≤ k ≤ m, a.e. x ∈ Ω}. (10)

Our estimates will be expressed in terms of the distance

dM(x, y) = sup{φ(y)− φ(x) : φ ∈ EA,M} (11)

for arbitrarily large but finite M . For M = +∞ this reduces to the distance

d∞(x, y) = sup{φ(y)− φ(x) : Re A(x,∇φ(x)) ≤ 1, x ∈ Ω}.

This is a Finsler distance, induced by the (singular/degenerate) Finsler metric with
length element

ds = ds(x, dx) = sup
η∈RN

η 6=0

〈dx, η〉
(Re A(x, η))1/2m

. (12)

We refer the reader to the recent book [BCS] for a comprehensive introduction
to Finsler geometry. The distance d∞(x, y) relates to the short-time off-diagonal
behaviour of the heat kernel: it was shown in [T] that if Ω = RN and H is
self adjoint uniformly elliptic with strongly convex symbol (see 14)), then d∞(·, ·)
controls the small-time behaviour of K(t, x, y) in the sense that

log tN/2mK(t, x, y) = −σm
d∞(x, y)2m/(2m−1)

t1/(2m−1)
(1 + o(1)), as t → 0 (13)

for x, y fixed and close enough; here and below we have

σm = (2m− 1)(2m)−2m/(2m−1) sin(π/(4m− 2)).

Let us now proceed with the definition of the class Ga. Let the functions aγ(·),
|γ| = 2m, be defined by requiring that∑

|α|=m
|β|=m

aαβ(x)ξα+β =
∑

|γ|=2m

c2m
γ aγ(x)ξγ, x ∈ Ω, ξ ∈ RN ;

(recall that c2m
γ = (2m)!/γ!). Following [EP] we say that the principal symbol

A(x, ξ) of H is strongly convex if the quadratic form

Γ(x, p) =
∑
|α|=m
|β|=m

aα+β(x)pαpβ, p = (pα) ∈ Cν , (14)
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is positive semidefinite for a.e. x ∈ Ω.
Induced by the weight a(x) is the weighted Sobolev space

Wm−1,∞
a (Ω) = {f ∈ Wm−1,∞

loc (Ω) : |∇if(x)| ≤ ca(x)
2m−i
2m , a.e. x ∈ Ω, i ≤ m− 1}.

(15)
Definition. We say that the symbol A(x, ξ) lies in Ga if

(i) A(x, ξ) is strongly convex

(ii) {aαβ} is real and symmetric

(iii) the coefficients aαβ lie in Wm−1,∞
a (Ω).

We denote by D the distance of the coefficient matrix {aαβ} from Ga in the
weighted uniform norm

‖f‖a,∞ := sup
x∈Ω

|f(x)/a(x)|,

that is
D = inf

{ãαβ}∈W m−1,∞
a,Re

‖{aαβ} − {ãαβ}‖a,∞, (16)

where, as usual, ‖{aαβ}‖a,∞ := ‖ |{aαβ}|M(ν×ν) ‖a,∞.
Our main result is the following:

Theorem 1 Assume that (H1) and (H2) are satisfied. Then for all δ ∈ (0, 1) and
all M large there exist positive constants cδ, cδ,M such that

| K(t, x, y) |< cδt
−s exp

{
−(σm − cD − δ)dM(x, y)

2m
2m−1 t−

1
2m−1 + cδ,M t

}
(17)

for all x, y ∈ Ω and t > 0; the constant c is independent of x, y, t, δ, D and M .

In the special case where H is uniformly elliptic and self-adjoint this estimate has
already been obtained in [B2].

3 Proof of Theorem 1

Given φ ∈ Ea the mapping f 7→ eφf maps Wm,2
a,0 (Ω) into itself [B1, Lemma 7].

