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Abstract

We propose a sheaf-theoretic framework for the representation of a

quantum observable structure in terms of Boolean information sieves.

The algebraic representation of a quantum observable structure in the

relational local terms of sheaf theory, effectuates a semantic transi-

tion from the axiomatic set-theoretic context of orthocomplemented

partially ordered sets, à la Birkhoff and Von Neumann, to the cat-

egorical topos-theoretic context of Boolean information sieves, à la

Grothendieck. The representation schema is based on the existence

of a categorical adjunction, which is used as a theoretical platform

for the development of a functorial formulation of information trans-

fer, between quantum observables and Boolean localization devices in

typical quantum measurement situations. We also establish precise

criteria of integrability and invariance of quantum information trans-

fer by cohomological means.
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1 Introduction

The main objective of a sheaf-theoretic representation schema regarding

quantum observable structures is the application of category-theoretic con-

cepts and methods for the evaluation and interpretation of the information

content of these structures. For this purpose we introduce the central no-

tion of Boolean information sieves leading to a novel perspective regarding

quantum information transfer into Boolean local contexts of quantum mea-

surement. The basic guiding idea is of a topological origin, and concerns the

representation of the information enfolded in a global quantum observable

structure, in terms of localization systems of interlocking Boolean contexts

of observation, satisfying certain well defined compatibility relations. The

implementation of this idea, emphasizes the contextual character of quan-

tum information retrieval in typical quantum measurement situations, via

Boolean preparatory contexts, and furthermore, demonstrates that the for-

mer is not ad hoc but can be cast in a mathematical form that respects

strictly the rules of topological transition from local to global. The language

of category theory (Lawvere and Schanuel 1997, Mac Lane 1971) proves to be

appropriate for the implementation of this idea in a universal way. The con-

ceptual essence of this scheme is the development of a sheaf-theoretic topos

perspective (Mac Lane and Moerdijk 1992, Bell 1988) on quantum observ-

able structures, which will constitute the basis for a functorial formulation

of information transfer between Boolean localization devices and quantum

systems.
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In quantum logical approaches the notion of event, associated with the

measurement of an observable, is taken to be equivalent to a proposition

describing the behavior of a physical system. This formulation of quantum

theory is based on the identification of propositions with projection opera-

tors on a complex Hilbert space. In this sense, the Hilbert space formalism

of quantum theory associates events with closed subspaces of a seperable,

complex Hilbert space corresponding to a quantum system. Then, the quan-

tum events algebra is identified with the lattice of closed subspaces of the

Hilbert space, ordered by inclusion and carrying an orthocomplementation

operation which is given by the orthogonal complements of the closed sub-

spaces (Varadarajan 1968, Birkhoff and von Neumann 1936). Equivalently,

it is isomorphic to the partial Boolean algebra of closed subspaces of the

Hilbert space of the system, or alternatively the partial Boolean algebra of

projection operators of the system (Kochen and Specker 1967).

The starting point of our investigation is based on the observation that

set-theoretic axiomatizations of quantum observable structures hide the fun-

damental significance of Boolean localization systems in the formation of

these structures. This is not satisfactory, due to the fact that, all operational

procedures employed in quantum measurement, are based in the preparation

of appropriate Boolean environments. The construction of these contexts of

observation are related with certain abstractions and can be metaphorically

considered as Boolean pattern recognition systems. In the categorical lan-

guage we adopt, we can explicitly associate them with appropriate Boolean

covering systems of a structure of quantum observables. In this way, the

real significance of a quantum structure proves to be, not at the level of

events, but at the level of gluing together overlapping Boolean localization

contexts. The development of the conceptual and technical machinery of lo-
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calization systems for generating non-trivial global event structures, as it has

been recently demonstrated in (Zafiris 2006a), effectuates a transition in the

semantics of events and observables from a set-theoretic to a sheaf-theoretic

one. This is a crucial semantic difference that characterizes the present ap-

proach in comparison to the vast literature on quantum measurement and

quantum logic.

The formulation of information transfer proposed in this paper, is based

on the sheaf-theoretic representation of a quantum observable structure in

terms of Boolean information sieves, consisting of families of local Boolean

reference frames, which can be pasted together using category-theoretic means.

Contextual topos-theoretic approaches to quantum structures have been in-

dependently proposed, from the viewpoint of the theory of presheaves on

partially ordered sets, in (Butterfield and Isham 1998 and 1999), and have

been extensively discussed and critically analyzed in (Rawling and Selesnick

2000, Butterfield and Isham 2000). An interesting intuitionistic interpreta-

tion of quantum mechanics has been constructed in (Adelman and Corbett

1995), by using the real number continuum given by the sheaf of Dedekind

reals in the topos of sheaves on the quantum state space. The idea of intro-

duction of Boolean reference frames has been also appeared in the literature,

from a non-category theoretic perspective, in (Takeuti 1978, Davis 1977). For

a general mathematical discussion of sheaves, variable sets, and related struc-

tures, the interested reader should consult (Lawvere 1975). Finally, it is also

worth mentioning that an alternative sheaf-theoretic approach to quantum

structures has been recently initiated independently in (de Groote 2001). In

a general setting, this approach proposes a theory of presheaves on the quan-

tum lattice of closed subspaces of a complex Hilbert space, by transposing

literally and generalizing the corresponding constructions from the lattice of

4



open sets of a topological space to the quantum lattice. In comparison, our

approach emphasizes the crucial role of Boolean localization systems in the

global formation of quantum structures, and thus, shifts the focus of relevant

constructions to sheaves over suitable localization systems on a base category

of Boolean subalgebras of global quantum algebras. Technical expositions of

sheaf theory, being of particular interest in relation to the focus of the present

work are provided by (Mac Lane and Moerdijk 1992, Bredon 1997, Mallios

1998, Mallios 2004). We mention that another local to global perspective

on quantum information has been developed in the context of the System of

Systems approach (Jamshidi 2009), in which post-measurement, the linear

probabilistic quantum model may be viewed as giving rise to a system of

systems each characterized by a linear probabilistic quantum system model.

Graph models for dealing with quantum complexity have been developed in

(Kitto 2008, Sahni, Srivastava and Satsangi 2009). Finally, various appli-

cations of sheaf-theoretic structures, based on the development of suitable

localization schemes referring to the modeling and interpretation of quantum

systems, have been communicated, both conceptually and technically by the

author, in the literature (Zafiris 2000, 2006a, 2006b, 2006c, 2006d and 2009).

In Section 2, we define event and observable structures using category-

theoretic means. In Section 3, we introduce the notion of a Boolean functor,

we define the category of presheaves of Boolean observables, and also, de-

velop the idea of fibered structures. In Section 4, we prove the existence of

an adjunction between the topos of presheaves of Boolean observables and

the category of quantum observables, and formulate a schema of functorial

information transfer. In Section 5, we define Boolean information sieves as

systems of Boolean localizations for quantum observable structures and ana-

lyze their operational role. In Section 6, we formulate an invariance property

5



of functorial information transfer using the adjunction established previously.

