# One-Stage Parametric Meta-Analysis of time-to-event Outcomes using Individual Patients Data.

Fotios Siannis MRC Biostatistics Unit, Cambridge fotios.siannis@mrc-bsu.cam.ac.uk

> IBC 2006 Montreal: 16–21 July 2006

# Outline

- Motivation
- Measure of Treatment Efficacy
- Parametric Model
  - Likelihood inference
- Special Case
  - Log-Location-Scale Models
  - The Extended Log-Gamma Model
- Simulation Study
- Summary

# Motivation

The PH structure is the dominating assumption in individual patient data (IPD) meta-analysis of time-to-event endpoints. However:

- The simplicity with which this model is fit, together with the easy interpretation of the results, makes it "too" popular
- The PH could be seen as a rather restrictive assumption, since it is imposed on a number of studies and not just one
- Not many alternatives to the PH model have been suggested for the analysis of IPD
- There are other issues that render time-to-event data different to other types of data used in meta-analyses (potentially informative censoring, competing risks)

### **Measure of Treatment Efficacy**

By considering data structures other than the PH, the log-hazard ratio may no longer be suitable as the main measure of treatment effect.

Therefore, we introduce the ratio of the  $k^{th}$  percentiles of the survival distributions of the two groups under investigation

$$q_k = \frac{k^{th} \text{ percentile of treatment group}}{k^{th} \text{ percentile of control group}},$$

as the quantity of interest within the meta-analysis framework  $[k \in (0, 1)]$ .

This quantity is defined for a binary covariate, like the treatment identifier, and provides a relative measure for the treatment effect at each point on the survival probability axes.

### Parametric Model

- 1. Consider a two parameter distribution  $f(t; b, \mathbf{u} | \mathbf{x})$ , where b is the shape parameter and if x is the treatment covariate then:  $\mathbf{u} = \mu + vx$ .
- 2. Irrespectively of the choice of f(), we can reparameterize it so that

$$v = g(q_k, b, \mu).$$

3. Thus, every distribution  $f(t; b, \mathbf{u}|x)$  can be re-expressed as  $f(t; b, \mu, q_k|x)$ , with  $q_k$  now being part of the parameterization of the distribution, for given k.

 $\Rightarrow$  Quantity  $q_k$  is of interest for <u>meta-analysis</u> purposes. It has: (i) clear interpretation and (ii) its scale does not depend on the choice of distribution f() or indeed any other features of the data being analyzed.

### **Likelihood Inference**

- Assume that  $f_i(t; b_i, \mathbf{u}_{ij}|x)$  is the distribution that fits the data in study i $(i = 1 \dots N, j = 1 \dots n_i)$ , where:  $\mathbf{u}_{ij} = \mu_i + v_i x_{ij}$ .
- By reparameterization, the distribution of study *i* becomes  $f_i(t; b_i, \mu_i, q_k^i | x_{ij})$ .
- Allow  $q_k^i = q_k$ , to be the same across studies (common treatment effect).
- The remaining parameters are allowed to be study specific.
- Then, for fixed effects, the likelihood function takes the form

$$L(q_k) = \prod_{i=1}^{N} \prod_{j=1}^{n_i} f_i(t_{ij}; b_i, \mu_i, q_k | x_{ij})^{I_{ij}} S_i(t_{ij}; b_i, \mu_i, q_k | x_{ij})^{1 - I_{ij}},$$

where  $I_{ij}$  is the usual indicator variable for terminal events.



#### **Log-Location-Scale Models**

If  $Y = \log T$ , we can express the LLS as a regression model

 $Y = \mu + vx + bE$ 

where  $E \sim$  a suitable pdf. Simple calculations reveal that

$$S_0\left(\frac{\log t_1^k - \mu - v}{b}\right) = k = S_0\left(\frac{\log t_2^k - \mu}{b}\right) \quad \Rightarrow \quad q_k = \frac{t_1^k}{t_2^k} = \exp(v).$$

1. LLS are AFT models, and  $q_k$  is equal to the *acceleration factor*.

2. If  $f_i(t; b_i, \mathbf{u}_{ij}|x)$  is of a LLS structure, then reparameterization is as simple as  $\underline{q_k} = \exp(v)$ , which means that we effectively set the treatment regression coefficients to be common across studies.

