
One-Stage Parametric Meta-Analysis
of time-to-event Outcomes using

Individual Patients Data.

Fotios Siannis
MRC Biostatistics Unit, Cambridge
fotios.siannis@mrc–bsu.cam.ac.uk

IBC 2006
Montreal: 16–21 July 2006



Outline

• Motivation

• Measure of Treatment Efficacy

• Parametric Model

– Likelihood inference

• Special Case

– Log-Location-Scale Models
– The Extended Log-Gamma Model

• Simulation Study

• Summary

Fotios Siannis, MRC–BSU, Cambridge 1



Motivation

The PH structure is the dominating assumption in individual patient data (IPD)
meta-analysis of time-to-event endpoints. However:

• The simplicity with which this model is fit, together with the easy interpretation
of the results, makes it ”too” popular

• The PH could be seen as a rather restrictive assumption, since it is imposed on
a number of studies and not just one

• Not many alternatives to the PH model have been suggested for the analysis of
IPD

• There are other issues that render time-to-event data different to other types of
data used in meta-analyses (potentially informative censoring, competing risks)
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Measure of Treatment Efficacy

By considering data structures other than the PH, the log-hazard ratio may no
longer be suitable as the main measure of treatment effect.

Therefore, we introduce the ratio of the kth percentiles of the survival
distributions of the two groups under investigation

qk =
kth percentile of treatment group

kth percentile of control group
,

as the quantity of interest within the meta-analysis framework [k ∈ (0, 1)].

This quantity is defined for a binary covariate, like the treatment identifier, and
provides a relative measure for the treatment effect at each point on the survival
probability axes.
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Parametric Model

1. Consider a two parameter distribution f(t; b,u|x), where b is the shape parameter
and if x is the treatment covariate then: u = µ + vx.

2. Irrespectively of the choice of f(), we can reparameterize it so that

v = g(qk, b, µ).

3. Thus, every distribution f(t; b,u|x) can be re-expressed as f(t; b, µ, qk|x), with
qk now being part of the parameterization of the distribution, for given k.

⇒ Quantity qk is of interest for meta-analysis purposes. It has: (i) clear
interpretation and (ii) its scale does not depend on the choice of distribution f()
or indeed any other features of the data being analyzed.
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Likelihood Inference

• Assume that fi(t; bi,uij|x) is the distribution that fits the data in study i
(i = 1 . . . N , j = 1 . . . ni), where: uij = µi + vixij.

• By reparameterization, the distribution of study i becomes fi(t; bi, µi, q
i
k|xij).

• Allow qi
k = qk, to be the same across studies (common treatment effect).

• The remaining parameters are allowed to be study specific.

• Then, for fixed effects, the likelihood function takes the form

L(qk) =
N∏

i=1

ni∏
j=1

fi(tij; bi, µi, qk|xij)IijSi(tij; bi, µi, qk|xij)1−Iij,

where Iij is the usual indicator variable for terminal events.
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Log-Location-Scale Models

If Y = log T , we can express the LLS as a regression model

Y = µ + vx + bE

where E ∼ a suitable pdf. Simple calculations reveal that

S0

(
log tk1 − µ− v

b

)
= k = S0

(
log tk2 − µ

b

)
⇒ qk =

tk1
tk2

= exp(v).

1. LLS are AFT models, and qk is equal to the acceleration factor.

2. If fi(t; bi,uij|x) is of a LLS structure, then reparameterization is as simple
as qk = exp(v), which means that we effectively set the treatment regression
coefficients to be common across studies.
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The Extended Log-Gamma Model

A general case would be the regression model with error p.d.f.{
|γ|(γ−2)γ−2

exp{γ−2(γw − exp(γw))}/Γ(γ−2) γ 6= 0
(2π)−

1
2 exp(−1

2w
2) γ = 0

,

where w = Y−µ−vx
b .

• This distribution is an extension to the log-gamma model by allowing γ < 0, with
the p.d.f. at −γ being a reflection about the origin of that at γ [Prentice(1974)].

• Special cases for T = eY are (i) Weibull (γ = 1), (ii) exponential (γ = b = 1),
(iii) log-normal (γ = 0), (iv) gamma (b = 1, γ > 1

b), (v) generalized gamma
(γ > 0) and (vi) reciprocal Weibull (p = −1).

• By estimating γ we avoid making assumptions about the distribution of E in
each study, allowing the data to influence the choice.
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Simulation Study

• Meta-analysis of 5 studies, with N = 200, 100 in each arm – 500 replications.

• Censoring is assumed random and exponentially distributed (up to 50%).

• Data are generated based on the extended log-gamma model, where the survival
percentile ratio is assumed equal to 2 for every study (reg coef: log(2) = 0.6931).