In Section 7, we establish precise functorial criteria of intergrability and in-

variance of information transfer between quantum observable structures and

Boolean localization systems. Finally, we conclude in Section 8.

2 Categories of Events and Observables

A quantum event structure is a category, denoted by L, which is called

the category of quantum event algebras.

Its objects, denoted by L, are quantum algebras of events, that is ortho-

modular σ-orthoposets. More concretely, each object L in L, is considered as

a partially ordered set of quantum events, endowed with a maximal element

1, and with an operation of orthocomplementation [−]∗ : L qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq L, which sat-

isfy, for all l ∈ L, the following conditions: [a] l ≤ 1, [b] l∗∗ = l, [c] l∨ l∗ = 1,

[d] l ≤ ĺ ⇒ ĺ∗ ≤ l∗, [e] l⊥ĺ ⇒ l∨ ĺ ∈ L, [f] for l, ĺ ∈ L, l ≤ ĺ implies that l and

ĺ are compatible, where 0 := 1∗, l⊥ĺ := l ≤ ĺ∗, and the operations of meet ∧
and join ∨ are defined as usually. We also recall that l, ĺ ∈ L are compatible

if the sublattice generated by {l, l∗, ĺ, ĺ∗} is a Boolean algebra, namely if it is

a Boolean sublattice. The σ-completeness condition, namely that the join of

countable families of pairwise orthogonal events must exist, is also required

in order to have a well defined theory of observables over L.

Its arrows are quantum algebraic homomorphisms, that is maps K H qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq L,

which satisfy, for all k ∈ K, the following conditions: [a] H(1) = 1, [b]

H(k∗) = [H(k)]∗, [c] k ≤ ḱ ⇒ H(k) ≤ H(ḱ), [d] k⊥ḱ ⇒ H(k ∨ ḱ) ≤
H(k)∨H(ḱ), [e] H(

∨
nkn) =

∨
nH(kn) , where k1, k2, . . . countable family of

mutually orthogonal events.

A classical event structure is a category, denoted by B, which is called
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the category of Boolean event algebras. Its objects are σ-Boolean algebras

of events and its arrows are the corresponding Boolean algebraic homomor-

phisms.

The notion of observable corresponds to a physical quantity that can

be measured in the context of an experimental arrangement. In any mea-

surement situation the propositions that can be made concerning a physical

quantity are of the following type: the value of the physical quantity lies in

some Borel set of the real numbers. A proposition of this form corresponds to

an event as it is apprehended by an observer using his measuring instrument.

An observable Ξ is defined to be an algebraic homomorphism from the Borel

algebra of the real line Bor(R) to the quantum event algebra L.

Ξ : Bor(R) → L (2.1)

such that: [i] Ξ(∅) = 0, Ξ(R) = 1, [ii] E
⋂

F = ∅ ⇒ Ξ(E) ⊥ Ξ(F ), for

E,F ∈ Bor(R), [iii] Ξ(
⋃

nEn) =
∨

nΞ(En), where E1, E2, . . . sequence of

mutually disjoint Borel sets of the real line.

If L is isomorphic with the orthocomplemented lattice of orthogonal pro-

jections on a Hilbert space, then it follows from von Neumann’s spectral

theorem (Varadarajan 1968) that the observables are in injective correspon-

dence with the hypermaximal Hermitian operators on the Hilbert space.

A quantum observable structure is a category, denoted by OQ, which

is called the category of quantum observables. Its objects are quantum ob-

servables Ξ : Bor(R) → L and its arrows Ξ qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq Θ are commutative triangles,

or equivalently the quantum algebraic homomorphisms L H qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq K in L, pre-

serving by definition the join of countable families of pairwise orthogonal

events, such that Θ = H ◦ Ξ in Diagram 1 is again a quantum observable.

Correspondingly, a Boolean observable structure is a category, de-

noted by OB, which is called the category of Boolean observables. Its objects
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B
h qqqqqqqqqqqqqqqqq

q
qqqqqqqqqqqqqqqqqq C

Diagram 2

are the Boolean observables ξ : Bor(R) → B and its arrows are the Boolean

algebraic homomorphisms B h qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq C in B, such that θ = h ◦ ξ in Diagram 2 is

again a Boolean observable.

3 Functors Associated with Observables

3.1 Functor Category of Boolean Observable Presheaves

If OB
op is the opposite category of OB, then SetsOB

op

denotes the functor

category of presheaves on Boolean observables. Its objects are all functors X :

OB
op qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq Sets, and its morphisms are all natural transformations between

such functors. Each object X in this category is a contravariant set-valued

functor on OB, called a presheaf on OB.

For each Boolean observable ξ of OB, X(ξ) is a set, and for each arrow

f : θ qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq ξ, X(f) : X(ξ) qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq X(θ) is a set function. If X is a presheaf on OB
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and x ∈ X(O), the value X(f)(x) for an arrow f : θ qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq ξ in OB is called the

restriction of x along f and is denoted by X(f)(x) = x · f .

Each object ξ of OB gives rise to a contravariant Hom-functor y[ξ] :=

HomOB
(−, ξ). This functor defines a presheaf on OB. Its action on an

object θ of OB is given by

y[ξ](θ) := HomOB
(θ, ξ) (3.1)

whereas its action on a morphism η w qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq θ, for v : θ qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq ξ is given by

y[ξ](w) : HomOB
(θ, ξ) qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq HomOB

(η, ξ) (3.2)

y[ξ](w)(v) = v ◦ w (3.3)

Furthermore y can be made into a functor from OB to the contravariant

functors on OB

y : OB
qqqqqqqqqqqqqqqqq

q
qqqqqqqqqqqqqqqqqq SetsOB

op

(3.4)

such that ξ 7→HomOB
(−, ξ). This is an embedding, called the Yoneda em-

bedding (Mac Lane and Moerdijk 1992), and it is a full and faithful functor.

The functor category of presheaves on Boolean observables SetsOB
op

, pro-

vides an exemplary case of a category known as topos (Mac Lane and Mo-

erdijk 1992, Bell 1988, Lawvere 1975). A topos can be conceived as a well

defined notion of a universe of variable sets. Furthermore, it provides a nat-

ural example of a many-valued truth structure, which remarkably is not ad

hoc, but reflects genuine constraints of the surrounding universe.

3.2 Fibrations over Boolean Observables

Since OB is a small category, there is a set consisting of all the elements of

all the sets X(ξ), and similarly there is a set consisting of all the functions

X(f). This observation regarding X : OB
op qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq Sets permits us to take
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∫
(X,OB)

∫
X

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

OB
X qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq Sets

Diagram 3

the disjoint union of all the sets of the form X(ξ) for all objects ξ of OB.

