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Abstract

In this paper we adopt a category-theoretic viewpoint in order

to analyze the semantics of complementarity for quantum systems.

Based on the existence of a pair of adjoint functors between the topos

of presheaves of the Boolean kind of structure and the category of the

quantum kind of structure, we establish a twofold complementarity

scheme which constitutes an instance of the concept of adjunction. It

is further argued, that the established scheme is inextricably connected
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with a realistic philosophical attitude, although substantially different

from the classical one.

Keywords: Complementarity, Quantum Logic, Category Theory, Adjunc-

tion, Topos Theory.
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1 Prologue

In the interpretation of physical theories, our empirical access to the world

is being objectified through the concept of observables. Observables denote

physical quantities, that in principle, can be measured in the context of ap-

propriate experimental arrangements. In any experiment performed by an

observer, the propositions that can be made concerning a physical quantity,

are of the type which asserts, that the value of the physical quantity lies in

some measurable set of the real numbers. A proposition of this kind, corre-

sponds to an event, as it is apprehended by an observer using his measuring

device. We may claim that the real line endowed with its measurable struc-

ture acts as a modelling object, that schematizes the space of events of an

observed system, by projecting into it its specific structure.

In this work we will attempt to argue that the concept of complementar-

ity, describing the behaviour of quantum systems (Bohr (1958), Feyerabend

(1958), Folse (1985)), is being formulated mathematically through the cat-

egorical notion of adjunction (Kan (1958), Marquis (2002)), that has been

recently proved to exist between the category of quantum event algebras and

and the topos of presheaves of Boolean event algebras (Zafiris (2001)). We

will demonstrate that the notion of categorical adjunction embodies precisely

the semantics of complementarity, and furthermore, explicates its functioning
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through a twofold scheme consisting of a horizontal and a vertical conceptual

dimension.

The typical mathematical structure associated with the conception of

events is a structure endowed with an ordering relation. In the Hilbert

space formalism of Quantum theory events are considered as closed sub-

spaces of a separable, complex Hilbert space corresponding to a physical sys-

tem (Birkhoff and von Neumann (1936), Varadarajan (1968), Bub (1997),

Rawling and Selesnick (2000)). Then, the quantum event structure is iden-

tified with the lattice of closed subspaces of the Hilbert space, ordered by

inclusion and carrying an orthocomplementation operation that is provided

by the orthogonal complement of the closed subspaces. More accurately, the

Hilbert space quantum event structure is a complete, atomic, orthomodular

lattice. Equivalently, it may be conceived as being isomorphic to the par-

tial Boolean algebra of closed subspaces of the Hilbert space of the system,

or alternatively the partial Boolean algebra of projection operators suited

to the description of the properies of the system. It represents the event

structure of a quantum mechanical system, just as the event structure of a

classical system is a Boolean algebra isomorphic to the Boolean algebra of

Borel subsets of the phase space of the system.

In logic-oriented approaches the equivalence of events and propositions is

made literal. Generally the logical structure of a theory is reflected on the
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algebraic structure of its propositional calculus. If we consider the set of all

feasible contingent propositions in the universe of discourse, then while the

propositional system of classical mechanics is isomorphic to a Boolean lattice,

on the contrary, the logical structure of a quantum system is, neither Boolean,

nor possible to be embedded, into a Boolean lattice. In a Boolean proposi-

tional structure all propositions are mutually compatible in the sense that

they are simultaneously decidable. Due to the fact that, in quantum theory

not all propositions are compatible, incompatible propositions are allowed

in the universe of discourse. The quantum logical formulation of Quantum

theory depends in an essential way on the identification of propositions with

projection operators on a complex Hilbert space. Furthermore, the order

relations and the lattice operations of the lattice of quantum propositions

are associated with the logical implication relation and the logical operations

of conjunction, disjunction and negation of propositions. In effect a non-

classical, non-Boolean logical structure is induced which has its origins in

Quantum theory.

The complementarity scheme we will develop in the sequel, is based on

the notion that observables in Boolean domain contexts, can be conceived as

providing a coordinatization of the Quantum world by establishing a relativ-

ity principle in a topos-theoretical environment. An intuitive flavor of this

insight is due to the validity of Kochen-Specker theorem (Kochen-Specker
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(1967)), understood as expressing the impossibility of probing the entire man-

ifestation of a quantum mechanical system with the use of a single system of

Boolean devices. On the other side, in every concrete experimental context,

the set of events that have been actualized in this context forms a Boolean

algebra. Hence it is reasonable to claim that an observable picks a specific

Boolean algebra, which can be considered as a Boolean subalgebra of the

quantum algebra of events. Stated more precisely, an observable schema-

tizes a quantum structure of events by correlating its Boolean subalgebras

picked by measurements, with the smallest Boolean algebra containing all

the clopen sets of the real line. In this sense, Boolean domain observables

play the role of coordinatizing objects in the process of probing the Quan-

tum world, setting the conceptual ground for the development of the ideas of

complementarity. Equivalently we may assert, that a Boolean algebra in the

lattice of quantum events picked by an observable, serves as a reference frame,

relative to which the measurement result is being coordinatized. This per-

spective essentially suggests the identification of Boolean covers in systems of

measurement localization for quantum event algebras with reference frames,

relative to which the results of measurements are actually coordinatized, such

that, every cover in a system of Boolean localizations for a quantum algebra

of events will correspond to a set of classical Boolean events that become

realizable in the experimental context of it.
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2 The Conceptual Setting of the Categorical

Framework

The Syntactical Path : Our investigation regarding quantum comple-

mentarity will be based on the existence of partial structural congruences

between the quantum and Boolean kinds of event structure. The mathemat-

ical language which is at best suited to fulfill our objectives is category theory.

Category theory provides a general theoretical framework for dealing with

systems formalized through appropriate mathematical structures putting the

emphasis on their mutual relations and transformations (MacLane (1971),

Kelly (1971), Bell (1982), Borceaux (1994), Lawvere and Shanuel (1997)) .

The basic categorical principles that we adopt in our exposition are summa-

rized as follows:

[i] To each kind of mathematical structure used to model a system, there

corresponds a category whose objects have that structure, and whose mor-

phisms preserve it.

[ii] To any natural construction on structures of one kind, yielding struc-

tures of another kind, there corresponds a functor from the category of the

first specified kind to the category of the second. The implementation of this

principle is associated with the fact that a construction is not merely a func-

tion from objects of one kind to objects of another kind, but must preserve
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the essential relationships among objects.

