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Classical Survival Analysis

• Non–Parametric

– Product–Limit (Kaplan–Meier)
– Actuarial Method

• Semi–Parametric

– Cox’s Proportional Hazard Model

• Parametric

– Any convenient known distribution
(Weibull, etc)

Common Assumption: Ignorable censoring
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Assumptions

(α) Model the dependence between Failure and Censoring Process (Informative
Censoring).

(β) The process of censoring times can be seen as a separate failure process, with
failures other than the ones of main interest.

• This mean that we introduce the problem within the Competing Risks
framework, where the failure of interest and censoring are the only two
competing risks, in the absence of random censoring.

(γ) Assess the sensitivity of quantities of interest in the presence of small levels of
association between the two processes.
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−→ Define:

• T -Process := The failure process.

• C-Process := The censoring process, where we observe the censored times as
being failure times.

−→ This research is focused on:

• Parametric models,
where both processes are assumed to follow a known distribution.

• Semi–parametric models,
where we modify the use of Cox’s partial likelihood in order to allow for the
presence of informative censoring.
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Notation

• hT (t; θ), HT (t; θ), ST (t; θ) and fT (t; θ) are the marginal hazard, cumulative
hazard, survival and density functions of T -process respectively, governed by θ.

• Define sT (t; θ) = ∂
∂θ log fT (t; θ) and iθ = V arT{sT (T ; θ)}.

• Since θ generally depends on covariates x, we write hT (t;v|x), HT (t;v|x),
ST (t;v|x) and fT (t;v|x), where v is the vector of regression coefficients.

• Furthermore, h(T, t|x) [or h(T, t; θ)] is the sub-hazard of the T -process, defined

h(T, t|x) = lim
∆t→0+

Pr(t ≤ T < t+ ∆t
∣∣T ≥ t, C ≥ t,x)

∆t
,

which is the hazard of the failure time process in the presence of censoring.

• Similar notation holds for the censoring process, with (T, θ,v) ↔ (C, γ,u).

Fotios Siannis, MRC–BSU, Cambridge 5



Parametric Approach

−→ Propose the Model:

P (C = c|T = t) = fC

(
c; γ + δı

−1
2

γ B(t; θ)
)

(1)

where:

• it is assumed that the conditional distribution of C given T has the same form as
its marginal distribution fC(c; γi), with the only difference being in the location
parameter of the distribution which is now allowed to depend on T .

• parameter δ can be thought of as measuring the size of the dependence between
T and C.

• function B(t; θ), named the bias function, can be thought of as measuring
the pattern of this dependence.
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Notes:

1. No inferences can be drawn for parameter δ, hence we assume that it is known.

2. The aim is to perform sensitivity analysis on quantities of interest (like θ or the
estimate of the survival curve) for small levels of association between the two
processes (small values of δ). For δ = 0 we have independence.

3. Therefore, the joint p.d.f. takes the form

fT,C(u) ' fT (u; θ)fC(u; γ)
[
1 + δı

−1
2

γ sC(u; γ)B(u; θ)
]
.

4. Under this parametrization, θ is the main parameter of interest, treating γ as a
nuisance parameter.
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Log–likelihood when δ 6= 0

In first order approximation we have

log lδ ' log l0

+ δı
−1

2
γ

n∑
i=1

[
(1− Ii)sc(ti; γ)µ(ti; θ)− Ii

∂HC(ti; γ)
∂γ

B(ti; θ)
]

where:

• log l0 =
n∑

i=1

[Ii log hT (ti; θ) + (1− Ii) log hC(ti; γ)−HT (ti; θ)−HC(ti; γ)]

is the log–likelihood under independence (δ = 0).

• µ(ti; θ) =
∫∞
ti

B(u;θ)fT (u;θ)du

ST (ti;θ) .
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Sensitivity Analysis

By differentiating log lδ with respect to θ we get

θ̂δ − θ̂0 ' δi
−1

2
γ ı(θ)−1

n∑
i=1

[
(1− Ii)

∂µ(ti; θ)
∂θ

sC(ti; γ)− Ii
∂B(ti; θ)

∂θ

∂HC(ti; γ)
∂γ

]
,

where

ı(θ) = −∂
2 log l0
∂θ2

is the observed information.