Hence one can define a sesquilinear form Qφ(·, ·) with domain Wm,2
a,0 (Ω) by

Qφ(f) = Q(eφf, e−φf) (18)

=
∫
Ω

∑
|α|=m
|β|=m

aαβDα(eφf)Dβ(e−φf)b dx, f ∈ Wm,2
a,0 (Ω). (19)

The associated operator is Hφ =e−φHeφ and has domain Dom(Hφ) =e−φDom(H).
The form Qφ is a lower order perturbation of Q (cf. (28)) and it is a consequence
of (H2) [B1, Lemma 8] that for all ε > 0 and f ∈ Wm,2

a,0 (Ω) there holds

|Q(f)−Qφ(f)| < εRe Q(f) + cε−2m+1(1 + p(φ))2m‖f‖2
2, (20)

5



where we have used the seminorm

p(φ) := sup
1≤k≤m

ess supx∈Ωa(x)k/2m|∇kφ(x)|. (21)

Defining s(φ) = (1 + p(φ))2m it follows in particular that

Re Qφ(f) ≥ −c s(φ)‖f‖2
2, f ∈ C∞

c (Ω), (22)

where c is independent of φ, and this justifies the definition

−kφ = inf{Re Qφ(f) : f ∈ C∞
c (Ω), ‖f‖2 = 1}. (23)

The next lemma follows closely an argument used in [BD].

Lemma 2 Assume that (H2) is satisfied. Then for any φ ∈ Ea there holds

(i) ‖e−Hφt‖2→2 ≤ ekφt; (24)

(ii) ‖Hφe
−Hφt‖2→2 ≤

cδ

t
ekφteδs(φ)t, for all δ > 0, (25)

where the constant cδ is independent of φ ∈ Ea and t > 0.

Proof. Part (i) is the standard energy estimate that follows by integrating

d

dt
‖e−Hφtf‖2

2 = −2Re 〈Hφe
−Hφtf, e−Hφtf〉 ≤ 2kφ‖e−Hφtf‖2

2.

Now by (20) there holds

|Qφ(f)−Q(f)| ≤ 1

2
Re Q(f) + s(φ)‖f‖2

2, f ∈ C∞
c (Ω), (26)

where, we recall, s(φ) = c(1+p(φ)2m) for some fixed c > 0. Hence for any ε ∈ (0, 1)

Re Qφ(f) = εRe Qφ(f) + (1− ε)Re Qφ(f)

≥ ε

2
Re Q(f)− [εs(φ) + (1− ε)kφ] ‖f‖2

2

and hence

Re [Q(f)−Qφ(f)] ≤ (1− ε

2
)Re Q(f) + [εs(φ) + (1− ε)kφ]‖f‖2

2.

Fix f ∈ L2(Ω) and θ ∈ (−π/2, π/2) and for ρ > 0 set fρ = exp(−Hφρeiθ)f . We
then have

d

dρ
‖fρ‖2

2 = −2Re [eiθQφ(fρ)]

= −2 cos θRe Q(fρ) + 2 sin θIm Qφ(fρ) +

+2 cos θ[Re Q(fρ)− Re Qφ(fρ)] +

≤ −2 cos θRe Q(fρ) + 2 sin |θ|
[
(
1

2
+ β)Re Q(fρ) + s(φ)‖fρ‖2

2

]
+

+2 cos θ
[
(1− ε

2
)Re Q(fρ) + [εs(φ) + (1− ε)kφ]‖fρ‖2

2

]
= [−ε cos θ + (2β + 1) sin |θ|] Re Q(fρ) +

+ [2 cos θ{εs(φ) + (1− ε)kφ}+ 2 sin |θ|s(φ)] ‖fρ‖2
2.
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Let α ∈ (0, π/2) be such that tan α = ε/(2β + 1). For |θ| ≤ α we then have
−ε cos θ + (2β + 1) sin |θ| ≤ 0 and hence

d

dρ
‖fρ‖2

2 ≤ 2 cos θ[εs(φ) + (1− ε)kφ + s(φ)
ε

2β + 1
]‖fρ‖2

2

≤ 2 (kφ + 2εs(φ)) ‖fρ‖2
2

=: 2Aε‖fρ‖2
2.

