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Motivation

The PH structure is the dominating assumption in individual patient data (IPD)
meta-analysis of time-to-event endpoints. However:

e The simplicity with which this model is fit, together with the easy interpretation
of the results, makes it "too” popular

e The PH could be seen as a rather restrictive assumption, since it is imposed on
a number of studies and not just one

e Not many alternatives to the PH model have been suggested for the analysis of
IPD

e There are other issues that render time-to-event data different to other types of
data used in meta-analyses (potentially informative censoring, competing risks)
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Measure of Treatment Efficacy

By considering data structures other than the PH, the log-hazard ratio may no
longer be suitable as the main measure of treatment effect.

Therefore, we introduce the ratio of the k!* percentiles of the survival
distributions of the two groups under investigation

k" percentile of treatment group

i — :
k" percentile of control group

as the quantity of interest within the meta-analysis framework [k € (0, 1)].

This quantity is defined for a binary covariate, like the treatment identifier, and
provides a relative measure for the treatment effect at each point on the survival
probability axes.
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Parametric Model

1. Consider a two parameter distribution f(t; b, u|x), where b is the shape parameter
and if x is the treatment covariate then: u = u + vz.

2. lIrrespectively of the choice of f(), we can reparameterize it so that

U = g(QICv bv M)

3. Thus, every distribution f(¢;b,ulz) can be re-expressed as f(t;b, i, qx|x), with
¢ now being part of the parameterization of the distribution, for given k.

= Quantity qx is of interest for meta-analysis purposes. It has: (i) clear
interpretation and (i¢) its scale does not depend on the choice of distribution f()
or indeed any other features of the data being analyzed.
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Likelihood Inference

e Assume that f;(t;b;,u;;|x) is the distribution that fits the data in study i
(¢=1...N,j=1...n;), where: u;; = p; + v;x;;.

e By reparameterization, the distribution of study i becomes f;(t; b;, ps, g&.|xi;).

e Allow ¢! = g, to be the same across studies (common treatment effect).
e The remaining parameters are allowed to be study specific.

e Then, for fixed effects, the likelihood function takes the form

N g
1=175=1

where I;; is the usual indicator variable for terminal events.
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Log-Location-Scale Models
If Y = logT', we can express the LLS as a regression model
Y =pu+vx+0FE

where E ~ a suitable pdf. Simple calculations reveal that

logth — u — v log th — tk
So( 54 H )Zk:SO( 5% M) = qk:t—i:exp(v).
2

b b
1. LLS are AFT models, and g is equal to the acceleration factor.
2. If fi(t;b;,u;5|z) is of a LLS structure, then reparameterization is as simple

as qr = exp(v), which means that we effectively set the treatment regression
coefficients to be common across studies.

Fotios Siannis, MRC-BSU, Cambridge



The Extended Log-Gamma Model

A general case would be the regression model with error p.d.f.

{ (727 exply 2w — exp(rw)}/C(73) y #0
(27) 72 exp(—5w?) y=0"

Y —u—vx
b :

where w =

e This distribution is an extension to the log-gamma model by allowing v < 0, with
the p.d.f. at —v being a reflection about the origin of that at v [Prentice(1974)].

e Special cases for T' = e¥ are (i) Weibull (v = 1), (ii) exponential (v =b = 1),
(4i) log-normal (v = 0), (iv) gamma (b = 1,7 > 1), (v) generalized gamma
(v > 0) and (i) reciprocal Weibull (p = —1).

e By estimating v we avoid making assumptions about the distribution of E in
each study, allowing the data to influence the choice.
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Simulation Study

e Meta-analysis of 5 studies, with N = 200, 100 in each arm — 500 replications.
e Censoring is assumed random and exponentially distributed (up to 50%).

e Data are generated based on the extended log-gamma model, where the survival
percentile ratio is assumed equal to 2 for every study (reg coef: log(2) = 0.6931).