The adoption of the categorical syntax incorporates silently a conceptual

shift in the way that one is likely to have previously thought about the mathe-

matical structures considered. In particular, mappings with structure, called

arrows, rather than, sets with structure, called objects, are to be regarded

as primary (Bell (1986) and (2002)).

The Epistemological Path : The central axis of our epistemological path

relies on the observation that the set theoretical axiomatizations of quantum

event structures hides the intrinsic significance of Boolean localizing contexts

in the formation of these structures. Moreover, the operational procedures

followed in quantum measurement are based explicitly in the employment

of appropriate Boolean environments. The construction of these contexts of

observation are related with certain abstractions and can be metaphorically

considered as pattern recognition mechanisms. In this way, we may argue

that, the real significance of a quantum observable structure proves to be,

not at the level of events, but at the level of specific interlocking of distinct

or overlapping Boolean localization contexts of observation together, forming

an intelligible coherent whole. The categorical analysis of quantum comple-

mentarity will be based, on the qualification of this idea in the position of a

leading epistemological principle.
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In particular, the epistemological path to be followed, implements the

intuitively clear idea of probing the structure of a quantum algebra of events

in terms of localizing Boolean environments, admitting an unquestionable

operational interpretation. The process suggested may be decomposed in

three levels:

The first level is constitutive of the introduction of a covering scheme,

according to which, local Boolean domain objects cover entirely a quantum

algebra of events by coordinatizing structure preserving morphisms. These

morphisms from the Boolean domain localizing objects, capture in essence

separately, complementary features of the quantum system of enquiry, and

provide a structured decomposition of a quantum event algebra in the lan-

guage of local Boolean covers.

The second level is constitutive of the establishment of an appropriate

environment of compatibility between overlapping covers. This is necessary,

since it guarantees an efficient pasting code between different coordinatiza-

tions of a quantum algebra of events.

The third level, finally, is constitutive of the integration of the qualitative

content incorporated in local Boolean contexts of observation, effectuated

by the establishment of an isomorphism between the structure of a quantum

event algebra, and, the totality of local morphisms applied upon it in a cover-

ing system, consisting of a family of Boolean domain objects, in conjunction
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with, the pasting information between them.

The fact that a quantum event algebra is actually an object admitting

a multitude of different localizations, is motivated again by Kochen-Specker

theorem. According to this there are no two-valued homomorphisms on the

algebra of quantum events. Subsequently, a quantum event algebra cannot

be embedded into a Boolean one. We note parenthetically, that a two-valued

homomorphism on a classical event algebra is a classical truth value as-

signment on the events, or equivalently, propositions in the logic-oriented

approach, represented by the elements in the Boolean algebra, or a true-false

assignment on the corresponding properties represented by the elements of

the algebra.

3 Preliminaries

Categories : A category C is a class of objects and morphisms of objects

such that the following properties are satisfied:

[1]. For any objects X, Y all morphisms f : X → Y form a set denoted

HomC(X, Y );

[2]. For any object X an element idX ∈ HomC(X,X) is distinguished; it

is called the identity morphism;
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[3]. For arbitrary objects X, Y , Z the set mapping is defined

HomC(X, Y )×HomC(Y, Z) → HomC(X, Z)

For morphisms g ∈ HomC(X, Y ), h ∈ HomC(Y, Z) the image of the pair

(g, h) is called the composition; it is denoted h◦g. The composition operation

is associative.

[4]. For any f ∈ HomC(X, Y ) we have idY ◦ f = f ◦ idX = f .

For an arbitrary category C the opposite category Cop is defined in the

following way: the objects are the same, but HomCop(X, Y ) = HomC(Y, X),

namely all arrows are inverted. A category C is called small if the classes of

its objects and morphisms form genuine sets respectively.

Functors : Let C, D be categories; a covariant functor F : C → D is a class

mapping that transforms objects to objects and morphisms to morphisms

preserving compositions and identity morphisms:

F(idX) = idF(X);F(g ◦ f) = F(g) ◦ F(f)

A contravariant functor F : C → D is, by definition, a covariant functor

F : C → Dop.

Natural Transformations : Let C, D be categories, and let further F, G,

be functors from the category C to the category D. A natural transformation
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τ from F to G is a mapping assigning to each object A in C a morphism τA

from F(A) to G(A) in D, such that for every arrow f : A → B in C the

following diagram in D commutes;

F(A)
τA qqqqqqqqqqqqqqqqq

q
qqqqqqqqqqqqqqqqqq G(A)

F(f)

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

G(f)

F(B)
τB qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq G(B)

That is, for every arrow f : A → B in C we have:

G(f) ◦ τA = τB ◦ F(f)

Natural Isomorphisms : A natural transformation τ : F → G is called

a natural isomorphism if every component τA is invertible.

Adjoint Functors : Let F : C → D and G : D → C be functors. We say

that F is left adjoint to G, if there exists a bijective correspondence between

the arrows F(C) → D in D and C → G(D) in C.

F : C qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq

D : G

Pictorially we have;
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F(C) C

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

D G(D)

where the left part is in D and the right in C.

Diagrams : A diagram X = ({Xi}i∈I , {Fij}i,j∈I) in a category C is defined

as an indexed family of objects {Xi}i∈I and a family of morphisms sets

{Fij}i,j∈I ⊆ HomC(Xi, Xj).

Cocones : A cocone of the diagram X = ({Xi}i∈I , {Fij}i,j∈I) in a category

C, consists of an object X in C, and for every i ∈ I, a morphism fi : Xi → X,

such that fi = fj ◦ fij for all j ∈ I, that is, such that for every i, j ∈ I, and

for every fij ∈ Fij the diagram below commutes

X

¡
¡

¡
¡

¡
¡

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

fi

@
@

@
@

@
@
qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqq

fj

Xi
fij

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq Xj

Colimits : A colimit of the diagram X = ({Xi}i∈I , {Fij}i,j∈I) is a cocone

with the property that for every other cocone given by morphisms fí : Xi →

X́, there exists exactly one morphism f : X → X́, such that fí = f ◦ fi, for
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all i ∈ I (universality property).

