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Abstract
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physical events. We study localization systems of quantum events

structures by means of Gtothendieck topologies on the base category
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ture, such that the global partial order of quantum events fibers over
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1 Introduction

Physical observation presupposes, at the fundamental level, the existence

of a localization process for extracting information related with the local

behaviour of a physical system. On the basis of a localization process it is

possible to discern observable events and assign an individuality to them.

Generally, a localization process is being co-implied by the preparation of

suitable local reference domains for measurement. These domains identify

concretely the kind of reference loci used for observation of events. The

methodology of observation is being effectuated by the functioning of events-

registering measurement devices, that operate locally within the contexts

of the prepared reference loci. In this general setting, it is important to

notice that registering an event, that has been observed in the context of a

reference locus, is not always equivalent to conferring a numerical identity

to it, by means of a real value corresponding to a physical attribute. On the

contrary, the latter is only a limited case of the localization process, when, in

particular, it is assumed that all reference loci can be contracted to points.

This is exactly the crucial assumption underlying the employment of the set-

theoretic structure of the real line as a model of the physical “continuum”.

The semantics of the latter is associated with the codomain of valuation of

physical attributes used for registering events. It is instructive to clarify that
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the set-theoretic model of the real line stands for a structure of points that

are independent and possess the property of sharp distinguishability.

The primary motivation of this paper concerns the possibility of math-

ematically implementing a general localization process referring to physical

observation, that is not necessarily based on the existence of an underlying

structure of points on the real line. For this purpose, the focus is shifted

from point-set to topological localization models of ordered global events

structures. In particular, the central aim of this study targets the problem

of representation of quantum logics in terms of Boolean localization systems.

The notion of a localization system is the referent of a homologous operational

physical procedure of observation. The latter is defined by the requirement

that the reference loci used for observational purposes, together with their

structural transformations, should form a mathematical category. The de-

velopment of the conceptual and technical machinery of localization systems

for generating non-trivial global events structures, as it will be explicitly

demonstrated to be the case for quantum logics, effectuates a transition in

the semantics of events from a set-theoretic to a sheaf-theoretic one. This

is a crucial semantic difference that characterizes the present approach in

comparison to the vast literature on quantum measurement and quantum

logic.

The plan of development of the paper is the following: In Section 2, we
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introduce the notion of abstract localization systems and explain their func-

tional role in a category-theoretic environment. Moreover, we motivate the

use of Boolean localization systems for the generation of quantum events

structures. In Section 3, we develop the construction of classical topologi-

cal sheaves and explain their physical semantics in terms of fibered events

structures. In Section 4, we define generalized topological covering systems

by means of covering sieves on a base categorical environment of reference

loci. The covering sieves are interpreted physically as generalized measures of

localization of events. In Section 5, we define the categories of quantum and

Boolean events algebras respectively, and furthermore, construct the func-

tor of Boolean frames of a quantum events algebra. In Section 6, we apply

the machinery of generalized topological covering systems for the analysis

and generation of quantum events algebras by means of Boolean localization

systems. In particular, we prove that the functor of Boolean frames of a

quantum events algebra, is a sheaf for the Grothendieck topology of epimor-

phic families on the base category of Boolean localizing contexts. In Section

7, we formulate and prove a representation of quantum events by means of

equivalence classes in a structure sheaf of Boolean coefficients, associated

with local Boolean contexts of measurement. Finally, we conclude in Section

8.
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2 Abstract Localization Systems

The general purpose of abstract localization systems amounts to filtering

the information contained in a global structure of ordered physical events,

through a concretely specified categorical environment that is determined

by a homologous operational physical procedure. The latter specifies the

kind of loci of variation, or equivalently, reference contexts, that are used for

observation of events. These contexts play the role of generalized reference

frames, such that reference to concrete events of the specified categorical kind

can be made possible with respect to them. It is necessary to emphasize

that the kind of loci of variation signifies exactly the concrete categorical

environment employed operationally, for instance, the category of open sets,

ordered by inclusion, in a topological measurement space. In this sense,

localization systems can be precisely conceived as a generalization of the

notion of functional dependence. In the trivial case, the only locus is a point

serving as a unique idealized measure of localization, and moreover, the only

kind of reference frame is the one attached to a point.

Since an underlying structure of points is not assumed for localization

purposes, the functioning of a localization system in a global structure of

physical events should be implemented by other means. The basic consti-

tutive premise of our scheme is that the reference loci together with their
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structural transformations form a category. Thus, the localization process

should be understood in terms of an action of the category of reference loci

on a set-theoretic global structure of physical events. The latter, is then par-

titioned into sorts parameterized by the objects of the category of reference

loci. In this sense, the functioning of a localization system can be represented

by means of a fibered construct, understood geometrically, as a variable set

over the base category of reference loci. The fibers of this construct may be

thought, in analogy to the case of the action of a group on a set of points, as

the “generalized orbits” of the action of the category of loci. The notion of

functional dependence incorporated in this action, forces the ordered struc-

ture of physical events to fiber over the base category of reference loci. It is

instructive to remark at this point, that ordered event structures have been

of considerable interest in the literature of both quantum gravity and quan-

tum computation research, and thus, the functioning of localization systems

is also important, both conceptually and technically, for these disciplines as

well.

From a physical perspective, the meaningful representation of a global

ordered structure of events as a fibered construct, in terms of localization

systems, should incorporate the requirement of uniformity. The latter may

be formulated as a physical principle according to the following definition:

Principle of Uniformity: For any two events observed over the same
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domain of measurement, the structure of all reference frames that relate to

the first cannot be distinguished in any possible way from the structure of

frames relating to the second.

According to this principle, all the localized events within any particular

reference locus in a localization system should be uniformly equivalent to

each other. The compatibility of the localization process with the principle

of uniformity, demands that the relation of (partial) order in a global set-

theoretic universe of events is induced by lifting appropriately a structured

family of arrows from the base category of reference loci to the fibers.

If we take together the requirements enforcing a representation of a global

partially ordered structure of physical events, as a uniform fibered construct

over a base category of reference loci, localization systems of the former are

precisely modeled in the syntactical terms of sheaves. In this perspective,

the transition in the semantics of physical events from a set-theoretic to

a sheaf-theoretic one is completely justified, as it will become clear in the

forthcoming Sections.

Before proceeding in the technical exposition of the mathematical struc-

tures involved it is instructive to discuss briefly an example. This refers to

the case of localization on a global partial order of physical events over a

base categorical environment O(X), consisting of open sets U , of a topo-

logical measurement space X, the arrows between them being inclusions.
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In this case, the reference loci of the operational environment employed for

observation, are all the open sets U of X, partially ordered by inclusion.