e The remaining parameters of the error distribution are allowed to take values

q % b
sim Al || (0.3,06,009 12 15) | (7.7.7.7.7) (1,1,1,1,1)
sim A2 || (03,06, 09 12 15) | (49738) (1,1,1,1,1)
sim A3 || (0.3,06,09 12 15) | (49738) | (150.6,1.2,08,1.1)
sim B1 (-2,-1,03, 1, 2) (7,7,7.7.7) (1,1,1,1,1)
sim B2 (-2,-1,03, 1, 2) (4,9,7,3,8) (1,1,1,1,1)
sim B3 (-2,-1,03, 1, 2) (4,9,73.8) | (1.5,0.6,1.2,0.8,1.1)
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Stratified Analysis Single Study Analysis
Weib LN LL Weib LN LL ELG
sim Al 0.6950 0.6931 0.6937 0.6944 0.6929 0.6937 0.6928
(0%) (0.0670) (0.0780) (0.0821) (0.0691) (0.0772) (0.0821) (0.0701)
sim Al 0.6971 0.6968 0.6997 0.6960 0.6966 0.6994 0.6966
(20%) (0.0739) (0.0811) (0.0906) (0.0749) (0.0803) (0.0913) (0.0723)
sim Al 0.6893 0.6898 0.6885 0.6891 0.6904 0.6885 0.6909
(40%) (0.0810) (0.0932) (0.1063) (0.0832) (0.0932) (0.1084) (0.0858)
sim A2 0.6947 0.6951 0.6959 0.6947 0.6970 0.6959 0.6945
(0%) (0.0676) (0.0794) (0.0863) (0.0896) (0.0907) (0.0863) (0.0707)
sim A2 0.6936 0.6957 0.6953 0.6947 0.6948 0.6955 0.6950
(20%) (0.0699) (0.0798) (0.0868) (0.1075) (0.1221) (0.1143) (0.0710)
sim A2 0.6973 0.6935 0.6920 0.6956 0.6926 0.6901 0.6939
(40%) (0.0838) (0.0904) (0.1033) (0.1485) (0.1672) (0.1586) (0.0822)
sim A3 0.6955 0.6973 0.6966 0.6941 0.6960 0.6966 0.6955
(0%) (0.0720) (0.0734) (0.0842) (0.0702) (0.0943) (0.0842) (0.0594)
sim A3 0.6925 0.6948 0.6965 0.6984 0.7016 0.7012 0.6919
(20%) (0.0763) (0.0846) (0.0966) (0.1030) (0.1327) (0.1216) (0.0660)
sim A3 0.6941 0.6930 0.6906 0.6941 0.6980 0.6966 0.6909
(40%) (0.0832) (0.0930) (0.1087) (0.1353) (0.1737) (0.1627) (0.0749)
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Stratified Analysis Single Study Analysis
Weib LN LL Weib LN LL ELG
sim Al 0.6950 0.6931 0.6937 0.6944 0.6929 0.6937 0.6928
(0%) (0.0670) (0.0780) (0.0821) (0.0691) (0.0772) (0.0821) (0.0701)
sim Al 0.6971 0.6968 0.6997 0.6960 0.6966 0.6994 0.6966
(20%) (0.0739) (0.0811) (0.0906) (0.0749) (0.0803) (0.0913) (0.0723)
sim Al 0.6893 0.6898 0.6885 0.6891 0.6904 0.6885 0.6909
(40%) (0.0810) (0.0932) (0.1063) (0.0832) (0.0932) (0.1084) (0.0858)
sim A2 0.6947 0.6951 0.6959 0.6947 0.6970 0.6959 0.6945
(0%) (0.0676) (0.0794) (0.0863) (0.0896) (0.0907) (0.0863) (0.0707)
sim A2 0.6936 0.6957 0.6953 0.6947 0.6948 0.6955 0.6950
(20%) (0.0699) (0.0798) (0.0868) (0.1075) (0.1221) (0.1143) (0.0710)
sim A2 0.6973 0.6935 0.6920 0.6956 0.6926 0.6901 0.6939
(40%) (0.0838) (0.0904) (0.1033) (0.1485) (0.1672) (0.1586) (0.0822)
sim A3 0.6955 0.6973 0.6966 0.6941 0.6960 0.6966 0.6955
(0%) (0.0720) (0.0734) (0.0842) (0.0702) (0.0943) (0.0842) (0.0594)
sim A3 0.6925 0.6948 0.6965 0.6984 0.7016 0.7012 0.6919
(20%) (0.0763) (0.0846) (0.0966) (0.1030) (0.1327) (0.1216) (0.0660)
sim A3 0.6941 0.6930 0.6906 0.6941 0.6980 0.6966 0.6909
(40%) (0.0832) (0.0930) (0.1087) (0.1353) (0.1737) (0.1627) (0.0749)
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Stratified Analysis Single Study Analysis
Weib LN LL Weib LN LL ELG
sim Bl 0.6880 0.6903 0.6893 0.6865 0.6897 0.6893 0.6893
(0%) (0.3199) (0.0921) (0.1092) (0.4562) (0.0807) (0.1092) (0.0738)
sim Bl 0.6739 0.6918 0.6892 0.6564 0.6922 0.6884 0.6891
(20%) (0.0989) (0.0896) (0.1019) (0.1395) (0.0848) (0.1059) (0.0725)
sim B1 0.6965 0.6945 0.6948 0.6940 0.6935 0.6932 0.6944
(40%) (0.0926) (0.0911) (0.1061) (0.1132) (0.0938) (0.1169) (0.0755)
sim B2 0.6922 0.6988 0.6992 0.6873 0.7028 0.6992 0.6964
(0%) (0.3320) (0.0830) (0.1004) (0.2396) (0.1004) (0.1004) (0.0703)
sim B2 0.6978 0.6962 0.6987 0.6961 0.7020 0.7005 0.6985
(20%) (0.1010) (0.0895) (0.1021) (0.1374) (0.1283) (0.1259) (0.0726)
sim B2 0.6913 0.6910 0.6921 0.6814 0.6893 0.6867 0.6939
(40%) (0.0958) (0.0963) (0.1101) (0.1613) (0.1681) (0.1657) (0.0750)
sim B3 0.7178 0.6939 0.6958 0.7168 0.6956 0.6958 0.6929
(0%) (0.5191) (0.0866) (0.1175) (0.5623) (0.1195) (0.1175) (0.0605)
sim B3 0.6884 0.6933 0.6922 0.6866 0.6888 0.6888 0.6967
(20%) (0.1103) (0.0918) (0.1106) (0.1256) (0.1411) (0.1334) (0.0658)
sim B3 0.6987 0.6994 0.7027 0.7041 0.7043 0.7047 0.6977
(40%) (0.0937) (0.0946) (0.1127) (0.1370) (0.1632) (0.1577) (0.0667)
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Coverage Probabilities