• The remaining parameters of the error distribution are allowed to take values

q µ b

sim A1 (0.3, 0.6, 0.9, 1.2, 1.5) (7,7,7,7,7) (1,1,1,1,1)

sim A2 (0.3, 0.6, 0.9, 1.2, 1.5) (4,9,7,3,8) (1,1,1,1,1)

sim A3 (0.3, 0.6, 0.9, 1.2, 1.5) (4,9,7,3,8) (1.5,0.6,1.2,0.8,1.1)

sim B1 (-2, -1, 0.3, 1, 2) (7,7,7,7,7) (1,1,1,1,1)

sim B2 (-2, -1, 0.3, 1, 2) (4,9,7,3,8) (1,1,1,1,1)

sim B3 (-2, -1, 0.3, 1, 2) (4,9,7,3,8) (1.5,0.6,1.2,0.8,1.1)
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Stratified Analysis Single Study Analysis

Weib LN LL Weib LN LL ELG

sim A1 0.6950 0.6931 0.6937 0.6944 0.6929 0.6937 0.6928
(0%) (0.0670) (0.0780) (0.0821) (0.0691) (0.0772) (0.0821) (0.0701)

sim A1 0.6971 0.6968 0.6997 0.6960 0.6966 0.6994 0.6966
(20%) (0.0739) (0.0811) (0.0906) (0.0749) (0.0803) (0.0913) (0.0723)

sim A1 0.6893 0.6898 0.6885 0.6891 0.6904 0.6885 0.6909
(40%) (0.0810) (0.0932) (0.1063) (0.0832) (0.0932) (0.1084) (0.0858)

sim A2 0.6947 0.6951 0.6959 0.6947 0.6970 0.6959 0.6945
(0%) (0.0676) (0.0794) (0.0863) (0.0896) (0.0907) (0.0863) (0.0707)

sim A2 0.6936 0.6957 0.6953 0.6947 0.6948 0.6955 0.6950
(20%) (0.0699) (0.0798) (0.0868) (0.1075) (0.1221) (0.1143) (0.0710)

sim A2 0.6973 0.6935 0.6920 0.6956 0.6926 0.6901 0.6939
(40%) (0.0838) (0.0904) (0.1033) (0.1485) (0.1672) (0.1586) (0.0822)

sim A3 0.6955 0.6973 0.6966 0.6941 0.6960 0.6966 0.6955
(0%) (0.0720) (0.0734) (0.0842) (0.0702) (0.0943) (0.0842) (0.0594)

sim A3 0.6925 0.6948 0.6965 0.6984 0.7016 0.7012 0.6919
(20%) (0.0763) (0.0846) (0.0966) (0.1030) (0.1327) (0.1216) (0.0660)

sim A3 0.6941 0.6930 0.6906 0.6941 0.6980 0.6966 0.6909
(40%) (0.0832) (0.0930) (0.1087) (0.1353) (0.1737) (0.1627) (0.0749)
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Stratified Analysis Single Study Analysis

Weib LN LL Weib LN LL ELG

sim A1 0.6950 0.6931 0.6937 0.6944 0.6929 0.6937 0.6928
(0%) (0.0670) (0.0780) (0.0821) (0.0691) (0.0772) (0.0821) (0.0701)

sim A1 0.6971 0.6968 0.6997 0.6960 0.6966 0.6994 0.6966
(20%) (0.0739) (0.0811) (0.0906) (0.0749) (0.0803) (0.0913) (0.0723)

sim A1 0.6893 0.6898 0.6885 0.6891 0.6904 0.6885 0.6909
(40%) (0.0810) (0.0932) (0.1063) (0.0832) (0.0932) (0.1084) (0.0858)

sim A2 0.6947 0.6951 0.6959 0.6947 0.6970 0.6959 0.6945
(0%) (0.0676) (0.0794) (0.0863) (0.0896) (0.0907) (0.0863) (0.0707)

sim A2 0.6936 0.6957 0.6953 0.6947 0.6948 0.6955 0.6950
(20%) (0.0699) (0.0798) (0.0868) (0.1075) (0.1221) (0.1143) (0.0710)

sim A2 0.6973 0.6935 0.6920 0.6956 0.6926 0.6901 0.6939
(40%) (0.0838) (0.0904) (0.1033) (0.1485) (0.1672) (0.1586) (0.0822)

sim A3 0.6955 0.6973 0.6966 0.6941 0.6960 0.6966 0.6955
(0%) (0.0720) (0.0734) (0.0842) (0.0702) (0.0943) (0.0842) (0.0594)

sim A3 0.6925 0.6948 0.6965 0.6984 0.7016 0.7012 0.6919
(20%) (0.0763) (0.0846) (0.0966) (0.1030) (0.1327) (0.1216) (0.0660)

sim A3 0.6941 0.6930 0.6906 0.6941 0.6980 0.6966 0.6909
(40%) (0.0832) (0.0930) (0.1087) (0.1353) (0.1737) (0.1627) (0.0749)
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Stratified Analysis Single Study Analysis