• This is what we will name correlation bias.

• The term multiplied by δ is called Sensitivity Index
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The Bias Function B(t; θ)

(i) In order for the joint p.d.f. to provide the correct marginal distributions for T
and C we require

ET

[
B(t; θ)

]
= 0.

(ii) B(t; θ) must have a finite variance, and without any loss of generality

V arT
[
B(t; θ)

]
= ET

[
B2(t; θ)

]
= 1.

(iii) A choice that satisfies the above restrictions is B(t; θ) = ı
−1

2
θ sT (t; θ) , which

also provides with a nice symmetry in the joint density

fT,C(u) ' fT (u; θ)fC(u; γ)
[
1 + δı

−1
2

γ ı
−1

2
θ sT (u; θ)sC(u; γ)

]
.
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1. Suppose that for given subject, T and C are independent with densities gT (t; θ+

εT ı
−1

2
θ ) and gC(c; γ+εCı

−1
2

γ ), where εT and εC are, assumed small, random effects
with means zero, variances σ2

T and σ2
C, and covariance σTC. Then

fT,C(t, c) ' fT (t, θ)fC(c, γ)
[
1 + σTC(ıθıγ)−

1
2sT (t, θ)sC(c, γ)

]
,

where with the appropriate definition of δ, is the joint density between T and C.

2. Since the form of dependence is completely unknown, our assumptions about it
should be as weak as possible so far as the information about θ is concerned.
Therefore, the efficient information bound [Bickel et.al.(1992)] is

InfB

{
ı(θ)− δ2

(
ET

[
∂B(T ; θ)

∂θ

])2
}
,

where the minimization over all functions lead to B(t; θ) = ı
−1

2
θ sT (t; θ).
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Sensitivity indices and confidence intervals

The general form of the bias approximations, up to linear terms in δ, has the form

θ̂δ − θ̂0 = δU +O(δ2),

where U is the Sensitivity Index.

For a confidence interval, the approximations give

{V ar(θ̂δ)}
1
2 = {ı(θ)}−1

2 +O(δ2).

Hence, retaining only linear terms in δ, the asymptotic confidence interval for θ is
approximately

θ̂0 − δU ± zα{ı(θ)}−
1
2,

where zα is the appropriate standard normal percentage point.
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For a local sensitivity analysis in practice, we fix a maximum, but small, value
for δ to give (−δ, δ) as a plausible range of dependence parameters that we wish
to consider. This leads to

θ̂δ = θ̂0 ± δU

as the plausible range of values of the estimate of θ, and

θ̂0 ±
{
δ|U |+ zα{ı(θ)}−

1
2

}
as the corresponding conservative confidence interval for θ itself.
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Sensitivity Analysis on θ
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Interpretation of δ

Assume A(T ; θ) and D(C; γ) are some functions of T and C respectively, and

ρ = Corr (A(T ; θ), D(C; γ)) .

Then, generally can be shown that

|ρ| ≤ |δ|,

which immediately implies that |Corr(T,C)| ≤ |δ|.

This provides with a useful interpretation and a plausible range of values for δ.

* Parametric Case

In the simplest of scenarios where both T and C follow exponential distribution,
it can be easily shown that

ρ = δ.
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Upper Bound

Although we do not have the answer to the question ”what is the best choice for
B(t; θ)”, we can still calculate some naive bounds. Straight forward mathematical
calculations give

E
[
θ̂δ − θ̂0

]
≤ |δ|nı−

1
2

γ ı(θ)−1ET

[
N2

]1
2 ,

where:

N =
[
∂ log hT (t; θ)

∂θ
− ∂HT (t; θ)

∂θ

]
∂HC(t; γ)

∂γ
SC(t; γ)+

∫ t

0

∂fC(u; γ)
∂γ

∂HT (u; θ)
∂θ

du.

