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Abstract

We construct a sheaf-theoretic representation of quantum prob-

abilistic structures, in terms of covering systems of Boolean mea-

sure algebras. These systems coordinatize quantum states by means

of Boolean coefficients, interpreted as Boolean localization measures.

The representation is based on the existence of a pair of adjoint func-

tors between the category of presheaves of Boolean measure algebras

and the category of quantum measure algebras. The sheaf-theoretic

semantic transition of quantum structures shifts their physical signifi-

cance from the orthoposet axiomatization at the level of events, to the

sheaf-theoretic gluing conditions at the level of Boolean localization

systems.
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1 Introduction

The groundbreaking 1936 paper by von Neumann and G. Birkhoff entitled

“The Logic of Quantum Mechanics” has introduced for the first time the

notion of logic of a physical theory. For classical theories the appropriate

logic is a Boolean algebra; but for quantum theories a non-Boolean logical

structure is necessary, which can be an orthocomplemented lattice, or a par-

tial Boolean algebra, or some other structure of a related form. The logic

of a physical theory reflects the structure of the propositions describing the

behavior of a physical system in the domain of the corresponding theory.

Naturally, the typical mathematical structure associated with logic is an

ordered structure. The original quantum logical formulation of quantum

theory [1, 2] depends in an essential way on the identification of proposi-

tions with projection operators on a complex Hilbert space. A non-classical,

non-Boolean logical structure is effectively induced which has its origins in

quantum theory. More accurately, the Hilbert space quantum logic has been

initially axiomatized as a complete, atomic, orthomodular lattice. Equiva-

lently, it could be cast isomorphic to the partial Boolean algebra of closed
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subspaces of the Hilbert space associated with the quantum system, or alter-

natively the partial Boolean algebra of projection operators of the system.

On the contrary, the propositional logic of classical mechanics is Boolean

logic, meaning that the class of models over which validity and associated

semantic notions are defined for the propositions of classical mechanics is the

class of Boolean logic structures.

The notion of logic of a physical theory essentially reflects the structure of

events being observed in the context of that theory. Associated with such an

events structure, there always exists a corresponding probabilistic structure,

defined by means of convex sets of measures on that logic. In this sense,

the probabilistic structure of a classical system is described by convex sets of

probability measures on the Boolean algebra of events of the system, whereas

the probabilistic structure of a quantum system is described by convex sets

of probability measures on the quantum logic structure of that system. More

accurately, in the case of quantum systems, if the quantum events logic is

denoted by L, each quantum probability measure, called quantum state, is

defined by a mapping;

p : L→ [0, 1]

such that the following conditions are satisfied: p(1) = 1 and p(x ∨ y) =

p(x) + p(y), if x ⊥ y, where, x, y ∈ L. In the Hilbert space formulation

of quantum theory, L denotes the Hilbert space quantum logic, whereas a

quantum state is defined by the Hilbert space inner product;

〈ϕ,Pxϕ〉
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where; x ∈ L, ϕ is a normalized vector in the Hilbert space, and Px is the

orthogonal projection operator corresponding to x ∈ L. We remind that

there exists a bijective correspondence between elements of L, that is closed

subspaces of the Hilbert space, and orthogonal projection operators.

In this work we will develop the idea that in quantum theory, Boolean

localization measures can be understood as providing a coordinatization of a

quantum probabilistic structure by establishing a principle of contextuality.

More concretely, we shall argue that the covering coordinatization process

induced by Boolean localization systems, being formed from families of col-

lated compatible local Boolean measures, leads naturally to a contextual

description of quantum events, and their associated quantum probabilities

of a corresponding global quantum structure, with respect to local Boolean

reference frames of measurement.

An intuitive flavor of this insight is provided by Kochen-Specker theorem

[3], according to which the complete comprehension of a quantum mechan-

ical system is impossible, in case that, a single system of Boolean devices

is only used globally. On the other side, in every concrete measurement

context, the set of events that have been actualized in this context forms a

Boolean algebra. This fact motivates the assertion that a Boolean algebra

in the lattice of quantum events, serves as a local reference frame, conceived

in a precise category-theoretical sense, relative to which a measurement re-

sult is being coordinatized. The conceptual meaning of the proposed scheme

implies that a quantum logical or quantum probabilistic structure is being

construed by means of covering Boolean reference frames, regulated by our

4



measurement localization procedures, which interlock to form a global co-

herent picture in a non-trivial way. Hence Boolean descriptive contexts are

not abandoned once and for all, but instead are used locally, accomplishing

the task of providing partial congruent relations with globally non-Boolean

objects, the internal structure and functioning of which, is being hopefully re-

covered by the interconnecting machinery governing the local objects. In this

work we propose a mathematical scheme for the implementation of the above

assertion, in relation to quantum measure algebras, based on categorical and

sheaf-theoretic methods [4-8]. Contextual category theoretical approaches to

quantum structures have been also considered, from a different viewpoint in

[9,10], and discussed in [11,12]. A remarkable conceptual affinity to the view-

point of the present paper, although not based on categorical methods, can

be found in references [13,14]. For a general mathematical and philosophi-

cal discussion of sheaves, variable sets, and related structures, the interested

reader should consult reference [15]. Recently, there has also appeared in the

literature a complete treatement of the dynamcal aspects of physical theo-

ries, and in particular gauge theories, along topological sheaf-theoretic lines

[16, 17], as an application of the framework of Mallios’s Abstract Differential

Geometry [18]. Finally, it is worth mentioning that a sheaf-theoretic ap-

proach to quantum structures has been initiated independently by de Groote

in a series of preperints [19-22]. In a general setting, de Groote constructs

a theory of presheaves on the quantum lattice of closed subspaces of a com-

plex Hilbert space, by transposing literally and generalizing the correspond-

ing constructions from the lattice of open sets of a topological space to the
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quantum lattice. In comparison, our approach emphasizes the crucial role of

Boolean localization systems in the global formation of quantum structures,

and thus, shifts the focus of relevant constructions to sheaves over suitable

Grothendieck topologies on a base category of Boolean subalgebras of global

quantum algebras.

The development of the conceptual and technical machinery of localiza-

tion systems for generating non-trivial global event and observable structures,

as it has been recently demonstrated in [23, 24], effectuates a transition in the

semantics of events and observables from a set-theoretic to a sheaf-theoretic

one. This is a crucial semantic difference that characterizes the present ap-

proach in comparison to the vast literature on quantum measurement and

quantum logic. In the following section we will attempt to motivate physi-

cally the necessity of this transition on the basis of appropriate requirements

that generalized procedures of physical measurement should respect, refer-

ring to the apprehension of physical information in terms of observables.

2 Physical Motivation and General Concep-

tual Framework

Procedures of physical measurement presuppose, at the fundamental level,

the existence of a localization process for extracting information related with

the local behaviour of a physical system, and thus, discerning observable

events. In a general setting, a localization process is being usually imple-

mented physically by the preparation of suitable local reference domains for
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measurement of observable attributes. Subsequently, these reference domains

instantiate local physical contexts for observation of events, that takes place

by means of events-registering measurement devices, operating locally within

these contexts. In a broad perspective, it is important to notice that register-

ing an event, that has been observed in the context of a prepared reference

domain, is not always equivalent to conferring a numerical identity to it,

expressed in terms of some real value corresponding to a physical attribute.

On the contrary, the latter is only a limited case of the localization process,

when, in particular, it is assumed that all local reference contexts can be

contracted to points, meaning that points are considered as unique measures

of localization in the physical “continuum”.

This is exactly the crucial assumption underlying the employment of the

set-theoretic structure of the real line as a model of the physical “continuum”.