Reversing the arrows in the above definitions of cocone and colimit of a

diagram X = ({Xi}i∈I , {Fij}i,j∈I) in a category C, results in the dual notions

called cone and limit of X respectively. Moreover, starting with a diagram

X = ({Xi}i∈I , {Fij}i,j∈I) in a category C, that consists only of the objects

Xi, i ∈ I, as nodes but without morphisms, that is all Fij = ∅, we obtain

the notion of the categorical coproduct,
∐

i∈I Xi (as a special colimit) and

product,
∏

i∈I Xi (as a special limit) respectively. The morphisms fi in the

corresponding definitions are called canonical injections of the coproduct and

canonical projections of the product, respectively. We emphasize that we can

derive special notions of limits and colimits, corresponding to the shape of

the base diagram X. In this sense we obtain the following; an initial object

is the colimit of the diagram consisting of the empty set. A coequalizer is the

colimit of a diagram consisting of two parallel arrows A ⇒ B. A pushout is

the colimit of a diagram of the form:

A
f

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq B

g

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

C

The dual notions are the following; a terminal object is the limit of the

diagram consisting of the empty set. An equalizer is the limit of a diagram
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consisting of two parallel arrows A ⇒ B. A pullback is the limit of a diagram

of the form:

B

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

f

C
g

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq A

4 Categories of Boolean and Quantum Kinds

of Structure

4.1 Categories of Event Algebras

A Classical event structure is a small category, denoted by B, which is called

the category of Boolean event algebras. Its objects are Boolean algebras of

events, and its arrows are Boolean algebraic homomorphisms.

A Quantum event structure is a small category, denoted by Q, which is

called the category of Quantum event algebras.

Its objects are Quantum algebras of events, that is, partially ordered

sets of Quantum events, endowed with a maximal element 1, and with an

operation of orthocomplementation [−]∗ : Q qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq Q, which satisfy, for all e ∈

Q the following conditions: [a] e ≤ 1, [b] e∗∗ = e, [c] e ∨ e∗ = 1, [d] e ≤

é ⇒ é∗ ≤ e∗, [e] e⊥é ⇒ e ∨ é ∈ Q, [g] e ∨ é = 1, e ∧ é = 0 ⇒ e = é∗, where
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0 := 1∗, e⊥é := e ≤ é∗, and the operations of meet ∧ and join ∨ are defined

as usually.

Its arrows are Quantum algebraic homomorphisms, that is maps Q H qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq K,

which satisfy, for all k ∈ K the following conditions: [a] H(1) = 1, [b]

H(k∗) = [H(k)]∗, [c] k ≤ ḱ ⇒ H(k) ≤ H(ḱ), [d] k⊥ḱ ⇒ H(k ∨ ḱ) ≤

H(k) ∨H(ḱ).

We can check the following:

[1]. In the Hilbert space formalism of Quantum theory events are consid-

ered as closed subspaces of a seperable, complex Hilbert space corresponding

to a physical system. Then the quantum event structure is identified with

the lattice of closed subspaces of the Hilbert space, ordered by inclusion and

carrying an orthocomplementation operation which is given by the orthog-

onal complement of the closed subspaces. For a seperable complex Hilbert

space of dimension at least three, the lattice is also a quantum event algebra

(the Hilbert space quantum event algebra).

[2]. Obviously every Boolean event algebra is also a quantum event alge-

bra.

[3]. The Lindenbaum algebra corresponding to propositions describing

the behavior of a quantum system is also a quantum event algebra.
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4.2 The topos of Boolean-variable sets of events

For the category of Boolean event algebras B we will be considering the

category of presheaves SetsB
op

of all contravariant functors from B to Sets

and all natural transformations between these (Bell (1988), MacLane and

Moerdijk (1992)). A functor P is a structure-preserving morphisms of these

categories, that is it preserves composition and identities. A functor in the

category SetsB
op

can be thought of as constructing an image of B in Sets

contravariantly, or as a contravariant translation of the language of B into

that of Sets. Given another such translation (contravariant functor) N of B

into Sets we need to compare them. This can be done by giving, for each

Boolean object B in B a transformation τB : P(B) qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq N(B) which compares

the two images of the Boolean object B. Not any morphism will do, however,

as we would like the construction to be parametric in B, rather than ad hoc.

Since B is an object in B while P(B) is in Sets we cannot link them by

a morphism. Rather the goal is that the transformation should respect the

morphisms of B, or in other words the interpretations of v : B qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq C by P

and N should be compatible with the transformation under τ . Then τ is a

natural transformation in the category of presheaves SetsB
op

.

The category of presheaves SetsB
op

of all contravariant functors from B

to Sets and all natural transformations between them is a topos (Artin,
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Grothendieck and Verdier (1972), Lawvere (1975), Bell (1986)). A topos

exemplifies a well defined notion of a universe of variable sets. It can be

conceived as a local mathematical framework corresponding to a generalized

model of set theory or as a generalized space. Moreover, it provides a natural

example of a many-valued truth structure, which remarkably is not ad hoc,

but reflects genuine constraints of the surrounding universe. Applications

of topos theory in quantum logic have been also considered from a different

viewpoint in Butterfield and Isham (1999 and 2000).

Each presheaf functor may be equivalently characterized as a Boolean-

variable set of events as follows:

An object P of SetsB
op

may be understood as a right action of B on a set

which is partitioned into sorts parameterized by the objects of B and such

that whenever v : C qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq B is a Boolean event algebras homomorphism and

p is an element of P of sort B, then pv is specified as an element of P of

sort C, such that the following conditions are satisfied, in Lawvere’s notation

(1975);

p1B = p, p(vw) = (pv)w, wv : D qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq C qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq B

Such an action P is referred as a [Boolean algebras]-variable set or briefly

B-set. The fact that any morphism τ : P qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq N in the category of presheaves
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SetsB
op

is a natural transformation is expressed by the condition

τ(p, v) = τ(p)(v)

where the first action of v is the one given by P and the second by N.

Of fundamental importance is the embedding functor yB : B qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq SetsB
op

.

This functor associates to each Boolean algebra A of B the B-set yB(A) =

HomB(−, A) := B(−, A), whose B-th sort is the set B(B, A) of B mor-

phisms B qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq A, with action by composition: xv : C qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq B qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq A. This

is a functor because for any Boolean homomorphism A qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq D we obtain a

B-map B(−, A) qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq B(−, D), which has a functorial behavior under composi-

tion A qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq D qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq E, due to the associativity of composition in B. Due to the

embedding yB : B qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq SetsB
op

it is useful to think of A as yB(A) in SetsB
op

.

Furthermore for any B-set and for any Boolean event algebra A of B, the

set of elements of P of sort A is identified naturally with the set of SetsB
op

-

morphisms from yB(A) qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq P. Thus it is also useful to think of the elements

of P of sort A as morphisms A qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq P in SetsB
op

.