The elements of this disjoint union can be represented as pairs (ξ, x) for all

objects ξ of OB and elements x ∈ X(ξ). Thus the disjoint union of sets is

made by labeling the elements. Now we can construct a category whose set

of objects is the disjoint union just mentioned. This structure is called the

category of elements of the presheaf X, denoted by
∫

(X,OB). Its objects

are all pairs (ξ, x), and its morphisms (ξ́, x́) qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq (ξ, x) are those morphisms

u : ξ́ qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq ξ of OB for which x · u = x́. Projection on the second coordinate of
∫

(X,OB), defines a functor
∫

X
:
∫

(X,OB) qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq OB.
∫

(X,OB) together with

the projection functor
∫

X
is called the split discrete fibration induced by X,

and OB is the base category of the fibration (Diagram 3). We note that

the fibration is discrete because the fibers are categories in which the only

arrows are identity arrows. If ξ is a Boolean observable object of OB, the

inverse image under
∫

X
of ξ is simply the set X(ξ), although its elements are

written as pairs so as to form a disjoint union. The notion of discrete fibration

induced by X, is an application of the general Grothendieck construction in

our context of enquiry.

It is instructive to remark that, that the construction of the split discrete

fibration induced by X, where OB is the base category of the fibration, incor-

porates the physically important requirement of uniformity (Zafiris (2006)).

The notion of uniformity, requires that for any two events observed over

10



Bor(R)

¡
¡
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¡
¡qqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqq

ξ

@
@

@
@

@
@qqqqqqqqqqq

qqqqqqq
qqqqqqqqqqqqqqqqqq

Ξ

M(BΞ)
[ψB]Ξ qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq L

Diagram 4

the same domain of measurement, the structure of all Boolean contexts that

relate to the first cannot be distinguished in any possible way from the struc-

ture of Boolean contexts relating to the second. In this sense, all the observed

events within any particular Boolean context should be uniformly equivalent

to each other. It is easy to notice that the composition law in the cate-

gory of elements of the presheaf X, expresses precisely the above uniformity

condition.

3.3 Functor of Boolean coefficients

We define a Boolean coefficient or Boolean coordinatization functor,

M : OB
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq OQ (3.5)

which assigns to Boolean observables in OB (that plays the role of the cat-

egory of coordinatization models) the underlying quantum observables from

OQ, and to Boolean homomorphisms the underlying quantum algebraic ho-

momorphisms.

Equivalently the functor of Boolean coefficients can be characterized as,

M : B qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq L, which assigns to Boolean event algebras in B the underlying

quantum event algebras from L, and to Boolean homomorphisms the under-

lying quantum algebraic homomorphisms, such that Diagram 4 commutes.
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X(ξ)
τξ

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq HomOQ
(M(ξ), Ξ)

X(u)

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

M(u)∗

X(ξ́)
τξ́

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq HomOQ
(M(ξ́), Ξ)

Diagram 5

4 Functorial Information Transfer

4.1 Adjunctive correspondence between Presheaves of

Boolean Observables and Quantum Observables

We consider the category of quantum observables OQ and the modeling func-

tor M, and we define the functor R from OQ to the topos of presheaves of

Boolean observables, given by

R(Ξ) : ξ 7→HomOQ
(M(ξ), Ξ) (4.1)

A natural transformation τ between the topos of presheaves on the cat-

egory of Boolean observables X and R(Ξ), τ : X qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq R(Ξ) is a family τξ

indexed by Boolean observables ξ of OB for which each τξ is a map

τξ : X(ξ)→HomOQ
(M(ξ), Ξ) (4.2)

of sets, such that Diagram 5 commutes for each Boolean homomorphism

u : ξ́ → ξ of OB.

If we make use of the category of elements of the Boolean observable-

variable set X, then the map τξ, defined above, can be characterized as:

τξ : (ξ, p)→HomOQ
(M ◦

∫

X

(ξ, p), Ξ) (4.3)

Equivalently such a τ can be seen as a family of arrows of OQ which is

being indexed by objects (ξ, p) of the category of elements of the presheaf of
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M(ξ) M ◦ ∫
X
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@
@qqqqqqqqqqq

qqqqqqq
qqqqqqqqqqqqqqqqqq

τξ(p)

M(u)

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqq

u∗ Ξ

¡
¡

¡
¡

¡
¡

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

τξ́(ṕ)

M(ξ́) M ◦ ∫
X

(ξ́, ṕ)

Diagram 6

Boolean observables X, namely

{τξ(p) : M(ξ) → Ξ}(ξ,p) (4.4)

From the perspective of the category of elements of X, the condition of the

commutativity of the preceding diagram is equivalent with the condition that

for each Boolean homomorphism u : ξ́ → ξ of OB, Diagram 6 is commutative.

It is straightforward to see that the arrows τξ(p) form a cocone from the

functor M ◦ ∫
X

to the quantum observable Ξ. If we remind the categorical

notion of colimit, being the universal construction of interconnection, we

conclude that each such cocone emerges by the composition of the colimiting

cocone with a unique arrow from the colimit LX to the quantum observable

Ξ. In other words, there is a bijection which is natural in X and Ξ

Nat(X,R(Ξ)) ∼= HomOQ
(LX, Ξ) (4.5)

From the above bijection we are driven to the conclusion that the functor

R from OQ to the topos of presheaves given by

R(Ξ) : ξ 7→HomOQ
(M(ξ), Ξ) (4.6)
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has a left adjoint L : SetsOB
op → OQ, which is defined for each presheaf of

Boolean observables X in SetsOB
op

as the colimit

L(X) = Colim{
∫

(X,OB)

∫
X qqqqqqqqqqqqqqqqq

q
qqqqqqqqqqqqqqqqqq OB

M qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq OQ} (4.7)

For readers not feeling comfortable with the categorical notion of colimit we

may construct it explicitly for the case of interest X = R(Ξ) in set-theoretical

language as follows:

Colimit construction: We consider the set

L(R(Ξ)) = {(ψξ, q)/(ψξ : M(ξ) qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq Ξ) ∈ [

∫
(R(Ξ),OB)]0, q ∈ M(ξ)} (4.8)

We notice that if there exists u : ψξ́ → ψξ such that: u(q́) = q and ψξ◦u = ψξ́,

where [R(Ξ)u](ψξ) := ψξ ◦ u as usual, then we may define a transitive and

reflexive relation < on the set L(R(Ξ)). Of course the inverse also holds true.