It follows that ‖e−Hφz‖2→2 ≤ eAε|z| in the sector | arg z| ≤ α. We conclude that
letting τε = Aε

cos α
we have

‖ exp{−(Hφ + τε)z}‖2→2 ≤ 1,

and hence [D1, Lemma 2.38]

‖(Hφ + τε)e
−(Hφ+τε)t‖ ≤ c

αt
,

for all t > 0. Multiplying both sides by eτεt and using the triangle inequality we
obtain

‖Hφe
−Hφt‖2→2 ≤

c

αt
exp{kφ + 2εs(φ)

cos α
t}+ τεe

kφt.

This last expression can be made smaller than the right hand side of (25) provided
ε is chosen small enough; this completes the proof. //

Proposition 3 Assume that (H1) and (H2) are satisfied. Then for any δ > 0
there exists cδ > 0 independent of φ ∈ Ea such that

‖e−Hφt‖1→∞ ≤ cδt
−sekφteδs(φ)t. (27)

Proof. Let f ∈ L2(Ω) and set ft = e−Hφtf , t > 0. Using (H1) we have

‖ft‖∞ ≤ c[Re Q(ft)]
s/2‖ft‖1−s

2

(by (26)) ≤ c
[
Re Qφ(ft) + s(φ)‖ft‖2

2

]s/2
‖ft‖1−s

2

≤ c
[
‖Hφft‖2‖ft‖2 + s(φ)‖ft‖2

2

]s/2
‖ft‖1−s

2

(by (25), (24)) ≤ c
[
cε

t
eεs(φ)t + s(φ)

]s/2

ekφt‖f‖2

= ct−s/2
[
cεe

εs(φ)t + s(φ)t
]s/2

ekφt‖f‖2.

Taking ε to be small enough we conclude that given δ > 0 there exists cδ such that

‖e−Hφt‖2→∞ ≤ cδt
−s/2ekφteδs(φ)t.

The same arguments are valid for H∗
φ = H−φ, the constant kφ clearly staying the

same. Hence by duality and the semigroup property (27) follows. //
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In order for Proposition 3 to be useful we need a precise upper estimate on
kφ, which amounts to a precise lower estimate on Re Qφ(·), cf. (23). This will be
established in Lemma 10 following a series of intermediate lemmas. Recalling that
cα
γ = α!/γ!(α− γ)! it follows immediately from (19) that for λ >, φ ∈ Ea we have

Qλφ(f) =
∫
Ω

∑
|α|=m
|β|=m

aαβ

∑
γ≤α
δ≤β

cα
γ cβ

δ Pγ,λφPδ,−λφD
α−γfDβ−δf̄ dx, (28)

where
Pγ,λφ(x) := e−λφ(x)Dγ[eλφ(x)]

is a polynomial in various derivatives of λφ. Now, the induction relation Pγ+ej ,λφ =
(λ∂jφ + ∂j)Pγ,λφ implies that Pγ,λφ has the form

Pγ,λφ(x) =
|γ|∑

k=1

λk
∑

cγ;γ1,...,γk
(Dγ1φ) . . . (Dγkφ), (29)

where the second sum is taken over all non-zero multiindices γ1, . . . , γk such that
γ1+· · ·+γk = γ and cγ;γ1,...,γk

are constants. Hence, recalling that |∇kφ| ≤ ca−k/2m,

we can write Pγ,λφ(x) =
∑|γ|

k=1 λkP̃k,φ(x) where |P̃k,φ(x)| ≤ ca−|γ|/2m. It follows from
(28) that

Qλφ(f) =
∫
Ω

∑
|α|=m
|β|=m

∑
γ≤α
δ≤β

∑
k≤|γ|
j≤|δ|

λk+jwαβγδkj(x)Dα−γfDβ−δf̄ b dx, (30)

where wαβγδkj := aαβcα
γ cβ

δ P̃k,φP̃j,−φ satisfies |wαβγδkj| ≤ ca(2m−|γ+δ|)/2m. Replacing
γ and δ by α− γ and β − δ correspondingly we conclude from (30) the following

Lemma 4 Qλφ(f) is a linear combination of terms of the form

T (f) = λs
∫
Ω

w(x)DγfDδf b dx, (31)

where |w| ≤ ca
|γ+δ|
2m on Ω and

(i) s is an integer between 0 and 2m;
(ii) γ and δ are multiindices with |γ|, |δ| ≤ m;
(iii) s + |γ + δ| ≤ 2m.