Equivalently, the open sets inclusions U ↪→ X are considered as varying

base reference frames of open loci over which the global partial order of

events fibers. We may use the suggestive term “local observer” to refer to

an events-registering device associated with a reference locus U of the base

category O(X). Note that, the meaning of “local” is understood with re-

spect to the topology of X. Then, a “local observer”, in an measurement

situation taking place over a reference locus U , individuates events by means

of local real-valued observables, being continuous maps s : U → R. Thus,

the “local observers” do not have a global perception of continuous functions

f : X → R, but rather register events localized over the associated refer-

ence loci in terms of local observables. Of course, appropriate conditions are

further needed for pasting their findings together, that as we shall explain

in the sequel, are the necessary and sufficient conditions for a topological

sheaf-theoretic structure. Intuitively, at this stage we notice that, in the

implemented fibered construct, the viewpoint offered by a reference locus is

not that of a globally defined real valued continuous function, but that of a

continuously variable real number over the associated open locus. The latter

is called a local observable section and is interpreted physically as a localized

and accordingly individuated event.
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In quantum theory, the global structures of quantum events are tech-

nically characterized as orthomodular orthoposets. The original quantum

logical formulation of quantum theory [1, 2] depends in an essential way on

the identification of events, or propositions, with projection operators on a

complex Hilbert space. A non-classical, non-Boolean events structure is ef-

fectively induced which has its origins in quantum theory [3]. On the other

side, in every concrete quantum measurement context, the set of events that

have been actualized in this context forms a Boolean algebra. This fact moti-

vates the assumption that a Boolean algebra in the poset of quantum events,

could be interpreted appropriately as a generalized reference frame, relative

to which a measurement result could be consequently coordinatized. There-

fore, it seems reasonable in this case, to associate the previously described

functioning of localization systems with systems of local Boolean contexts

of quantum measurement. We will show in the sequel, that this task can

be accomplished by defining generalized topological covering systems on the

base category of Boolean contexts, that remarkably constitute Grothendieck

topologies. According to the interpretation put forward, we shall obtain a

well-defined notion of localized events in a global quantum structure, varying

over a multiplicity of Boolean covering domains determined by the topological

categorical environment they share. The mathematical scheme for the im-

plementation of our model will be based on categorical and sheaf-theoretic
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concepts and methods [4-8]. Contextual category-theoretic approaches to

quantum structures have been also considered, from a different viewpoint

in [9,10], and discussed in [11,12]. A remarkable conceptual affinity to the

viewpoint of the present paper, although not based on categorical methods,

can be found in references [13,14]. According to these authors, quantiza-

tion of a proposition of classical physics is equivalent to interpreting it in

a Boolean extension of a set theoretical universe, where B is a complete

Boolean algebra of projection operators on a Hilbert space. Finally, for a

general mathematical and philosophical discussion of sheaves, variable sets,

and related structures, the interested reader should consult reference [15].

3 Classical Topological Sheaves

Let us consider the category of open sets O(X) in a topological measurement

space, partially ordered by inclusion. If O(X)op is the opposite category of

O(X), and Sets denotes the category of sets, we define:

Definition: The functor category of presheaves on varying reference

contexts U , identified by open sets of a topological measurement space X,

denoted by SetsO(X)op

, admits the following objects-arrows description: The

objects of SetsO(X)op

are all functors P : O(X)op
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq Sets, whereas, the
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arrows are all natural transformations between such functors.

Definition: Each object P in SetsO(X)op

is a contravariant set-valued

functor on O(X), called a presheaf of sets on O(X).

Remark: For each base open set U of O(X), P(U) is a set, and for each

arrow F : V qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq U , P(F ) : P(U) qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq P(V) is a set-function. If P is a presheaf

on O(X) and p ∈ P(U), the value P(F )(p) for an arrow F : V qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq U in O(X)

is called the restriction of p along F and is denoted by P(F )(p) := p · F .

Remark: A presheaf P of SetsO(X)op

may be understood as a right action

of O(X) on a set. This set is partitioned into sorts parameterized by the ob-

jects of O(X), and has the following property: If F : V qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq U is an inclusion

arrow in O(X) and p is an element of P of sort U , then p · F is specified as

an element of P of sort V . Such an action P is referred as a O(X)-variable

set.

Definition: A natural transformation τ from P to Q is a mapping

assigning to each open locus V in O(X) a morphism τV from P(V ) to Q(V )

in Sets, such that for every arrow F : V → U in O(X) the following diagram

in Sets commutes;
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P(U) τU qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq Q(U)

P(F )

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

Q(F )

P(V ) τV qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq Q(V )

That is, for every arrow F : V → U in O(X) we have:

Q(F ) ◦ τU = τV ◦P(F )

Definition: The category of elements of a presheaf P, denoted by

∫
(P,O(X)), admits the following objects-arrows description: The objects of

∫
(P,O(X)) are all pairs (U, p), with U in O(X) and p ∈ P(U). The arrows of

∫
(P,O(X)), that is, (Ú , ṕ)→(U, p), are those morphisms Z : Ú→U in O(X),

such that ṕ = P(Z)(p) := p · Z.

Remark: Notice that the arrows in
∫
(P,O(X)) are those morphisms

Z : Ú→U in the base category O(X), that pull a chosen element p ∈ P(U)

back into ṕ ∈ P(Ú).

Definition: The category of elements
∫
(P,O(X)) of a presheaf P, to-

gether with, the projection functor
∫

P :
∫
(P,O(X))→O(X) is called the

split discrete fibration induced by P, where O(X) is the base category

of the fibration.
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Remark: We note that the fibers are categories in which the only arrows

are identity arrows. If U is a open reference locus of O(X), the inverse image

under
∫

P of U is simply the set P(U), although its elements are written as

pairs so as to form a disjoint union. The construction of the fibration induced

by P, is an instance of the general Grothendieck construction [8].

Remark: The split discrete fibration induced by P, where O(X) is the

base category of the fibration, provides a well-defined notion of a uniform

homologous fibered structure in the following sense: Firstly, by the arrows

specification defined in the category of elements of P, any element p, deter-

mined over the reference locus U , is homologously related with any other

element ṕ over the reference locus Ú , and so on, by variation over all the

reference loci of the base category. Secondly, all the elements p of P, of the

same sort U , viz. determined over the same reference locus U , are uniformly

equivalent to each other, since all the arrows in
∫
(P,O(X)) are induced by

lifting arrows from the base O(X).