#### The Extended Log-Gamma Model

A general case would be the regression model with error p.d.f.

$$\begin{cases} |\gamma|(\gamma^{-2})^{\gamma^{-2}} \exp\{\gamma^{-2}(\gamma w - \exp(\gamma w))\}/\Gamma(\gamma^{-2}) & \gamma \neq 0\\ (2\pi)^{-\frac{1}{2}} \exp(-\frac{1}{2}w^2) & \gamma = 0 \end{cases},$$

where  $w = \frac{Y - \mu - vx}{b}$ .

- This distribution is an extension to the log-gamma model by allowing  $\gamma < 0$ , with the p.d.f. at  $-\gamma$  being a reflection about the origin of that at  $\gamma$  [Prentice(1974)].
- Special cases for  $T = e^{Y}$  are (i) Weibull ( $\gamma = 1$ ), (ii) exponential ( $\gamma = b = 1$ ), (iii) log-normal ( $\gamma = 0$ ), (iv) gamma ( $b = 1, \gamma > \frac{1}{b}$ ), (v) generalized gamma ( $\gamma > 0$ ) and (vi) reciprocal Weibull (p = -1).
- By estimating  $\gamma$  we avoid making assumptions about the distribution of E in each study, allowing the data to influence the choice.

### Simulation Study

- Meta-analysis of 5 studies, with N = 200, 100 in each arm 500 replications.
- Censoring is assumed random and exponentially distributed (up to 50%).
- Data are generated based on the extended log-gamma model, where the survival percentile ratio is assumed equal to 2 for every study (reg coef: log(2) = 0.6931).
- The remaining parameters of the error distribution are allowed to take values

|        | q                         | $\mu$       | b                     |
|--------|---------------------------|-------------|-----------------------|
| sim A1 | (0.3, 0.6, 0.9, 1.2, 1.5) | (7,7,7,7,7) | (1,1,1,1,1)           |
| sim A2 | (0.3, 0.6, 0.9, 1.2, 1.5) | (4,9,7,3,8) | (1,1,1,1,1)           |
| sim A3 | (0.3, 0.6, 0.9, 1.2, 1.5) | (4,9,7,3,8) | (1.5,0.6,1.2,0.8,1.1) |
| sim B1 | (-2, -1, 0.3, 1, 2)       | (7,7,7,7,7) | (1,1,1,1,1)           |
| sim B2 | (-2, -1, 0.3, 1, 2)       | (4,9,7,3,8) | (1,1,1,1,1)           |
| sim B3 | (-2, -1, 0.3, 1, 2)       | (4,9,7,3,8) | (1.5,0.6,1.2,0.8,1.1) |

