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Abstract

We develop the idea of employing localization systems of Boolean

coverings, associated with measurement situations, in order to com-

prehend structures of Quantum Observables. In this manner, Boolean

domain observables constitute structure sheaves of coordinatization

coefficients in the attempt to probe the Quantum world. Interpreta-

tional aspects of the proposed scheme are discussed with respect to

a functorial formulation of information exchange, as well as, quan-

tum logical considerations. Finally, the sheaf theoretical construction
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suggests an opearationally intuitive method to develop differential ge-

ometric concepts in the quantum regime.
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1 Introduction

The main guiding idea in our investigation is based on the employment of ob-

jects belonging to the Boolean species of observable structure, as covers, for

the understanding of the objects belonging to the quantum species of observ-

able structure. The language of Category theory [1, 2] proves to be suitable

for the implementation of this idea in a universal way. The conceptual essence

of this scheme is the development of a sheaf theoretical perspective [3, 4] on

Quantum observable structures.

The physical interpretation of the categorical framework makes use of

the analogy with geometric manifold theory. Namely, it is associated with

the development of a Boolean manifold picture, that takes place through the

identification of Boolean charts in systems of localization for quantum event

algebras with reference frames, relative to which the results of measurements

can be coordinatized. In this sense, any Boolean chart in a localization
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system covering a quantum algebra of events, corresponds to a set of Boolean

events which become realizable in the experimental context of a measurement

situation. This identification amounts to the introduction of a relativity

principle in Quantum theory, suggesting a contextual interpretation of its

descriptive apparatus.

In quantum logical approaches the notion of event, associated with the

measurement of an observable, is taken to be equivalent to a proposition

describing the behavior of a physical system. This formulation of Quantum

theory is based on the identification of propositions with projection opera-

tors on a complex Hilbert space. In this sense, the Hilbert space formalism of

Quantum theory associates events with closed subspaces of a separable, com-

plex Hilbert space corresponding to a quantum system. Then, the quantum

event algebra is identified with the lattice of closed subspaces of the Hilbert

space, ordered by inclusion and carrying an orthocomplementation operation

which is given by the orthogonal complements of the closed subspaces [5-6].

Equivalently it is isomorphic to the partial Boolean algebra of closed sub-

spaces of the Hilbert space of the system, or alternatively the partial Boolean

algebra of projection operators of the system [7].

We argue that the set theoretical axiomatizations of quantum observ-

able structures hides the intrinsic significance of Boolean localizing systems

in the formation of these structures. Moreover, the operational procedures

3



followed in quantum measurement are based explicitly in the employment

of appropriate Boolean environments. The construction of these contexts of

observation are related with certain abstractions and can be metaphorically

considered as pattern recognition arrangements. In the categorical language

we adopt, we can explicitly associate them with appropriate Boolean cover-

ings of the structure of quantum events. In this way, the real significance of a

quantum structure proves to be, not at the level of events, but at the level of

gluing together observational contexts. The main thesis of this paper is that

the objectification of a quantum observable structure takes place through

Boolean reference frames that can be pasted together using category theoret-

ical means. Contextual topos theoretical approaches to quantum structures

have been considered, from a different viewpoint in [8,9], and discussed in

[10-12].

In Section 2 we define event and observable structures in a category theo-

retical language. In Section 3 we introduce the functorial concepts of Boolean

coordinatizations and Boolean observable presheaves, and also, develop the

idea of fibrations over Boolean observables. In Section 4 we prove the exis-

tence of an adjunction between the topos of presheaves of Boolean observables

and the category of Quantum observables. In Section 5 we define systems of

localization for measurement of observables over a quantum event algebra.

In Section 6 we talk about isomorphic representations of quantum algebras
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in terms of Boolean localization systems using the adjunction established.

In Section 7 we examine the consequences of the scheme related to the in-

terpretation of the logic of quantum propositions. In Section 8 we discuss

the implications of covering systems in relation to the possibility of develop-

ment of a differential geometric machinery suitable for the quantum regime.

Finally, we summarize the conclusions in Section 9.

2 Event and Observable Structures as Cate-

gories

A Quantum event structure is a category, denoted by L, which is called

the category of Quantum event algebras.