From a physical viewpoint, the purpose of introducing the notion of a

presheaf P on O(X), in the environment of the functor category SetsO(X)op

,

is the following: We identify an element of P of sort U , that is p ∈ P(U), with

an event observed by means of a physical procedure over the reference locus

U , being an open set of a topological measurement space X. This identifica-
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tion forces the interrelations of observed events, over all reference loci of the

base category O(X), to fulfill the requirements of a uniform and homologous

fibered structure, explained in detail previously. The next crucial step of the

construction, aims to the satisfaction of the following physical requirement:

Since the operational specification of measurement environments assumed

their existence locally, the information gathered about local events in dif-

ferent measurement situations should be collated together by appropriate

means. Mathematically, this requirement is implemented by the method-

ology of sheafification or localization of the presheaf P. In our context of

enquiry, sheafification represents the process of conversion of the category of

element-events of the presheaf P into a category of continuous real-valued

functions, that is local observables, identified with the local sections of the

corresponding sheaf.

Definition: A sheaf is an arbitrary presheaf P that satisfies the following

condition: If U =
⋃

aUa, Ua in O(X), and elements pa ∈ P(Ua), a ∈ I:index

set, are such that for arbitrary a, b ∈ I, it holds:

pa | Uab = pb | Uab

where, Uab := Ua
⋂

Ub, and the symbol | denotes the operation of restriction

on the corresponding open domain, then there exists a unique element p ∈

P(U), such that p | Ua = pa for each a in I. Then an element of P(U) is
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called a section of the sheaf P over the open domain U . The sheaf condition

means that sections can be glued together over the reference loci of the base

category O(X).

Proposition: If A is the contravariant functor that assigns to each open

locus U ⊂ X, the set of all real-valued continuous functions on U , then A is

actually a sheaf.

Proof: First of all, it is instructive to clarify that the specification of a

topology on a measurement space X is solely used for the definition of the

continuous functions on X; in the present case the continuous functions from

any open locus U in X to the real line R. We notice that the continuity

of each function f : U → R can be determined locally. This property

means that continuity respects the operation of restriction to open sets, and

moreover that, continuous functions can be collated in a unique manner, as

it is required for the satisfaction of the sheaf condition. More concretely;

If f : U → R is a continuous function and V ⊂ U is an open set in

the topology, then the function f restricted to V is also continuous. The

operation of restriction f 7→ f | V , corresponds to a morphism of sets

A(U) qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq A(V ). Moreover, if W ⊂ V ⊂ U stand for three nested open sets

in the topology, partially ordered by inclusion, the operation of restriction is
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transitive. Thus, the assignments;

U 7→ A(U)

{V ↪→ U} 7→ {A(U) qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq A(V ) by f 7→ f | V }

amount to the definition of a presheaf functor A on O(X), in the category

SetsO(X)op

. Furthermore, let us consider that U is covered by open sets Ua,

such that U =
⋃

aUa, Ua in O(X), and also that, the I-indexed family of

functions fa : Ua → R consists of continuous functions for all a in I. Then,

due to the local determination of continuity, there is at most one continuous

real-valued function f : U → R, with restrictions f | Ua := fa for all a in

the index set I. Nevertheless, such a continuous function f : U → R exists,

if and only if, the fa can be collated together on all the overlapping domains

Ua
⋂

Ub := Uab, such that:

fa | Uab = fb | Uab

Consequently, the presheaf of sets A, viz. the presheaf of continuous

real-valued functions on O(X), satisfies the sheaf condition.

Remark: Because of the fact that the presheaf A, is actually a sheaf,

we are allowed to make a further identification with a physical content: We

identify an element of A of sort U , that is a local section of A, with an
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event observed by means of a continuous physical procedure over the refer-

ence locus U . Equivalently, we represent an event observed over U , by means

of a real-valued continuous function f : U → R, that is a local observable,

such that the operations of restriction and collation as above, are being sat-

isfied. The sheaf-theoretic qualification of a uniform and homologous fibered

structure of events makes the latter also coherent in terms of compatibility

of the information content it carries, under the operations of restriction and

collation.

Remark: Actually, A is a sheaf of algebras over the field of the reals

R, because it is obvious that each set of sort U , A(U), is an R-algebra

under pointwise sum, product, and scalar multiple; whereas the morphisms

A(U) qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq A(V ) stand for R-linear morphisms of rings. In this algebraic

setting, the sheaf condition means that the following sequence of R-algebras

of local observables is left exact;

0 → A(U) → ∏
a
A(Ua) →

∏
a,b

A(Uab)

Remark: It is instructive to explain the construction of the inductive

limit of R-algebras A(U), denoted by Colim[A(U)], as follows:

Let us consider that x is a point of the topological measurement space X.

Moreover, let K be a set consisting of open subsets of X, containing x, such
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that the following condition holds: For any two open reference domains U , V ,

containing x, there exists an open set W ∈ K, contained in the intersection

domain U
⋂

V . We may say that K constitutes a basis for the system of

open reference domains around x. We form the disjoint union of all A(U),

denoted by;

D(x) :=
∐

U∈K
A(U)

Then we can define an equivalence relation in D(x), by requiring that f ∼ g,

for f ∈ A(U), g ∈ A(V ), provided that, they have the same restriction to a

smaller open set contained in K. Then we define;

ColimK [A(U)] := D(x)/∼K

Furthermore, if we denote, the inclusion mapping of V into U by;

iV,U : V ↪→ U

and also, the restriction morphism of sets from U to V by;

%U,V : A(U) qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq A(V )

we can introduce well-defined notions of addition and scalar multiplication on

the set ColimK [A(U)], making it into an R-module, or even an R-algebra,

as follows:

[fU ] + [gV ] := [%U,W (fU) + %V,W (gV )]
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µ[gV ] := [µgV ]

where, fU and gV are elements in A(U) and A(V ), that is, real-valued con-

tinuous functions defined over the open domains U and V respectively, and

µ ∈ R. Now, if we consider that K and Λ are two bases for the system

of open sets domains around x ∈ X, we can show that there are canonical

isomorphisms between ColimK [A(U)] and ColimΛ[A(U)]. In particular, we

may take all the open subsets of X containing x: Indeed, we consider first

the case when K is arbitrary and Λ is the set of all open subsets containing

x. Then Λ ⊃ K induces a morphism;

ColimK [A(U)] → ColimΛ[A(U)]

which is an isomorphism, since whenever V is an open subset containing x,

there exists an open subset U in K contained in V . Since we can repeat that

procedure for all bases of the system of open sets domains around x ∈ X,

the initial claim follows immediately.

Definition: The stalk of A at the point x ∈ X, denoted by Ax, is defined

as the inductive limit of R-algebras A(U);

ColimK [A(U)] :=
∐

U∈K
A(U)/∼K

where, K is a basis for the system of open reference domains around x, and

∼K denotes the equivalence relation of restriction within an open set in K.
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Note that the definition is independent of the chosen basis K.

Remark: For an open reference domain W containing the point x, we

obtain an R-linear morphism of A(W ) into the stalk at the point x;

iW,x : A(W ) → Ax

For an element f ∈ A(W ) its image iW,x(f) := fx is called the germ of f at

the point x.

