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Abstract

We develop a categorical scheme of interpretation of quantum

event structures from the viewpoint of Grothendieck topoi. The con-

struction is based on the existence of an adjunctive correspondence

between Boolean presheaves of event algebras and Quantum event al-

gebras, which we construct explicitly. We show that the established

adjunction can be transformed to a categorical equivalence if the base

category of Boolean event algebras, defining variation, is endowed with
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a suitable Grothendieck topology of covering systems. The scheme

leads to a sheaf theoretical representation of Quantum structure in

terms of variation taking place over epimorphic families of Boolean

reference frames.

Key words: Quantum event structures, Boolean reference frames, Topos,

Adjunction, Sheaves, Grothendieck Topology .

1 INTRODUCTION

The foundational issues implied by the structure of events displayed by the

behavior of quantum mechanical systems [1-3] deserve special attention since

they constitute a conceptual shift in the globally Boolean descriptive rules

characterizing classical systems. Most importantly, they are amenable to

an analysis which is based on a simple, but rich in consequences, method-

ological principle. According to this, we are guided in studying a globally

non-Boolean object, like a quantum algebra of events (or quantum logic),

in terms of structured families of simpler, adequately comprehended local

objects (in our case Boolean event algebras), which have to satisfy certain

compatibility relations, and also, a closure constraint. Hence Boolean de-
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scriptive contexts are not abandoned once and for all, but instead are used

locally, accomplishing the task of providing partial congruent relations with

globally non-Boolean objects, the internal structure and functioning of which,

is being hopefully recovered by the interconnecting machinery governing the

local objects. This point of view inevitably leads to a relativistic conception

of quantum theory as a whole, and stresses the contextual character of the

theory. In order to reveal these aspects of quantum theory, which pertain

the nature of quantum events, a suitable mathematical language has to be

used. The criterion for choosing an appropriate language is rather emphasis

in the form of the structures and the universality of the constructions in-

volved. The ideal candidate for this purpose is provided by category theory

[4-10]. Subsequently, we will see that sheaf theory [11-13] is the appropriate

mathematical vehicle to carry out the program implied by the aforementioned

methodological principle of enquiry.

In a previous work [14,15], we have constructed a representation of quan-

tum event algebras in terms of compatible families of Boolean localization

systems. This representation has been motivated by the physical significance

of Kochen-Specker theorem, understood as expressing the impossibility of

probing the entire manifestation of a quantum system, in terms of observ-

able attributes, with the use of a single universal Boolean device. In this

paper, we will focus on an equivalent sheaf-theoretical conception of quan-
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tum event algebras (and subsequently quantum logics), based on the notion

of a topology on a category, and the construction of sheaves for this topol-

ogy. This conception sheds more light on the connection between a quantum

algebra of events and its underlying building blocks of Boolean algebras, and

clarifies the intrinsic contextuality of quantum events.

The concept of sheaf expresses essentially gluing conditions, namely the

way by which local data can be collated in global ones. It is the appropri-

ate mathematical tool for the formalization of the relations between covering

systems and properties, and, furthermore, provides the means for studying

the global consequences of locally defined properties. The notion of local is

characterized using a topology (in the general case a Grothendieck topology

on a category), the axioms of which express closure conditions on the col-

lection of covers. Essentially a map which assigns a set to each object of

a topology is called a sheaf if the map is defined locally, or else the value

of the map on an object can be uniquely obtained from its values on any

cover of that object. Categorically speaking, besides mapping each object to

a set, a sheaf maps each arrow in the topology to a restriction function in

the opposite direction. We stress the point that the transition from locally

defined properties to global consequences happens via a compatible family of

elements over a cover of the complex object. A cover of the global, complex

object can be viewed as providing a decomposition of that object into simpler
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objects. The sheaf assigns a set to each element of the cover, or else each

piece of the original object. A choice of elements from these sets, one for each

piece, forms a compatible family if the choice respects the mappings by the

restriction functions and if the elements chosen agree whenever two pieces

of the cover overlap. If such a locally compatible choice induces a unique

choice for the object being covered, a global choice, then the condition for

being a sheaf is satisfied. We note that in general, there will be more locally

defined or partial choices than globally defined ones, since not all partial

choices need be extendible to global ones, but a compatible family of partial

choices uniquely extends to a global one.