Stratified Analysis

Single Study Analysis

Weib | LN LL || Weib | LN LL ELG
sim A1 (0%) || 0.952 | 0.956 | 0.956 || 0.94 | 096 | 0.958 || 0.96
sim Al (20%) || 0.934 | 0.954 | 0.954 || 0.934 | 0.958 | 0.956 | 0.964
sim Al (40%) || 0.952 | 0.95 | 0.946 || 0.952 | 0.952 | 0.948 | 0.962
sim A2 (0%) 0.93 | 0938 | 0.934 || 0.998 | 0.998 | 0.998 || 0.946
sim A2 (20%) || 0.958 | 0.952 | 0.958 1 0.996 | 0.998 || 0.964
sim A2 (40%) || 0.952 | 0.956 | 0.962 || 0.982 | 0.988 | 0.992 | 0.964
sim A3 (0%) || 0.944 | 0.962 | 0.958 1 1 1 0.958
sim A3 (20%) || 0.944 | 0.956 | 0.956 1 0.998 | 0.998 || 0.962
sim A3 (40%) || 0.954 | 0.946 | 0.942 || 0.998 1 0.998 || 0.958
sim B1 (0%) 095 | 0932 | 0.93 | 0502 [ 0.98 | 0.966 || 0.952
sim B1 (20%) || 0.924 | 0.956 | 0.948 || 0.89 | 0.974 | 0.974 || 0.956
sim B1 (40%) || 093 | 0.964 | 095 || 0.94 | 0.986 | 0.978 || 0.958
sim B2 (0%) 051 | 0.954 | 0.954 || 0.87 1 1 0.96
sim B2 (20%) || 0.916 | 0.96 | 0.952 || 0.992 1 1 0.954
sim B2 (40%) || 0.94 | 0.954 | 0.942 || 0.986 1 1 0.946
sim B3 (0%) || 0.416 | 0.976 | 0.956 || 0.57 1 1 0.976
sim B3 (20%) || 0.914 | 0.958 | 0.948 || 0.992 | 0.996 | 0.992 | 0.954
sim B3 (40%) || 0.946 | 0.954 | 0.974 || 0.996 | 0.99 | 0.998 | 0.954
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Summary

e We introduce a new measure for treatment efficacy.

e A parametric approach for meta-analysis is described, where all the studies

contribute to the estimation of the common treatment effect (gqx) through
likelihood L(qx).

e [ he structure of the data in the individual studies is taken into account.
e Covariates are easily incorporated.

e Extension to random treatment effects is possible.

Fotios Siannis, MRC-BSU, Cambridge 14



Hierarchical Model
So far we have considered the model

Yij = i +vgij + 0iF

Prior distributions for u;, v and b;,

which describes the fixed effects model. An obvious extension is

Yij = i + vip%ij + 0B
Vik = Vg + i
gi ~ N(07 7_2)

Prior distributions for u;, b;, vy and T,

where v = log(qx) is the average log-PR for given k.
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