Remark: The fibered structure that corresponds to the sheaf of real-

valued continuous functions on a topological measurement space X is a topo-

logical bundle defined by the continuous mapping ϕ : A → X, where;

A =
∐

x∈X
Ax

ϕ−1(x) = Ax = Colim{x∈U}[A(U)]

The mapping ϕ is locally a homeomorphism of topological spaces. The topol-

ogy in A is defined as follows: for each f ∈ A(U), the set {fx, x ∈ U} is open,

and moreover, an arbitrary open set is a union of sets of this form.

Remark: In the physical state of affairs, we remind that we have identified

an element of A of sort U , that is a local section of A, with an event f

observed by means of a continuous physical procedure over the reference
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locus U . Then the equivalence relation, used in the definition of the stalk

Ax at the point x ∈ X is interpreted as follows: Two events f ∈ A(U),

g ∈ A(V ), induce the same contextual information at x in X, provided that,

they have the same restriction to a smaller open locus contained in the basis

K. Then, the stalk Ax is the set containing all contextual information at x,

that is the set of all equivalence classes. Moreover, the image in the stalk

Ax of an event f ∈ A(U), that is the equivalence class of this event f , is

precisely the germ of f at the point x.

Remark: The sheaf of real-valued continuous functions on a topological

measurement space X is an object in the functor category of sheaves Sh(X)

on varying reference loci U , being open sets of a topological measurement

space X, partially ordered by inclusion. The morphisms in Sh(X) are all

natural transformations between sheaves. It is instructive to notice that

a sheaf makes sense only if the base category of reference loci is specified,

which is equivalent in our context to the determination of a topology on an

underlying measurement space X. Once this is accomplished, a sheaf can be

thought of as measuring the space X. The functor category of sheaves Sh(X),

provides an exemplary case of a construct known as topos. A topos can be

conceived as a local mathematical framework corresponding to a generalized

model of set theory or as a generalized space [6-8].
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Remark: The particular significance of the sheaf of real-valued continuous

functions on X, that we have used as a uniform homologous and coherent

fibered structure of local observables for modeling an “events-continuum”,

according to the physical requirements posed in Section 2, is due to the fol-

lowing isomorphism [6]: The sheaf of continuous real-valued functions on X,

is isomorphic to the object of Dedekind real numbers in the topos of sheaves

Sh(X). The aforementioned isomorphism validates the physical intuition of

considering a local observable as a continuously variable real number over its

locus of definition.

4 Generalized Topological Covering Systems

Until now, it has become evident that the sheaf-theoretic fibered model of

a globally partially ordered structure of physical events is not based on an

underlying structure of points. On the contrary, the fundamental entities are

the base reference contexts, identified previously with the open sets of a topo-

logical measurement space X. The basic intuition behind their functioning

is related with the expectation that the reference domains of the base cate-

gory, in that fibered construct, serve the purpose of generalizing the notion

of localization of events. In this sense, the unique measure of localization of

the set-theoretical model, being a point, is substituted by a variety of local-
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ization measures, instantiated by the open sets of the base category ordered

by inclusion. In the latter context, a point-localization measure, is identified

precisely with the ultrafilter of open set domains containing the point. This

identification permits the conception of other filters, being formed by the base

reference contexts, as generalized measures of localization. The meaningful

association of filters with generalized localization measures in a global struc-

ture of physical events has to meet certain requirements, that remarkably

have a sound physical basis, as it will become clear in the sequel, and leads

to the notion of generalized topological covering systems. It is significant,

that once the notion of a topological covering system has been crystallized,

the sheaf-theoretic fibered model of a global events structure can be defined

explicitly in these descriptive terms.

Generalized topological covering systems are being effectuated by means

of systems of covering devices on the base category of reference contexts,

called in categorical terminology covering sieves. Firstly, we shall explain

the general notion of sieves, and afterwards, we shall specialize our exposi-

tion to the notion of covering sieves. Our presentation applies to any small

category B, consisting of base reference categorical objects B, with structure

preserving morphisms between them, as arrows. Of course, in the classical

topological case of the previous section, B is tautosemous with O(X) and the

reference contexts B are tautosemous with the open sets U of X, partially
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ordered by inclusion. As a preamble for the discussion of quantum events

structures, it is instructive to point that B can be thought as a base category

of Boolean contexts of quantum measurement.

Definition: A B-sieve with respect to a reference context B in B, is a

family S of B-morphisms with codomain B, such that if C → B belongs to

S and D → C is any B-morphism, then the composite D → C → B belongs

to S.

Remark: We may think of a B-sieve as a right B-ideal. We notice that,

in the case of O(X), since O(X)-morphisms are inclusions of open loci, a

right U -ideal is tautosemous with a downwards closed U -subset.

Proposition: A B-sieve is equivalent to a subfunctor S ↪→ y[B] in

SetsB
op

, where y[B] := HomB(−, B), denotes the contravariant representable

functor of the reference locus B in B.

Proof: Given a B-sieve S, we define:

S(C) = {g/g : C → B, g ∈ S} ⊆ y[B](C)

This definition yields a functor S in SetsB
op

, which is obviously a subfunctor

of y[B]. Conversely, given a subfunctor S ↪→ y[B] in SetsB
op

, the set:

S = {g/g : C → B, g ∈ S(C)}
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for some reference loci C in B, is a B-sieve. Thus, epigramatically, we state:

〈 B-sieve: S 〉=〈 Subfunctor of y[B]: S ↪→ y[B] 〉

Remark: We notice that if S is a B-sieve and h : C → B is any arrow to

the locus B, then:

h∗(S) = {f/cod(f) = C, (h ◦ f) ∈ S}

is a C-sieve, called the pullback of S along h, where, cod(f) denotes the

codomain of f . Consequently, we may define a presheaf functor Ω in SetsB
op

,

such that its action on locoi B in B, is given by:

Ω(B) = {S/S : B − sieve}

and on arrows h : C → B, by h∗(−) : Ω(B) → Ω(C), given by:

h∗(S) = {f/cod(f) = C, (h ◦ f) ∈ S}

We notice that for a context B in B, the set of all arrows into B, is a B-sieve,

called the maximal sieve on B, and denoted by, t(B) := tB.