Its objects, denoted by L, are Quantum algebras of events, that is ortho-

modular σ-orthoposets. More concretely, each object L in L, is considered as

a partially ordered set of Quantum events, endowed with a maximal element

1, and with an operation of orthocomplementation [−]∗ : L qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq L, which sat-

isfy, for all l ∈ L, the following conditions: [a] l ≤ 1, [b] l∗∗ = l, [c] l∨ l∗ = 1,

[d] l ≤ ĺ ⇒ ĺ∗ ≤ l∗, [e] l⊥ĺ ⇒ l∨ ĺ ∈ L, [f] for l, ĺ ∈ L, l ≤ ĺ implies that l and

ĺ are compatible, where 0 := 1∗, l⊥ĺ := l ≤ ĺ∗, and the operations of meet ∧

and join ∨ are defined as usually. We also recall that l, ĺ ∈ L are compatible
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if the sublattice generated by {l, l∗, ĺ, ĺ∗} is a Boolean algebra, namely if it is

a Boolean sublattice. The σ-completeness condition, namely that the join of

countable families of pairwise orthogonal events must exist, is also required

in order to have a well defined theory of observables over L.

Its arrows are Quantum algebraic homomorphisms, that is maps K H qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq L,

which satisfy, for all k ∈ K, the following conditions: [a] H(1) = 1, [b]

H(k∗) = [H(k)]∗, [c] k ≤ ḱ ⇒ H(k) ≤ H(ḱ), [d] k⊥ḱ ⇒ H(k ∨ ḱ) ≤

H(k) ∨H(ḱ), [e] H(
∨

nkn) =
∨

nH(kn) , where k1, k2, . . . countable family of

mutually orthogonal events.

A Classical event structure is a category, denoted by B, which is

called the category of Boolean event algebras. Its objects are σ-Boolean

algebras of events and its arrows are the corresponding Boolean algebraic

homomorphisms.

The notion of observable corresponds to a physical quantity that can

be measured in the context of an experimental arrangement. In any mea-

surement situation the propositions that can be made concerning a physical

quantity are of the following type: the value of the physical quantity lies in

some Borel set of the real numbers. A proposition of this form corresponds to

an event as it is apprehended by an observer using his measuring instrument.

An observable Ξ is defined to be an algebraic homomorphism from the Borel
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algebra of the real line Bor(R) to the quantum event algebra L.

Ξ : Bor(R) → L

such that: [i] Ξ(∅) = 0, Ξ(R) = 1, [ii] E
⋂

F = ∅ ⇒ Ξ(E) ⊥ Ξ(F ), for

E, F ∈ Bor(R), [iii] Ξ(
⋃

nEn) =
∨

nΞ(En), where E1, E2, . . . sequence of

mutually disjoint Borel sets of the real line.

If L is isomorphic with the orthocomplemented lattice of orthogonal pro-

jections on a Hilbert space, then it follows from von Neumann’s spectral

theorem that the observables are in 1-1 correspondence with the hypermax-

imal Hermitian operators on the Hilbert space.

A Quantum observable structure is a category, denoted by OQ, which

is called the category of Quantum observables. Its objects are the quantum

observables Ξ : Bor(R) → L and its arrows Ξ qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Θ are the commutative tri-

angles [Diagram 1], or equivalently the quantum algebraic homomorphisms

L H qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq K in L, preserving by definition the join of countable families of pair-

wise orthogonal events, such that Θ = H ◦ Ξ in [Diagram 1] is again a

quantum observable.

Correspondingly, a Boolean observable structure is a category, de-

noted by OB, which is called the category of Boolean observables. Its objects

are the Boolean observables ξ : Bor(R) → B and its arrows are the Boolean

algebraic homomorphisms B h qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq C in B, such that θ = h ◦ ξ in [Diagram 2]
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Diagram 2

is again a Boolean observable.

3 Functorial Formulation of Observables

3.1 Presheaves of Boolean Observables

If OB
op is the opposite category of OB, then SetsOB

op
denotes the functor

category of presheaves on Boolean observables. Its objects are all functors

X : OB
op qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Sets and its morphisms are all natural transformations between

such functors. Each object X in this category is a contravariant set-valued

functor on OB, called a presheaf on OB.

For each Boolean observable ξ of OB, X(ξ) is a set, and for each arrow
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f : θ qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq ξ, X(f) : X(ξ) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq X(θ) is a set function. If X is a presheaf on OB

and x ∈ X(θ), the value X(f)(x) for an arrow f : θ qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq ξ in OB is called the

restriction of x along f and is denoted by X(f)(x) = x ◦ f .

Each object ξ of OB gives rise to a contravariant Hom-functor y[ξ] :=

HomOB(−, ξ). This functor defines a presheaf on OB. Its action on an

object θ of OB is given by

y[ξ](θ) := HomOB(θ, ξ)

whereas its action on a morphism η w qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq θ, for v : θ qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq ξ is given by

y[ξ](w) : HomOB(θ, ξ) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq HomOB(η, ξ)

y[ξ](w)(v) = v ◦ w

Furthermore y can be made into a functor from OB to the contravariant

functors on OB

y : OB qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq SetsOB
op

such that ξ 7→HomOB(−, ξ). This is an embedding and it is a full and faithful

functor.