The semantics of the physical “continuum” in the standard interpretation of

physical theories is associated with the codomain of valuation of physical

attributes. Usually the notion of “continuum” is tied with the attribute of

position, serving as the range of values characterizing this particular attri-

bution. In this sense, the model adopted to represent these values is the real

line, specified as a set- theoretic structure of points that are independent

and possess the property of infinite distinguishability with absolute preci-

sion. The adoption of the set theoretical real line model is usually justified

on the basis of arguments, stipulating that quantities admissible as measured

results must be real numbers, since the resort to real numbers has the ad-

vantage of securing our empirical access to the external world. Essentially,
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the basic semantic assumption underlying the employment of the set theo-

retic structure of the real line for the modeling of the localization structure

of the physical “continuum” is that real number representability constitutes

our global form of observation.

The success of this localizing philosophy for classical theories is due to

the association of the notion of physical “continuum” with the attribute of

position and the theoretical fact that all classical observables can be deter-

mined precisely and simultaneously at the unique measure of localization of

that attribute, viz., at a spatial point, parametrized by the field of real num-

bers. Nevertheless, the major foundational difference between classical and

quantum physical systems from the perspective of the modeling scheme by

observables is a consequence of a single principle that can be termed principle

of simultaneous observability. According to this, in the classical description

of physical systems all their observables are theoretically compatible, or else,

they can be simultaneously specified in a single local measurement context.

On the other side, the quantum description of physical systems is based on

the assertion of incompatibility of all theoretical observables in a single lo-

cal measurement context, and as a consequence quantum-theoretically the

simultaneous specification of all observables is not possible. The conceptual

roots of the violation of the principle of simultaneous observability in the

quantum regime is tied with Heisenberg’s uncertainty principle and Bohr’s

principle of complementarity of physical descriptions.

In this train of thought, a fruitful fundamental strategy implied by quan-

tum theory would ideally fulfill the following objectives: Firstly, it should

8



disassociate the physical meaning of the notion of localization from its re-

stricted spatial connotation reference context. Secondly, it should allow the

functional dependence of observables on generalized localization measures

induced by the preparation of suitably structured domains of measurement,

not necessarily based on the existence of an underlying set-theoretic struc-

ture of points on the real line. Regarding the implementation of this strat-

egy, it should be essential to interpret any local observable as a relational

information algebraic number-like object with respect to the corresponding

local context of measurement. At a further stage, it should be necessary

to establish appropriate compatibility conditions for gluing the information

content of local observables globally. Mathematically, the implementation of

this strategy is being precisely captured by the concept of a sheaf-theoretic

fibered structure, explained in the sequel. The primary physical motivation

of this paper concerns the possibility of constructing explicitly an appropriate

localization process suited to quantum physical observation, along the objec-

tives of the strategy stated above, and study in particular its consequences

refering to the interpretation of quantum probabilistic structures. For this

purpose, the focus is shifted from point-set to topological localization models

of partially ordered global quantum event structures.

Before embarking on a qualitative discussion of the relevance of the con-

cept of sheaf for this endeavor, it is initially instructive to clarify that the

functioning of a localization process amounts to filtering the information con-

tent of a global structure of partially ordered physical events, through a con-

cretely specified structure of observation domains determined by a homolo-
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gous operational physical procedure. The latter is defined by the requirement

that the reference contexts of measurement, together with their structural

transformations, should form a mathematical category. Thus, the localiza-

tion process should be implemented in terms of an action of the category

of reference contexts on a set-theoretic global structure of physical events.

The latter, is then partitioned into sorts parameterized by the objects of the

category of contexts. In this sense, the functioning of a localization process

can be represented by means of a fibered construct, understood geometri-

cally as a presheaf, or equivalently, as a variable set over the base category

of contexts. The fibers of this construct may be thought, in analogy to the

case of the action of a group on a set of points, as the “generalized orbits” of

the action of the category of contexts. The notion of functional dependence

incorporated in this action, forces the ordered structure of physical events

to fiber over the base category of reference contexts. Most importantly, the

presheaf fibered construct incorporates the physical requirement of unifor-

mity of observed events. More concretely, for any two events observed over

the same domain of measurement, the structure of all reference contexts that

relate to the first cannot be distinguished in any possible way from the struc-

ture of contexts relating to the second. Consequently, all the events observed

within any particular reference context, implementing a localization process,

are uniformly equivalent to each other. Equivalently stated, the compatibil-

ity of the localization process with the physical requirement of uniformity,

demands that the relation of (partial) order in a global set-theoretic universe

of events is induced by lifting appropriately a structured family of arrows
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from the base category of reference contexts to the fibers. It is precisely

that condition of compatibility being formalized by the construction of the

category of elements of the corresponding presheaf.

The disassociation of the physical meaning of a localization process from

its restricted spatial connotation reference context requires, first of all, the

abstraction of the constitutive properties of localization in appropriate cate-

gorical terms, and then, the effectuation of these properties for the definition

of localization systems of global event structures. Regarding these objectives,

the sought abstraction is being implemented by means of covering devices

on the base category of reference contexts, called in categorical terminology

covering sieves. The constitutive properties of localization being abstracted

categorically in terms of sieves, being qualified as covering ones, satisfy the

following basic requirements:

[i]. The covering sieves are covariant under pullback operations, viz.,

they are stable under change of a base reference context. Most importantly,

the stability conditions are functorial. This requirement means, in particu-

lar, that the intersection of covering sieves is also a covering sieve, for each

reference context in the base category.

[ii]. The covering sieves are transitive, such that, intuitively stated, cov-

ering sieves of figures of a context in covering sieves of this context, are also

covering sieves of the context themselves.

From a physical perspective, the consideration of covering sieves as gener-

alized measures of localization of events in a global partially ordered structure

of events, gives rise to localization systems of the latter. More specifically,
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the operation which assigns to each reference context of the base category

a collection of covering sieves satisfying the closure conditions stated previ-

ously, gives rise to the notion of a Grothendieck topology on the category

of contexts. The construction of a suitable Grothendieck topology on the

base category of contexts is significant for the following reasons: Firstly, it

elucidates precisely and unquestionably the conception of local in a categor-

ical measurement environment, such that this conception becomes detached

from its restricted spatial connotation, and thus, expressed exclusively in

relational information terms. Secondly, it permits the collation of local ob-

servable information into global ones by utilization of the notion of sheaf

for that Grothendieck topology. The definition of sheaf essentially expresses

gluing conditions, providing the means for studying the global consequences

of locally defined properties. The transition from locally defined observable

information into global ones is being effectuated via a compatible family of

elements over a localization system of a global event strucure. A sheaf as-

signs a set of elements to each reference context of a localization system,

representing local observable data colected within that context. A choice of

elements from these sets, one for each context, forms a compatible family if

the choice respects the mappings induced by the restriction functions among

contexts, and moreover, if the elements chosen agree whenever two contexts

of the localization system overlap. If such a locally compatible choice in-

duces a unique choice for a global event structure being localized, viz. a

global choice, then the condition for being a sheaf is satisfied. We note that

in general, there will be more locally defined or partial choices than globally
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defined ones, since not all partial choices need be extendible to global ones,

but a compatible family of partial choices uniquely extends to a global one,

or in other words, any presheaf uniquely defines a sheaf.

Having explained in detail the physical motivation, as well as, the key

conceptual prerequisites and ideas underlying the modeling of localization

processes for acquisition and efficient handling of observable information re-

lated with the behaviour of physical systems in a broad perspective, in the

sequel, we focus our attention on the implementation of a concrete local-

ization process of quantum probabilistic structures effectuated by Boolean

localization systems of quantum measurement.