At a next stage of development, the key conceptual issue we have to settle

for our purposes, is the following: How is it possible to restrict Ω(B), that is

the set of B-sieves for each reference context B in B, such that each B-sieve

of the restricted set can acquire the interpretation of a covering B-sieve, with

respect to a generalized topological covering system. Equivalently stated, we
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wish to impose the satisfaction of appropriate conditions on the set of B-

sieves for each context B in B, such that, the subset of B-sieves obtained,

denoted by Ωχ(B), implement the partial order relation between events. In

this sense, the B-sieves of Ωχ(B), for each locus B in B, to be thought as

generalized topological covering B-sieves, can be legitimately used for the

definition of a localization scheme in a global partially ordered structure

of events. The appropriate physical requirements for our purposes are the

following:

[1]. According to the principle of uniformity, the partial order relation

in a structure of events should be implemented by an appropriate relational

property of reference contexts B in the base category B. In this sense, an

arrow C → B, such that C, B are contexts in B, is interpreted as a figure

of B, and thus, B is interpreted as an extension of C in B. It is a natural

requirement that the set of all figures of B should belong in Ωχ(B) for each

context B in B.

[2]. The covering sieves should be stable under pullback operations, and

most importantly, the stability conditions should be expressed functorially.

This requirement means, in particular, that the intersection of covering sieves

should also be a covering sieve, for each reference context B, in the base

category B.

[3]. Finally, it would be desirable to impose: (i) a transitivity requirement
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on the specification of the covering sieves, such that, intuitively stated, cov-

ering sieves of figures of a context in covering sieves of this context, should

also be covering sieves of the context themselves, and (ii) a requirement of

common refinement of covering sieves.

If we take into account the above requirements we can define a generalized

topological covering system in the environment of B as follows:

Definition: A generalized topological covering system on B is an

operation J, which assigns to each reference context B in B, a collection J(B)

of B-sieves, called covering B-sieves, such that the following three conditions

are satisfied:

[1]. For every reference context B in B, the maximal B-sieve {g : cod(g) =

B} belongs to J(B) (maximality condition).

[2]. If S belongs to J(B) and h : C → B is a figure of B, then h∗(S) =

{f : C → B, (h ◦ f) ∈ S} belongs to J(C) (stability condition).

[3]. If S belongs to J(B), and if for each figure h : Ch → B in S, there

is a sieve Rh belonging to J(Ch), then the set of all composites h ◦ g, with

h ∈ S, and g ∈ Rh, belongs to J(B) (transitivity condition).

Remark: As a consequence of the definition above, we can easily check

that any two B-covering sieves have a common refinement, that is: if S, R
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belong to J(B), then S ∩R belongs to J(B).

Remark: A generalized topological covering system on B satisfying the

physical requirements, posed previously, is tautosemous, in categorical ter-

minology, with the notion of a Grothendieck topology on B.

Remark: As a first application we may consider the partially ordered

set of open subsets of a topological measurement space X, viewed as the

base category of open reference domains, O(X). Then we specify that S is

a covering U -sieve if and only if U is contained in the union of open sets in

S. The above specification fulfills the requirements of covering sieves posed

above, and consequently, defines a topological covering system on O(X).

Remark: Obviously a topological covering system J exists as a presheaf

functor Ωχ in SetsB
op

, such that: by acting on contexts B in B, J gives the

set of all covering B-sieves, denoted by Ωχ(B), whereas by acting on figures

h : C → B, it gives a morphism h∗(−) : Ωχ(B) → Ωχ(C), expressed as:

h∗(S) = {f/cod(f) = C, (h ◦ f) ∈ S}, for S ∈ Ωχ(B).

Definition: A small category B together with a Grothendieck topology

J, is called a site, denoted by, (B,J).
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Definition: A sheaf on a site (B,J) is a contravariant functor P : Bop →

Sets, satisfying an equalizer condition, expressed, in terms of covering B-

sieves S, as in the following diagram in Sets:

∏
f◦g∈S P(dom(g)) qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq ∏
f∈SP(dom(f)) eqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqq
qq P(B)

Remark: If the above diagram is an equalizer for a particular covering

sieve S, we obtain that P satisfies the sheaf condition with respect to the

covering sieve S. The theoretical advantage of the above relies on the fact

that it provides a description of sheaves entirely in terms of objects of the

category of presheaves.

From a physical perspective, the consideration of covering sieves as gener-

alized measures of localization of events in a global partially ordered structure

of events, together with the requirements posed for the formation of topo-

logical covering systems, elucidates the sheaf-theoretic fibered model of local

real-valued observables established previously. In the following sections, we

will apply the machinery of generalized topological covering systems for the

analysis of global structures of quantum events.
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5 Quantum Events Algebras and Functors of

Boolean Frames

Definition: A quantum events structure is a small cocomplete cate-

gory, denoted by L, which is called the category of quantum events algebras.

The objects of L, denoted by L, are quantum events algebras, that is

orthomodular orthoposets of events, defined as follows:

Definition: A quantum events algebra L in L, is a partially ordered

set of quantum events, endowed with a maximal element 1, and with an

operation of orthocomplementation [−]∗ : L qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq L, which satisfy, for all l ∈ L,

the following conditions: [a] l ≤ 1, [b] l∗∗ = l, [c] l∨l∗ = 1, [d] l ≤ ĺ ⇒ ĺ∗ ≤ l∗,

[e] l⊥ĺ ⇒ l ∨ ĺ ∈ L, [f] for l, ĺ ∈ L, l ≤ ĺ implies that l and ĺ are compatible,

where 0 := 1∗, l⊥ĺ := l ≤ ĺ∗, and the operations of meet ∧ and join ∨ are

defined as usually.

Remark: We recall that l, ĺ ∈ L are compatible if the sublattice generated

by {l, l∗, ĺ, ĺ∗} is a Boolean algebra, namely if it is a Boolean sublattice.

The arrows of L are quantum algebraic homomorphisms, defined as fol-

lows:
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Definition: A quantum algebraic homomorphism in L is a morphism

K H qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq L, which satisfies, for all k ∈ K, the following conditions: [a] H(1) = 1,

[b] H(k∗) = [H(k)]∗, [c] k ≤ ḱ ⇒ H(k) ≤ H(ḱ), [d] k⊥ḱ ⇒ H(k ∨ ḱ) ≤

H(k) ∨H(ḱ).

Definition: A Boolean events structure is a small cocomplete category,

denoted by B, which is called the category of Boolean events algebras. Its

objects are Boolean algebras of events and its arrows are the corresponding

Boolean algebraic morphisms.