By the term points of SetsB
op

we mean morphisms 1 qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq P, where 1 is the

terminal object of SetsB
op

. It is defined as the B-set which for any Boolean

algebra B in B, has exactly one element of sort B, namely B : B qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq 1. Then

it follows that for any P there is exactly one morphism P qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq 1, denoted by P

as well. A morphism 1 qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq P operates at each sort, picking an element pB of
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each sort B, such that the condition pC = pBv is satisfied for all v : C qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq B

in B.

The morphisms pC
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq pB, satisfying the condition pC = pBv for all v :

C qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq B in B can become actual arrows in a category, called the category of

elements of the presheaf of Boolean event algebras P.

4.3 Category of Elements of a Boolean-Variable Set of

Events

Because B is by construction a small category, there is a set consisting of all

the elements of all the sets P(B), and similarly there is a set consisting of all

the functions P(f). We may exploit this observation about P : Bop qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq Sets

by taking the disjoint union of all the sets of the form P(B) for all Boolean

objects B of B. The elements of this disjoint union can be represented as

pairs (B, p) for all objects B of B and elements p ∈ P(B). We can say that

we construct the disjoint union of sets by labelling the elements. Now we can

construct a category whose set of objects is the disjoint union just mentioned.

This structure is called the category of elements of P, denoted by G(P,B).

Its objects are all pairs (B, p), and its morphisms (B́, ṕ) qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq (B, p) are those

morphisms u : B́ qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq B of B for which pu = ṕ. Projection on the second

coordinate of G(P,B), defines a functor G(P) : G(P,B) qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq B. G(P,B)
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together with the projection functor G(P) is called the split discrete fibration

induced by P, and B is the base category of the fibration. The discreteness

pertains to the fact that the fibers are categories in which the only arrows

are identity arrows. If B is an object of B, the inverse image under G(P) of

B is simply the set P(B), although its elements are written as pairs so as to

form a disjoint union.

5 The Fundamental Adjunction underlying

the Complementarity Scheme

The significance of the previous constructions for the explication of the com-

plementarity concept as it may be formalized through the structural inter-

relations between Boolean and quantum event algebras is revealed by the

introduction of appropriate functors. This is consistent with the categorical

principle that to any natural construction on structures of one kind, yield-

ing structures of another kind, there corresponds a suitable functor from the

category of the first kind to the category of the second.

The trinity of functors introduced for our purposes consists of:

[i :] A local coefficients coordinatizing functor A : B qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq Q.
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[ii :] A functor R from Q to presheaves given by

R(Q) : B 7→HomQ(A(B), Q)

[iii :] The introduction of the notion of a covering system, or system

of localizations of quantum event algebra Q in Q. This amounts to the

consideration that P is a subfunctor of the Hom-functor R(Q) of the form

S : Bop qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq Sets, namely for all B in B it satisfies S(B) ⊆ [R(Q)](B).

The functor R(Q) is the key for the establishment of a categorical adjunc-

tion expressed by the bijection natural in P and Q. A detailed presentation

of the adjunction appears in Zafiris (2001):

Nat(P,R(Q)) ∼= HomQ(LP, Q)

where the left adjoint L : SetsB
op

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq Q, is defined for each presheaf of

Boolean algebras P in SetsB
op

as the colimit taken in the category of elements

of P

L(P) = Colim{G(P,B) qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq B qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq Q}

Furthermore it has been shown that the categorical construction of this col-

imit as a coequalizer of a coproduct reveals the fact that this left adjoint is

like the tensor product −⊗BA.

Consequently there is a pair of adjoint functors L a R as follows:

L : SetsB
op

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq

Q : R
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The main thesis of this paper is that the above adjunction formalizes and

sets the conceptual ground for the understanding of the complementarity

concept in quantum theory.

The adjunction established between the topos of presheaves of Boolean

event algebras and the category of quantum event algebras is subsequently

employed in order to provide a representation of quantum event algebras in

terms of Boolean covering systems. This is accomplished through a functorial

construction, which introduces the notion of a system of localizations of quan-

tum event algebra Q in Q. This notion is equivalent with the requirement

that P is a subfunctor of the Hom-functor R(Q) of the form S : Bop qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq Sets.

Equivalently it may be described as a right ideal S(B) of structure preserving

morphisms of the form

ψB : A(B) qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq Q, B ∈ B

such that {ψB : A(B) qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq Q in S(B), and A(v) : A(B́) → A(B) in Q for

v : B́ → B in B, implies ψB ◦A(v) : A(B́) qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq Q in S(B)}.

The functioning of the notion of a system of localizations for quantum

event algebra Q in Q, is not adequate without the satisfaction of appro-

priate compatibility relations among distinctive components in this system.

Compatibility relations are formulated in a categorical language through the

pullback construction as follows:
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The pullback of the maps: ψB : A(B) qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq Q,B ∈ B, and ψB́ : A(B́) qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq Q,

B́ ∈ B, with common codomain the quantum event algebra Q, consists of

the object A(B)×QA(B́) and two arrows ψBB́ and ψB́B, called projections,

as shown in the following diagram. The square commutes and for any object

T and arrows h and g that make the outer square commute, there is a unique

u : T qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq A(B)×QA(B́) that makes the whole diagram commute. Hence we

obtain the compatibility condition:

ψB́ ◦ g = ψB ◦ h

T

@
@

@
@

@
@qqqqqqqqqqq

qqqqqqq
qqqqqqqqqqqqqqqqqq

u

HHHHHHHHHHHHHHqqqqqqqqqqqqq
qqqqq
qqqqqqqqqqqqqqqqqq

h

A
A
A
A
A
A
A
A
A
A
A
A
AAqqqqqqqqqqqqq

qqqqq
qqqqqqqqqqqqqqqqqq

g A(B)×QA(B́)
ψB,B́

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq A(B)

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

ψB́,B

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

ψB

A(B́)
ψB́ qqqqqqqqqqqqqqqqq

q
qqqqqqqqqqqqqqqqqq Q

In essence the subfunctors of the Hom-functor R(Q) supply an ideal of

algebraic homomorphisms which fulfill the task of covering a quantum event

algebra by local modelling objects entirely.

The coordinatizing Boolean domain mappings ψB : A(B) qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq Q, B ∈

B, in a system of localizations for quantum event algebra Q are characterized
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as Boolean covers, whereas their domains B play the role of local Boolean

coefficients domains, the elements of B the role of Boolean coefficients, and

finally, the Boolean homomorphisms v : B qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq B́ in B may be characterized

as pasting maps.