We notice then that

(ψξ ◦ u, q)<(ψξ, u(q́)) (4.9)

for any u : M(ξ́) → M(ξ) in the category OB. The next step is to make this

relation also symmetric by postulating that for ϕ, χ in L(R(Ξ)), where ϕ, χ

denote pairs in the above set, we have:

ϕ ∼ χ (4.10)

if and only if ϕ<χ or χ<ϕ. Finally by considering a sequence %1, %2, . . . ,%k

of elements of the set L(R(Ξ)) and also ϕ, χ such that:

ϕ ∼ %1 ∼ %2 ∼ . . . ∼ %k−1 ∼ %k ∼ χ (4.11)

we may define an equivalence relation on the set L(R(L)) as follows:

ϕ ./ χ := ϕ ∼ %1 ∼ %2 ∼ . . . ∼ %k−1 ∼ %k ∼ χ (4.12)
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Then for each ϕ ∈ L(R(Ξ)) we define the quantum at ϕ as follows:

Qϕ = {ι ∈ L(R(Ξ)) : ϕ ./ ι} (4.13)

We finally put

L(R(Ξ))/ ./:= {Qϕ : ϕ = (ψξ, q) ∈ L(R(Ξ))} (4.14)

and use the notation Qϕ = ‖(ψξ, q)‖. If we remind that each quantum

observable is defined as an algebraic homomorphism from the Borel algebra

of the real line Bor(R) to a quantum event algebra L, we may finally write

the quotient L(R(Ξ))/ ./ in the form of a quantum observable as follows:

L(R(Ξ))/ ./: Bor(R) → L(R(L))/ ./ (4.15)

and verify that L(R(L))/ ./ is actually a quantum event algebra, where in

complete analogy with the definition of L(R(Ξ))/ ./ we have:

L(R(L)) = {(ψB, b)/(ψB : M(B) qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq L), b ∈ M(B)} (4.16)

The set L(R(L))/ ./ is naturally endowed with a quantum algebra struc-

ture if we are careful to notice that:

[1]. The orthocomplementation is defined as: Q∗
ζ=‖(ψB, b)‖∗= ‖(ψB, b∗)‖.

[2]. The unit element is defined as: 1 = ‖(ψB, 1)‖.
[3]. The partial order structure on the set L(R(L))/ ./ is defined as:

‖(ψB, b)‖ ¹ ‖(ψC , r)‖ if and only if d1 ¹ d2 where we have made the

following identifications: ‖(ψB, b)‖ = ‖(ψD, d1)‖ and ‖(ψC , r)‖ = ‖(ψD, d2)‖,
with d1, d2 ∈ M(D) according to the fibered product Diagram 7 of event

algebras, such that β(d1) = b, γ(d2) = r. The rest of the requirements such

that L(R(L))/ ./ actually carries the structure of a quantum event algebra

are obvious.
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M(D)
β

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq M(B)

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

γ

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

M(C) qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq L

Diagram 7

Nat(X,R(Ξ)) r qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq HomOQ
(LX, Ξ)

Nat(X,R(Ξ)) lqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq HomOQ
(LX, Ξ)

Diagram 8

The conclusion being drawn from the analysis presented in this Section

can be summarized as follows: There exists a pair of adjoint functors

L a R according to the bidirectional correspondence;

L : SetsOB
op

qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq

OQ : R (4.17)

This pair of functors forms a categorical adjunction consisting of the functors

L and R, called left and right adjoints with respect to each other respectively,

as well as the natural bijection:

Nat(X,R(Ξ)) ∼= HomOQ
(LX, Ξ) (4.18)

The existence of the categorical adjunctive correspondence explained above,

provides a theoretical platform for the formulation of a functorial schema of

interpretation, concerning the information transfer that takes place in quan-

tum measurement situations. If we consider that SetsB
op

is the universe of

Boolean observable event structures modeled in Sets, and L that of quantum
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event structures, then the topos theoretical specification of the first category

represents the varying world of Boolean localization filters of information as-

sociated with abstraction mechanisms of observation. In this perspective the

functor L : SetsB
op

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq L can be comprehended as a translational code from

Boolean information filters to the quantum species of structure, whereas

the functor R : L qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq SetsB
op

as a translational code in the inverse direc-

tion. In general, the content of the information is not possible to remain

completely invariant translating from one language to another and back, in

any information transfer mechanism. However, there remain two ways for a

Boolean-event algebra variable set P, or else Boolean filter of information,

to communicate a message to a quantum event algebra L. Either the infor-

mation is transferred in quantum terms with P translating, which we can

be represented as the quantum homomorphism LP qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq L, or the informa-

tion is transferred in Boolean terms with L translating, that, in turn, can

be represented as the natural transformation P qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq R(L). In the first case,

from the perspective of L information is being received in quantum terms,

while in the second, from the perspective of P information is being sent in

Boolean terms. The natural bijection then corresponds to the assertion that

these two distinct ways of communicating are equivalent. Thus, the physi-

cal meaning of the adjunctive correspondence, signifies a co-dependency of

the involved languages in communication. This is realized operationally in

the process of extraction of the information content enfolded in a quantum

observable structure through the pattern recognition characteristics of spec-

ified Boolean domain preparatory contexts. In turn, this process gives rise

to a variation of the information collected in Boolean filtering systems for

an observed quantum system, which is not always compatible. In the next

section, we will specify the necessary and sufficient conditions for a full and
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faithfull representation of the informational content included in a quantum

observable structure in terms of Boolean information sieves, or equivalently

Boolean localization systems. At the present stage we may observe that the

representation of a quantum observable as a categorical colimit, resulting

from the same adjunctive correspondence, reveals a theoretical concept that

can admit a multitude of Boolean coordinatizations, specified mathematically

by different Boolean coefficients in Boolean information filtering systems.

5 Boolean Information Sieves

5.1 Functor of Boolean Points of Quantum Observ-

ables

The development of the ideas contained in the proposed scheme are based on

the notion of the functor of Boolean points of quantum observables, so it is

worthwhile to explain its meaning in some detail. The conceptual background

behind this notion has its roots in the work of Grothendieck in algebraic ge-

ometry (Mac Lane and Moerdijk 1992). If we consider the opposite of the

category of quantum observables, that is the category with the same objects

but with arrows reversed OQ
op, each object in the context of this category

can be thought of as the locus of a quantum observable, or else it carries

the connotation of space. The crucial observation is that any such space is

determined up to canonical isomorphism if we know all morphisms into this

locus from any other locus in the category. For instance, the set of mor-

phisms from the one-point locus to Ξ in OQ
op determines the set of points

of the locus Ξ. The philosophy behind this approach amounts to considering

any morphism in OQ
op with target the locus Ξ as a generalized point of Ξ.
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It is obvious that the description of a locus Ξ in terms of all possible mor-

phisms from all other objects of OQ
op is redundant. For this reason we may

restrict the generalized points of Ξ to all those morphisms in OQ
op having as

domains measurement loci corresponding to Boolean observables. Evidently

such measurement loci correspond, if we take into account Stone’s repre-

sentation theorem for Boolean algebras, to a replacement of each Boolean

algebra B in B by its set-theoretical representation [Σ, BΣ], consisting of a

local measurement space Σ and its local field of subsets BΣ.

Variation of generalized points over all domain-objects of the subcategory

of OQ
op consisting of Boolean observables produces the functor of points of Ξ

restricted to the subcategory of Boolean objects, identified with OB
op. This

functor of Boolean points of Ξ is made then an object in the category of

presheaves SetsOB
op

, representing a quantum observable -(in the sequel for

simplicity we talk of an observable and its associated locus tautologically)- in

the environment of the topos of presheaves over the category of Boolean ob-

servables. This methodology will prove to be successful if it could be possible

to establish an isomorphic representation of Ξ in terms of the information

being carried by its Boolean points ξ → Ξ collated together by appropriate

means.