The conceptual basis of the attempt to define a generalized topological

covering system, in terms of Boolean reference contexts, for a global quantum

events structure L, is the expectation that it is possible to analyze a quantum

events algebra L, by means of structure preserving maps B qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq L, with local

Boolean algebras B in B, as their domains. Put differently, we expect to

coordinatize the events information contained in a quantum events algebra

L in L, by means of families of local Boolean reference frames. The latter are

understood as morphisms B qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq L, having as their domains, locally defined

Boolean events algebras B in B, corresponding to typical quantum measure-

ment situations. Any single map, from a Boolean coordinates domain into a

quantum events algebra, is not enough for a complete determination of the

latter’s information content, and hence, it contains only a limited amount
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of information about it. More concretely, it includes only the amount of in-

formation related to a Boolean reference context, and thus, it is inevitably

constrained to represent the abstractions associated it. This problem may

be tackled, only if, we employ many structure preserving maps from the

coordinatizing local Boolean contexts to a quantum events algebra simulta-

neously, so as to cover it completely. Of course, it is desirable to consider

the minimum number of such maps, which is specified by the requirement

of distinguishability of the elements of the quantum events algebra. In turn,

the information available about each map of the specified covering system

by Boolean frames, may be used to determine the global quantum events

algebra itself. In order to accomplish this task, we consider that the cate-

gory of Boolean contexts B is a generating subcategory of L, such that, the

set of all arrows w : Bi → L, I: index set, constitute an epimorphic family.

Equivalently stated, the set of objects {Bi/i ∈ I}, in B, where, I: index set,

generate L, in the sense that;

Bi
wi qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq L v

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqqu K

the identity v ◦ wi = u ◦ wi, for every arrow wi : Bi → L, and every Bi,

implies that v = u.

Variation of Boolean frames over all contexts of the subcategory of L,

consisting of Boolean event algebras, produces the functor of Boolean frames
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of L, restricted to the subcategory of Boolean coordinatizing contexts, iden-

tified with B. The functor of Boolean frames of a quantum events algebra L

is made, then, an object in the category of presheaves SetsB
op

, representing

L in the environment of the topos of presheaves over the category of Boolean

contexts. This methodology will prove to be successful, if it could be possible

to establish an isomorphic representation of L, in terms of the information

being carried by its Boolean frames Bi → L, associated with measurement

situations, collated together by appropriate means. In more detail, we have

the following:

Definition: The representation functor of a quantum events structure

L into the category of presheaves of Boolean events algebras SetsB
op

, is given

by:

Υ : L → SetsB
op

Definition: The functor of Boolean frames of a quantum events algebra

L in L, is the image of the representation functor Υ, evaluated at L, into

the category of presheaves of Boolean events algebras SetsB
op

, that is:

Υ(L) := ΥL : Bop qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq Sets

Remark: The representation functor of L, is completely determined by the

action of the functor of Boolean frames, for each quantum event algebra L
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in L, on the objects and arrows of the category B, specified as follows: Its

action on an object B in B is given by

Υ(L)(B) := ΥL(B) = HomL(B,L)

whereas its action on a morphism D x qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq B in B, for v : B qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq L is given by

Υ(L)(x) : HomL(B,L) qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq HomL(D,L)

Υ(L)(x)(v) = v ◦ x

Remark: Notice that the functor of Boolean frames of a quantum events

algebra L in L, is a presheaf Υ(L) := ΥL : Bop qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq Sets. Thus, we can

legitimately consider the category of elements
∫
(ΥL,B), together with, the

projection functor
∫

ΥL
:

∫
(ΥL,B)→B, viz. the split discrete fibration in-

duced by the funcor of Boolean frames of L, where B is the base category of

the fibration. Hence, the functor of Boolean frames of a quantum events al-

gebra, induces a uniform and homologous fibered representation of quantum

events in terms of Boolean reference frames.

At this stage of development, two further important issues have to be

properly settled:

The first issue is concerned with the physical requirement of making the

established fibered representation of quantum events also coherent. Put dif-

ferently, this issue poses the problem of defining an appropriate topological
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covering system J on the base category B, such that:

[i]. The Boolean reference frames acquire the semantics of local frames

with respect to that Grothendieck topology J on B, and

[ii]. The functor of Boolean frames for a quantum events algebra L in L

becomes a sheaf on the site (B,J) for that J.

The second issue, is concerned with the physical requirement of preserva-

tion of the whole information content of a quantum events algebra, under the

action of the category of Boolean contexts endowed with a topological cov-

ering system J, as above. Equivalently stated, this issue poses the problem

of constructing a representation of quantum events in terms of equivalence

classes of Boolean decoding coefficients, in local Boolean reference frames

within J, such that:

[i]. A quantum events algebra L becomes isomorphic with the colimit

taken in the category of elements of the sheaf functor of Boolean frames of

L, and consequently;

[ii]. The whole information encoded in a quantum events algebra can

be faithfully captured, and completely reconstructed, by the information

structure of these equivalence classes of contextual, locally decoding, Boolean

coefficients.

These two issues will be dealt with in the forthcoming sections corre-

spondingly.
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6 Topological Covering Systems on Boolean

Contexts and Sheaves

Regarding the first issue posed previously, we will show that the functor

Υ : L → SetsB
op

, transforms quantum events algebras L in L not just

into presheaves ΥL in SetsB
op

, but into sheaves for a suitable Grothendieck

topology J on the category of Boolean reference contexts B, such that the

functor of Boolean frames for a quantum events algebra L in L is a sheaf on

the site (B,J) for a suitable J. For this purpose we define:

Definition: A B-sieve S on a Boolean reference context B in B is called

a covering sieve of B, if all the arrows s : C → B belonging to the sieve S,

taken together, form an epimorphic family in L. This requirement may be,

equivalently, expressed in terms of a map

GS :
∐

(s:C→B)∈S
C → B

being an epi in L.

Proposition: The specification of covering sieves on Boolean contexts B

in B, in terms of epimorphic families of arrows in L, does indeed, define a

generalized topological covering system J on B.
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Proof: First of all, we notice that the maximal sieve, on each Boolean

context B, includes the identity B → B, and thus, it is a covering sieve.

Next, the transitivity property of the depicted covering sieves is obvious. It

remains to demonstrate that the covering sieves remain stable under pullback.

For this purpose we consider the pullback of such a covering sieve S on B

along any arrow h : B′ → B in B, according to the following diagram;

∐
s∈SC×BB́ qqqqqqqqqqqqqqqqq

q
qqqqqqqqqqqqqqqqqq B́

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

h

∐
s∈SC G qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq B

The Boolean algebras B in B, generate the category of quantum event alge-

bras L, hence, there exists for each arrow s : D → B in S, an epimorphic

family of arrows
∐

s∈S[B]s → D ×B B́, or equivalently, {[B]sj → D ×B B́}j,

with each domain [B]s a Boolean algebra. Consequently, the collection of all

the composites:

[B]sj → D ×B B́ → B́

for all s : D → B in S, and all indices j together form an epimorphic

family in L, that is contained in the sieve h∗(S), being the pullback of S

along h : B́ → B. Therefore, the sieve h∗(S) is a covering sieve. Thus,
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the operation J, which assigns to each Boolean reference context B in B, a

collection J(B) of covering B-sieves, being epimorphic families of arrows in

L, constitutes a generalized topological covering system J on B.