The functor category of presheaves on Boolean observables SetsOB
op

pro-

vides an instantiation of a structure known as topos. A topos exemplifies

a well defined notion of variable set. It can be conceived as a local math-

ematical framework corresponding to a generalized model of set theory or
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as a generalized space. Moreover it provides a natural example of a many-

valued truth structure, which remarkably is not ad hoc, but reflects genuine

constraints of the surrounding universe.

3.2 The Grothendieck Fibration Technique

Since OB is a small category, there is a set consisting of all the elements of

all the sets X(ξ), and similarly there is a set consisting of all the functions

X(f). This observation regarding X : OB
op qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Sets permits us to take

the disjoint union of all the sets of the form X(ξ) for all objects ξ of OB.

The elements of this disjoint union can be represented as pairs (ξ, x) for all

objects ξ of OB and elements x ∈ X(ξ). Thus the disjoint union of sets is

made by labelling the elements. Now we can construct a category whose set

of objects is the disjoint union just mentioned. This structure is called the

category of elements of the presheaf X, denoted by G(X,OB). Its objects

are all pairs (ξ, x), and its morphisms (ξ́, x́) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq (ξ, x) are those morphisms

u : ξ́ qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq ξ of OB for which xu = x́. Projection on the second coordinate

of G(X,OB) defines a functor GX : G(X,OB) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq OB. G(X,OB) together

with the projection functor GX is called the split discrete fibration induced by

X, and OB is the base category of the fibration. We note that the fibration is

discrete because the fibers are categories in which the only arrows are identity

10



Bor(R)
�

�
�

�
�

�qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

ξ

@
@

@
@

@
@qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

Ξ

A(BΞ)
[ψB]Ξ qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq L

Diagram 3

arrows. If ξ is a Boolean observable object of OB, the inverse image under

GX of ξ is simply the set X(ξ), although its elements are written as pairs so

as to form a disjoint union. The instantiation of the fibration induced by X,

is an application of the general Grothendieck construction [13].

3.3 Boolean Modelling Functor

We define a modelling or coordinatization functor A : OB qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq OQ which as-

signs to Boolean observables inOB (that plays the role of the model category)

the underlying Quantum observables from OQ, and to Boolean homomor-

phisms the underlying quantum algebraic homomorphisms. Hence A acts as

a forgetful functor, forgetting the extra Boolean structure of OB.

Equivalently, the coordinatization functor can be characterized as, A :

B qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq L which assigns to Boolean event algebras in B the underlying quan-

tum event algebras from L and to Boolean homomorphisms the underlying

quantum algebraic homomorphisms, such that [Diagram 3] commutes.
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3.4 Functorial Relation of Event with Observable Al-

gebras

The categories of Event algebras and Observables are related functorialy as

follows: Under the action of a modelling functor, Bor(R) may be considered

as an object of L. Hence, it is possible to construct the covariant repre-

sentable functor F : L qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Sets, defined by F = HomL(Bor(R),−). The

application of the fibration technique on the functor F provides the cate-

gory of elements of this functor, which is the category of all arrows in L

from the object Bor(R), characterized equivalently as the comma category

[Bor(R)/L]. We conclude that the category of Quantum observables OQ is

actually the comma category [Bor(R)/L] or, equivalently, the category of

elements of the functor F = HomL(Bor(R),−). Analogous comments hold

for the category of Boolean observables.

4 Adjointness between Presheaves of Boolean

Observables and Quantum Observables

We consider the category of quantum observables OQ and the modelling

functor A, and we define the functor R from OQ to the topos of presheaves
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X(ξ)
τξ qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq HomOQ(A(ξ), Ξ)

X(u)

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

A(u)∗

X(ξ́)
τξ qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq HomOQ(A(ξ́), Ξ)

Diagram 4

given by

R(Ξ) : ξ 7→HomOQ(A(ξ), Ξ)

A natural transformation τ between the topos of presheaves on the cat-

egory of Boolean observables X and R(Ξ), τ : X qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq R(Ξ) is a family τξ

indexed by Boolean observables ξ of OB for which each τξ is a map

τξ : X(ξ)→HomOQ(A(ξ), Ξ)

of sets, such that the diagram of sets [Diagram 4] commutes for each Boolean

homomorphism u : ξ́ → ξ of OB.

If we make use of the category of elements of the Boolean observables-

variable set X, being an object in the topos of presheaves, then the map τξ,

defined above, can be characterized as:

τξ : (ξ, p)→HomOQ(A ◦GX(ξ, p), Ξ)

Equivalently, such a τ can be seen as a family of arrows of OQ which is

being indexed by objects (ξ, p) of the category of elements of the presheaf of

13



A(ξ) A ◦GX(ξ, p)
@

@
@

@
@

@qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

τξ(p)

A(u)

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
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qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

τ́ξ(ṕ)

A(ξ́) A ◦GX(ξ́, ṕ)

Diagram 5

Boolean observables X, namely

{τξ(p) : A(ξ) → Ξ}(ξ,p)

From the perspective of the category of elements of X, the condition of the

commutativity of [Diagram 4] is equivalent with the condition that for each

Boolean homomorphism u : ξ́ → ξ of OB, [Diagram 5] commutes.