Definition. We call the number s + |γ + δ| the essential order of T .
Hence the essential order is an integer between 0 and 2m. We denote by La,m

the linear space consisting of (finite) linear combinations of forms whose essential
order is smaller than 2m. In Lemma 9 we will see that terms in La,m are in a
sense negligible. We also point out for later use that (9) implies the interpolation
inequality

|T (f)| < c{Re Q(f) + λ2m‖f‖2
2}, f ∈ Wm,2

a,0 (Ω), (32)

valid for all terms T (·) of essential order 2m.
We have the following
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Lemma 5 Given φ ∈ Ea and λ > 0 define

Q1,λφ(f) =
∫
Ω

∑
|α|=m
|β|=m

∑
γ≤α
δ≤β

aαβcα
γ cβ

δ (λ∇φ)γ(−λ∇φ)δDα−γfDβ−δf̄ dx.

Then the difference Qλφ(f)−Q1,λφ(f) lies in La,m.

Proof. One simply has to recall (28) and observe from (29) that Pγ,λφ, considered
as a polynomial in λ, has λ|γ|(∇φ)γ as its highest-degree term. //

3.1 Symbols in Ga

At this point and for the whole of this subsection we restrict our attention to
operators H whose symbol belongs to Ga. For x ∈ Ω, ξ, η ∈ CN and ζ ∈ RN let
us define

km = [sin(π/(4m− 2))]−2m+1

A(x, ξ, η) =
∑

|α|=|β|=m

aαβ(x)ξαη̄β,

S(x, ζ; ξ, η) = Re A(x, ξ − iζ, η + iζ) + kmRe A(x, ζ).

Lemma 6 Assume that the symbol A(x, ξ) lies in Ga. Then

Re Q1,λφ(f) + kmλ2m
∫
Ω

Re A(x,∇φ(x))|f |2dx =

= (2π)−N
∫ ∫ ∫

Ω×RN×RN
S(x, λ∇φ; ξ, η)ei(ξ−η)·xf̂(ξ)f̂(η) dx dξ dη (33)

for all φ ∈ Ea, λ > 0 and f ∈ C∞
c (Ω).

Proof. Writing Dγf(x) = (2π)−N/2
∫
RN (iξ)γeiξ·xf̂(ξ)dξ we have

Q1,λφ(f) = (2π)−N
∫ ∫ ∫

Ω×RN×RN

∑
|α|=m
|β|=m

aαβ

∑
γ≤α
δ≤β

cα
γ cβ

δ (−iλ∇φ)γ(−iλ∇φ)δ ×

×ξα−γηβ−δei(ξ−η)·xf̂(ξ)f̂(η) dξ dη dx

= (2π)−N
∫ ∫ ∫

Ω×RN×RN

∑
|α|=m
|β|=m

aαβ(ξ − iλ∇φ)α(η − iλ∇φ)β ×

×ei(ξ−η)·xf̂(ξ)f̂(η) dξ dη dx

= (2π)−N
∫ ∫ ∫

Ω×RN×RN
A(x, ξ − iλ∇φ(x), η + iλ∇φ(x))×

×ei(ξ−η)·xf̂(ξ)f̂(η) dξ dη dx.