Proposition: [i]. The presheaf functor of Boolean frames ΥL = HomL(−, L)

in SetsB
op

, satisfies the sheaf-theoretic condition for a covering sieve S, being

an epimorphic family of arrows in L.

[ii]. The functor of Boolean frames ΥL is a sheaf for the Grothendieck

topology J, defined by covering sieves of epimorphic families on the category

of Boolean reference contexts, as above.

Proof: [i]. We initially construct the representation of covering sieves

within the category B of Boolean reference contexts B. Firstly, we observe

that for an object C of B, and for a covering sieve in the Grothendieck

topology on B, the map;

GS :
∐

(s:C→B)∈S
C → B

where GS is an epi in L, can be, equivalently, represented as the coequalizer

of its kernel pair, or else, as the pullback of GS along itself, according to the

diagram;
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∐
śD́×C

∐
sD

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq

∐
sD

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

GS

∐
śD́

GS qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq C

Furthermore, using the fact that pullbacks in L preserve coproducts, the

epimorhic family associated with a covering sieve on C, admits the following

coequalizer presentation;

∐
ś,sD́×CD

q1
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqqq2

∐
sD

G qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq C

Moreover, since the the category B is a generating subcategory of L, for each

pair of arrows s : D → C and ś : D́ → C, in the covering sieve S on the

Boolean algebra C, there exists an epimorphic family {B → D́×CD}, such

that each domain B is a Boolean algebra in B. Consequently, each element

of the epimorphic family associated with a covering sieve S on a Boolean

algebra C is represented by a commutative diagram in B, of the following

form;

B
l qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq D

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

k

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

s

D́
ś qqqqqqqqqqqqqqqqq

q
qqqqqqqqqqqqqqqqqq C
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Next, we may compose the representation of epimorphic families by commu-

tative squares in B, obtained previously, with the coequalizer presentation of

the same epimorphic families. The composition results in a new coequalizer

diagram in B, of the following form;

∐
BB y1

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqqy2

∐
sD

G qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq C

where, the first coproduct is indexed by all B in the commutative diagrams

in B, representing elements of epimorphic families.

Now, for each quantum events algebra L in L, we consider the functor of

Boolean frames ΥL = HomL(−, L) in SetsB
op

. If we apply this representable

functor to the latter coequalizer diagram, we obtain an equalizer diagram in

Sets, as follows;

∏
B HomL(B, L) qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq ∏
s∈SHomL(D,L) qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqq
q HomL(C, L)

where, the first product is indexed by all Boolean contexts B in the com-

mutative diagrams in B, representing elements of epimorphic families. The

equalizer in Sets, thus obtained, proves explicitly that the functor of Boolean

frames ΥL = HomL(−, L) in SetsB
op

, satisfies the sheaf-theoretic condition

for the covering sieve S.

[ii]. Clearly, the above equalizer condition holds for every covering sieve

S, that belongs to the Grothendieck topology J, defined by covering sieves
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of epimorphic families on the category B of Boolean reference contexts. By

rephrasing the above, we conclude that the functor of Boolean frames for a

quantum events algebra L, that is ΥL, is actually a sheaf, for the generalized

topological covering system of epimorphic families, defined on the category

of Boolean contexts.

Remark: The propositions proved above, settle completely the first issue

posed previously, in the following sense: The Boolean reference frames B ac-

quire the semantics of local frames with respect to the Grothendieck topology

J on B, defined in terms of covering sieves of epimorphic families of arrows

in L. Moreover, the functor of Boolean frames for a quantum events algebra

L becomes a sheaf on the site (B,J) for that J. Thus, the split discrete

fibration
∫

ΥL
:

∫
(ΥL,B)→B, induced by the sheaf of Boolean frames of L

on the site (B,J), forces a uniform, homologous, and also, coherent fibered

representation of quantum events in terms of local Boolean reference frames.

7 Boolean Equivalence Classes Representa-

tions of Quantum Events

Regarding the second issue posed previously, we will show explicitly that a

quantum events algebra L can be represented isomorphically by means of a

42



colimit taken in the category of elements of the sheaf of Boolean reference

frames of L. For this purpose, we define:

Definition: A sieve on a quantum events algebra L defines a covering sieve

by Boolean frames, such that, the domains of the quantum algebraic mor-

phisms belonging to the sieve are Boolean contexts in the generating subcate-

gory B, if all these morphisms in the sieve collectively define an epimorphism;

T :
∐

(E∈[B]0,ψE :E→L)
E → L

where, [B]0 denotes the set of Boolean reference contexts of the base category

B.

Remark: From the physical point of view, covering sieves of quantum

events algebras by Boolean frames, are called, equivalently, Boolean local-

ization systems of quantum events algebras. These localization systems

filter the information of a global partially ordered quantum events algebra

through Boolean contexts, associated with measurement situations of observ-

ables.

Proposition: A covering sieve of a quantum events algebra L by Boolean

frames, viz. a Boolean localization system of L, induces an isomorphism:

L ∼= Colim{
∫

(ΥL,B) qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq B}
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where, ΥL is the sheaf of Boolean frames of L on the site (B,J), for J the

Grothendieck topology of epimorphic families, and
∫
(ΥL,B) is the associated

fibered category of Boolean frames of L.

Proof: If we make use of same arguments as in the proof of the second

proposition of the previous Section, we obtain that the epimorphism

T :
∐

(E∈[B]0,ψE :E→L)
E → L

that is, a covering sieve of a quantum events algebra L by Boolean frames,

can be represented in the form of a coequalizer diagram in L as follows;

∐
νB

y1
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqqy2

∐
(E∈[B]0,ψE :E→L)E

T qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq L

where, the first coproduct is indexed by all ν, representing commutative

diagrams in L, of the following form;

B
l qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq E

qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqq
q

k

qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqq
q

ψE

É
ψÉ qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq L

where B, E, É are Boolean contexts in the generating subcategory B of L.

Now, we may consider a covering sieve of quantum event algebra L by

Boolean frames, consisting of quantum algebraic morphisms T(E,ψE), such

44



that, taken together constitute collectively an epimorphic family in L. We

observe that the condition;

T ◦ y1 = T ◦ y2

is equivalent to the condition;

T(E,ψE) ◦ l = T(É,ψÉ) ◦ k

for each commutative square ν of the form above.