Finally, we may talk about Q and a system of compatible Boolean local-

izations generating Q, in an equivalent fashion, if and only if, the counit of the

fundamental adjunction restricted to subfunctors of the Hom-functor R(Q),

qualified as Boolean covering systems, is an isomorphism, namely structure-

preserving, injective and surjective. If we focus our attention to a Boolean

covering system for quantum event algebra Q, we observe that the objects of

the category of elements G(R(Q), B) are precisely the local coordinatizing

Boolean covers and its maps are the transition functions. It is instructive to

remind that the objects of the category of elements G(R(Q), B) are pairs

(B,ψB : A(B) qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq Q), with B in B and ψB an arrow in Q, namely a quantum

algebraic homomorphism; a morphism (B́, ψB́) qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq (B, ψB) in the category of

elements is an arrow v : B́ qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq B in B, namely a Boolean homomorphism,

with the property that ψB́ = ψB ◦ A(v) : A(B́) qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq Q; in other words, v

must take the chosen Boolean chart ψB in G(R(Q), B) back into ψB́ in

G(R(Q), B́). These morphisms are composed by composing the underlying

arrows v of B.
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6 Complementarity as an Instance of the Cat-

egorical Adjunction Concept

6.1 Critical remarks on the correspondence

The representation of a quantum event algebra as an interlocking system of

Boolean domain localization maps acquires a concrete physical meaning by

a subsequent association of a Boolean cover with a reference frame, or equiv-

alently a physical context, relative to which a measurement result admits a

coordinatization. Such a conceptual viewpoint has been also suggested from

a non-category theoretic perspective in Davis (1977) and Takeuti (1978).

This association is justified by the fact that in every concrete experimental

context, the set of events that have been actualized in this context forms a

Boolean algebra. Furthermore, as has already been mentioned, it is unam-

biguously suggested by the physical interpretation of Kochen-Specker theo-

rem, according to which it not possible to understand completely a quantum

mechanical system with the use of a single system of Boolean devices. The

proposed association suggests that a Boolean cover (B, ψB : A(B) qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq Q) in

a system of localizations for quantum event algebra, corresponds to a set of

Boolean classical events that become actualized in the experimental context

of B.
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Associating a Boolean cover in the mathematical descriptive language,

with a concrete physical context in the physical one, takes into account two

fundamental distinctions inextricably connected with the quantum theoreti-

cal formalism:

The first of them refers to a distinction being made between an observ-

able event and the physical context that constitutes a set of necessary and

sufficient constraints for the occurrence of an event of the observed kind.

To the event, there corresponds a formal descriptive proposition language.

To the physical context there corresponds a context-description in a formal

descriptive language assuming existence at the level of covers, followed by

an appropriate terminology providing names for the characterization of the

language of events occurring in that context. These latter descriptions can be

said that belong to the constitutive level of the Boolean localization systems.

The second refers to a distinction being made between possessed phys-

ical quantities, as those found in classical physics, and dispositional ones,

as those found in quantum physics. The dispositional character of quan-

tum observables is associated with the fact that they may only be specified

via the measurement process, and more precisely, as relationally appearing

with respect to theoretical or actual Boolean preparatory environments. In

the mathematical descriptive terminology this distinction is encoded in a

transition from globally Boolean event structures to globally non-Boolean
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event structures, being covered by a multitude of Boolean domain localiza-

tion charts. In this sense, creating a preparatory Boolean environment for a

system to interact with a measuring device, does not determine which event

will take place, but it does determine the kind of event that will take place.

It forces the outcome, whatever it is, to belong to a certain definite Boolean

chart of events for which the standard measurement conditions are invari-

ant. Such a set of standard conditions for a definite kind of measurement is

named a physical context and is reflected to a Boolean reference frame in the

mathematical descriptive language.

In the sense of these fundamental distinctions, observables schematize the

quantum event structure by correlating Boolean charts picked by measure-

ments with the smallest Boolean algebra of all the clopen sets of the real line,

playing the precise role of coordinatizing objects in the process of probing

the Quantum world.

6.2 Substantiation of a Twofold Complementarity Scheme

The previous critical remarks have prepared the conceptual ground for the

implementation of the main thesis of this paper, namely that the interpre-

tative concept of complementarity in Quantum theory is being formalized

mathematically, and moreover clarified and substantiated, through the cate-
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gorical notion of adjunction between the categories of quantum event algebras

and the topos of presheaves of Boolean event algebras.

As a concise prologue, it is of value to remark that the notion of comple-

mentarity as a property of language, being forced as a tool of interpretation

by virtue of the context dependence of quantum events is taken by Bohr. In

the original conception of this notion, Bohr’s argumentation consisted of two

basic premises:

[i] Every quantum event is an observer-related event.

[ii] The study of complementary phenomena demand the use of mutually

exclusive experimental arrangements.

With respect to premise [i], we claim that this is precisely the functioning

of a Boolean reference frame. But, with respect to premise [ii], we may argue

that the restriction of complementary phenomena to those only correspond-

ing to mutually exclusive measurement contexts imposes a strict adherence

to the two-valued logical machinery of classical logic, since does not permit

truth-value assignments, like the multi-valued ones of topoi, expressing in the

spirit of our discussion, partial compatibility of overlapping Boolean domain

environments. Thus, in order to accommodate these logical possibilities, it

is necessary to adopt a weaker version of premise [ii], that permits partially

or locally compatible physical contexts in covering systems of the quantum

event structure. An analogues stance towards the meaning of the comple-
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mentarity concept has first been advocated by Heelan (1970). We will return

to this subtle issue later in this work.

Our main objective at the present stage is the defence of the claim that

the adjunction construction embodies the semantics of the notion comple-

mentarity and, moreover, it explicates its functioning via a twofold scheme

consisting of a horizontal and a vertical dimension. For this purpose, we

consider the natural bijection

Nat(P,R(Q)) ∼= HomQ(LP, Q)

We notice that the functors R and L are not inverses, since we can see that

neither RL nor LR need be isomorphic to an identity functor. One way of

thinking about this is to recall the analogy between functors and translations

and make it literal.

If we consider that SetsB
op

is the universe of [Boolean event algebras]-

variable sets, and Q that of quantum event algebras, then the functor L :

SetsB
op

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq Q can be understood as a translational code from variable sets

of Boolean localization domains, standing as physical contexts of measure-

ment, to the algebra of events describing globally the behavior of a quantum

system. On the other side, the functor R : Q qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq SetsB
op

can be conceived

as a translational code in the inverse direction. In general, the content of

the information is not possible to remain completely invariant translating
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from one language to another and back, that is by encoding and decoding

a message. However, there remain two ways for a [Boolean event algebras]-

variable set P, or else multiple filters structured window, to communicate a

message to a quantum event algebra Q. Either the information is specified in

quantum descriptive terms with P translating, which we can represent as the

quantum homomorphism LP → Q, or the information is given in Boolean de-

scriptive terms with Q translating, represented as the natural transformation

P → R(Q). In the first case, Q thinks that is questioned in its own quantum

descriptive terms, while in the second P thinks that it poses a question in

Boolean terms. The natural bijection then corresponds to the assertion that

these two distinct ways of communication, objectified as interactions via the

channels of measuring devices, are equivalent.