5.2 Boolean Information Sieves of Prelocalization

We coordinatize the information contained in a quantum observable Ξ in

OQ by means of Boolean points, namely morphisms ξ qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq Ξ having as their

domains, locally defined Boolean observables ξ in OB. Any single map from

a Boolean coordinate domain to a quantum observable is not enough for a

complete determination of its information content, and hence, it contains only

a limited amount of information about it. More concretely, it includes only
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the amount of information related to a prepared Boolean local context, and

thus, it is inevitably constrained to represent the abstractions associated with

its preparation. In order to cope with this problem we consider a sufficient

number of localizing morphisms from the domains of Boolean preparatory

contexts simultaneously, such that the information content of a quantum

observable can be eventually covered completely. In turn, the information

available about each morphism of the specified covering may be used to

determine the quantum observable itself. In this case, we say that, the family

of such morphisms generate a Boolean information sieve of prelocalizations

for a quantum observable, induced by measurement. We may formalize these

intuitive ideas as follows:

A Boolean information sieve of prelocalizations for a quantum

observable Ξ in OQ is a subfunctor of the Hom-functor R(Ξ) of the form

S : OB
op → Sets, namely for all ξ in OB it satisfies S(ξ) ⊆ [R(Ξ)](ξ). Ac-

cording to this definition, a Boolean information sieve of prelocalizations for

a quantum observable Ξ in OQ, can be understood as a right ideal S(ξ) of

quantum algebraic homomorphisms of the form

ψξ : M(ξ) qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq Ξ, ξ ∈ OB (5.1)

such that 〈ψξ : M(ξ) qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq Ξ in S(ξ), and M(v) : M(ξ́) → M(ξ) in OQ for

v : ξ́ → ξ in OB, implies ψξ ◦M(v) : M(ξ́) qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq OQ in S(ξ)〉.
We observe that the operational role of a Boolean information sieve, viz.

of a subfunctor of the Hom-functor R(Ξ) is tantamount to the depiction of

an ideal of localizing morphisms acting as local coverings of a quantum ob-

servable by coordinatizing Boolean information points. We may characterize

the morphisms ψξ : M(ξ) qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq Ξ, ξ ∈ OB in a sieve of prelocalizations, as

Boolean covers for the filtration of information associated with a quantum

observable structure. Their domains BΞ provide Boolean coefficients, asso-
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qq
qqqqqqqqqqqqqqqqqq L

Diagram 9

ciated with measurement situations according to Diagram 9.

The introduction of these systems is justified by the consequences of the

Kochen-Specker theorem, according to which, it is not possible to under-

stand completely a quantum mechanical system with the use of a single

Boolean experimental arrangement. Equivalently, there are no two-valued

homomorphisms on the algebra of quantum events, and thus, it cannot be

embedded into a Boolean one. On the other side, in every concrete exper-

imental context, the set of events that have been actualized in this con-

text forms a Boolean algebra. Consequently, any Boolean domain object

(BΞ, [ψB]Ξ : M(BΞ) qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq L) in a sieve of prelocalizations for a quantum event

algebra, such that the diagram above commutes, corresponds to a set of

Boolean events that become actualized in the experimental context of B.

These Boolean objects play the role of Boolean information localizing devices

in a quantum event structure, which are induced by local preparatory con-

texts of quantum measurement situations. The above observation is equiva-

lent to the statement that a measurement-induced Boolean algebra serves as

a reference frame, relative to which a measurement result is being coordina-

tized, in accordance to the informational specification of the corresponding

localization context.

A family of Boolean covers ψξ : M(ξ) qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq Ξ, ξ ∈ OB is the generator of

a Boolean information sieve of prelocalization S, if and only if, this sieve is
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the smallest among all that contains that family. It is evident that a quan-

tum observable, and correspondingly the quantum event algebra over which

it is defined, may be covered by a multitude of Boolean information sieves of

prelocalizations, that, significantly, form an ordered structure. More specifi-

cally, sieves of prelocalization constitute a partially ordered set under inclu-

sion. The minimal sieve is the empty one, namely S(ξ) = ∅ for all ξ ∈ OB,

whereas the maximal sieve is the Hom-functor R(Ξ) itself, or equivalently,

the set of all quantum algebraic homomorphisms ψξ : M(ξ) qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq Ξ.

5.3 Boolean Information Sieves of Localization

The transition from a sieve of prelocalizations to a Boolean information sieve

of localizations for a quantum observable, is necessary for the compatibility of

the information content gathered in different Boolean filtering mechanisms.

A Boolean information sieve of localizations contains all the necessary and

sufficient conditions for the representation of the information content of a

quantum observable structure as a sheaf of Boolean coefficients associated

with Boolean localization contexts. The notion of sheaf expresses exactly the

pasting conditions that the local filtering devices have to satisfy, or else, the

specification by which local data, providing Boolean coefficients obtained in

measurement situations, can be collated.

In order to define a Booelan information sieve of localizations, it is nec-

essary to explain the notion of pullback in the category OQ.

The pullback of the Boolean information filtering covers ψξ : M(ξ) qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq Ξ,

where ξ ∈ OB, and ψξ́ : M(ξ́) qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq Ξ, where ξ́ ∈ OB, with common codomain

the quantum observable Ξ, consists of the object M(ξ)×ΞM(ξ́) and two

arrows ψξξ́ and ψξ́ξ, called projections, as shown in Diagram 10. The square

commutes and for any object T and arrows h and g that make the outer
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qqqqqqqqqqqqqqqq
qq
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qq
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qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq Ξ

Diagram 10

square commute, there is a unique u : T qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq M(ξ)×ΞM(ξ́) that makes the

whole diagram commutative. Hence we obtain the condition:

ψξ́ ◦ g = ψξ ◦ h (5.2)

We emphasize that if ψξ and ψξ́ are injective maps, then their pullback

is isomorphic with the intersection M(ξ) ∩ M(ξ́). Then we can define the

pasting map, which is an isomorphism, as follows:

Ωξ,ξ́ : ψξ́ξ(M(ξ)×ΞM(ξ́)) qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq ψξξ́(M(ξ)×ΞM(ξ́)) (5.3)

by putting

Ωξ,ξ́ = ψξξ́ ◦ ψξ́ξ
−1 (5.4)

Then we have the following cocycle conditions:

Ωξ,ξ = 1ξ 1ξ := idξ (5.5)

Ωξ,ξ́ ◦ Ω
ξ́,

´́
ξ

= Ω
ξ,

´́
ξ

if M(ξ) ∩M(ξ́) ∩M(
´́
ξ) 6= 0 (5.6)

Ωξ,ξ́ = Ω−1
ξ́,ξ if M(ξ) ∩M(ξ́) 6= 0 (5.7)
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The pasting map assures that ψξ́ξ(M(ξ)×ΞM(ξ́)) and ψξξ́(M(ξ)×ΞM(ξ́))

cover the same part of the informational content of a quantum observable in

a compatible way.

Given a sieve of prelocalizations for quantum observable Ξ ∈ OQ, and

correspondingly for the quantum event algebra over which it is defined, it is

called a Boolean information sieve of localizations, if and only if, the

above compatibility conditions are satisfied.