The equality is attained only when B(t; θ) is a linear function of N (not very
attractive).
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The Ignorability of Censoring at the End of the Study

Assume that censoring at the end of the study is regarded as ignorable. Hence, we
observe Y = min{T,CI, CE} and the likelihood becomes

l′ =
n∏

i=1

Pr
(
T = ti, T < CI

)IiPr
(
CI = ti, CI < T

)(1−Ii)ZiPr
(
CE = ti

)(1−Ii)(1−Zi),

where

• Ii =
{

1, . . . when failure time
0, . . . when censored time

• Zi =
{

1, . . . when Y = CI (censored before the end)
0, . . . when Y = CE (censored at the end)

• Pr(CE = t) = ST (t; θ)SC(t; γ)
[
1− δ∂HC(t;γ)

∂γ µ(t; θ)
]
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Example: Lupus Data

Since 1970, patients with systematic lupus erythematosus (SLE) at the University
of Toronto Lupus Clinic have been followed. By September 1991

• A total of 576 patients were in the clinic registry.

• 91 died during these years.

• At this time a study of patients who were lost-to-follow-up was undertaken.
By December 1992

– 139 had been traced (out of 248 randomly chosen patients).
– 22 were reported to have died, increasing the total number of deaths to 113.

Define lupus1 to be the original lupus data and lupus2 to be the data set with
the additional observations. A Weibull model was fitted to both the failure and the
censoring processes for both lupus1 and lupus2.
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Comparison
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Proportional Hazards Modelling with Covariates

Assume: hT (t;v|x) = ev
′xh∗T (t) and hC(c;u|x) = eu

′xh∗C(c)

where v and u are vectors of parameters of T and C with covariates x.

I h∗T (t) and h∗C(c) have known parametric forms (not necessarily the same).

I Vector x need not be the same for the two processes, hence vectors v and u
may have different lengths.

I We focus on vector v, treating u as a vector of nuisance parameters.

I v̂δ − v̂0 ' δı(v)−1
n∑

i=1

{xi [HT (ti;v|x)HC(ti;u|x)− (1− Ii)HT (ti;v|x)]}

I Depending on the parametrization, sensitivity analysis can be performed on
various quantities of interest (like the median).
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Example: Multiple Myeloma Data (1)

Study with 65 multiple myeloma patients (Krall et.al.(1975)). We have 4 covariates
and we model the hazard functions with a constant baseline hazard function for
both processes. Then

wx = v′x and zx = u′x

are the log-hazard rates for T and C respectively (including intercept).

Therefore, the sensitivity analysis for the log-hazard rates leads to

ŵδ
x − ŵ0

x ' δ

∑n
i=1

{
ezxt2i − (1− Ii)ti

}
∑n

i=1 ti
,

which is a very simple formula to calculate.
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Plot of wx against zx
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Sensitivity analysis on survival curves
for min and max wx (δ = 0.3)
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Sensitivity analysis on survival curves
for min and max zx (δ = 0.3)
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Plot of the absolute value of
Sensitivity Index against zx
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Explore Approximation
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Semi–parametric

−→ Cox’s Partial Likelihood (lP )

• Cox (1972) proposed that the hazard function is proportional to some other
function (baseline hazard function), which depends only on time t

h(t; θi) = eθih0(t).

• Parameter θi is a linear combination of a set of explanatory variables.

• Under the assumption of independence between the failure and the censoring
times, Cox introduced the Partial Likelihood

lP =
∏

i

h(t; θi)∑
`∈Rti

h(t; θ`)
=

∏
i

eθi∑
`∈Rti

eθ`

Fotios Siannis, MRC–BSU, Cambridge 29



−→ Modified Partial Likelihood (lM)

An extension to Cox’s partial likelihood is the competing risks partial likelihood

l∗P =
∏

i

h(j, ti|xi)∑
`∈Rti

h(j, ti|x`)
,

where instead of the marginal hazards the observable sub-hazards for cause j are
used. Therefore, considering T and C as acting competing risks we get

lM =
r∏

i=1

h(T, ti|xi)∑
`∈Rti

h(T, ti|x`)

k∏
j=1

h(C, tj|xj)∑
q∈Rtj

h(C, tj|xq)
,

When independence (δ = 0) we have lP = lM .