Thus, the adjunctive correspondence is precisely constitutive of the mean-

ing embodied in the process of relating relations arising from the partial

congruences of two different globally descriptive levels of event language in

communication. Most importantly, it engulfs all the necessary and sufficient

conditions for the formulation of a two-directional dependent variation reg-

ulated simultaneously by the Boolean and quantum structural levels in local

congruence vertically displayed. This process is actualized operationally in

any preparatory context of a measurement situation with the purpose of ex-

tracting information semantically associated with the behavior of a quantum
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system via observable quantities. In turn, the repetition of this process in

distinct or overlapping localizing environments for measurement, such that

the totality of all similar or different manifestations of a quantum system’s

behavior is exhausted, gives rise to a variation of the observable character-

istics, which is not always compatible according to the descriptive ideals of

classical physics. This fact is not really paradoxical, from the contextual

viewpoint of Boolean reference frames. It is just a consequence of the partial

compatibility of overlapping observation contexts with intentionally specified

Boolean descriptive languages at preparatory environments. Remarkably, the

uncertainty principle can be understood in this setting as expressing exactly

the measure of partial compatibility of diverse observable characteristics of

the same quantum system in one and the same observational context, or

equivalently, Boolean reference frame. Of course, the global closure of this,

essentially, communicative process, realized as Boolean morphogenetic in-

formation filtration in the vertical direction, and as transitory information

circulation in the horizontal, is constrained to obey certain conditions, such

that its total constitutive information content, unfolded in the multitude of

Boolean domain coordinatized instantiations of observables, is preserved and

coherently organized. At this stage, the adjunctive correspondence itself, via

the counit characterizing it, guides to the conclusion that a full and faithful

representation of the structure of events of a globally non-Boolean quantum
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algebra, in terms of families of coordinatizing Boolean domain homomor-

phisms, being qualified as covering or localization systems, is guaranteed if

and only if the counit is a quantum isomorphism. This conclusion, subse-

quently, is the referent of the invariance property pertaining the preservation

of the total qualitative information content embodied in a quantum algebra

of events through the process of unfolding in Boolean reference frames of

covering systems and then enfolding back.

We may systematize the discussion above by arguing that the established

adjunction manifests complementarity in a twofold holistic scheme, consisting

of two interdependent interpretational directions.

Vertical complementarity : Vertical complementarity acquires a mean-

ing by conceptually relating two hierarchically different but partially con-

gruent descriptive levels, namely the levels of quantum event structures and

those of Boolean event structures modelled functorially in Sets. It relates

them by the pair of adjoint functors L a R as follows:

L : SetsB
op

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq

Q : R

and the natural bijection

Nat(P,R(Q)) ∼= HomQ(LP, Q)
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which establishes an equivalence of translational codes between the language

of a system of multiple Boolean filtering windows, and the language of a

quantum structure.

Horizontal Complementarity : Horizontal complementarity acquires a

meaning by conceptually relating different Boolean reference frames, used

as Boolean domain localization contexts for the observation of manifested

behavior of a quantum system, and subsequently, integrating them in a co-

herently organized covering system.

By virtue of, both, the horizontal and the vertical dimension of the com-

plementarity notion, the quantum kind of structure is being objectified via

isomorphic classes of the Boolean kind localization systems, each containing

interconnected, partially or locally compatible, measurement environments.

The twofold scheme of complementarity contains a significant interpretative

power as formalized in the categorical adjunction construction and the sub-

sequent Boolean manifold representation of quantum event algebras as we

will further analyze.

The Boolean covers interlocking in localization systems, and providing

reference frames for the local description of the quantum event structure in

terms of contextual events, function like complementary pattern recognition

mechanisms, such that complementary manifestations of the same quantum
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system are being formed by the deliberate abstractions associated with the

preparation of a physical context. These abstractions inextricably connected

with every Boolean domain filtering mechanism project the globally non-

Boolean quantum event structure into Boolean local models endowed with

a sharp or fuzzy Boolean logic, and, furthermore, make possible the man-

ifestation of qualitatively named observables in the corresponding Boolean

environments of discourse.

If we consider a set of standard conditions for a specified kind of mea-

surement, to this there corresponds a Boolean chart of events, and a propo-

sitional language in which the events can be described. Each event language

correlated with some standard measurement conditions constituting a phys-

ical context, can be considered as a single element, corresponding to a local

Boolean cover in the category of elements G(R(Q), B). Then, compati-

ble event languages in measurement localization systems are interconnected

through the colimit construction and can be pasted together, in order to form

a Boolean manifold event language representation of the quantum structure.

The language in which correlations between distinct or overlapping event

languages are expressed, corresponding to concrete physical contexts, is the

language admissible at the level of covering systems, that by virtue of the ad-

junction counit isomorphism, may provide a full and faithful representation

of the quantum event language globally. Its resources are the names of the

36



various descriptive event languages in the category of elements, and predi-

cates describing the corresponding Boolean reference frames. Statements in

the Boolean manifold language can be conceived as linguistic pictures -not,

however, of events, but of a variety of physical contexts for different charts

of events. Thus, the meaning of nonclassical logic characterizing the quan-

tum propositional calculus is at the level in which Boolean domain covers,

or Boolean reference frames, are related to one another, and not at the level

of single quantum mechanical events.

It is appropriate to remark that each quantum event algebra can have

many covering systems, or systems of localizations, which form a partial or-

dered set under inclusion. We note that the minimal system is the empty

one, namely S(B) = ∅ for all B ∈ B, whereas the maximal system is the

Hom-functor R(Q) itself. Moreover intersection of any number of systems

of localization is again a system of localization. Furthermore, we say that a

family of Boolean charts ψB : A(B) qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq Q, B ∈ B generates the system of

localizations S if and only if this system is the smallest among all that con-

tains this family. From the logical viewpoint, we can assert that the quantum

event language accommodates a partial ordering of different localization sys-

tems consisting of physical measurement contexts. Hence it is legitimate to

think of quantum logic, as the logic appropriate at the level of correlations of

distinct or overlapping Boolean contexts for measurement, presupposing the
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validity of sharp or fuzzy Boolean logic in the domain of discourse of distinct

experimental situations.