|        | Stratified Analysis |          |          | Single Study Analysis |          |          |          |
|--------|---------------------|----------|----------|-----------------------|----------|----------|----------|
|        | Weib                | LN       | LL       | Weib                  | LN       | LL       | ELG      |
| sim A1 | 0.6950              | 0.6931   | 0.6937   | 0.6944                | 0.6929   | 0.6937   | 0.6928   |
| (0%)   | (0.0670)            | (0.0780) | (0.0821) | (0.0691)              | (0.0772) | (0.0821) | (0.0701) |
| sim A1 | 0.6971              | 0.6968   | 0.6997   | 0.6960                | 0.6966   | 0.6994   | 0.6966   |
| (20%)  | (0.0739)            | (0.0811) | (0.0906) | (0.0749)              | (0.0803) | (0.0913) | (0.0723) |
| sim A1 | 0.6893              | 0.6898   | 0.6885   | 0.6891                | 0.6904   | 0.6885   | 0.6909   |
| (40%)  | (0.0810)            | (0.0932) | (0.1063) | (0.0832)              | (0.0932) | (0.1084) | (0.0858) |
| sim A2 | 0.6947              | 0.6951   | 0.6959   | 0.6947                | 0.6970   | 0.6959   | 0.6945   |
| (0%)   | (0.0676)            | (0.0794) | (0.0863) | (0.0896)              | (0.0907) | (0.0863) | (0.0707) |
| sim A2 | 0.6936              | 0.6957   | 0.6953   | 0.6947                | 0.6948   | 0.6955   | 0.6950   |
| (20%)  | (0.0699)            | (0.0798) | (0.0868) | (0.1075)              | (0.1221) | (0.1143) | (0.0710) |
| sim A2 | 0.6973              | 0.6935   | 0.6920   | 0.6956                | 0.6926   | 0.6901   | 0.6939   |
| (40%)  | (0.0838)            | (0.0904) | (0.1033) | (0.1485)              | (0.1672) | (0.1586) | (0.0822) |
| sim A3 | 0.6955              | 0.6973   | 0.6966   | 0.6941                | 0.6960   | 0.6966   | 0.6955   |
| (0%)   | (0.0720)            | (0.0734) | (0.0842) | (0.0702)              | (0.0943) | (0.0842) | (0.0594) |
| sim A3 | 0.6925              | 0.6948   | 0.6965   | 0.6984                | 0.7016   | 0.7012   | 0.6919   |
| (20%)  | (0.0763)            | (0.0846) | (0.0966) | (0.1030)              | (0.1327) | (0.1216) | (0.0660) |
| sim A3 | 0.6941              | 0.6930   | 0.6906   | 0.6941                | 0.6980   | 0.6966   | 0.6909   |
| (40%)  | (0.0832)            | (0.0930) | (0.1087) | (0.1353)              | (0.1737) | (0.1627) | (0.0749) |

|        | Stratified Analysis |          |          | Single Study Analysis |          |          |          |
|--------|---------------------|----------|----------|-----------------------|----------|----------|----------|
|        | Weib                | LN       | LL       | Weib                  | LN       | LL       | ELG      |
| sim A1 | 0.6950              | 0.6931   | 0.6937   | 0.6944                | 0.6929   | 0.6937   | 0.6928   |
| (0%)   | (0.0670)            | (0.0780) | (0.0821) | (0.0691)              | (0.0772) | (0.0821) | (0.0701) |
| sim A1 | 0.6971              | 0.6968   | 0.6997   | 0.6960                | 0.6966   | 0.6994   | 0.6966   |
| (20%)  | (0.0739)            | (0.0811) | (0.0906) | (0.0749)              | (0.0803) | (0.0913) | (0.0723) |
| sim A1 | 0.6893              | 0.6898   | 0.6885   | 0.6891                | 0.6904   | 0.6885   | 0.6909   |
| (40%)  | (0.0810)            | (0.0932) | (0.1063) | (0.0832)              | (0.0932) | (0.1084) | (0.0858) |
| sim A2 | 0.6947              | 0.6951   | 0.6959   | 0.6947                | 0.6970   | 0.6959   | 0.6945   |
| (0%)   | (0.0676)            | (0.0794) | (0.0863) | (0.0896)              | (0.0907) | (0.0863) | (0.0707) |
| sim A2 | 0.6936              | 0.6957   | 0.6953   | 0.6947                | 0.6948   | 0.6955   | 0.6950   |
| (20%)  | (0.0699)            | (0.0798) | (0.0868) | (0.1075)              | (0.1221) | (0.1143) | (0.0710) |
| sim A2 | 0.6973              | 0.6935   | 0.6920   | 0.6956                | 0.6926   | 0.6901   | 0.6939   |
| (40%)  | (0.0838)            | (0.0904) | (0.1033) | (0.1485)              | (0.1672) | (0.1586) | (0.0822) |
| sim A3 | 0.6955              | 0.6973   | 0.6966   | 0.6941                | 0.6960   | 0.6966   | 0.6955   |
| (0%)   | (0.0720)            | (0.0734) | (0.0842) | (0.0702)              | (0.0943) | (0.0842) | (0.0594) |
| sim A3 | 0.6925              | 0.6948   | 0.6965   | 0.6984                | 0.7016   | 0.7012   | 0.6919   |
| (20%)  | (0.0763)            | (0.0846) | (0.0966) | (0.1030)              | (0.1327) | (0.1216) | (0.0660) |
| sim A3 | 0.6941              | 0.6930   | 0.6906   | 0.6941                | 0.6980   | 0.6966   | 0.6909   |
| (40%)  | (0.0832)            | (0.0930) | (0.1087) | (0.1353)              | (0.1737) | (0.1627) | (0.0749) |