From [Diagram 5] we can see that the arrows τξ(p) form a cocone from

the functor A ◦GX to the quantum observable algebra object Ξ. Making use

of the definition of the colimit, we conclude that each such cocone emerges

by the composition of the colimiting cocone with a unique arrow from the

colimit LX to the quantum observable object Ξ. In other words, there is a

bijection which is natural in X and Ξ

Nat(X,R(Ξ)) ∼= HomOQ(LX, Ξ)
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From the above bijection we are driven to the conclusion that the functor

R from OQ to the topos of presheaves given by

R(Ξ) : ξ 7→HomOQ(A(ξ), Ξ)

has a left adjoint L : SetsOB
op → OQ, which is defined for each presheaf of

Boolean observables X in SetsOB
op

as the colimit

L(X) = Colim{G(X,OB) GX qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq OB
A qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq OQ}

Consequently there is a pair of adjoint functors L a R as follows:

L : Sets[[Bor(R)/B]]op qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

[Bor(R)/L] : R

The adjunction, which will be the main interpretational tool in the pro-

posed scheme, consists of the functors L and R, called left and right adjoints

with respect to each other respectively, as well as the natural bijection

Nat(X,R(Ξ)) ∼= Hom[Bor(R)/L](LX, Ξ)

As an application we may use as X the representable presheaf of the topos

of Boolean observables y[ξ]. Then, the bijection defining the adjunction takes

the form:

Nat(y[ξ],R(Ξ)) ∼= HomOQ(Ly[ξ], Ξ)

Because the functor X = y[ξ] is representable, the corresponding category of

elements G(y[ξ],OB) has a terminal object, that is, the element 1 : ξ qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq ξ
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∐

v:ξ́→ξA(ξ́) ζ
qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqη

∐

(ξ,p)A(ξ) χ qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq X⊗OBA

Diagram 6

of y[ξ](ξ). Therefore, the colimit of the composite A ◦Gy[ξ] is going to be

just the value of A ◦Gy[ξ] on the terminal object. Thus, we have

Ly[ξ](ξ) ∼= A ◦Gy[ξ](ξ, 1ξ) = A(ξ)

In this way we provide a characterization of A(ξ) as the colimit of the rep-

resentable presheaf on the category of Boolean observables.

Furthermore, the categorical syntax provides a representation of a colimit

as a coequalizer of a coproduct. This representation shows that the left

adjoint functor of the adjunction is like the tensor product −⊗[BorR/B]A [14].

More specifically, the coequalizer representation of the colimit LX [Diagram

6] shows that the elements of X⊗OBA, considered as a set endowed with a

quantum algebraic structure, are all of the form χ(p, q), or in a suggestive

notation,

χ(p, q) = p⊗ q, p ∈ X(ξ), q ∈ A(ξ)

satisfying the coequalizer condition pv ⊗ q́ = p⊗ vq́.
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5 System Of Measurement Localizations For

Quantum Observables

The notion of a system of localizations for a quantum observable, which will

be defined subsequently, is based on the categorical idea that the quantum

object Ξ in OQ is possible to be comprehended by means of appropriate

covering maps ξ qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Ξ having as their domains locally defined Boolean ob-

servables ξ in OB. It is obvious that any single map from any modelling

Boolean observable to a quantum observable is not sufficient to determine it

entirely and hence, it is a priori destined to contain only a limited amount

of information about it. This problem may be tackled only if we employ

many structure preserving maps from the modelling Boolean observables to

a quantum observable simultaneously to cover it completely.

A system of prelocalizations for quantum observable Ξ in OQ is a

subfunctor of the Hom-functor R(Ξ) of the form S : OB
op → Sets, namely

for all ξ in OB it satisfies S(ξ) ⊆ [R(Ξ)](ξ). Hence a system of prelocal-

izations for quantum observable Ξ in OQ is a set S(ξ) of quantum algebraic

homomorphisms of the form

ψξ : A(ξ) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Ξ, ξ ∈ OB

such that 〈ψξ : A(ξ) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Ξ in S(ξ), and A(v) : A(ξ́) → A(ξ) in OQ for
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v : ξ́ → ξ in OB, implies ψξ ◦A(v) : A(ξ́) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq OQ in S(ξ)〉.