In the following sections we shall see that a quantum event algebra can be

understood as a sheaf for a suitable Grothendieck topology on the category

of Boolean subalgebras of it. We mention that, contextual topos theoretical

approaches to quantum structures have been also considered, from a different

viewpoint in [16,17], and discussed in [18-20].
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2 THE ADJOINT FUNCTORIAL BOOLEAN-

QUANTUM RELATION

2.1 CATEGORIES OF BOOLEAN AND QUANTUM

STRUCTURES

Category theory provides a general apparatus for dealing with mathematical

structures and their mutual relations and transformations. The basic cate-

gorical principles that we adopt in the subsequent analysis are summarized

as follows:

[i] To each species of mathematical structure, there corresponds a cat-

egory whose objects have that structure, and whose morphisms preserve

it.

[ii] To any natural construction on structures of one species, yielding

structures of another species, there corresponds a functor from the category

of first species to the category of the second.

Categories: A category C is a class of objects and morphisms of objects

such that the following properties are satisfied:

[1]. For any objects X, Y all morphisms f : X → Y form a set denoted

HomC(X, Y );
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[2]. For any object X an element idX ∈ HomC(X,X) is distinguished; it

is called the identity morphism;

[3]. For arbitrary objects X, Y , Z the set mapping is defined

HomC(X, Y )×HomC(Y, Z) → HomC(X, Z)

For morphisms g ∈ HomC(X, Y ), h ∈ HomC(Y, Z) the image of the pair

(g, h) is called the composition; it is denoted h◦g. The composition operation

is associative.

[4]. For any f ∈ HomC(X, Y ) we have idY ◦ f = f ◦ idX = f .

For an arbitrary category C the opposite category Cop is defined in the

following way: the objects are the same, but HomCop(X, Y ) = HomC(Y, X),

namely all arrows are inverted.

Functors: Let C, D be categories; a covariant functor F : C → D is a class

mapping that transforms objects to objects and morphisms to morphisms

preserving compositions and identity morphisms:

F(idX) = idF(X);F(g ◦ f) = F(g) ◦ F(f)

A contravariant functor F : C → D is, by definition, a covariant functor

F : C → Dop.

A Classical event structure is a small category, denoted by B, and
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called the category of Boolean event algebras. Its objects are Boolean alge-

bras of events, and its arrows are Boolean algebraic homomorphisms.

A Quantum event structure is a small category, denoted by L, and

called the category of Quantum event algebras.

Its objects are Quantum algebras of events, that is, partially ordered

sets of Quantum events, endowed with a maximal element 1, and with an

operation of orthocomplementation [−]∗ : L qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq L, which satisfy, for all l ∈ L

the following conditions: [a] l ≤ 1, [b] l∗∗ = l, [c] l∨l∗ = 1, [d] l ≤ ĺ ⇒ ĺ∗ ≤ l∗,

[e] l⊥ĺ ⇒ l∨ ĺ ∈ L, [f] l∨ ĺ = 1, l∧ ĺ = 0 ⇒ l = ĺ∗, where 0 := 1∗, l⊥ĺ := l ≤ ĺ∗,

and the operations of meet ∧ and join ∨ are defined as usually.

Its arrows are Quantum algebraic homomorphisms, that is maps L H qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq K,

which satisfy, for all k ∈ K the following conditions: [a] H(1) = 1, [b]

H(k∗) = [H(k)]∗, [c] k ≤ ḱ ⇒ H(k) ≤ H(ḱ), [d] k⊥ḱ ⇒ H(k ∨ ḱ) ≤

H(k) ∨H(ḱ).

It is instructive to emphasize that the definition of a Quantum algebra of

events is general enough to accommodate well known special cases, like the

lattice of closed subspaces of a complex Hilbert space used in the majority of

discussions on the subject of Quantum logic. Moreover, the above definition

is not restrictive, since we could legitimately use as a definition of a Quantum

event algebra the well-known case of an orthomodular orthoposet, without

any change in the arguments of the paper. A detailed discussion of these
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issues is contained in the Appendix (A.1).

We note parenthetically, that both the categories B and L are algebraic

categories, and have arbitrary colimits [5].