We assert that the above compatibility conditions provide the necessary

relations for understanding a Boolean information sieve of localizations for

a quantum observable, as a sheaf of Boolean coefficients representing the

information encoded in local Boolean observables. In essence, the pullback

compatibility conditions express gluing relations on overlaps of Boolean do-

main information covers. The concept of sheaf (Mac Lane and Moerdijk 1992,

Bredon 1997, Mallios 1998) expresses exactly the amalgamation conditions

that local coordinatizing Boolean points have to satisfy, namely, the way by

which local data, providing Boolean coefficients obtained in measurement

situations, can be collated globally.

In this sense, the specification of a Boolean information sieve of local-

ization, as a sheaf of Boolean coefficients associated with the variation of

the information obtained in multiple Boolean localization contexts, permits

the conception of a quantum observable (or of its associated quantum event

algebra) as a global manifestation of local Boolean observable information

collation, obtained by pasting the ψξ́ξ(M(ξ)×ΞM(ξ́)) and ψξξ́(M(ξ)×ΞM(ξ́))

covers together by the transition functions Ωξ,ξ́.
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6 Conditions for Invariant Functorial Infor-

mation Transfer

The interpretational framework for the comprehension of functorial infor-

mation transfer, as established by the adjunctive correspondence between

preheaves of Boolean localization coefficients, associated with information

filtering contexts of observation, and, quantum observable structures, can be

completed by the formulation of a property characterizing the conditions for

invariance of the information transferred in the totality of Boolean localiza-

tion environments.

The existence of this invariance property is equivalent to the representa-

tion of quantum observables and their associated quantum event algebras, in

terms of Boolean information sieves, capable of encoding the whole informa-

tional content included in a quantum structure. The intended representation

can be obtained from the established adjunction itself as follows:

Every categorical adjunction is completely characterized by the unit and

counit natural transformations (Mac Lane and Moerdijk 1992). For the

adjunctive correspondence between presheaves of Boolean observables and

quantum observables the unit and counit morphisms are defined as follows:

For any presheaf P ∈ SetsOB
op

, the unit is defined as

δP : P qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq RLP (6.1)

On the other side, for each quantum observable Ξ of OQ the counit is

εΞ : LR(Ξ) qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq Ξ (6.2)

The counit corresponds to the vertical morphism in Diagram 11.

Diagram 11 has been obtained by the categorical representation of the

colimit in the category of elements of the functor R(Ξ) as a coequalizer of
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Diagram 11

coproduct (Mac Lane and Moerdijk 1992). More specifically, in the coequal-

izer representation of the colimit, the second coproduct is over all the objects

(ξ, p) with p ∈ R(Ξ)(ξ) of the category of elements, while the first coproduct

is over all the maps v : (ξ́, ṕ) qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq (ξ, p) of that category, so that v : ξ́ qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq ξ

and the condition p · v = ṕ is satisfied.

In general, by means of that representation, we can show that the left

adjoint functor of the adjunction is like the tensor product −⊗OB
M. More

specifically, using the coequalizer representation of the colimit LX we can

easily show that the elements of X⊗OB
M, considered as a set endowed with

a quantum algebraic structure, are all of the form χ(p, q), or in a suggestive

notation,

χ(p, q) = p⊗ q, p ∈ X(ξ), q ∈ M(ξ) (6.3)

satisfying the coequalizer condition pv ⊗ q́ = p⊗ vq́.

From Diagram 11, it is clear that the representation of a quantum ob-

servable Ξ in OQ, and thus, of a quantum event algebra L in L, in terms

of a Boolean information sieve of localizations, is full and faithful, if and

only if the counit of the established adjunction, restricted to this sieve, is an

isomorphism, that is, structure-preserving, injective and surjective.

The physical significance of this representation lies on the following propo-

sition:
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Quantum Information Preservation Principle : The whole informa-

tion content enfolded in a quantum observable structure, is preserved by

some covering Boolean system, if and only if, that system forms a Boolean

information sieve of localizations.

The preservation principle is established by the counit isomorphism. It

is remarkable, that the categorical notion of adjunction provides the appro-

priate formal tool for the formulation of invariant properties, giving rise to

preservation principles of a physical character.

Concerning the representation above, we realize that the surjective prop-

erty of the counit guarantees that the Boolean information filtering mech-

anisms, being themselves objects in the category of elements,
∫

(R(L), B),

cover entirely the quantum event algebra L, whereas its injective property,

guarantees that any two information filters are compatible in a sieve of local-

izations. Moreover, since the counit is also a homomorphism, the algebraic

structure is preserved.

We observe that each Boolean filtering device gives rise to a set of Boolean

events actualized locally in a measurement situation. The equivalence classes

of Boolean events represent quantum events in L, through compatible coordi-

natizations by Boolean coefficients. Consequently, the structure of a quantum

event algebra is being generated by the information carried from its structure

preserving morphisms, encoded as Boolean information filters in localization

sieves, together with their compatibility relations.

We may clarify that the underlying invariance property specified by the

adjunction is associated with the informational content of all these, different

or overlapping information filtering mechanisms in various Boolean localiza-

tion contexts, and can be explicitly formulated as follows:
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Invariance Property: The information content of a quantum observable

structure remains invariant, with respect to measurement contexts of Boolean

coordinatizations, if and only if, the counit of the adjunction, restricted to

covering systems, qualified as Boolean information sieves of localizations, is

an isomorphism.

In turn, the counit of the adjunction, restricted to a Boolean information

sieve of localizations is an isomorphism, if and only if the right adjoint functor

is full and faithful, or equivalently, if and only if the cocone from the functor

M ◦ ∫
R(Ξ)

to the quantum observable Ξ is universal for each object Ξ in OQ

(Mac Lane and Moerdijk 1992). In the latter case we characterize the functor

M : OB
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq OQ, a proper functor of Boolean coefficients.

From a physical perspective, we conclude that the counit isomorphism,

provides a categorical equivalence, signifying an invariance in the transla-

tional code of communication between Boolean information filtering contexts,

acting as localization devices for measurement, and quantum systems.

7 Cohomological Criterion of Functoriality

We have reached the conclusion that if the right adjoint functor of the ad-

junction is a full and faithful functor, then the counit is an isomorphism and

conversely. In this case, we have established a functoriality property, refer-

ring to invariant information transfer between quantum observables algebras

and Boolean information sieves of localizations. In this Section, we are going

to establish a cohomological criterion elucidating that functoriality property.

For this purpose, we consider the counit of the adjunction, expressed in terms

of the quantum event algebra over which observables are defined;

εL : GL := LR(L) = R(L)⊗BM qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq L (7.1)
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qq
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Diagram 13

such that Diagram 12 commutes. The counit εL : GL qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq L is the first

step of a functorial free resolution of an object L in L. Thus, by iteration

of G, we may extend εL to a free simplicial resolution of L in L, denoted by

G?L → L, according to Diagram 13. In the simplicial resolution represented

by Diagram 13, ε0,1,2 denotes a triplet of arrows etc. Notice that, Gn+1 is the

term of degree n, whereas the face operator εi : Gn+1 → Gn is Gi ◦ ε ◦Gn−i,

where 0 ≤ i ≤ n. We can verify the following simplicial identities;

εi ◦ εj = εj+1 ◦ εi (7.2)

where i ≤ j. The resolution G?L → L induces obviously a resolution in the

comma category [L/L], which we still denote by G?L → L.