According to the above definition, the functional role of the Hom-functor

R(Ξ) is equivalent to depicting a set of algebraic homomorphisms, in order

to provide local coverings of a quantum observable by coordinatizing Boolean

objects. We may characterize the maps ψξ : A(ξ) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Ξ, ξ ∈ OB in a sys-

tem of prelocalizations for quantum observable Ξ as Boolean domain covers.

Their domains BΞ provide Boolean coefficients associated with measurement

situations. The introduction of the notion of a system of prelocalizations is

forced on the basis of operational physical arguments . According to Kochen-

Specker theorem it is not possible to understand completely a quantum me-

chanical system with the use of a single system of Boolean devices. On the

other side, in every concrete experimental context, the set of events that

have been actualized in this context forms a Boolean algebra. Consequently,

any Boolean domain object (BΞ, [ψB]Ξ : A(BΞ) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq L) in a system of pre-

localizations for quantum event algebra, making [Diagram 7] commutative,

corresponds to a set of Boolean events that become actualized in the experi-

mental context of B. These Boolean objects play the role of localizing devices

in a quantum event structure, that are induced by measurement situations.

The above observation is equivalent to the statement that a measurement-

induced Boolean algebra serves as a reference frame, in a topos-theoretical

environment, relative to which a measurement result is being coordinatized.
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Bor(R) ξ́ qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq A(B́Ξ)

ξ

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

HHHHHHHHHHHHHHqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

Ξ [ψB́]Ξ

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

A(BΞ)
[ψB]Ξ qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq L

Diagram 7

A family of Boolean observable covers ψξ : A(ξ) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Ξ, ξ ∈ OB is the

generator of the system of prelocalization S if this system is the smallest

among all that contain that family. It is evident that a quantum observable,

and correspondingly the quantum event algebra over which it is defined, can

have many systems of measurement prelocalizations, that, remarkably, form

an ordered structure. More specifically, systems of prelocalization constitute

a partially ordered set under inclusion. We note that the minimal system

is the empty one, namely S(ξ) = ∅ for all ξ ∈ OB, whereas the maximal

system is the Hom-functor R(Ξ) itself, or equivalently, all quantum algebraic

homomorphisms ψξ : A(ξ) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Ξ.

The transition from a system of prelocalizations to a system of local-

izations for a quantum observable, can be realized if certain compatibility

conditions are satisfied on the overlap of the modelling Boolean domain cov-

ers. In order to accomplish this it is necessary to introduce the categorical

concept of pullback in OQ [Diagram 8].

The pullback of the Boolean domain covers ψξ : A(ξ) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Ξ, ξ ∈ OB and
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AAqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

g A(ξ)×ΞA(ξ́)
ψξ,ξ́ qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq A(ξ)

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

ψξ́,ξ

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

ψξ

A(ξ́)
ψξ́ qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Ξ

Diagram 8

ψξ́ : A(ξ́) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Ξ, ξ́ ∈ OB with common codomain the quantum observable

Ξ, consists of the object A(ξ)×ΞA(ξ́) and two arrows ψξξ́ and ψξ́ξ, called

projections, as shown in [Diagram 8]. The square commutes and for any

object T and arrows h and g that make the outer square commute, there is a

unique u : T qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq A(ξ)×ΞA(ξ́) that makes the whole diagram commutative.

Hence we obtain the condition: ψξ́ ◦ g = ψξ ◦ h.

We emphasize that if ψξ and ψξ́ are injective maps, then their pullback

is isomorphic with the intersection A(ξ) ∩ A(ξ́). Then we can define the

pasting map, which is an isomorphism, as follows:

Ωξ,ξ́ : ψξ́ξ(A(ξ)×ΞA(ξ́)) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq ψξξ́(A(ξ)×ΞA(ξ́))

by putting

Ωξ,ξ́ = ψξξ́ ◦ ψξ́ξ
−1
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The following conditions hold: [i] Ωξ,ξ = 1ξ, 1ξ := idξ, [ii] Ωξ,ξ́ ◦Ω
ξ́,´́ξ

= Ω
ξ,´́ξ

if A(ξ) ∩A(ξ́) ∩A(´́ξ) 6= 0, and [iii] Ωξ,ξ́ = Ωξ́,ξ if A(ξ) ∩A(ξ́) 6= 0.

The pasting map assures that ψξ́ξ(A(ξ)×ΞA(ξ́)) and ψξξ́(A(ξ)×ΞA(ξ́))

are going to cover the same part of the quantum observable in a compatible

way.

Given a system of measurement prelocalizations for quantum observable

Ξ ∈ OQ, and correspondingly for the Quantum event algebra over which it

is defined, we call it a system of localizations if the above conditions are

satisfied, and moreover, the quantum algebraic structure is preserved.