Furthermore, the coequalizer condition T ◦ y1 = T ◦ y2, implies that for

every Boolean contexts morphism u : É → E, with B, E objects of B and

ψE : E → L, the diagram of the form ν below;

É
u qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq E

id

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

ψE

É
ψE ◦ u

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq L

commutes and provides the condition

T(E,ψE) ◦ u = T(É,ψE◦u)

Next, we define the following set:

G(ΥL) = {(ψE, q)/(ψE : E qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq L) ∈ [
∫

(ΥL,B)]0, q ∈ E}

We notice that, if there exists a Boolean contexts morphism, u : É → E, or

equivalently, u : ψÉ → ψE, such that: u(q́) = q and ψE ◦ u = ψÉ according

45



to the diagram above, where, [ΥL(u)](ψE) := ψE ◦ u, then, we may define a

transitive and reflexive relation < on the set G(ΥL). Of course, the inverse

also holds true. Then, we notice that;

(ψE ◦ u, q)<(ψE, u(q́))

for any u : É → E in the category B. The next step is to make this relation

also symmetric by postulating that for ζ, η in G(ΥL), where, ζ, η denote

pairs in the above set, we have:

ζ ∼ η

if and only if, ζ<η or η<ζ. Finally, by considering a sequence ξ1, ξ2, . . . ,ξk

of elements of the set G(ΥL), and also, ζ, η such that:

ζ ∼ ξ1 ∼ ξ2 ∼ . . . ∼ ξk−1 ∼ ξk ∼ η

we may define an equivalence relation on the set L(Υ(L)) as follows:

ζ ./ η := ζ ∼ ξ1 ∼ ξ2 ∼ . . . ∼ ξk−1 ∼ ξk ∼ η

Then, for each ζ ∈ G(ΥL), we define the quantum at ζ as follows:

Qζ = {ι ∈ G(ΥL) : ζ ./ ι}

Finally, we define:

G(ΥL)/ ./:= {Qζ : ζ = (ψE, q) ∈ G(ΥL)}
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and use the notation Qζ = ‖(ψE, q)‖. The set [G(ΥL)/ ./] is identified

categorically as the colimit in the category of Boolean frames of the sheaf

functor ΥL for the Grothendieck topology J of epimorphic families;

[G(ΥL)/ ./] = Colim{
∫

(ΥL,B) qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq B ↪→ L}

The above set is naturally endowed with a quantum events algebra structure,

if we are careful to notice that:

[1]. The orthocomplementation is defined as: Q∗
ζ=‖(ψE, q)‖∗= ‖(ψE, q∗)‖.

[2]. The unit element is defined as: 1 = ‖(ψE, 1)‖.

[3]. The partial order structure on the set [G(ΥL)/ ./] is defined as

follows: ‖(ψE, q)‖ ¹ ‖(ψC , r)‖, if and only if, d1 ¹ d2 where, we have made

the following identifications: ‖(ψE, q)‖ = ‖(ψD, d1)‖, and also, ‖(ψC , r)‖ =

‖(ψD, d2)‖, with d1, d2 ∈ D, according to the pullback diagram of events

algebras:

D
β

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq E

qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqq
q

γ

qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqq
q

C qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq L

such that; β(d1) = q, γ(d2) = r. The rest of the requirements, such that,

[G(ΥL)/ ./] actually carries the structure of a quantum events algebra are
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obvious. Thus, we conclude that the epimorphism;

T :
∐

(E∈[B]0,ψE :E→L)
E → L

which determines a covering sieve of a quantum events algebra L by Boolean

frames, viz. a Boolean localization system of L, induces an isomorphism:

L ∼= G(ΥL)/ ./

of quantum events algebras in L, or equivalently;

L ∼= Colim{
∫

(ΥL,B) qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq B}

where, ΥL denotes the sheaf of Boolean frames of L for the Grothendieck

topology J of epimorphic families, and
∫
(ΥL,B) denotes the associated fibered

category of Boolean frames of L.

Remark: The proposition proved above, settles completely the second is-

sue posed previously, in the following sense: Firstly, we have constructed ex-

plicitly a representation of quantum events as equivalence classes of Boolean

coefficients in local Boolean reference frames, with respect to J. Secondly,

we have shown that a quantum events algebra L is represented isomorphi-

cally by the colimit taken in the category of elements of the sheaf functor of

Boolean frames of L. Thus, we may state conclusively that: We have forced a

uniform, homologous, and coherent fibered representation of quantum events
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with respect to local Boolean reference frames, inducing effectively an isomor-

phism between quantum events algebras and colimits of Boolean localization

systems.

8 Conclusions

In this paper we have proposed a sheaf-theoretic interpretation scheme of

quantum events algebras, taking into account Boolean localization processes

in the quantum regime of observable structure. The latter have been effectu-

ated by means of generalized topological covering systems on a base category

of Boolean reference contexts. Thus, the focus has been shifted from point-

set to topological localization models of a globally partially ordered quantum

events algebra. Effectively, this shift induces a transition in the semantics of

quantum events from a set-theoretic to a sheaf-theoretic one.

The sheaf-theoretic semantic transition of quantum events has been forced

by means of an explicitly constructed uniform, homologous, and coherent

fibered representation of quantum events with respect to local Boolean refer-

ence frames for the Grothendieck topology of epimorphic families. According

to this representation, quantum events have been conceptualized as equiv-

alence classes of local Boolean coordinates with respect to those reference

frames. Subsequently, it has been constructed an isomorphic representation
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of quantum events algebras with colimits taken in the categories of elements

of sheaves of Boolean frames.

The physical significance of this representation lies on the fact that the

whole information content of a quantum events algebra is preserved by the

action of some covering system, if and only if that system forms a Boolean

localization system. Hence, the significance of a quantum events algebra

is shifted from the orthoposet axiomatization at the level of events, to the

sheaf-theoretic gluing conditions at the level of Boolean localization systems.

Eventually, the former axiomatization is fully and faithfully recaptured at

the level of equivalence classes in these localization systems.

The physical content of the sheaf-theoretic representation of quantum

events algebras can be formulated in terms of a functoriality property. Ac-

cording to this, the information content of a quantum events algebra is co-

variant under the groupoid of gluing isomorphisms between overlapping local

Boolean reference frames, along their intersections, in a Boolean localization

system, preserving the quantum algebraic structure.

The covering process induced by Boolean localization systems leads nat-

urally to a contextual description of quantum events, in a global quantum

events algebra L, with respect to local Boolean reference frames of measure-

ment. It is instructive to note that, each Boolean context corresponds to

a Boolean algebra of events actualized locally in a quantum measurement
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situation. The equivalence classes of Boolean coefficients, with respect to

local Boolean contexts in covering sieves of L, represent quantum events in

L . Consequently, the information content of a quantum events algebra L

is being generated, and also, isomorphically represented, by the information

that its structure preserving maps carry. Notice, that the latter information

is equivalent with the conditions incorporated in the sheaf-theoretic specifi-

cation of the functor of Boolean frames. Most significantly, the functioning

of this functor in terms of Boolean localization systems of L, accomplish the

representation of quantum events as equivalence classes in a structure sheaf

of Boolean coefficients associated with local contexts of measurement.
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