This last integral has the form
∫
Ω q[g]dx where for fixed x ∈ Ω

g(ξ) = eiξ·xf̂(ξ)dξ

q[g] =
∫
RN×RN p(ξ, η)g(ξ)g(η)dξ dη

p(ξ, η) = A(x, ξ − iλ∇φ(x), η + iλ∇φ(x))
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Since the matrix {aαβ} is symmetric we have p(ξ, η) = p(η, ξ) and therefore
q(g) =

∫
RN×RN p(ξ, η)g(ξ)g(η)dξ dη. Hence Re q(g) =

∫
RN×RN Re p(ξ, η)dξ dη and

integration over x ∈ Ω yields

Re Q1,λφ(f) + km

∫
Ω

Re A(x, λ∇φ(x))|f |2 dx

= (2π)−N
∫ ∫ ∫

Ω×RN×RN
Re [A(x, ξ − iλ∇φ(x), η + iλ∇φ(x)) + kmA(x, λ∇φ)]×

×ei(ξ−η)·xf̂(ξ)f̂(η) dξ dη dx

= (2π)−N
∫ ∫ ∫

Ω×RN×RN
S(x, λ∇φ; ξ, η)ei(ξ−η)·xf̂(ξ)f̂(η) dξ dη dx. //

We now proceed to estimate the triple integral in the right hand side of (33).
It is shown in [EP, Theorem 2.1] that there exist positive numbers w0, . . . , wm−2

such that

S(x, ζ; ξ, ξ) =
m−2∑
s=0

wsΓ(x, p
(s)
ξ,ζ), x ∈ Ω ζ, ξ ∈ RN , (34)

where Γ(x, ·) is the quadratic form associated to the principal symbol of H (cf.

(14)) and p
(s)
ξ,ζ is the vector in Rν defined for fixed ξ, ζ ∈ RN by requiring that

∑
|α|=m

p
(s)
ξ,ζ,αaα = (sin θm)−s−2(ξ · a)m−s−2(ζ · a)s

{
(sin θm)2(ξ · a)2 − (cos θm)2(ζ · a)2

}
(35)

for all a ∈ RN ; here θm = π/(4m − 2). To simplify the notation let us define the
sesquilinear forms Γ(x, ·, ·) on Cm−1 ⊗Cν ' Cν(m−1) by

Γ(x, u, v) =
m−2∑
s=0

wsΓ(x, u(s), v(s)) =
m−2∑
s=0

∑
|α|=m
|β|=m

wsaα+β(x)u(s)
α v

(s)
β

for all u = (u(s)
α ), v = (v

(s)
β ) ∈ Cν(m−1). Then Γ is positive semi-definite by the

strong convexity of A(x, ξ). To handle the above expressions we introduce two
auxiliary elliptic differential forms Sλφ and Γλφ on L2(Ω). They have common
domain Wm,2

a,0 (Ω) and are given by

Sλφ(f) = (2π)−N
∫ ∫ ∫

Ω×RN×RN
S(x, λ∇φ; ξ, η)ei(ξ−η)·xf̂(ξ)f̂(η) dξ dη dx, (36)

Γλφ(f) = (2π)−N
∫ ∫ ∫

Ω×RN×RN
Γ(x, pξ,λ∇φ, pη,λ∇φ)e

i(ξ−η)·xf̂(ξ)f̂(η) dξ dη dx (37)

where pξ,λ∇φ = (p
(s)
ξ,λ∇φ,α)

|α|=m
0≤s≤m−2 ∈ Cν(m−1) is defined by (35).

Lemma 7 Assume that the symbol A(x, ξ) lies in Ga. Then the form Sλφ(·)−Γλφ(·)
lies in La,m.
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Proof. It follows from (34) that Sλφ and Γλφ have integral kernels which are poly-
nomials of ξ and η and whose values coincide for ξ = η. Using the inverse Fourier
transform this implies that the difference Sλφ(f)− Γλφ(f) is a linear combination
of terms of the form