We assert that the above compatibility conditions provide the necessary

relations for understanding a system of measurement localizations for a quan-

tum observable as a structure sheaf or sheaf of Boolean coefficients consisting

of local Boolean observables. This is connected to the fact that systems of

measurement localizations are actually subfunctors of the representable Hom-

functor R(Ξ) of the form S : OB
op → Sets, namely for all ξ in OB satisfy

S(ξ) ⊆ [R(Ξ)](ξ). In this sense the pullback compatibility conditions express

gluing relations on overlaps of Boolean domain covers and convert a presheaf

subfunctor of the Hom-functor into a sheaf. The concept of sheaf expresses

exactly the pasting conditions that local modelling objects have to satisfy,

namely, the way by which local data, providing Boolean coefficients obtained

in measurement situations, can be collated.
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The comprehension of a measurement localization system as a sheaf of

Boolean coefficients permits the conception of a Quantum observable (or of

its associated quantum event algebra) as a generalized manifold, obtained

by pasting the ψξ́ξ(A(ξ)×ΞA(ξ́)) and ψξξ́(A(ξ)×ΞA(ξ́)) covers together by

the transition functions Ωξ,ξ́. In this perspective the generalized manifold,

which represents categorically a quantum observable object, is understood as

a colimit in the category of elements of a sheaf of Boolean coefficients, that

contains compatible families of modelling Boolean observables.

6 Isomorphic Representations of Quantum Ob-

servables by Boolean Localization Systems

The ideas developed in the previous section may be used to provide the basis

for the representation of Quantum observables and their associated Quantum

event algebras in terms of Boolean covering systems, if we pay attention to

the counit of the established adjunction, denoted by the vertical map in

[Diagram 9].

The diagram suggests that the representation of a quantum observable Ξ

in OQ and, subsequently, of a quantum event algebra L in L, in terms of a

coordinatization system of measurement localizations, consisting of Boolean
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∐

v:ξ́→ξA(ξ́) ζ
qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqη

∐

(ξ,p)A(ξ) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq [R(Ξ)](−)⊗OBA
@

@
@

@
@

@qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

pppppppppppppppppqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

εΞ

Ξ

Diagram 9

coefficients, is full and faithful, if and only if the counit of the established

adjunction, restricted to that system, is an isomorphism, that is, structure-

preserving, 1-1 and onto [14]. It is easy to see that the counit of the ad-

junction, restricted to a system of measurement localizations is a quantum

algebraic isomorphism, iff the right adjoint functor is full and faithful, or

equivalently, iff the cocone from the functor A ◦GR(Ξ) to the quantum ob-

servable Ξ is universal for each object Ξ in OQ [2, 3]. In the latter case

we characterize the coordinatization functor A : OB qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq OQ or, equivalently,

the functor A : B qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq L such that [Diagram 3] commutes, a proper mod-

elling functor. As a consequence if we consider as B the category of Boolean

subalgebras of a quantum event algebra L of ordinary Quantum Mechanics,

that is an orthomodular σ-orthoposet of orthogonal projections of a Hilbert

space, together with a proper modelling inclusion functor A : B qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq L, the

counit of the established adjunction restricted to a system of measurement

localizations is an isomorphism.

The physical significance of this representation lies on the fact that the
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whole information content in a Quantum event algebra is preserved by every

covering Boolean system, qualified as a system of measurement localizations.

The preservation property is established by the counit isomorphism. It is re-

markable that the categorical notion of adjunction provides the appropriate

formal tool for the formulation of invariant properties, giving rise to preser-

vation principles of a physical character.

If we return to the intended representation, we realize that the surjective

property of the counit guarantees that the Boolean domain covers, being

themselves objects in the category of elements G(R(L), B), cover entirely

the quantum event algebra L, whereas its injective property guarantees that

any two covers are compatible in a system of measurement localizations.

Moreover, since the counit is also a homomorphism, it preserves the algebraic

structure.

In the physical state of affairs, each cover corresponds to a set of Boolean

events actualized locally in a measurement situation. The equivalence classes

of Boolean domain covers represent quantum events in L through compatible

coordinatizations by Boolean coefficients. Consequently, the structure of a

quantum event algebra is being generated by the information that its struc-

ture preserving maps, encoded as Boolean covers in measurement localization

systems, carry as well as their compatibility relations.
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7 Implications for Quantum Logic

The covering process leads naturally to a contextual description of quantum

events (or quantum propositions) with respect to Boolean reference frames of

measurement and finally to a representation of them as equivalence classes

of unsharp Boolean events. The latter term is justified by the fact that,

in case, L signifies a truth-value structure, each cover can be interpreted

as an unsharp Boolean algebra of events corresponding to measurement of

observable Ξ. More concretely, since covers are maps [ψB]Ξ : A(BΞ) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq L,

each Boolean event realized in the domain BΞ, besides its true or false truth

value assignment in a measurement context related to the outcome of an

experiment that has taken place, is also assigned a truth value representing

its relational information content for the comprehension of the coherence of

the whole quantum structure, measured by the degrees in the poset L or,

equivalently, by the degrees assigned to its poset structure of localization

systems.