3 Categorical Probabilistic Structures

According to the category-theoretic approach to each kind of mathematical

structure, there corresponds a category whose objects have that structure,

and whose morphisms preserve it. Moreover to any natural construction on

structures of one kind, yielding structures of another kind, there corresponds

a functor from the category of the first kind to the category of the second.

A Classical event structure is a small category, denoted by B, which

is called the category of Boolean event algebras. Its objects are Boolean

algebras of events, and its arrows are Boolean algebraic morphisms.

A Quantum event structure is a small category, denoted by L, which

is called the category of quantum event algebras.

Its objects, denoted by L, are quantum algebras of events, that is ortho-
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modular σ-orthoposets. More concretely, each object L in L, is considered as

a partially ordered set of quantum events, endowed with a maximal element

1, and with an operation of orthocomplementation [−]∗ : L qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq L, which sat-

isfy, for all l ∈ L, the following conditions: [a] l ≤ 1, [b] l∗∗ = l, [c] l∨ l∗ = 1,

[d] l ≤ ĺ⇒ ĺ∗ ≤ l∗, [e] l⊥ĺ⇒ l∨ ĺ ∈ L, [f] for l, ĺ ∈ L, l ≤ ĺ implies that l and

ĺ are compatible, where 0 := 1∗, l⊥ĺ := l ≤ ĺ∗, and the operations of meet ∧

and join ∨ are defined as usually. We also recall that l, ĺ ∈ L are compatible

if the sublattice generated by {l, l∗, ĺ, ĺ∗} is a Boolean algebra, namely if it is

a Boolean sublattice. The σ-completeness condition, namely that the join of

countable families of pairwise orthogonal events must exist, is also required

in order to have a well defined theory of observables over L.

Its arrows are quantum algebraic morphisms, that is maps L H qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq K, which

satisfy, for all k ∈ K the following conditions: [a] H(1) = 1, [b] H(k∗) =

[H(k)]∗, [c] k ≤ ḱ ⇒ H(k) ≤ H(ḱ), [d] k⊥ḱ ⇒ H(k ∨ ḱ) ≤ H(k) ∨H(ḱ).

Next we introduce the categories associated with probabilistic structures.

A Quantum convex measure structure is a small category, denoted

by
∑

, which is called the category of convex sets of quantum probability

measures.

Its objects are the convex sets Θ of quantum states or quantum proba-

bility measures on a quantum event algebra L. Each quantum probability

measure, or quantum state, is defined by a mapping;

p : L→ [0, 1]

such that the following conditions are satisfied: p(1) = 1 and p(x ∨ y) =

p(x) + p(y), if x ⊥ y, where, x, y ∈ L. On each set Θ, there is defined the
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operation of convex mixing by means of the mappings;

σn : En ×Θn → Θ

for each natural number n, such that:

σn(e, p) :=
∑
i

eipi

where e = 〈e1, . . . , en〉, is a vector of real numbers, with ei ≥ 0 and
∑
i ei = 1,

and also, p = 〈p1 . . . pn〉 is a vector of quantum states. The unique quantum

state
∑
i eipi is called the convex mixture of p. The convex mixture of p,

evaluated at x ∈ L, is the superposition of probabilities
∑
i eipi(x). For

a quantum state pi and an event x ∈ L, pi(x) denotes the probability of

occurrence of x in state pi.

The arrows in the category
∑

are morphisms of convex sets of probability

measures, that is morphisms of sets []h : Θ → Φ which commute with the

operation of convex mixing, that is;

[σn(e, p)]h = σn(e, ph)

We note that Θ and Φ are regarded as defined over the same quantum event

algebra L, otherwise we have to take into account the quantum algebraic

morphisms as well.

Using the information encoded in the categories of quantum event alge-

bras L, and quantum probabilistic structures
∑

, it is possible to construct

a new category, called the category of quantum probabilities, constructed as

a category fibered in groupoids over the category of quantum event algebras

L, as follows:
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A Quantum probabilistic structure is a small category, denoted by

Q, which is called the category of quantum states or quantum probabilities.

Its objects are the quantum measure algebras 〈M, p〉 := pM , where M

is a quantum event algebra and p is a quantum probability measure on M ,

defined by the measurable mapping p : M → [0, 1]. The arrows in Q, denoted

by pM qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qL, are commutative triangles, or equivalently, are those quantum

logic morphisms M l qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq L in L, such that p = q ◦ l in the diagram below, is

again a quantum probability measure.

[0, 1]

�
�

�
�

�
�

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

p

@
@

@
@

@
@
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

q

M
l qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq L

Correspondingly, a Boolean probabilistic structure is a small cat-

egory, denoted by C, which is called the category of Boolean probability

measures, or classical states.

Its objects are the Boolean measure algebras 〈A,P 〉 := PA, where A is a

Boolean event algebra and P is a Boolean probability measure on M , defined

by the measurable mapping P : A → [0, 1]. The arrows in C, denoted by

PA qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq QB, are commutative triangles, or equivalently, are those Boolean

logic morphisms A b qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq B in B, such that P = Q ◦ b in the diagram below, is

again a classical state.
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[0, 1]

�
�

�
�

�
�

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

P

@
@

@
@

@
@
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

Q

A
b qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq B

4 Presheaf and Coefficients Boolean Functors

4.1 Presheaves of Boolean Probability Measures

If Cop is the opposite category of C, then SetsC
op

denotes the functor category

of presheaves on Boolean measure algebras. Its objects are all functors X :

Cop qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Sets, and its morphisms are all natural transformations between such

functors. Each object X in this category is a contravariant set-valued functor

on C, called a presheaf of Boolean probability measures on C.

A functor X is a structure-preserving morphism of these categories, that

is it preserves composition and identities. A functor in the category SetsC
op

can be understood as a contravariant translation of the language of C into

that of Sets. Given another such translation (contravariant functor) X́ of C

into Sets we need to compare them. This can be done by giving, for each

object PA in C a transformation τPA : X(PA) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq X́(PA) which compares

the two images of the object PA. Not any morphism will do, however, as it

would be necessary the construction to be parametric in PA, rather than ad

hoc. Since PA is an object in C while X(PA) is in Sets we cannot link them

by a morphism. Rather the goal is that the transformation should respect

the morphisms of C, or in other words the interpretations of v : PA qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq QB
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by X and X́ should be compatible with the transformation under τ . Then τ

is a natural transformation in the category of presheaves SetsC
op

.

For each Boolean measure algebra PA of C, X(PA) is a set, and for each

arrow f : QB qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq PA, X(f) : X(PA) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq X(QB) is a set function. If X is a

presheaf on C and x ∈ X(O), the value X(f)(x) for an arrow f : QB qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq PA

in C is called the restriction of x along f and is denoted by X(f)(x) = x · f .

Each object PA of C gives rise to a contravariant Hom-functor y[PA] :=

HomC(−, PA). This functor defines a presheaf on C. Its action on an object

QB of C is given by

y[PA](QB) := HomC(
QB, PA)

whereas its action on a morphism RC w qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq QB, for v : QB qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq PA is given by

y[PA](w) : HomC(
QB, PA) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq HomC(

RC, PA)

y[PA](w)(v) = v ◦ w

Furthermore y can be made into a functor from C to the contravariant func-

tors on C

y : C qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq SetsC
op

such that PA 7→HomC(−, PA). This is an embedding, called the Yoneda

embedding [5] , and it is a full and faithful functor.