Now, having at our disposal the resolution G?L → L, it is possible to

define the cohomology groups H̃n(L,XL), n ≥ 0, of a quantum event algebra
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L in L with coefficients in an L-module XL, relative to the given underlying

functor of points R : L → SetsB
op

, defined by R(L) : B 7→HomL(M(B), L),

having a left adjoint L : SetsB
op → L.

First of all we define the notion of an L-module XL by the requirement

that it is equivalent to an abelian group object in the comma category [L/L].

This follows from the general definition of categorical modules introduced in

(Barr and Beck 1966, Beck 1956) according to which: Let Y be a category

and let Y be an object in Y . Then the category of Mod(Y ) is the category

of abelian group objects in the comma category [Y/Y ]. This definition is

appropriate for the kind of module that is a coefficient module for cohomol-

ogy. For the interested reader we have included an appendix which contains

an exposition of the relevant details for the case of commutative rings, as

well as its functionality for setting up the derivations functor, reproducing

well-known algebraic results.

Since XL can be characterized as an abelian group object in [L/L],

the set HomL(L,XL) has an abelian group structure for every object L in

L, and moreover, for every arrow Ĺ → L in L, the induced map of sets

HomL(L,XL) → HomL(Ĺ,XL) is a map of abelian groups.

Under the above specifications, an n-cochain of a quantum event algebra

L with coefficients in an L-module XL, where, by definition, XL is an object

in [L/L]Ab, is defined as a map Gn+1L → ΥL(XL) in the comma category

[L/L], where;

ΥL : [L/L]Ab ↪→ [L/L] (7.3)

denotes the corresponding inclusion functor of abelian group objects. Fur-

thermore, we define the derivations functor from the comma category L/L

to the category of abelian groups Ab:

Der(−, XL) : L/L → Ab (7.4)
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Diagram 14

where XL is an L-module, or equivalently, an abelian group object in L/L,

by the following requirement: If K : E → L is an object of L/L, then we

have the isomorphism:

Der(E, XL) ∼= HomL/L(E, ΥL(XL)) (7.5)

Thus, we may finally identify the set of n-cochains with the abelian group

of derivations of Gn+1L into the abelian group object XL in [L/L]Ab. Hence,

we consider an n-cochain as a derivation map Gn+1L → XL.

Consequently, the face operators εi, induce abelian group morphisms;

Der(εiL,XL) : Der(GnL,XL) → Der(Gn+1L,XL) (7.6)

Thus, the cohomology can be established by application of the contravariant

functor Der(−, XL) on the free simplicial resolution of a quantum event

algebra L in L, obtaining the cochain complex of abelian groups represented

by Diagram 14, where because of the aforementioned simplicial identities we

have:

dn+1 =
∑

i

(−1)iDer(εiL,XL) (7.7)

where 0 ≤ i ≤ n + 1, and also;

dn+1 ◦ dn = 0 (7.8)

written symbolically as;

d2 = 0 (7.9)
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Now, we define the cohomology groups H̃n(L,XL), n ≥ 0, of a quantum

event algebra L in L with coefficients in an L-module XL as follows:

H̃n(L,XL) := Hn[Der(G?L,XL)] =
Ker(dn+1)

Im(dn)
(7.10)

Notice that we may construct the L-module XL by considering the abelian

group object in the comma category [L/L], that corresponds to a quantum

observable Ξ = ψB ◦ ξ : Bor(R) → L, where, ξ = Bor(R) → M(B), and

ψB : M(B) → L. The cohomology groups H̃n(L,XL), express obstructions

to the preservation of the information content of a quantum event algebra

with respect to measurement contexts of Boolean coordinatizations. It is

clear that if the counit of the adjunction εL : GL qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq L is an isomorphism,

then the cohomology groups vanish at all orders and conversely.

Finally, it is instructive to connect the cohomological analysis presented

above, with the exactness properties of the right adjoint functor of the ad-

junction. We remind that, if the right adjoint functor of the adjunction is a

full and faithful functor, then the counit is an isomorphism and conversely.

For this purpose we define an L-module ΩL, called suggestively a module of

quantum 1-forms, by means of the following split short exact sequence:

0 → J → R(L)⊗BM → L (7.11)

where J = Ker(εL) denotes the kernel of the counit of the adjunction, in

case that, the right adjoint is not a full and faithful functor. According to

the above, we define the L-module ΩL as follows :

ΩL =
J

J2
(7.12)

In this setting, we notice that the functor of points of a quantum event algebra

restricted to Boolean points, viz., R(L), is a left exact functor, because it

is the right adjoint functor of the established adjunction (MacLane 1971).
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Thus, it preserves the short exact sequence defining the object of quantum

1-forms, in the following form:

0 → R(J) → R(G(L)) → R(L) (7.13)

Hence, we immediately obtain that: R(ΩL) = Z
Z2 , where Z = Ker(R(εL)).

Then, we introduce the notion of a functorial quantum connection, de-

noted by ∇R(L), in terms of the following natural transformation:

∇R(L) : R(L) → R(ΩL) (7.14)

Thus, the quantum connection ∇R(L) induces a sequence of natural transfor-

mations as follows:

R(L) → R(ΩL) → . . . → R(Ωn
L) → . . . (7.15)

Let us denote by;

R∇ : R(L) → R(Ω2
L) (7.16)

the composition ∇1 ◦ ∇0 in the obvious notation, where ∇0 := ∇R(L). The

natural transformation R∇ is called the curvature of the functorial quantum

connection ∇R(L). Furthermore, the latter sequence of natural transforma-

tions, is actually a complex if and only if R∇ = 0. We say that the quantum

connection ∇R(L) is integrable or flat if R∇ = 0, referring to the above com-

plex as the functorial de Rham complex of the integrable connection ∇R(L)

in that case. In this setting, a non-vanishing curvature ∇R(L) is understood

as the geometric effect being caused by cohomological obstructions, that pre-

vent the above sequence of natural transformations from being a complex.

Thus we arrive at the conclusion that a non-vanishing curvature ∇R(L), in

case that, the right adjoint is not a full and faithful functor, prevents in-

tegrability of information transfer from quantum event algebras to Boolean

information sieves of localizations.
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8 Conclusions

We have proposed a sheaf-theoretic representation of quantum event algebras

and quantum observables, by means of Boolean information sieves of local-

ization. According to this schema of interpretation, quantum information

structures are being understood by means of overlapping Boolean reference

frames for the measurement of observables, being pasted together by sheaf-

theoretic means. The proposed schema has been formalized categorically, as

an instance of the adjunction concept. Moreover, the latter has been also used

for the formulation of the physically important notions of integrability and

invariance pertaining to information transfer from quantum events algebras

to Boolean coordinatization systems. These notions have been technically

implemented using the counit of the established adjunction, as well as, its

iterations forcing a free simplicial resolutions of a quantum event algebra, by

cohomological means. Conclusively, it has been demonstrated that:

[i]. The information transfer from quantum events algebras to Boolean

coordinatization systems is integrable if the curvature of the functorial quan-

tum connection ∇R(L) vanishes, viz., R∇ = 0.