T (f) = λs
∫
Ω

w(x)[Dγ+κfDδf − (−1)κDγfDδ+κf ]dx, (38)

where w is some function and κ is a multi-index of length |κ| ≤ m − 1. In fact,
recalling (33) and the definition of Q1,λφ we see that w = aαβ(∇φ)µ where |µ| = s
and γ +δ+κ+µ = α+β. Since aαβ ∈ Wm−1,∞

a (Ω) ⊂ Wm−1,∞
loc (Ω) we can integrate

by parts |κ| times and use Leibnitz’ rule to obtain

T (f) = (−1)|κ|λs
∑

0<κ1≤κ

cκ
κ1

∫
Ω

Dκ1w Dγf Dδ+κ−κ1fdx. (39)

We estimate Dκ1w: clearly

|Dκ1(aαβ(∇φ)µ)| ≤ c
|κ1|∑
i=0

|∇|κ1|−iaαβ| |∇i(∇φ)µ| in Ω.

Recalling the definition of EA,M it is easily seen that |∇i(∇φ)µ| ≤ ca−(|µ|+i)/2m;
recalling also from (15) the definition of the space Wm−1,∞

a (Ω) where the aαβ lie
we conclude that

|Dκ1(aαβ(∇φ)µ)| ≤ cMa(x)
2m−|κ1+µ|

2m = cMa
|γ+δ+κ−κ1|

2m .

Hence (39) implies that T has essential order s+ |γ +δ+κ−κ1| < 2m, as required.
//

Proposition 8 Let A(x, ξ) ∈ Ga. Then for any φ ∈ Ea, λ > 0 and all f ∈ C∞
c (Ω),

there holds
Re Qλφ(f) ≥ −kmλ2m

∫
Ω

A(x,∇φ(x))|f |2dx + T (f) (40)

where T (·) ∈ La,m.

Proof. Combining Lemmas 5, 6 and 7 we have

Re Qλφ(f) + km

∫
Ω

Re A(x, λ∇φ(x))|f |2dx = Γλφ(f) + T (f), (41)

for a form T (·) ∈ La,m. Now let u(x) =
∫
RN pξ,λ∇φe

iξ·xf̂(ξ)dξ (a Cν(m−1)-valued
integral defined component-wise); it follows immediately from definition (37) that

Γλφ(f) =
∫
Ω
Γ(x, u(x), u(x))dx (42)

and hence Γλφ(·) is non-negative by the strong convexity of A(x, ξ). //
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3.2 The general case

We now remove the assumption A ∈ Ga and return to the general setting described
in Section 2. We recall that the quantity D measures the distance of A from Ga

and has been defined in (16).

Lemma 9 Let T ∈ La,m. Then for any ε ∈ (0, 1) there holds

|T (f)| < ε{Re Q(f) + λ2m‖f‖2
2}+ cε‖f‖2

2 (43)

for all λ > 0 and f ∈ C∞
c (Ω).

Proof. By definition, T (f) is a finite linear combination of expressions of the form

I(f) = λs
∫
Ω

w(x)Dγf(x)Dδf̄(x)dx,

where |w(x)| ≤ ca(x)|γ+δ|/2m and s + |γ + δ| ≤ 2m− 1. Setting µ2m−|γ+δ| = λs and
recalling (9) we have

|I(f)| ≤ cµ2m−|γ+δ|
∫
Ω

a(x)|γ+δ|/2m|Dγf ||Dδf |dx

≤ εRe Q(f) + cε−2m+1(1 + µ2m)‖f‖2
2

≤ εRe Q(f) + cε−2m+1(1 + λ2m−1)‖f‖2
2

≤ ε{Re Q(f) + λ2m‖f‖2
2}+ cε−4m2+1‖f‖2

2. //

Remark. It is seen from the proof that the size of the constant cε in (43) depends
only on ε > 0 and the (finite) quantity maxI sup{|w(x)|a(x)−|γ+δ|/2m} where the
max is taken over all forms I(·) that make up T (·). In particular, when we restrict
our attention to functions φ ∈ EA,M we obtain a constant cε = cε,M which is
otherwise independent of φ.