The functor category of presheaves on Boolean measure algebras SetsC
op

,

provides an instantiation of a structure known as topos [6-8]. A topos exem-

plifies a well defined notion of a categorical universe of variable sets. It can

be conceived as a local mathematical framework corresponding to a gener-

alized model of set theory or as a generalized space. Moreover it provides a
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natural example of a many-valued truth structure, which remarkably is not

ad hoc, but reflects genuine constraints of the surrounding universe.

4.2 Boolean Measure Algebras Fibrations

Since C is a small category, there is a set consisting of all the elements of all

the sets X(PA), and similarly there is a set consisting of all the functions

X(f). This observation regarding X : Cop qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Sets permits us to take the

disjoint union of all the sets of the form X(PA) for all objects PA of C.

The elements of this disjoint union can be represented as pairs (PA,χ) for

all objects PA of C and elements χ ∈ X(PA). Thus the disjoint union of

sets is made by labelling the elements. Now we can construct a category

whose set of objects is the disjoint union just mentioned. This structure is

called the category of elements of the presheaf X, denoted by
∫
(X, C). Its

objects are all pairs (PA,χ), and its morphisms (RC, χ́) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq (PA,χ) are those

morphisms u : RC qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq PA of C for which χ · u = χ́. Projection on the second

coordinate of
∫
(X, C), defines a functor

∫
X :

∫
(X, C) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq C.

∫
(X, C) together

with the projection functor
∫

X is equivalent to the discrete fibration induced

by X, and C is the base category of the fibration. We note that the fibration

is discrete because the fibers are categories in which the only arrows are

identity arrows. If PA is a Boolean measure algebra of C, the inverse image

under
∫

X of PA is simply the set X(PA), although its elements are written

as pairs so as to form a disjoint union. The instantiation of the fibration

induced by X, is an application of the general Grothendieck construction [8].
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∫
(X, C)

∫
X

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

C X qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Sets

The split discrete fibration induced by X, where C is the base category of

the fibration, provides a well-defined notion of a uniform homologous fibered

structure in the following sense: Firstly, by the arrows specification defined

in the category of elements of X, any element χ, determined over the mea-

sure algebra PA, is homologously related with any other element χ́ over the

measure algebra RC, and so on, by variation over all the contexts of the

base category. Secondly, all the elements χ of X, of the same sort PA, viz.

determined over the same measure algebra PA, are uniformly equivalent to

each other, since all the arrows in
∫
(X, C) are induced by lifting arrows from

the base category C.

4.3 Functor of Boolean measure coefficients

We define a modeling Boolean coefficients functor, M : C qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Q, which as-

signs to Boolean measure algebras in C, that instantiates a model category,

the underlying quantum measure algebras from Q, and to Boolean measur-

able morphisms the underlying quantum measurable morphisms. Hence M

acts as a forgetful functor, forgetting the extra Boolean structure of C.

Equivalently the Boolean coefficients functor can be characterized as,

M : B qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq L, which assigns to Boolean event algebras in B the underlying
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quantum event algebras from L, and to Boolean morphisms the underlying

quantum algebraic morphisms, such that the following diagram commutes:

[0, 1]

�
�

�
�

�
�

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

P

@
@

@
@

@
@
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

p

M(B)
[ψB] qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq L

5 Adjoint Functorial Relation

We consider the category of quantum measure algebras Q and the modelling

functor M, and we define the functor R from Q to the topos of presheaves

on Boolean measure algebras SetsC
op

, given by;

R(pL) : PA 7→HomQ(M(PA), pL)

A natural transformation τ in the topos of presheaves on Boolean measure

algebras SetsC
op

between X and R(pL), τ : X qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq R(pL) is a family τPA

indexed by Boolean measure algebras PA of C for which each τPA is a map

τPA : X(PA)→HomQ(M(PA), pL)

of sets, such that the diagram of sets below, commutes for each Boolean

morphism u : RC → PA of C.

X(PA)
τPA qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq HomQ(M(PA), pL)

X(u)

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

M(u)∗

X(RC)
τRC qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq HomQ(M(RC), pL)
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If we make use of the category of elements of the Boolean measure

algebras-variable set X, being an object in the topos of presheaves SetsC
op

,

then the map τPA, defined above, can be characterized as:

τPA : (PA,χ)→HomQ(M ◦
∫
X

(PA,χ), pL)

Equivalently such a τ can be seen as a family of arrows of Q which is being

indexed by objects (PA,χ) of the category of elements of the presheaf of

Boolean measure algebras X, namely

{τPA(χ) : M(PA) → pL}(PA,χ)

From the perspective of the category of elements of X, the condition of the

commutativity of the above diagram is equivalent with the condition that for

each Boolean morphism u : RC → PA of C, the following diagram commutes.

M(PA) M ◦
∫

X(PA,χ)

@
@

@
@

@
@qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

τPA(χ)

M(u)

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

u∗ pL

�
�

�
�

�
�

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

τRC(χ́)

M(RC) M ◦
∫

X(RC, χ́)

From the diagram above, we conclude that the arrows τPA(χ) form a

cocone from the functor M ◦
∫
X to the quantum measure algebra pL. Making

use of the definition of the colimit, we conclude that each such cocone emerges
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by the composition of the colimiting cocone with a unique arrow from the

colimit LX to the quantum measure algebra object pL. In other words, there

is a bijection which is natural in X and pL

Nat(X,R(pL)) ∼= HomQ(LX, pL)

From the above bijection we are driven to the conclusion that the functor

R from Q to the topos of presheaves SetsC
op

, given by;

R(pL) : PA 7→HomQ(M(PA), pL)

has a left adjoint L : SetsC
op → Q, which is defined for each presheaf of

Boolean measure algebras X in SetsC
op

as the colimit

L(X) = Colim{
∫

(X, C)

∫
X qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq C M qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Q}

Consequently there is a pair of adjoint functors L a R as follows:

L : SetsC
op

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq Q : R

Thus we have constructed an adjunction which consists of the functors L

and R, called left and right adjoints with respect to each other respectively,

as well as the natural bijection:

Nat(X,R(pL)) r qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq HomQ(LX, pL)

Nat(X,R(pL)) lqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq HomQ(LX, pL)
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Nat(X,R(pL)) ∼= HomQ(LX, pL)

In the adjunction described above, between the topos of presheaves of

Boolean measure algebras and the category of quantum measure algebras,

the map r is called the right adjoint operator and the map l the left adjoint

operator.

If in the bijection defining the adjunction we use as X the representable

presheaf of the topos of Boolean measure algebras y[PA], it takes the form:

Nat(y[PA],R(pL)) ∼= HomQ(Ly[PA], pL)

We note that when X = y[PA] is representable, then the corresponding

category of elements
∫
(y[PA], C) has a terminal object, namely the element 1 :

PA qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq PA of y[PA](PA). Therefore the colimit of the composite M ◦
∫

y[PA]

is going to be just the value of M ◦
∫

y[PA] on the terminal object. Thus we

have

Ly[PA](PA) ∼= M ◦
∫

y[PA]
(PA, 1) = M(PA)

Thus we can characterize M(PA) as the colimit of the representable presheaf

on the category of Boolean measure algebras.