|        | Stratified Analysis |          |          | Single Study Analysis |          |          |          |
|--------|---------------------|----------|----------|-----------------------|----------|----------|----------|
|        | Weib                | LN       | LL       | Weib                  | LN       | LL       | ELG      |
| sim B1 | 0.6880              | 0.6903   | 0.6893   | 0.6865                | 0.6897   | 0.6893   | 0.6893   |
| (0%)   | (0.3199)            | (0.0921) | (0.1092) | (0.4562)              | (0.0807) | (0.1092) | (0.0738) |
| sim B1 | 0.6739              | 0.6918   | 0.6892   | 0.6564                | 0.6922   | 0.6884   | 0.6891   |
| (20%)  | (0.0989)            | (0.0896) | (0.1019) | (0.1395)              | (0.0848) | (0.1059) | (0.0725) |
| sim B1 | 0.6965              | 0.6945   | 0.6948   | 0.6940                | 0.6935   | 0.6932   | 0.6944   |
| (40%)  | (0.0926)            | (0.0911) | (0.1061) | (0.1132)              | (0.0938) | (0.1169) | (0.0755) |
| sim B2 | 0.6922              | 0.6988   | 0.6992   | 0.6873                | 0.7028   | 0.6992   | 0.6964   |
| (0%)   | (0.3320)            | (0.0830) | (0.1004) | (0.2396)              | (0.1004) | (0.1004) | (0.0703) |
| sim B2 | 0.6978              | 0.6962   | 0.6987   | 0.6961                | 0.7020   | 0.7005   | 0.6985   |
| (20%)  | (0.1010)            | (0.0895) | (0.1021) | (0.1374)              | (0.1283) | (0.1259) | (0.0726) |
| sim B2 | 0.6913              | 0.6910   | 0.6921   | 0.6814                | 0.6893   | 0.6867   | 0.6939   |
| (40%)  | (0.0958)            | (0.0963) | (0.1101) | (0.1613)              | (0.1681) | (0.1657) | (0.0750) |
| sim B3 | 0.7178              | 0.6939   | 0.6958   | 0.7168                | 0.6956   | 0.6958   | 0.6929   |
| (0%)   | (0.5191)            | (0.0866) | (0.1175) | (0.5623)              | (0.1195) | (0.1175) | (0.0605) |
| sim B3 | 0.6884              | 0.6933   | 0.6922   | 0.6866                | 0.6888   | 0.6888   | 0.6967   |
| (20%)  | (0.1103)            | (0.0918) | (0.1106) | (0.1256)              | (0.1411) | (0.1334) | (0.0658) |
| sim B3 | 0.6987              | 0.6994   | 0.7027   | 0.7041                | 0.7043   | 0.7047   | 0.6977   |
| (40%)  | (0.0937)            | (0.0946) | (0.1127) | (0.1370)              | (0.1632) | (0.1577) | (0.0667) |