Lemma 10 For any φ ∈ EA,M , λ > 0 and ε > 0 and all , there holds

Re Qλφ(f) ≥ −
{
(km + cD + ε)λ2m + cε,M

}
‖f‖2

2, f ∈ C∞
c (Ω). (44)

where the constant c is independent of D, M, ε, λ and φ and the constant cM,D,ε is
independent of λ and φ.

Proof. Let Ã ∈ Ga be such that ‖A− Ã‖a,∞ ≤ 2D. It follows from (32) that |Re Q̃λφ(f)− Re Qλφ(f)| < cD{Re Q(f) + λ2m‖f‖2
2}∣∣∣λ2m

∫
Ω[A(x,∇φ(x))− Ã(x,∇φ(x))]dx

∣∣∣ < cD{Re Q(f) + λ2m‖f‖2
2}.

Combining these relations with (40) – as applied to the operator H̃ – we obtain

Re Qλφ(f) ≥ −kmλ2m
∫
Ω

Re A(x,∇φ(x))|f |2dx− cD{Re Q(f) + λ2m‖f‖2
2}+ T (f).
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We have Re A(x,∇φ(x)) ≤ 1 and therefore (allowing c to change from line to line
and ε to rescale)

Re Qλφ(f) ≥ −kmλ2m‖f‖2
2 − cD{Re Q(f) + λ2m‖f‖2

2}+ T (f)

(by (43)) ≥ −kmλ2m‖f‖2
2 − (cD + ε){Re Q(f) + λ2m‖f‖2

2} − cε,M‖f‖2
2

(by (26)) ≥ −kmλ2m‖f‖2
2 − (cD + ε){Re Qλφ(f) + λ2m‖f‖2

2} − cε,M‖f‖2
2.

Now, either Re Qλφ(f) is positive, in which case (44) is true, or it is non-positive,
in which case it can be discarded from the right hand side of the last inequality.
This completes the proof. //
Proof of Theorem 1. The rest of the proof is standard. Combining Proposition
3 with (44) and using the relation Kλφ(t, x, y) = e−λφ(x)K(t, x, y)e−λφ(y) we obtain

|K(t, x, y)| < cδt
−s exp

{
λ[φ(y)− φ(x)] +

[
(km + cD + δ)λ2m + cδ,M

]
t
}

Optimizing over φ ∈ EA,M introduces dM(x, y) and choosing λ = (dM (x,y)
2mkmt

)1/(2m−1)

we obtain

−λdM(x, y) + kmλ2mt = −σm
dM(x, y)2m/(2m−1)

t1/(2m−1)
,

which completes the proof. //
Remark. It is shown in [B2] that the term cD cannot be eliminated from (44).
Thus for it to be removed from Theorem 1 a radically different approach is needed
– if indeed the term is removable at all.
Remark. We point out that the above method can also work for operators of the
form H + W , where W is a lower-order perturbation of H. It is clear that the
estimate of Theorem 1 is valid for H + W provided Wλφ can be estimated as a
form by

|Wλφ(f)| < ε{Re Q(f) + λ2m‖f‖2
2}+ cε‖f‖2

2

for all φ ∈ Ea and λ > 0 and any ε > 0. Such estimates can be obtained by means
of weighted Hardy- and Sobolev-type inequalities. We do not elaborate on this and
prove a theorem for zero-order perturbations.

Proposition 11 Let V = V+−V− where V+ ∈ L1
loc(Ω) and V− ∈ L1(Ω). Then the

heat kernel of H + V satisfies the estimate of Theorem 1.

Proof. We have ∫
Ω

V−|f |2 ≤ ‖V−‖1‖f‖2
∞

(by (H1)) ≤ c‖V−‖1[Re Q(f)]s‖f‖2−2s
2

≤ εRe Q(f) + cε,V ‖f‖2
2

(hence H + V is defined with form domain the same as for H + V+). Moreover
(H + V )λφ = Hλφ + V ≥ Hλφ − V−. Hence the estimate of Lemma 10 is also valid
for H + V and the rest of the argument goes through. //
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