The covering process leads naturally to a contextual description of quan-

tum events, with respect to Boolean reference frames of measurement, and

finally to a representation of them as equivalence classes of Boolean events.

The latter term is justified by the fact that, in case, Q signifies a truth-value

structure, each cover can be interpreted as a fuzzy Boolean algebra of events,

corresponding to measurement of an observable. More concretely, since cov-

ers are maps [ψB] : A(B) qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq Q, each Boolean event realized in the domain

B, besides its true or false truth value assignment in a measurement con-

text, related to the outcome of an experiment that has taken place, may be

also legitimately assigned a truth value, representing its relational informa-

tion content for the comprehension of the coherence of the whole quantum

structure, measured by the degrees in the poset Q, or equivalently by the de-

grees assigned to its poset structure of localization systems. This observation

forms a logical manifestation of vertical complementarity and is deduced as

a consequence of the established adjunction.

At the level of horizontal complementarity we observe that since two

different local Boolean charts, each corresponding to a specified measure-

ment context, is possible to overlap, experimental arrangements fulfil the

task of probing the quantum event structure from different Boolean reference
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frames, objectified by the use of qualitatively different pattern recognition

mechanisms. But, by virtue of the equivalence and compatibility relations,

encoded in the form of the established adjunction through the colimit and

pullback categorical constructions, these different observational frames can

be conceived as being equivalent, and moreover, that is possible to establish

the same quantum event, although via complementary observable manifes-

tations.

We may sum up, by asserting that, in the twofold complementarity scheme,

although every quantum event is an event for a particular kind of a Boolean

domain observation chart materialized in a measurement context, or else it is

an observer-related event, the correlations of these Boolean reference frames,

in the Boolean manifold representation of the quantum event structure, per-

mits a conception of quantum events as equivalence classes of Boolean fuzzy

events. Adopting this viewpoint, we may claim that the meaning of the

uncertainty relation in Quantum theory is a characterization of the limita-

tions imposed by the theory, and reflected in the quantum event structure

on an individual system in one and the same physical measurement context,

or Boolean reference frame. In practice, since ideally precise measurement

contexts with sharp classical logic are only theoretically possible, simultane-

ously imprecise measurement contexts with fuzzy Boolean logic, constitute

the appropriate reference frames for the probation of the quantum event
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structure.

Schematically, we may argue that the quantum event structure is being

unfolded through abstractions related with Boolean domain measurement

environments, and the twofold complementarity scheme, formalized by the

categorical adjunction construction, guarantees the correct communicability,

both at the horizontal direction of Boolean reference frames at the same level,

and the vertical direction linking the Boolean with the Quantum hierarchical

levels by the manifold scheme.

Finally, it is of particular importance in the conceptual manifestation of

the complementarity scheme, through the established pair of adjoint func-

tors, to emphasize the clear geometric intuitions underlying this notion. We

may notice that any Boolean event algebra B of B, may be viewed as a

generic figure in SetsB
op

and any p : B qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq P as a particular figure, not

necessarily monomorphic, of sort B. If P is any subfunctor of the Hom-

functor R(Q), consisting a system of localizations for quantum algebra Q,

then the counit isomorphism informs us that the Boolean charts in a system

of localizations, representing measurement physical contexts, provide singu-

lar figures of shape B in Q, used to probe the quantum object Q by means of

maps ψB : A(B) qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq Q from localizing Boolean domains. In this perspective

it is clear that when a Boolean reference frame is considered as a figure of

shape B in Q, we think of Q as a fixed object and of A(B) as variable, so
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as to give all possible shapes of figures in Q. Furthermore, the compatibility

relations that the Boolean charts obey, determine to what extent the corre-

sponding figures overlap, and what the structure of this overlap is. In this

geometrical perspective, we view each Boolean reference frame for observa-

tion of the quantum event structure, by virtue of the adjoint situation, as a

B-parameterized family, or equivalently as a varying element, in that if we

evaluate it at various stages, we will vary it through various points of Q. Thus

the Boolean reference frames effect a naming or coordinatization of elements

of Q by B, emphasizing the fact that each map ψB : A(B) qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq Q produces a

structure in Q. It is then clear that quantum events manifest themselves only

in relation to Boolean reference frames, which in turn, justify entirely their

characterization as pattern recognition mechanisms, effecting a coordinatiza-

tion of quantum event structure, in terms of observable quantities in Boolean

domain environments. At a higher level, the categorical construction of col-

imit, results in the interconnection of the Boolean reference frames in the cat-

egory of elements, in order to capture all complementary manifestations of a

quantum system via contextual observables, and remarkably, this is done in a

coherent way respecting partial compatibility on overlaps. Then, the nature

of the quantum structural kind is revealed: [i] through the concept of local-

ization systems, represented functorially as subfunctors of the representable

functor R(Q), that precisely concretize the interconnecting machinery of the
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colimit in the category of their elements, and, [ii] through the adjunctive cor-

respondence, instantiating the twofold complementarity scheme, which being

a universal construction, establishes a translational code between the kind

of Boolean structure modelled in Sets, and the kind of quantum structure.

Finally, the counit of this adjunction, restricted to Boolean localization sys-

tems, being an isomorphism, is the referent of a closure condition, signifying

the invariance property pertaining the preservation of the total qualitative

information content embodied in a quantum structure through the process

of unfolding in Boolean reference frames and then enfolding back.

7 Philosophical Reflections on the Twofold

Complementarity Scheme

The idea of a reality admitting objective existence is the starting point of

all scientific investigations and the conceptual basis pertaining the realistic

interpretation of classical theories of physics. We will attempt to demonstrate

that the twofold complementarity scheme, as appearing as an instance of the

categorical adjunction concept, provides a realistic perspective on quantum

structure, although conceptually different from the classical one.

The classical view of reality presupposes that the objects of our observa-
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tion are the entities in the world. Moreover an entity may be specified, both

qualitatively and quantitatively in a definite manner, independently of pro-

cedures of observation, being capable of assuming individuality in isolation.

According to the interpretative standards of classical realism, an objective de-

scription is one that determines the properties possessed by an independently

real physical object, standing for an entity, by adopting a representation of

that object as a physical system isolated from any observational interaction.

Quantum theory does not conform to the descriptive ideals of the classical

realism. Thus, the complementarity scheme appearing in the Boolean man-

ifold representation of quantum event structures, should not be judged by

the descriptive ideals of the classical realism position, but instead, should be

considered as generating a generalization of the classical framework, mainly

by initiating a revision of the classical realism assumptions, concerning in

particular, the descriptive concepts involved in association with the objects

they are used to describe.