|              | Coverage Probabilities |       |       |                       |       |       |       |
|--------------|------------------------|-------|-------|-----------------------|-------|-------|-------|
|              | Stratified Analysis    |       |       | Single Study Analysis |       |       |       |
|              | Weib                   | LN    | LL    | Weib                  | LN    | LL    | ELG   |
| sim A1 (0%)  | 0.952                  | 0.956 | 0.956 | 0.94                  | 0.96  | 0.958 | 0.96  |
| sim A1 (20%) | 0.934                  | 0.954 | 0.954 | 0.934                 | 0.958 | 0.956 | 0.964 |
| sim A1 (40%) | 0.952                  | 0.95  | 0.946 | 0.952                 | 0.952 | 0.948 | 0.962 |
| sim A2 (0%)  | 0.93                   | 0.938 | 0.934 | 0.998                 | 0.998 | 0.998 | 0.946 |
| sim A2 (20%) | 0.958                  | 0.952 | 0.958 | 1                     | 0.996 | 0.998 | 0.964 |
| sim A2 (40%) | 0.952                  | 0.956 | 0.962 | 0.982                 | 0.988 | 0.992 | 0.964 |
| sim A3 (0%)  | 0.944                  | 0.962 | 0.958 | 1                     | 1     | 1     | 0.958 |
| sim A3 (20%) | 0.944                  | 0.956 | 0.956 | 1                     | 0.998 | 0.998 | 0.962 |
| sim A3 (40%) | 0.954                  | 0.946 | 0.942 | 0.998                 | 1     | 0.998 | 0.958 |
| sim B1 (0%)  | 0.95                   | 0.932 | 0.93  | 0.502                 | 0.98  | 0.966 | 0.952 |
| sim B1 (20%) | 0.924                  | 0.956 | 0.948 | 0.89                  | 0.974 | 0.974 | 0.956 |
| sim B1 (40%) | 0.93                   | 0.964 | 0.95  | 0.94                  | 0.986 | 0.978 | 0.958 |
| sim B2 (0%)  | 0.51                   | 0.954 | 0.954 | 0.87                  | 1     | 1     | 0.96  |
| sim B2 (20%) | 0.916                  | 0.96  | 0.952 | 0.992                 | 1     | 1     | 0.954 |
| sim B2 (40%) | 0.94                   | 0.954 | 0.942 | 0.986                 | 1     | 1     | 0.946 |
| sim B3 (0%)  | 0.416                  | 0.976 | 0.956 | 0.57                  | 1     | 1     | 0.976 |
| sim B3 (20%) | 0.914                  | 0.958 | 0.948 | 0.992                 | 0.996 | 0.992 | 0.954 |
| sim B3 (40%) | 0.946                  | 0.954 | 0.974 | 0.996                 | 0.99  | 0.998 | 0.954 |

# Summary

- We introduce a new measure for treatment efficacy.
- A parametric approach for meta-analysis is described, where all the studies contribute to the estimation of the common treatment effect  $(q_k)$  through likelihood  $L(q_k)$ .
- The structure of the data in the individual studies is taken into account.
- Covariates are easily incorporated.
- Extension to random treatment effects is possible.

#### **Hierarchical Model**

So far we have considered the model

 $Y_{ij} = \mu_i + v_k x_{ij} + b_i E$ Prior distributions for  $\mu_i$ ,  $v_k$  and  $b_i$ ,

which describes the fixed effects model. An obvious extension is

$$\begin{split} Y_{ij} &= \mu_i + v_{ik} x_{ij} + b_i E \\ v_{ik} &= v_k + g_i \\ g_i &\sim N(0, \tau^2) \\ \text{Prior distributions for } \mu_i, \ b_i, \ v_k \text{ and } \tau, \end{split}$$

where  $v_k = \log(q_k)$  is the average log-PR for given k.

Fotios Siannis, MRC-BSU, Cambridge