• r is the total number of failure and k is the total number of censored observations.
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• Sensitivity analysis for informative censoring is performed through model (1)

P (C = c|T = t) = fC

(
c; γ + δı

−1
2

γ B(t; θ)
)
.

• Sub-hazards take the form

– h(T, t|x) ' hT (t;v|x)
[
1 + δı

−1
2

γ µT (t;v|x)ψ(t|x)
]

– h(C, t|x) ' hC(t;u|x)
[
1 + δı

−1
2

γ µ(t;v|x)
]
,

where: µ(t;v|x) =
∫∞
t B(w;v|x)fT (w;v|x)dw

ST (t;v|x) , µT (t;v|x) = ∂µ(t;v|x)
∂T

and ψ(t|x) = HC(t;u|x)
hT (t;v|x) .

• Under this approach we need to estimate the baseline hazard (Cox or Kalbfleisch
& Prentice) to be included in the sensitivity index.
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The Ignorability of Censoring at the End of the Study

• Assume that we have two competing risks, the failure T and the informative
censoring CI, where both are subject to ignorable censoring, say CR.

• Of the k censored observations, w are informative and k − w are not.

• Therefore

lIM =
r∏

i=1

h(T, ti|xi)∑
`∈Rti

h(T, ti|x`)

w∏
j=1

h(CI, tj|xj)∑
q∈Rtj

h(CI, tj|xq)
,

where the second product is over the w non-ignorable censored observations and
not all the censored observations. Baseline for the CI process is different to the
one from the C-process.
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Example: Multiple Myeloma Data (2)

Back to myeloma data. Estimates under Cox’s proportional hazard model (δ = 0)
are given in the following table

coef exp(coef) se(coef) z p

x1 1.832 6.245 0.6476 2.83 0.0047
x2 -0.120 0.887 0.0594 -2.03 0.0430
x9 0.462 1.587 0.4620 1.00 0.3200
x16 0.1397 1.149 0.1000 1.39 0.1600

We can calculate the prognostic index wx for each individual, and draw the survival
curves.
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Figure with min and max wx

along with the KM estimate
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Changes in the Survival Curve
for different values of δ (wx = 2.74)
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• If now we allow δ to depart from zero, then the vector of the parameters does
not remain the same any more. Using the MPL we perform a sensitivity analysis
for values of δ ∈ [−0.3, 0.3].

δ v1 v2 v3 v4

-0.3 1.7953789 -0.1195844 0.4478341 0.1214729
-0.2 1.8075859 -0.1197229 0.4525561 0.1273153
-0.1 1.8197930 -0.1198615 0.4572780 0.1331576
0 1.832 -0.120 0.462 0.139

0.1 1.8442070 -0.1201385 0.4667220 0.1448424
0.2 1.8564141 -0.1202771 0.4714439 0.1506847
0.3 1.8686211 -0.1204156 0.4761659 0.1565271
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Focusing on the parameter of covariate x2 we get

δ v2 z

-0.3 -0.1195844 -2.013
-0.2 -0.1197229 -2.016
-0.1 -0.1198615 -2.018
0 -0.120 -2.030

0.1 -0.1201385 -2.022
0.2 -0.122771 -2.025
0.3 -0.1204156 -2.027

where it is clear that v2 is significant for δ ∈ [−0.3, 0.3], concluding that
correlation does not weakens the role of v2.
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• If we remove x9 and x16 (not significant) then we have

coef exp(coef) se(coef) z p

x1 1.802 6.062 0.6279 2.87 0.0041
x2 -0.115 0.891 0.0576 -2.00 0.0460

where v2 is still on the borderline of being significant. If we test again

δ v2 z

-0.3 -0.1271504 -2.207
-0.2 -0.1231003 -2.141
-0.1 -0.1190501 -2.070
0 -0.115 -2.000

0.1 -0.1109499 -1.930
0.2 -0.1068997 -1.859
0.3 -0.1028496 -1.786

where v2 is not significantly different from zero for almost any positive δ.
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