C

y

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

@
@

@
@

@
@qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

M

SetsC
op Lp p p p p p p p p p p p p p p pqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Q
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6 Tensor Product Representation of the Col-

imit

The content of the adjunction between the topos of presheaves of Boolean

measure algebras and the category of quantum measure algebras can be an-

alyzed if we make use of the categorical construction of the colimit defined

above, as a coequalizer of a coproduct. We consider the colimit of any func-

tor F : I qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Q from some index category I to Q. Let µi : F(i) → qiF(i),

i ∈ I, be the injections into the coproduct. A morphism from this coprod-

uct, ξ : qiF(i) → pL, is determined uniquely by the set of its components

ξi = ξµi. These components ξi are going to form a cocone over F to the

quantum measure algebra vertex pL only when for all arrows v : i qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq j of

the index category I the following conditions are satisfied:

(ξµj)F(v) = ξµi

F(i)

µi

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

@
@

@
@

@
@qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

ξµi

∐
F(i)

ξp p p p p p p p p p p p p p p p qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq pL

µj

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

�
�

�
�

�
�

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

ξµj

F(j)

So we consider all F(domv) for all arrows v with its injections νv and

obtain their coproduct qv:i→jF(domv). Next we construct two arrows ζ and
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η, defined in terms of the injections νv and µi, for each v : i qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq j by the

conditions

ζνv = µi

ηνv = µjF(v)

as well as their coequalizer ξ;

F(domv) F(i)

µv

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

µi

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

p p p p p p p p p p p p p p p p p p p p p p p p p p p p qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
ξµi

∐
v:i→jF(domv) ζ

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqη

∐
F(i)

ξp p p p p p p p p p p p p p p p qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq pL

The coequalizer condition ξζ = ξη tells us that the arrows ξµi form

a cocone over F to the quantum measure algebra vertex pL. We further

note that since ξ is the coequalizer of the arrows ζ and η this cocone is the

colimiting cocone for the functor F : I → Q from some index category I to

Q. Hence the colimit of the functor F can be constructed as a coequalizer of

coproduct according to the diagram below:

∐
v:i→jF(domv) ζ

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqη

∐
F(i)

ξ qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq ColimF

In the case considered the index category is the category of elements

of the presheaf of Boolean measure algebras X and the functor M ◦GX

plays the role of the functor F : I qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Q. In the diagram above the second

coproduct is over all the objects (PA,χ) with χ ∈ X(PA) of the category of

elements, while the first coproduct is over all the maps v : (RC, χ́) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq (PA,χ)
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of that category, so that v : RC qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq PA and the condition χv = χ́ is satisfied.

We conclude that the colimit LM(X) can be equivalently presented as the

coequalizer below:

∐
v:RC→PAM(RC)

ζ
qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqη

∐
(PA,χ)M(PA)

ξ qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq X⊗CM

The coequalizer presentation of the colimit shows that the Hom-functor

R has a left adjoint which can be characterized categorically as the tensor

product −⊗CM.

In order to clarify the above observation, we forget for the moment that

the discussion concerns the category of quantum measure algebras Q, and

we consider instead the category Sets. Then the coproduct qpM(PA) is a

coproduct of sets, which is equivalent to the product X(PA) × M(PA) for

PA ∈ C. The coequalizer is thus the definition of the tensor product X⊗CM

of the set valued functors:

X : Cop qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Sets, M : C qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Sets

∐
PA,RCX(PA)×Hom(RC, PA)×M(RC) ζ

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqη

∐
PAX(PA)×M(PA)

ξ qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq X⊗CM

According to the diagram above for elements χ ∈ X(PA), v : RC → PA

and ý ∈ M(RC) the following equations hold:

ζ(χ, v, ý) = (χv, ý), η(χ, v, ý) = (χ, vý)

symmetric in X and M. Hence the elements of the set X⊗CM are all of the

form ξ(χ, y). This element can be written as

ξ(χ, y) = χ⊗ y, χ ∈ X(PA), y ∈ M(PA)
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Thus if we take into account the definitions of ζ and η above, we obtain:

χv ⊗ ý = χ⊗ vý

Furthermore if we define the arrows

kPA : X⊗CM qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq pL, lPA : X(PA) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq HomQ(M(PA), pL)

they are related under the fundamental adjunction by

kPA(χ, y) = lPA(χ)(y), PA ∈ C, χ ∈ X(PA), y ∈ M(PA)

Here we consider k as a function on qPAX(PA)×M(PA) with components

kPA : X(PA)×M(PA) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq pL satisfying

kRC(χv, y) = kPA(χ, vy)

in agreement with the equivalence relation defined above.

Now we replace the category Sets by the category of quantum measure

algebras Q under study. The element y in the set M(PA) is replaced by

a generalized element y : M(RC) → M(PA) from some modeling object

M(RC) of Q. Then we consider k as a function q(PA,χ)M(PA) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq pL with

components k(PA,χ) : M(PA) → pL for each χ ∈ X(PA), that for all arrows

v : RC qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq PA satisfy

k(RC,χv) = k(PA,χ) ◦M(v)

Then the condition defining the bijection holding by virtue of the fundamen-

tal adjunction is given by

k(PA,χ) ◦ y = lPA(χ) ◦ y : M(RC) → pL
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This argument, being natural in the object M(RC), is determined by set-

ting M(RC) = A(PA) with y being the identity map. Hence the bijec-

tion takes the form k(PA,χ) = lPA(χ), where k : q(PA,χ)M(PA) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq pL, and

lPA : X(PA) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq HomQ(M(PA), pL).

7 System Of Localizations For Quantum Mea-

sure Algebras

The notion of a system of localizations for a quantum measure algebra, which

will be defined in the sequel, is conceptually based on the expectation that a

quantum measure algebra pL in Q is possible to be comprehended by means

of certain structure preserving maps M(PA) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq pL with local or modeling

objects Boolean measure algebras PA in C as their domains. It is obvious,

that any single map from any modeling Boolean measure algebra to a quan-

tum measure algebra, is not adequate to determine it entirely, and hence, it

contains only a fraction of the total information content included in it. This

problem may be tackled, only if, we employ many appropriate structure pre-

serving maps from the modeling Boolean measure algebras to a quantum

measure algebra simultaneously, so as to cover it completely. In turn the

information available about each map of the specified kind may be used to

determine the quantum measure algebra itself. In this case we conceive the

family of such maps as the generator of a system of localizations for a quan-

tum measure algebra. The notion of local is characterized using a notion of

topology on C, the axioms of which express closure conditions on the collec-
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tion of modeling algebras of Boolean coefficient probability measures.

7.1 The Notion of Grothendieck Topology on C

We start our discussion by explicating the notion of a topology on the cate-

gory of Boolean measure algebras C. A topology on C is a system of arrows Λ,

where for each object PA there is a set Λ(PA) that contains indexed families

of C-morphisms,

Λ(PA) = {ψi : RCi → PA, i ∈ I}

that is, Boolean homomorphisms to PA, such that certain appropriate con-

ditions are satisfied.

The notion of a topology on the category of Boolean measure algebras

C is a categorical generalization of a system of set-theoretical covers on a

topology T, where a cover for U ∈ T is a set {Ui : Ui ∈ T, i ∈ I} such

that ∪Ui = U . The generalization is achieved by noting that the topology

ordered by inclusion is a poset category and that any cover corresponds to a

collection of inclusion arrows Ui → U . Given this fact, any family of arrows

contained in Λ(PA) of a topology is a cover as well.

The specification of a categorial or Grothendieck topology on the cate-

gory of Boolean measure algebras takes place through the introduction of

appropriate covering devices, called covering sieves. For an object PA in

C, a PA-sieve is a family % of C-morphisms with codomain PA, such that

if RC → PA belongs to % and QD → RC is any C-morphism , then the

composite QD → RC → PA belongs to %.

A Grothendieck topology on the category of Boolean measure algebras
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C, is a system J of sets, J(PA) for each PA in C, where each J(PA) consists

of a set of PA-sieves, (called the covering sieves), that satisfy the following

conditions:

1. For any PA in C the maximal sieve {g : cod(g) = PA} belongs to

J(PA) (maximality condition).

2. If % belongs to J(PA) and f : RC → PA is a C-morphism, then

f ∗(%) = {h : RC → PA, f · h ∈ %} belongs to J(RC) (stability condition).