Between these two levels of truth value assignment there exists an in-

termediate level, revealed by the instantiation of the Boolean power con-

struction in the context of the Grothendieck fibration technique. This inter-

mediate level refers to a truth value assignment to propositions describing

the possible behavior of a quantum system in a specified Boolean context of
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observation without having passed yet an experimental test.

We may remind that the fibration induced by a presheaf of Boolean al-

gebras P provides the category of elements of P, denoted by G(P,B). Its

objects are all pairs (B, p), and its morphisms (B́, ṕ) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq (B, p) are those

morphisms u : B́ qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq B of B for which pu = ṕ. Projection on the second co-

ordinate of G(P,B) defines a functor GP : G(P,B) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq B. If B is an object

of B, the inverse image under GP of B is simply the set P(B). As we have

explained, the objects of the category of elements G(R(L), B) constitute

Boolean domain covers for measurement and have been identified as Boolean

reference frames on a quantum observable structure.

We notice that the set of objects of G(R(L),B) consists of all the elements

of all the sets R(L)(B) and, more concretely, has been constructed from the

disjoint union of all the sets of the above form, by labeling the elements. The

elements of this disjoint union are represented as pairs (B, ψB : A(B) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq L)

for all objects B of B and elements ψB ∈ R(L)(B).

Taking into account the projection functor, defined above, this set is

actually a fibered structure. Each fiber is a set defined over a Boolean algebra

relative to which a measurement result is being coordinatized. If we denote

by (ψB, q) the elements of each fiber, with ψB ∈ R(L)(B) and q ∈ A(B),

then the set of maps

(ψB, q) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq q
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can be interpreted as the Boolean power of the set

ΥB = {(ψB, q), ψB ∈ R(L)(B), q ∈ A(B)}

with respect to the underlying Boolean algebra B [15].

The Boolean power construction forces an interpretation of the Boolean

algebra relative to which a measurement result is being coordinatized, as a

domain of local truth values with respect to a measurement that has not

taken place yet. Moreover the set of local measurement covers defined over

B is considered as a Boolean-valued set. In this sense, the local coordinates

corresponding to a Boolean domain of measurement may be considered as

Boolean truth values.

We further observe that the set of objects of G(R(L), B) consists of the

disjoint union of all the fibers ΥB, denoted by Υ =
∐

B ΥB. This set can also

acquire a Boolean power interpretation as follows:

We define a binary relation on the set Υ according to:

(ψB́, q́)
⊗

(ψB, q) iff ∃ η : ψB́
qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq ψB : η(q́) = q, ψB́ = ψB ◦ η.

It is evident that for any η : B́ qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq B we obtain: (ψB ◦ η, q́)
⊗

(ψB, η(q́)).

Furthermore, we require the satisfaction of the compatibility relations that

are valid in a system of localizations. Then it is possible to define the Boolean

power of the set Υ with respect to the maximal Boolean algebra belonging

to such a compatible system of localizations. We may say that the Boolean
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coordinates, interpreted as local Boolean truth values via the Boolean power

construction, reflect a relation of indistinguishability due to overlapping of

the corresponding covers.

The viewpoint of Boolean valued sets has far reaching consequences re-

garding the interpretation of quantum logic and will be discussed in detail

in a future work from the perspective of Lawvere’s topoi [16]. At the present

stage, we may say that the logical interpretation of the Boolean fibration

method, seems to substantiate Takeuti’s and Davis’s approach to the foun-

dations of quantum logic [17, 18], according to whom, quantization of a

proposition of classical physics is equivalent to interpreting it in a Boolean

extension of a set theoretical universe, where B is a complete Boolean al-

gebra of projection operators on a Hilbert space. In the perspective of the

present analysis, we may argue that the fibration technique in the presheaf

of Boolean algebras G(R(L), B) provides the basis for a natural interpreta-

tion of the logic of quantum propositions, referring to the possible behavior

of a quantum system in a concrete localization context with respect to an

experimental test that has not been actualized yet, in terms of a truth value

assignment, assuming existence in the corresponding Boolean context of a

covering system, and realized in terms of local valuations on the Boolean

coordinates of the specified cover.
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8 Differential Geometry in the Quantum Regime

The application of Stone representation theorem for Boolean algebras permits

the replacement of Boolean algebras by fields of subsets of a measurement

space, providing in this manner a natural operationalization of the meaning

of Boolean covers. Thus, if we replace each Boolean algebra B in B by its set-

theoretical representation [Σ, BΣ], consisting of a local measurement space

Σ and its local field of subsets BΣ, it is possible to define local measurement

space charts (BΣ, ψBΣ : A(BΣ) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq L) and corresponding space localization

systems for quantum observable Ξ over quantum event algebra L in L. Topo-

logically, each local space is considered as a compact Hausdorff space, the

compact open subsets of which are the maximal filters or the prime ideals of

the underlying Boolean algebra.