2.2 BOOLEAN COEFFICIENT FUNCTORS AND FI-

BRATIONS

We define a modeling or coordinatization functor, A : B qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq L, which assigns

to Boolean event algebras in B, that instantiates a model category, the under-

lying quantum event algebras from L, and to Boolean homomorphisms the

underlying quantum algebraic homomorphisms. Hence A acts as a forgetful

functor, forgetting the extra Boolean structure of B.

If Bop is the opposite category of B, then SetsB
op

denotes the functor

category of presheaves on Boolean event algebras, with objects all functors

P : Bop qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq Sets, and morphisms all natural transformations between such

functors. Each object P in this category is a contravariant set-valued functor

on B, called a presheaf on B. The functor category of presheaves on Boolean

event algebras SetsB
op

, provides an instantiation of a structure known as

topos. A topos exemplifies a well defined notion of variable set. It can be

conceived as a local mathematical framework corresponding to a generalized

model of set theory or as a generalized space.
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For each Boolean algebra B of B, P(B) is a set, and for each arrow

f : C qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq B, P(f) : P(B) qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq P(C) is a set function. If P is a presheaf on B

and p ∈ P(B), the value P(f)(p) for an arrow f : C qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq B in B is called the

restriction of x along f and is denoted by P(f)(p) = p ◦ f .

Each object B of B gives rise to a contravariant Hom-functor y[B] :=

HomB(−, B). This functor defines a presheaf on B. Its action on an object

C of B is given by

y[B](C) := HomB(C, B)

whereas its action on a morphism D x qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq C, for v : C qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq B is given by

y[B](x) : HomB(C, B) qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq HomB(D,B)

y[B](x)(v) = v ◦ x

Furthermore y can be made into a functor from B to the contravariant func-

tors on B

y : B qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq SetsB
op

such that B 7→HomB(−, B). This is called the Yoneda embedding and it is

a full and faithful functor.

Next we construct the category of elements of P, denoted by G(P,B).

Its objects are all pairs (B, p), and its morphisms (B́, ṕ)→(B, p) are those

morphisms u : B́→B of B for which pu = ṕ. Projection on the second coor-

dinate of G(P,B), defines a functor G(P) : G(P,B)→B. G(P,B) together
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with the projection functor G(P) is called the split discrete fibration induced

by P, and B is the base category of the fibration as in the Diagram below.

We note that the fibers are categories in which the only arrows are identity

arrows. If B is an object of B, the inverse image under G(P) of B is sim-

ply the set P(B), although its elements are written as pairs so as to form a

disjoint union. The construction of the fibration induced by P, is called the

Grothendieck construction [13].

G(P,B)

G(P)

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

B P qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq Sets

2.3 ADJUNCTIVE CORRESPONDENCE OF BOOLEAN

PRESHEAVES WITH QUANTUM ALGEBRAS

The adjunctive correspondence, which will be proved in what follows, pro-

vides the conceptual ground, concerning the representation of quantum event

algebras in terms of sheaves of structured families of Boolean event algebras,

and is based on the categorical construction of colimits over the category of

elements of a presheaf of Boolean algebras P.

If we consider the category of quantum event algebras L and the coef-

ficient functor A, we can define the functor R from L to the category of
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presheaves of Boolean event algebras given by:

R(L) : B 7→HomL(A(B), L)

A natural transformation τ between the presheaves on the category of

Boolean algebras P and R(L), τ : P qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq R(L) is a family τB indexed by

Boolean algebras B of B for which each τB is a map of sets,

τB : P(B)→HomL(A(B), L)

such that the diagram of sets below commutes for each Boolean homomor-

phism u : B́ → B of B.

P(B) τB qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq HomL(A(B), L)

P(u)

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

A(u)∗

P(B́)
τB qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq HomL(A(B́), L)

From the perspective of the category of elements of the Boolean algebras-

variable set P the map τB, defined above, is identical with the map:

τB : (B, p)→HomL(A ◦GP(B, p), L)

Subsequently such a τ may be represented as a family of arrows of L which

is being indexed by objects (B, p) of the category of elements of the presheaf
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of Boolean algebras P, namely

{τB(p) : A(B) → L}(B,p)

Thus, according to the point of view provided by the category of elements of

P, the condition of the commutativity of the diagram on the top, is equivalent

to the condition that for each arrow u the following diagram commutes.