3. If % belongs to J(PA) and S is a sieve on RC, where for each f :

RC → PA belonging to %, we have f ∗(S) in J(RC), then S belongs to J(PA)

(transitivity condition).

The small category C together with a Grothendieck topology J, is called

a Boolean measure algebras site.

7.2 The Grothendieck Topology of Epimorphic Fami-

lies

We consider C as a model category, whose set of objects {PiAi : i ∈ I}, I:

index set, generate Q, in the sense that,

M(PiAi)
wi qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq pL v

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqu
tK

the identity v ◦ wi = u ◦ wi, for every arrow wi : M(PiAi) → pL, and every

PiAi, implies that v = u. Equivalently we can say that the set of all arrows

wi : M(PiAi) → pL, constitute an epimorphic family.

The consideration that C is a generating model category of Q points

exactly to the depiction of the appropriate Grothendieck topology on C.
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We assert that a sieve S on a Boolean measure algebra PA in C is to

be a covering sieve of PA, when the arrows s : RC → PA belonging to the

sieve S together form an epimorphic family in Q. This requirement may be

equivalently expressed in terms of a map

ΦS :
∐

(s:RC→PA)∈S
RC → PA

being an epi in Q.

We will show that the choice of covering sieves on Boolean measure al-

gebras PA in C, as being epimorphic families in Q, does indeed define a

Grothendieck topology on C.

First of all we notice that the maximal sieve on each Boolean measure

algebra PA, includes the identity PA→ PA, thus it is a covering sieve. Next,

the transitivity property of the depicted covering sieves is obvious. It remains

to demonstrate that the covering sieves remain stable under pullback. For

this purpose we consider the pullback of such a covering sieve S on PA along

any arrow h : QD → PA in C

∐
s∈S

RC×PA
QD qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq QD

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

h

∐
s∈S

RC Φ qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq PA

The Boolean measure algebras PA in C generate the category of quantum

measure algebras Q, hence, there exists for each arrow s : RC → PA in

S, an epimorphic family of arrows
∐

[TE]s → RC ×PA
QD, or equivalently

{[TE]sj → RC×PA
QD}j, with each domain [TE]s a Boolean measure algebra.
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Consequently the collection of all the composites:

[TE]sj →
RC ×PA

QD → QD

for all s : RC → PA in S, and all indices j together form an epimorphic

family in Q, that is contained in the sieve h∗(S), being the pullback of S

along h : QD → PA. Therefore the sieve h∗(S) is a covering sieve.

7.3 Covering Sieves as Localization Systems

If we consider a quantum measure algebra pL, and all quantum algebraic

morphisms of the form ψPA : M(PA) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq pL, with domains PA, in the gener-

ating model category of Boolean measure algebras C, then the family of all

these maps ψPA, constitute an epimorphism:

S :
∐

(PA∈C,ψP A
:M(PA)→pL)

M(PA) → pL

We say that a sieve on a quantum measure algebra defines a covering sieve

by objects of its generating model category C, when the quantum algebraic

morphisms belonging to the sieve define the preceding epimorphism.

From a physical perspective covering sieves by Boolean measure algebras,

are equivalent with Boolean localization systems of quantum measure alge-

bras. These localization systems filter the information of a quantum measure

algebra through Boolean domains, associated with procedures of localization

in measurement environments. We will discuss localizations systems in de-

tail, in order to unravel the physical meaning of the requirements underlying

the notion of Grothendieck topology, and subsequently, the notion of cover-
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ing sieves defined previously. It is instructive to begin with the notion of a

system of prelocalizations for a quantum measure algebra.

A system of prelocalizations for a quantum measure algebra pL in

Q is a subfunctor of the Hom-functor R(pL) of the form S : Cop → Sets,

namely for all PA in C it satisfies S(PA) ⊆ [R(pL)](PA). Hence a system of

prelocalizations for quantum measure algebra pL in Q is an ideal S(PA) of

quantum algebraic morphisms of the form

ψPA : M(PA) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq pL, PA ∈ C

such that {ψPA : M(PA) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq pL in S(PA), and A(v) : M(RC) → M(PA) in

Q for v : RC → PA in C, implies ψPA ◦M(v) : M(RC) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Q in S(PA)}.

The introduction of the notion of a system of prelocalizations is forced on

the basis of operational physical arguments. According to Kochen-Specker

theorem it not possible to understand completely a quantum mechanical sys-

tem with the use of a single system of Boolean devices. On the other side,

in every concrete experimental context, the set of events that have been ac-

tualized in this context forms a Boolean algebra. In the light of this we

can say that any Boolean domain object (B, [ψB] : M(B) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq L) in a sys-

tem of prelocalizations for a quantum event algebra L, making the diagram

below commutative, corresponds to a set of Boolean classical events that

become actualized in the experimental context of B. These Boolean do-

mains play the role of localizing devices in a quantum event structure, that

are induced by measurement situations. The above observation is equiva-

lent to the statement that a measurement-induced Boolean algebra serves

as a reference frame, in a topos-theoretical environment, relative to which a
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measurement result is being coordinatized. Correspondingly, by commuta-

tivity of the diagram below, we obtain naturally the notion of coordinatizing

Boolean measure algebras in a system of prelocalizations for a quantum mea-

sure algebra over a quantum event algebra L. The same notion suggests an

effective way of comprehending quantum theory in a contextual perspective,

pointing to a relativity principle of a topos-theoretical origin. Concretely

it supports the assertion that the quantum world is the universe of varying

Boolean reference frames, which interconnect to form a coherent picture in

a non-trivial way.

[0, 1]
Qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq M(B)

R

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

HH
HHH

HHH
HHH

HHH
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

p [ψB]

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

M(C)
[ψC ] qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq L

Adopting the aforementioned perspective on quantum measure algebraic

structures, the operation of the Hom-functor R(pL) is equivalent to depict-

ing an ideal of morphisms which are to play the role of local coverings of a

quantum measure algebra by modeling objects. The notion of a system of

prelocalizations formalizes an intuitive idea, according to which, if we sent

many coordinatizing Boolean measure algebras into the quantum measure

algebra homomorphically, then we would expect that these modeling objects

would prove to be enough for the complete determination of the quantum

measure algebra. If we consider a geometrical viewpoint, we may legiti-

mately characterize metaphorically the maps ψPA : M(PA) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq pL, where
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PA in C, in a system of prelocalizations for quantum measure algebra pL

as Boolean measure algebra charts. Correspondingly the modeling Boolean

domain objects (A, [ψA] : M(A) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq L) in a system of prelocalizations for a

quantum event algebra, making the diagram above commutative, may be

characterized as measurement charts. Subsequently, their domains A may

be called Boolean coefficient domains induced by measurement, the elements

of A measured local Boolean coefficients, and the elements of L quantum

events, (or quantum propositions in a logical interpretation), coordinatized

by Boolean coefficients. Finally, the Boolean morphisms v : D qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq A in B

play the equivalent role of transition maps.