[ii]. The information content of a quantum observable structure remains

invariant, with respect to measurement contexts of Boolean coordinatiza-

tions, if and only if, the counit of the adjunction, restricted to covering

systems, qualified as Boolean information sieves of localizations, is an iso-

morphism. The latter property is equivalent to the triviality of the coho-

mology groups H̃n(L,XL), meaning the absence of obstructions to gluing

information globally among Boolean measurement contexts.

The physical significance of the sheaf-theoretic representation boils down

to the proof that, the totality of the content of information included in a

quantum observable structure, is functorially preserved by some covering
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Boolean system, if and only if, that system forms a Boolean information sieve

of localizations, such that, the counit of the adjunction is an isomorphism. In

this perspective, efficient handling of quantum information becomes precisely

the area of application of the core relationship between quantum observables

and interconnected localized Boolean information resources, bypassing in this

manner, the global classical information encoding limits.
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A Categorical Modules and Derivations

The first basic objective of the categorical perspective on abstract differential

calculus is to express the notions of modules and derivations of a commuta-

tive unital ring B in B, where B denotes the category of commutative unital

rings of scalars, intrinsically with respect to the information contained in the

category B. This can be accomplished by using the method of categorical

relativization, which is based on the passage to the comma category B/B.

More concretely, the basic problem has to do with the possibility of repre-

senting the information contained in an B-module, where B is a commutative

unital ring in B, with a suitable object of the relativization of B with respect

to B, viz., with an object of the comma category B/B. For this purpose,

we define the split extension of the commutative ring B by an B-module M ,

denoted by B⊕
M , as follows: The underlying set of B⊕

M is the cartesian

product B ×M , where the group and ring theoretic operations are defined

respectively as;

(a,m) + (b, n) := (a + b,m + n)

(a,m) • (b, n) := (ab, a · n + b ·m)

Notice that the identity element of B⊕
M is (1B, 0M), and also that, the

split extension B⊕
M contains an ideal 0B ×M := 〈M〉, that corresponds

naturally to the B-module M . Thus, given a commutative ring B in B, the

information of an B-module M , consists of an object 〈M〉 (ideal in B⊕
M),

together with a split short exact sequence in B;

〈M〉 ↪→ B
⊕

M → B

We infer that the ideal 〈M〉 is identified with the kernel of the epimorphism

B⊕
M → B, viz.,

〈M〉 = Ker(B
⊕

M → B)
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From now on we focus our attention to the comma category B/B, noticing

that idB : B → B is the terminal object in this category. If we consider

the split extension of the commutative ring B, by an B-module M , that is

B⊕
M , then the morphism:

λ : B
⊕

M → B

(a, m) 7→ a

is obviously an object of B/B. Moreover, it easy to show that it is actually an

abelian group object in the comma category B/B. This equivalently means

that for every object ξ in B/B the set of morphisms HomB/B(ξ, λ) is an

abelian group in Sets. Moreover, the arrow γ : κ → λ is a morphism of

abelian groups in B/B if and only if for every ξ in B/B the morphism;

γ̂ξ : HomB/B(ξ, κ) → HomB/B(ξ, λ)

is a morphism of abelian groups in Sets. We denote the category of abelian

group objects in B/B by the suggestive symbol [B/B]Ab. Based on our

previous remarks, it is straightforward to show that the category of abelian

group objects in B/B is equivalent with the category of B-modules, viz.:

[B/B]Ab
∼= M(B)

Thus, we have managed to characterize intrinsically B-modules as abelian

group objects in the relativization of the category of commutative unital

rings B with respect to B, and moreover, we have concretely identified them

as kernels of split extensions of B.

The characterization of B-modules as abelian group objects in the comma

category B/B is particularly useful if we consider an B-module M as a

codomain for derivations of objects of B/B. For this purpose, let us initially
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notice that if k : A → B is an arbitrary object in B/B, then any B-module

M is also an A-module via the morphism k. We define a derivations functor

from the comma category B/B to the category of abelian groups Ab:

Der(−,M) : B/B → Ab

Then, if we evaluate the derivations functor at the commutative arithmetic

A we obtain:

Der(A,M) ∼= HomB/B(A,B
⊕

M)

This means that, given an object k : A → B in B/B, then a derivation

d : A → M is the same as the following morphism in B/B:

B

¡
¡

¡
¡

¡
¡

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

k

@
@

@
@

@
@
qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqq

λ

A d̃ qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq B⊕
M

Now we notice that the morphism: λ : B⊕
M → B is actually an object in

[B/B]Ab. Hence, we consider it as an object of [B/B] via the action of an

inclusion functor:

ΥB : [B/B]Ab ↪→ [B/B]

[λ : B
⊕

M → B] 7→ [ΥB(λ) : ΥB(M) → B]

Thus we obtain the isomorphism:

Der(A, M) ∼= HomB/B(A, ΥB(M))

The inclusion functor ΥB has a left adjoint functor;

ΩB : [B/B] → [B/B]Ab
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Consequently, if we further take into account the equivalence of categories

[B/B]Ab
∼= M(B)

the above isomorphism takes the following final form:

Der(A,M) ∼= HomM(B)(ΩB(A),M)

We conclude that the derivations functor Der(−,M) : B/B → Ab is being

represented by the abelianization functor ΩB : [B/B] → [B/B]Ab. Further-

more, the evaluation of the abelianization functor ΩB at an object k : A → B
of B/B, viz. ΩB(A), is interpreted as the B-module of differentials on A.

Finally, it is straightforward to see that, evaluating at the terminal object of

B/B we obtain:

Der(B,M) ∼= HomM(B)(ΩB(B),M)

This means that the covariant functor of B-modules valued derivations of

B, denoted by D̂er(B,−), is being representable by the free B-module of

differential 1-forms of B, denoted by ΩB := Ω1B in the category of B-modules,

according to the isomorphism:

D̂er(B,M) ∼= HomM(B)(ΩB,M)

Furthermore, if B is a C-algebra then, the covariant functor of B-modules C-

valued derivations of B, denoted by D̂erC(B,−), is being representable by the

free B-module of differential 1-forms of B over C, denoted by ΩB/C := Ω1B/C

in the category of B-modules, according to the isomorphism:

D̂erC(B,M) ∼= HomM(B)(ΩB/C,M)

Hence, in general if B is a C-algebra the object Ω1B/C is characterized cate-

gorically as the universal object of relative differential 1-forms in M(B) and

the derivation dB/C : B → Ω1B/C as the universal derivation.
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