From local measurement space charts (BΣ, ψBΣ : A(BΣ) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq L) we may

form their equivalence classes which, modulo the conditions for compatibil-

ity on overlaps, will represent a single quantum event in L. Under these

circumstances, we may interpret the equivalence classes of local space charts

ψBΣ⊗a, a ∈ A(BΣ) as the experimental actualizations of the quantum events

in L, corresponding to measurement of observables Ξ. In the operational

framework two local space representations of a quantum observable satisfy

the compatibility condition on overlapping regions, iff their associated mea-
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surements are equivalent to measurements sharing the same experimental

arrangement.

We also observe that the inverse of a local space representation of a quan-

tum observable plays the role of a random variable on this local space Σ.

Consequently, every quantum observable may be considered locally, as a

measurable function defined over the local measurement space Σ. Phrased

differently, random variables defined over local spaces provide Boolean coor-

dinatizations for a quantum observable and moreover satisfy compatibility

conditions on the overlaps of their local domains of definition. Subsequently,

if we consider the collection of measurable functions defined over the category

of local spaces we obtain a sheaf of Boolean coefficients for the measurement

of a quantum observable, such that the latter is represented by a colimit

construction in the category of elements of this sheaf. Addition and multi-

plication over R induce the structure of a sheaf of R-algebras (or a sheaf of

rings). A natural question that arises in this setting is if it could be possible

to consider the above sheaf of R-algebras as the structure algebra sheaf of

a generalized space. From a physical point of view, this move would reflect

the appropriate generalization of the arithmetics, or sheaves of coefficients,

that have to be used in the transition from the classical to the quantum

regime. The appropriate framework to accommodate structure sheaves of the

above form is Abstract Differential Geometry (ADG), developed by Mallios
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in [19, 20]. ADG is an extension of classical Differential Geometry accord-

ing to which, instead of smooth functions, one starts with a general sheaf

of algebras. The important thing is that these sheaves of algebras, which

in our perspective correspond to quantum observables, can be interrelated

with appropriate differentials, interpreted as Leibniz sheaf morphisms. This

interpretation is suited to the development of Differential Geometry in the

Quantum regime and will be carried out at a later stage.

9 Conclusions

The conceptual root of the proposed relativistic perspective on quantum

structure, established by systems of Boolean measurement localization sys-

tems, is located on the physical meaning of the adjunction between presheaves

of Boolean observables and quantum observables.

Let us consider that SetsB
op

is the universe of Boolean observable event

structures modelled in Sets, or else the world of Boolean windows, and L

that of Quantum event structures. In the proposed interpretation the func-

tor L : SetsB
op qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq L can be comprehended as a translational code from

Boolean windows to the Quantum species of event structure, whereas the

functor R : L qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq SetsB
op

as a translational code in the inverse direction. In

general, the content of the information is not possible to remain completely
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invariant translating from one language to another and back. However, there

remain two ways for a Boolean-event algebra variable set P to communicate

a message to a quantum event algebra L. Either the information is given in

Quantum terms with P translating, which can be represented as the quan-

tum homomorphism LP qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq L or the information is given in Boolean terms

with L translating, that in turn, can be represented as the natural transfor-

mation P qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq R(L). In the first case, from the perspective of L information

is being received in quantum terms, while in the second, from the perspective

of P information is being sent in Boolean terms. The natural bijection then

corresponds to the assertion that these two distinct ways of communicating

are equivalent. Thus, the physical meaning of the adjoint situation signifies

a two-way dependency of the involved languages in communication with re-

spect to the variation of the information collected in localization contexts of

measurement. More remarkably, the representation of a quantum observable

as a categorical colimit, resulting from the same adjunctive relation, reveals

an entity that can admit a multitude of instantiations, specified mathemati-

cally by different coordinatizing Boolean coefficients in Boolean localization

systems.

The underlying invariance property specified by the adjunction is asso-

ciated with the informational content of all these phenomenically different

instantiations in distinct measurement contexts, and can be formulated as
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follows: the informational content of a quantum observable structure remains

invariant with respect to Boolean domain coordinatizations if and only if the

counit of the adjunction, restricted to covering systems, qualified as Boolean

localization systems, is an isomorphism. Thus, the counit isomorphism pro-

vides a categorical equivalence, signifying an invariance in the translational

code of communication between Boolean windows, acting as localization de-

vices for measurement, and quantum systems.
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