We claim that the descriptive framework of the twofold complementarity

scheme makes sense only on the basis of a revised realistic interpretation. In-

deed, we hold the view that the propositions of a theory relate to real being

and moreover that the referents of the theory are objects admitting individ-

uality. Put differently, we claim that the quantum event structure reflects

an objective physical reality having existence independently of some mind
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perceiving it. Evidently, such an interpretational viewpoint is compatible

with the formalism of quantum theory if and only if a non-Boolean event

structure is being manifested globally.

Let us initially notice, that we describe our observations using notions of

validity adhering to sharp or fuzzy Boolean logic, as a consequence of the

preparation of Boolean environments of measurement. This is due to the fact

that, only in such environments it is possible to separate sharply or fuzzily

elements and conceive them as existing in isolation from the rest of the world.

Indeed, the Boolean specification of environments of measurement, engulfs

the silent assumption of an almost atomic underlying topology. Of course,

such an assumption, in general, can be used as a methodological tool of

enquiry, only locally or partially, and never be claimed to assume global va-

lidity in the name of empirical findings, being themselves amenable exactly

to the specification of these environments. The appropriate border in the

domain of validity of such a Boolean description is decided by the relevant

abstractions of a measurement situation, conceived precisely as a Boolean

localizing or coordinatizing environment. It is instructive at this point, to

remind Bohr’s definition of the word phenomenon, to refer exclusively to

observations obtained under specific circumstances, including the account of

the whole experiment. Thus, for methodological purposes, we may adapt

Bohr’s concept of phenomenon as a referent of the assignment of an observ-
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able quantity to a system, legitimately thought as approximately isolated,

strictly in the context of a Boolean domain local environment of measure-

ment. Let us notice that this consideration is naturally forced just on the

basis of a globally non-Boolean event structure, necessitating a multitude of,

locally considered, isolated manifestations in Boolean reference frames. In

this sense, every Boolean filtering window corresponds to a particular phe-

nomenon and every proposition of the universe of discourse belongs to at

least one Boolean frame, thus every proposition, is in principle, descriptive

of a classically conceived observable, only under the choice of a local physical

context.

It is also important to notice that the physical claim of complementary

descriptions embodies in an essential manner the claim that the descrip-

tion of a phenomenon as above, necessitates a theoretical conception of the

phenomenon as the referent of a two-levelled interactive process. The first

level of this process is constitutive of the generation of a localizing envi-

ronment, as a reality probing filter, endowed with an intentionally prepared

mechanism of abstraction determined explicitly by the qualitative nature of

the specific Boolean environment. The second level of this process, is in

turn, constitutive of the actualization of the phenomenon only after inter-

action with the relevant measuring apparatus attached as a binary code to

the Boolean frame. Most remarkably this process, considered in conjunction
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with a naturally induced variability of phenomena in the global perspective

of the Boolean manifold synthesis, is suggestive of the fact that, the interact-

ing parts actually form an individual whole, the latter being just expressed,

as a variable division along different abstraction lines, between, only such,

isolated local manifestations and measuring devices, and precisely charac-

terized by the constraint of satisfying collectively the closure condition of

the counit isomorphism. Thus, the conception of phenomena in this sense,

enforces reference to quantum systems as actually existing objects behind

the phenomena, the latter being only their local or partial manifestations in

Boolean environments designed for that purpose. Evidently, each separate

phenomenon cannot be regarded as a representation of a quantum system.

Only at the level of Boolean localization systems, constituting structured

interconnected multiplicities of phenomena, an isomorphic representation of

the global behavior of such an entity becomes possible.

In the light of the above analysis, it is legitimate to say that the twofold

complementarity scheme associated with the meaning of the categorical ad-

junction concept, replaces the classical static monolithic realist view, with

a form of realism, admitting multiplicities of a really existing object, as an

expression of qualitative structured variation or fuzziness in the observable

universe of discourse, which are simultaneously, strictly constrained to obey

collectively and globally a closure condition, constitutive of the preservation
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of the meaning engulfed, in the so conceived, really existing quantum object,

being thus, comprehended as a sheaf a of local or partial phenomenal mani-

festations. Hence, it is explicitly ruled out any interpretation in the classical

realist sense of a one-to-one correspondence between the concepts used to de-

scribe a phenomenal object and the presumed properties of an independent

reality. Still, a realistic understanding of the description of quantum objects

is retained by the interpretative power of twofold complementarity in terms

of the categorical adjunction concept and the associated closure condition.

Consequently, by virtue of this scheme of interpretation, the classical realist

assumption that knowledge of an object is achieved by forming a represen-

tation of that object as a substance possessing properties is rejected, and

subsequently, replaced by the possibility of formulating local or partial con-

textual theoretical structures allowing different or overlapping phenomenal

descriptions, grounded on the same actually existing object, where the same-

ness is precisely determined by the preservation of meaning closure condition.

8 Epilogue

In this work we have explicated a twofold complementarity scheme for the

comprehension of the quantum kind of observable structure, being substanti-

ated as an instance of a categorical adjunction between the topos of presheaves
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of the Boolean kind of structure and the category of the quantum kind of

structure. The key element of interpretation, that this scheme reveals, is

that an object behaving in terms of the quantum kind of structure, is pos-

sible to be communicated in its entirety, only through isomorphisms from

interconnected families of covers organized in Boolean localization systems,

that by virtue of the adjunctive correspondence established, have the poten-

tial of unfolding its meaning, and simultaneously, preserving it consistently,

providing, in this sense, a complementarity-based conception of the process

of quantum becoming. We may conclusively, argue that the quantum level

of reality can be conceived only through a relational perspective. It seems

that relations occupy a substantially remarkable territory in our description

of nature, one which was once occupied exclusively by properties. An ac-

tually existing quantum object is not described through isolated properties,

but only through its relations with localizing physical contexts, that, when

interconnected according to the specifications of partial compatibility and

closure, totally reproduce its meaning as a real entity. Significantly, this fact

is expressed in the most fundamental form in the language of category theory

as an instance of the adjunction concept. The categorical framework reveals

precisely that the essence of the quantum structure of reality is to be sought

not in its internal constitution as a set-theoretical entity endowed with qual-

ities, but rather, in the form of its relationship with the Boolean kind of
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structure through the established network of adjoint functors between the

topos of [Boolean event algebras]-variable sets and the category of quantum

event algebras.
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