Under these intuitive identifications, we say that a family of Boolean

measure algebra charts ψPA : M(PA) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq pL, PA in C, (or correspondingly

a family of Boolean measurement charts [ψA] : M(A) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq L making the dia-

gram above commutative), is the generator of the system of prelocalization

S iff this system is the smallest among all that contains that family. It is

evident that a quantum measure algebra, and correspondingly the quantum

event algebra over which it is defined, can have many systems of measure-

ment prelocalizations, that, remarkably, form an ordered structure. More

specifically, systems of prelocalization constitute a partially ordered set un-

der inclusion. Furthermore, the intersection of any number of systems of

prelocalization is again a system of prelocalizations. We emphasize that

the minimal system is the empty one, namely S(PA) = ∅, for all PA in C,

whereas the maximal system is the Hom-functor R(pL) itself, or equivalently,

all quantum algebraic morphisms ψPA : M(PA) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq pL, for all PA in C.
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The transition from a system of prelocalizations to a system of localiza-

tions for a quantum measure algebra, can be effected under the restriction

that, certain compatibility conditions have to be satisfied on the overlap of

the modeling Boolean coefficients domains covering the quantum measure

algebra under investigation. In order to accomplish this we use a pullback

diagram in Q as follows:

T

@
@

@
@

@
@qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

u

H
HHH

HHH
HHH

HHHHqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

h

A
A
A
A
A
A
A
A
A
A
A
A
AAqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

M(PA)×pLM(RC) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq M(PA)

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

ψRC,PA

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

ψPA

M(RC)
ψRC qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq pL

The pullback of the Boolean charts ψPA : M(PA) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq pL, PA in C, and

ψRC : M(RC) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq pL, RC ∈ C with common codomain the quantum measure

algebra pL, consists of the object M(PA)×pLM(RC) and two arrows ψPARC

and ψ RCPA, called projections, as shown in the above diagram. The square

commutes and for any object T and arrows h and g that make the outer

square commute, there is a unique u : T qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq M(PA)×pLM(RC) that makes

the whole diagram commutative. Hence we obtain the condition:

ψRC ◦ g = ψPA ◦ h

The pullback of the Boolean measure algebra charts ψPA : A(PA) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq pL,

PA in C, and ψRC : M(RC) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq pL, RC in C, is equivalently characterized
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as their fiber product, because M(PA)×pLM(RC) is not the whole product

A(PA)×M(RC) but the product taken fiber by fiber. We notice that if ψPA

and ψRC are injective, then their pullback is isomorphic with the intersec-

tion M(PA) ∩ M( ´PA). Then we can define the pasting map, which is an

isomorphism, as follows:

ΩPA,RC : ψRCPA(M(PA)×pLM(RC)) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq ψPARC(M(PA)×pLM(RC))

by putting

ΩPA,RC = ψPARC ◦ ψRCPA
−1

Then we have the following cocycle conditions:

ΩPA,PA = 1PA 1PA := idPA

ΩPA,RC ◦ ΩRC,TE = ΩPA,TE if M(PA) ∩M(RC) ∩M(TE) 6= 0

ΩPA,RC = Ω−1
RC,PA if M(PA) ∩M(RC) 6= 0

The pasting map assures that the mapping ψRCPA(M(PA)×pLM(RC)), and

also, ψPARC(M(PA)×pLM(RC)) are going to cover the same part of the quan-

tum measure algebra in a compatible way. It is obvious that the above com-

patibility conditions are translated immediately to corresponding compati-

bility conditions concerning Boolean measurement charts on the quantum

event structure.

Given a system of prelocalizations for a quantum measure algebra pL inQ,

and correspondingly for the quantum event algebra over which it is defined,

we call it a system of localizations iff the above compatibility conditions

are satisfied and moreover the quantum algebraic structure is preserved.
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We assert that the above compatibility conditions provide the necessary

relations for understanding a system of localizations for a quantum mea-

sure algebra as a structure sheaf or sheaf of Boolean coefficients, consist-

ing of local Boolean measure algebras. This is related to the observation

that systems of localizations are actually subfunctors of the representable

Hom-functor R(pL) of the form S : Cop → Sets, namely for all PA in C

satisfy S(PA) ⊆ [R(pL)](PA). In this sense the pullback compatibility con-

ditions express gluing relations on overlaps of Boolean measure algebra charts

and convert a presheaf subfunctor of the Hom-functor into a sheaf for the

Grothendieck topology specified. The concept of sheaf expresses exactly the

pasting conditions that local Boolean coefficients algebras have to satisfy,

namely, the way by which local data can be collated together into global

ones. We stress the point that the transition from locally defined properties

to global consequences happens via a compatible family of elements over a

cover of the global object. A cover, or equivalently a localization system of

the global, object, being a quantum measure algebra structure in the present

scheme, can be viewed as providing a decomposition of that object into sim-

pler modeling objects.

The comprehension of a localization system as a sheaf of Boolean coeffi-

cients permits the conception of a quantum measure algebra (or of its asso-

ciated quantum event algebra) as a generalized Boolean manifold, obtained

by pasting the ψRCPA(M(PA)×pLM(RC)) and ψPA ´PA
(M(PA)×pLM(RC))

covers together by the transition functions ΩPA,RC .

More specifically, the equivalence relations in the category of elements of
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such a structure sheaf, represented by a Boolean system of Boolean proba-

bilities coefficients, have to be taken into account according to the analysis

of the adjoint relation presented in Section 6. Equivalence relations of this

form, give rise to congruences in the structure sheaf of Boolean coefficients,

which are expressed categorically as a colimit in the category of elements of

such a structure sheaf. In this perspective the generalized manifold, which

represents categorically a quantum measure algebra, is understood as a col-

imit in a sheaf of Boolean coefficients, that contains compatible families of

modeling Boolean measure algebras. It is instructive to emphasize that the

organization of Boolean coordinatizing objects in localization systems takes

the form of interconnection of these modeling objects through the categorical

construction of colimit, the latter being the means to comprehend an object

of complex structure (quantum measure algebra) from simpler coefficient ob-

jects (Boolean measure algebras).

The above ideas provide the basis for the formulation of a sheaf-theoretic

representation theorem concerning quantum measure algebras as we shall

present in the following Section.
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8 Representation of Quantum Measure Alge-

bras

8.1 Unit and Counit of the Adjoint Relation

We focus again our attention in the fundamental adjoint relation established,

and investigate the unit and the counit of it. For any presheaf X in the topos

SetsC
op

, the unit δX : X qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq HomQ(M( ),X⊗CM) has components:

δX(PA) : X(PA) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq HomQ(M(PA),X⊗CM)

for each Boolean measure algebra PA in C.

If we make use of the representable presheaf y[PA] we obtain

δy[PA] : y[PA] → HomQ(M( ),y[PA]⊗CM)

Hence for each object PA of C the unit, in the case considered, corresponds

to a map

M(PA) → y[PA]⊗CM

But since

y[PA]⊗CM ∼= M(PA)

the unit for the representable presheaf of Boolean measure algebras is clearly

an isomorphism. By the preceding discussion we conclude that the following

diagram commutes:

41



C

y

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

HH
HHH

HHH
HHH

HHHqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

A

SetsC
op [ qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq−]⊗QM Q

Thus the unit of the fundamental adjunction referring to the representable

presheaf of the category of Boolean measure algebras provides a quantum

algebraic morphism, M(PA) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq y[PA]⊗CM, which is an isomorphism.

On the other side, for each quantum measure algebra pL in Q the counit

is defined as follows:

εpL : HomQ(M( ), pL)⊗CM qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq pL

The counit corresponds to the vertical map in the diagram below:

∐
v: ´PA→PA

M( ´PA)
RC

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqη

∐
(PA,p)M(PA) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq [R(pL)](−)⊗CM

@
@

@
@

@
@

@qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

ppppppppppppppppppppqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

ε

pL

8.2 Boolean Representation

The sheaf-theoretic representation of a quantum measure algebra in terms of

Boolean measure localization systems, is formulated in terms of the following

proposition, effectuated by means of the vertical counit map in the preceding

diagram:

The representation of a quantum measure algebra pL in Q, in terms

of a coordinatization system of Boolean measure algebras localizations S,
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consisting of Boolean probability coefficients, is full and faithful, if and only

if the counit of the established adjoint relation, restricted to that system, is

an isomorphism, that is, structure-preserving, 1-1 and onto.