A(B) A ◦GP(B, p)

@
@

@
@

@
@qqqqqqqqqqq

qqqqqqq
qqqqqqqqqqqqqqqqqq

τB(p)

A(u)

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqq

u∗ L

¡
¡

¡
¡

¡
¡

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

τ́B(ṕ)

A(B́) A ◦GP(B́, ṕ)

Consequently, according to the diagram above, the arrows τB(p) form a

cocone from the functor A ◦GP to the quantum event algebra L. The cat-

egorical definition of colimit, points to the conclusion that each such cocone

emerges by the composition of the colimiting cocone with a unique arrow

from the colimit LP to the quantum event algebra object L. Equivalently,

we conclude that there is a bijection, natural in P and L as follows:

Nat(P,R(L)) ∼= HomL(LP, L)
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The established bijective correspondence, interpreted functorially, says

that the functor R from L to presheaves given by

R(L) : B 7→HomL(A(B), L)

has a left adjoint L : SetsB
op → L, which is defined for each presheaf of

Boolean algebras P in SetsB
op

as the colimit

L(P) = Colim{G(P,B) GP qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq B A qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq L}

An explicit construction of colimits of the above form is presented in detail

in the Appendix (A.2).

Consequently there is a pair of adjoint functors L a R as follows:

L : SetsB
op

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq

L : R

Thus we have constructed an adjunction which consists of the functors L

and R, called left and right adjoints with respect to each other respectively,

as well as the natural bijection

Nat(P,R(L)) r qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq HomL(LP, L)

Nat(P,R(L)) lqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq HomL(LP, L)

Nat(P,R(L)) ∼= HomL(LP, L)
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Furthermore it has been shown [14] that the categorical construction of

this colimit as a coequalizer of a coproduct reveals the fact that this left

adjoint is like the tensor product −⊗BA.

∐
v:B́→BA(B́)

ζ
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqqη

∐
(B,p)A(B) χ

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq P⊗BA

In the diagram above the second coproduct is over all the objects (B, p)

with p ∈ P(B) of the category of elements, while the first coproduct is over

all the maps v : (B́, ṕ) qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq (B, p) of that category, so that v : B́ qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq B and

the condition pv = ṕ is satisfied. We conclude that the colimit LA(P ) can be

equivalently presented as the coequalizer of the diagram above.

The physical meaning of the adjunction between presheaves of Boolean

event algebras and Quantum event algebras is crystallized if we consider that

the adjointly related functors are associated with the process of encoding

information relevant to the structural form of their domain and codomain

categories. Let us consider that SetsB
op

is the universe of Boolean event

structures modelled in Sets by observers, and L that of Quantum event

structures. In the proposed interpretation the functor L : SetsB
op

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq L can

be comprehended as a translational code from Boolean windows to the Quan-

tum species of event structure, whereas the functor R : L qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq SetsB
op

as a

translational code in the inverse direction. In general, the content of the

information is not possible to remain completely invariant translating from
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one language to another and back. However, there remain two ways for a

Boolean-event algebra variable set P, or else Boolean window to communi-

cate a message to a quantum event algebra L. Either the information is given

in Quantum terms with P translating, which we can be represented as the

quantum homomorphism LP qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq L, or the information is given in Boolean

terms with L translating, that, in turn, can be represented as the natural

transformation P qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq R(L). In the first case, from the perspective of L in-

formation is being received in quantum terms, while in the second, from the

perspective of P information is being sent in Boolean terms. The natural

bijection then corresponds to the assertion that these two distinct ways of

communicating are equivalent. Thus, the fact that these two functors are

adjoint, expresses a relation of variation regulated by two poles, with respect

to the meaning of the information related to observation. In this sense, the

adjunction provides the tool for relating relations, by specifying the condi-

tions for a consistent notion of mutually dependent variation, in association

to the interpretation of the information content shared by the Boolean and

Quantum species of structure. We argue that the totality of the content of

information included in the quantum species of event structure remains in-

variant under Boolean encodings, corresponding to local Boolean modeling

algebras, if and only if the adjunctive correspondence can be appropriately

restricted to an equivalence of the functorially correlated categories. In the
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following sections we will show that this task can be accomplished by defining

a suitable Grothendieck topology on the category of Boolean event algebras,

that, essentially permits the comprehension of a quantum event structure as

a sheaf for the specified covering system of the base Boolean category intro-

ducing variation, or equivalently as a Grothendieck topos. Subsequently the

categorical equivalence will signify an invariance in the translational code of

communication between Boolean windows and Quantum systems.