Weib LN LL Weib LN LL ELG

sim B1 0.6880 0.6903 0.6893 0.6865 0.6897 0.6893 0.6893
(0%) (0.3199) (0.0921) (0.1092) (0.4562) (0.0807) (0.1092) (0.0738)

sim B1 0.6739 0.6918 0.6892 0.6564 0.6922 0.6884 0.6891
(20%) (0.0989) (0.0896) (0.1019) (0.1395) (0.0848) (0.1059) (0.0725)

sim B1 0.6965 0.6945 0.6948 0.6940 0.6935 0.6932 0.6944
(40%) (0.0926) (0.0911) (0.1061) (0.1132) (0.0938) (0.1169) (0.0755)

sim B2 0.6922 0.6988 0.6992 0.6873 0.7028 0.6992 0.6964
(0%) (0.3320) (0.0830) (0.1004) (0.2396) (0.1004) (0.1004) (0.0703)

sim B2 0.6978 0.6962 0.6987 0.6961 0.7020 0.7005 0.6985
(20%) (0.1010) (0.0895) (0.1021) (0.1374) (0.1283) (0.1259) (0.0726)

sim B2 0.6913 0.6910 0.6921 0.6814 0.6893 0.6867 0.6939
(40%) (0.0958) (0.0963) (0.1101) (0.1613) (0.1681) (0.1657) (0.0750)

sim B3 0.7178 0.6939 0.6958 0.7168 0.6956 0.6958 0.6929
(0%) (0.5191) (0.0866) (0.1175) (0.5623) (0.1195) (0.1175) (0.0605)

sim B3 0.6884 0.6933 0.6922 0.6866 0.6888 0.6888 0.6967
(20%) (0.1103) (0.0918) (0.1106) (0.1256) (0.1411) (0.1334) (0.0658)

sim B3 0.6987 0.6994 0.7027 0.7041 0.7043 0.7047 0.6977
(40%) (0.0937) (0.0946) (0.1127) (0.1370) (0.1632) (0.1577) (0.0667)
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Coverage Probabilities

Stratified Analysis Single Study Analysis

Weib LN LL Weib LN LL ELG

sim A1 (0%) 0.952 0.956 0.956 0.94 0.96 0.958 0.96

sim A1 (20%) 0.934 0.954 0.954 0.934 0.958 0.956 0.964

sim A1 (40%) 0.952 0.95 0.946 0.952 0.952 0.948 0.962

sim A2 (0%) 0.93 0.938 0.934 0.998 0.998 0.998 0.946

sim A2 (20%) 0.958 0.952 0.958 1 0.996 0.998 0.964

sim A2 (40%) 0.952 0.956 0.962 0.982 0.988 0.992 0.964

sim A3 (0%) 0.944 0.962 0.958 1 1 1 0.958

sim A3 (20%) 0.944 0.956 0.956 1 0.998 0.998 0.962

sim A3 (40%) 0.954 0.946 0.942 0.998 1 0.998 0.958

sim B1 (0%) 0.95 0.932 0.93 0.502 0.98 0.966 0.952

sim B1 (20%) 0.924 0.956 0.948 0.89 0.974 0.974 0.956

sim B1 (40%) 0.93 0.964 0.95 0.94 0.986 0.978 0.958

sim B2 (0%) 0.51 0.954 0.954 0.87 1 1 0.96

sim B2 (20%) 0.916 0.96 0.952 0.992 1 1 0.954

sim B2 (40%) 0.94 0.954 0.942 0.986 1 1 0.946

sim B3 (0%) 0.416 0.976 0.956 0.57 1 1 0.976

sim B3 (20%) 0.914 0.958 0.948 0.992 0.996 0.992 0.954

sim B3 (40%) 0.946 0.954 0.974 0.996 0.99 0.998 0.954
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Summary

• We introduce a new measure for treatment efficacy.

• A parametric approach for meta-analysis is described, where all the studies
contribute to the estimation of the common treatment effect (qk) through
likelihood L(qk).

• The structure of the data in the individual studies is taken into account.

• Covariates are easily incorporated.

• Extension to random treatment effects is possible.
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Hierarchical Model

So far we have considered the model

Yij = µi + vkxij + biE

Prior distributions for µi, vk and bi,

which describes the fixed effects model. An obvious extension is

Yij = µi + vikxij + biE

vik = vk + gi

gi ∼ N(0, τ2)

Prior distributions for µi, bi, vk and τ,

where vk = log(qk) is the average log-PR for given k.
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