It is easy to see that the counit of the adjunction, restricted to a system of

Boolean measure algebras localizations is a quantum algebraic isomorphism,

iff the right adjoint functor is full and faithful, or equivalently, iff the cocone

from the functor M ◦
∫
R(pL) to the quantum measure algebra pL is universal

for each pL in Q. In the latter case we characterize the Boolean measure

coefficients functor M : C qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Q, a proper modeling functor. As a conse-

quence if we consider as B the category of Boolean subalgebras of a quantum

event algebra L of ordinary quantum Mechanics, that is an orthomodular

σ-orthoposet of orthogonal projections of a Hilbert space, together with a

proper modeling inclusion functor M : B qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq L, such that the diagram below

commutes, the counit of the established adjunction restricted to a system of

Boolean localizations is an isomorphism.

[R(L)](−)⊗BM

[ψB]⊗[−]

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq @
@

@
@

@
@qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

εL

M(B)
[ψB] qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq L

P

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

�
�

�
�

�
�qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

p

[0, 1]

εL : R(L)⊗BM→∼=L

43



such that;

[ψB] = εL ◦ ([ψB]⊗ )

or in the notation of elements equivalently:

εL([ψB]⊗a) = [ψB](a), a ∈ M(B)

where p([ψB](a)) = (P (a)), for all [ψB] : M(B) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq L according to the com-

mutative diagram above.

9 Conclusions

The primary physical motivation of this paper has been the implementa-

tion and explicit construction of an appropriate localization process suited

to quantum physical observation, and in particular, the study of its conse-

quences refering to the interpretation of quantum probabilistic structures.

The crucial ideas and techniques related with the objective of interpreting

quantum measure algebras sheaf-theoretically in the topos-theoretic environ-

ment of Grothendieck sites, are based on extension and elaboration of previ-

ous works of the author, communicated, both conceptually and technically,

in the literature [23-27]. The defining characteristic of the topos-theoretic

perspective enunciated by the author in this endeavor has been the change

of resolution focus form point-set to variable topological localization models

of quantum algebraic structures, that effectively, induce a transition in the

semantics of global quantum event observable and probability algebras from

a set-theoretic to a sheaf-theoretic one. The significance and semantic differ-
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entiation of this work in relation to the foundations of quantum theory can

be cast in the form of the following statements:

1. Conceptually, the physical meaning of the notion of localization is

being disassociated from its restricted spatial connotation reference context.

We have argued that this is an essential and necessary reconceptualization of

the meaning of locality in relational information terms forced by the quantum

description of physical systems.

2. A suitable localization process of global quantum event and probabilis-

tic structures that respects the premises of the quantum theory of measure-

ment is being formulated in terms of Boolean localization systems, described

categorically in terms of an appropriate Grothendieck topology, that incor-

porate the constitutive requirements of the notion of Boolean localization in

functorial relational terms.

3. Global quantum event and probabilistic structures are being function-

ally and functorially dependent on generalized topological localization mea-

sures induced by the preparation of Boolean structured domains of measure-

ment, not necessarily based on the existence of an underlying set-theoretic

structure of points on the real line.

4. The sheaf-theoretic semantic transition of quantum measure algebras

has been forced by means of gluing cocycle conditions over an explicitly con-

structed uniform and homologous fibered representation of quantum states

with respect to local Boolean reference frames for the Grothendieck topol-

ogy of epimorphic families. According to this representation, quantum states

have been conceptualized as equivalence classes of local Boolean coordinates
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with respect to those reference frames. Subsequently, it has been constructed

an isomorphic representation of quantum measure algebras with colimits

taken in the categories of elements of sheaves of Boolean reference frames.

5. The physical significance of the sheaf-theoretic representation of quan-

tum measure algebras is encapsulated in the realization that the whole infor-

mation content of a quantum measure algebra is preserved by the action of

some covering system, if and only if that system forms a Boolean localization

system. Hence, the significance of a quantum measure algebra is shifted from

the orthoposet axiomatization at the level of events, to the sheaf-theoretic

gluing conditions at the level of Boolean localization systems.

6. The preservation of quantum information property according to the

above is being formally established by the counit of the related adjunction

isomorphism. More specifically, the surjective property of the counit guar-

antees that the Boolean localization measures, representing objects in the

category of elements of the sheaf
∫
(R(pL), C), cover entirely a quantum mea-

sure algebra pL, whereas its injective property guarantees that any two covers

are compatible in a system of localizations. Moreover, since the counit is also

a homomorphism, it preserves the algebraic structure.

7. The physical content of the sheaf-theoretic representation of quantum

events algebras can be formulated in terms of a functoriality property. Ac-

cording to this, the information content of a quantum measure algebra is

covariant under the groupoid of gluing isomorphisms between overlapping

local Boolean reference frames, along their intersections, in a Boolean local-

ization system.
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8. In the physical state of affairs, each cover corresponds to a Boolean

measure algebra of events realized locally (with respect to the Grothendieck

topology of epimorphic families) in a measurement situation. The equivalence

classes of local Boolean measure coefficients represent quantum states in pL,

via the sheaf-theoretic pullback compatibility conditions. In this sense, the

notion of quantum probability is basically classical when interpreted locally

à la Grothendieck. Moreover, the probabilities of actualization of events in

equivalent local measurement environments are equal.

9. Conclusively, the structure of a quantum measure algebra is being gen-

erated by the information that its structure preserving morphims, encoded

as Boolean covers in localization systems carry, as well as their compatibility

relations. Most significantly, the same compatibility conditions provide the

necessary relations for understanding a system of localizations for a quantum

probabilistic structure, as a structure sheaf of Boolean measure coefficients

associated with local contexts of measurement.

Finally, it would be instructive to comment briefly on the possible im-

plications of the proposed topos-theoretic interpretation schema of quantum

structures, based on a reconceptualization of the notion of physical localiza-

tion, in relation to the ongoing research on quantum relativity and quantum

gravity. A preliminary account of the attempt to establish a connective link

with the conception of a categorical theory of covariant quantum gravita-

tional dynamics based on the utilization of topological localization systems

in the physical “continuum” is in the phase of intense development, while

some basic ideas and results related with this program have been already
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communicated [28]. In the context of that work we initiate a sheaf-theoretic

dynamical analysis of quantum observable structures by synthesizing the flex-

ible categorical machinery of Grothendieck topoi, together with, the powerful

sheaf-theoretic methodology of Mallios’s Abstract Differential Geometry [18].

The crucial physical issue incorporated in the idea of generalized topolog-

ical localization processes, conceived in the sense of Grothendieck topologies

on a base category of structured reference contexts, is related to a novel

topos-theoretic conception of the physical “continuum”. According to this

conception the quantum regime of observable dynamical phenomena should

be understood in functorial terms of categorically localized information, and

not in the restricted classical localization terms conceived by means of met-

rical properties on a pre-existing smooth set-theoretic spacetime manifold.

Subsequently, that semantic transition can be implemented conceptually and

technically by the replacement of the classical variable metrical ruler of local-

ization on a smooth background spacetime manifold, with a variable sheaf-

cohomological ruler of categorical localization in a Grothendieck topos, that

captures the relational information of observables in the quantum regime,

filtered through local reference frames in that topos. Then, the dynam-

ical properies of quantum structures can be addressed to the global topos-

theoretic dynamics generated by interlocking diagrams of local frames in that

topos, giving rise to generalized De Rham complexes of sheaves encapsulating

cohomologically the corresponding dynamical behavior.
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