3 MOTIVATING TOPOLOGIES ON CAT-

EGORIES

Our purpose is to show that the functor R from L to presheaves given by

R(L) : B 7→HomL(A(B), L)

sends quantum event algebras L in L not just into presheaves, but into

sheaves for a suitable Grothendieck topology J on the category of Boolean

event algebras B, so that the fundamental adjunction will restrict to an

equivalence of categories Sh(B,J) ∼= L.

We note at this point that the usual notion of sheaf, in terms of coverings,

restrictions, and collation, can be defined and used not just in the spatial

sense, namely on the usual topological spaces, but in a generalized spatial
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sense, on more general topologies (Grothendieck topologies). In the usual

definition of a sheaf on a topological space we use the open neighborhoods U

of a point in a space X; such neighborhoods are actually monic topological

maps U → X. The neighborhoods U in topological spaces can be replaced

by maps V → X not necessarily monic, and this can be done in any category

with pullbacks. In effect a covering by open sets can be replaced by a new

notion of covering provided by a family of maps satisfying certain conditions.

For an object B of B, we consider indexed families

S = {ψi : Bi → B, i ∈ I}

of maps to B, and we assume that for each object B of B we have a set Λ(B)

of certain such families satisfying conditions to be specified later. These

families play the role of coverings of B under those conditions. For the

coverings provided, it is possible to construct the analogue of the topological

definition of a sheaf, where as presheaves on B we consider the functors

P : Bop → Sets. According to the topological definition of a sheaf on a

space we demand that for each open cover {Ui, i ∈ I} of some U , every

family of elements {pi ∈ P(Ui)} that satisfy the compatibility condition

on the intersections Ui ∩ Uj,∀i, j, are pasted together as a unique element

p ∈ P(U). Imitating the above procedure for any covering S of an object B,

and replacing the intersection Ui∩Uj by the pullback Bi×BBj in the general
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case, according to the diagram

Bi×BBj
gij

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq Bj

hij

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

ψj

Bi
ψi qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq B

we effectively obtain for a given presheaf P : Bop → Sets a diagram of sets

as follows

P(Bi×BBj)
P(gij)

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq P(Bj)

P(hij)

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

P(ψj)

P(Bi)
P(ψi) qqqqqqqqqqqqqqqqq

q
qqqqqqqqqqqqqqqqqq P(B)

In this case the compatibility condition for a sheaf takes the form: if {pi ∈

Pi, i ∈ I} is a family of compatible elements, namely satisfy pihij = pjgij,∀i, j,

then a unique element p ∈ P(B) is being determined by the family such that

p · ψi = pi,∀i ∈ I, where the notational convention p · ψi = P(ψi)(p) has

been used . Equivalently this condition can be expressed in the categorical

terminology by the requirement that in the diagram

∏
i,j P(Bi×BBj) qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq ∏
iP(Bi)

eqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq P(B)

the arrow e, where e(p) = (p · ψi, i ∈ I) is an equalizer of the maps (pi, i ∈

I) → (pihij; i, j ∈ I×I) and (pi, i ∈ I) → (pigij; i, j ∈ I×I) correspondingly.
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The specific conditions that the elements of the set Λ(B), or else the

coverings of B, have to satisfy naturally lead to the notion of a Grothendieck

topology on the category B.

4 GROTHENDIECK TOPOLOGIES

We start our discussion by explicating the notion of a pretopology on the

category of Boolean event algebras B. A pretopology on B is a system Λ

where for each onject B there is a set Λ(B). Each Λ(B) contains indexed

families of B-morphisms

S = {ψi : Bi → B, i ∈ I}

of maps to B such that the following conditions are satisfied:

(1) For each B in B, {idB} ∈ Λ(B) ;

(2) If C → B in B and S = {ψi : Bi → B, i ∈ I} ∈ Λ(B) then {ψ1 :

C×BBi → B, i ∈ I} ∈ Λ(C). Note that ψ1 is the pullback in B of ψi along

C → B;

(3) If S = {ψi : Bi → B, i ∈ I} ∈ Λ(B), and for each i ∈ I, {ψik
i : Cik →

Bi, k ∈ Ki} ∈ Λ(Bi), then {ψik
i ◦ψi : Cik → Bi → B, i ∈ I; k ∈ Ki} ∈ Λ(B).

Note that Cik is an example of a double indexed object rather than the

intersection of Ci and Ck.
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The notion of a pretopology on the category of Boolean algebras B is a

categorical generalization of a system of set-theoretical covers on a topology

T, where a cover for U ∈ T is a set {Ui : Ui ∈ T, i ∈ I} such that ∪Ui =

U . The generalization is achieved by noting that the topology ordered by

inclusion is a poset category and that any cover corresponds to a collection

of inclusion arrows Ui → U . Given this fact, any family of arrows contained

in Λ(B) of a pretopology is a cover as well.

The passage from a pretopology to a categorial or Grothendieck topology

on the category of Boolean algebras takes place through the introduction

of appropriate covering devices, called covering sieves. For an object B in

B, a B-sieve is a family R of B-morphisms with codomain B, such that if

C → B belongs to R and D → C is any B-morphism , then the composite

D → C → B belongs to R.

A Grothendieck topology on the category of Boolean algebras B, is a

system J of sets, J(B) for each B in B, where each J(B) consists of a set of

B-sieves, (called the covering sieves), that satisfy the following conditions:

1. For any B in B the maximal sieve {g : cod(g) = B} belongs to J(B)

(maximality condition).

2. If R belongs to J(B) and f : C → B is a B-morphism, then f ∗(R) =

{h : C → B, f · h ∈ R} belongs to J(C) (stability condition).

3. If R belongs to J(B) and S is a sieve on C, where for each f : C → B
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belonging to R, we have f ∗(S) in J(C), then S belongs to J(B) (transitivity

condition).

The small category B together with a Grothendieck topology J, is called

a site. A sheaf on a site (B,J) is defined to be any contravariant functor

P : Bop → Sets, satisfying the equalizer condition expressed in terms of

covering sieves S for B, as in the following diagram in Sets:

∏
f ·g∈S P(domg) qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqq

q ∏
f∈SP(domf) eqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqq
qq P(B)

If the above diagram is an equalizer for a particular covering sieve S, we

obtain that P satisfies the sheaf condition with respect to the covering sieve

S.

A Grothendieck topos over the small category B is a category which is

equivalent to the category of sheaves Sh(B,J) on a site (B,J). We note that

a category of sheaves Sh(B,J) on a site (B,J) is a full sucategory of the

functor category of presheaves SetsB
op

.

5 CONSTRUCTION OF A GROTHENDIECK

TOPOLOGY ON B

We remind that our purpose is to show that the functor R from L to

presheaves, R(L) : B 7→HomL(A(B), L), transforms quantum event algebras
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L in L not just into presheaves, but into sheaves for a suitable Grothendieck

topology J on the category of Boolean event algebras B. Under these cir-

cumstances, the fundamental adjunction will restrict to an equivalence of

categories Sh(B,J) ∼= L.

5.1 B AS A GENERATING SUBCATEGORY OF L

We consider B as a full subcategory of L, whose set of objects {Bi/i ∈ I},

I: index set, generate L, in the sense that,

Bi
w qqqqqqqqqqqqqqqqq

q
qqqqqqqqqqqqqqqqqq L v

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqqu K

the identity w · v = w · u, for every arrow w : Bi → L, and every Bi, implies

that v = u. Equivalently we can say that the set of all arrows w : Bi → L,

constitute an epimorphic family. We may verify this claim if we take into

account the adjunction and observe that objects of L are being constructed

as colimits over the category of elements of presheaves over B. Since objects

of L are constructed as colimits of this form, whenever two parallel arrows

L v
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqqu K

are different, there is an arrow w : Bi → L from some Bi in B, such that

vw 6= uw.
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Since we assume that B is a full subcategory of L we omit the explicit

presence of the coordinatization functor A in the subsequent discussion.

The consideration that B is a generating subcategory of L points exactly

to the depiction of the appropriate Grothendieck topology on B, that accom-

plishes our purpose of comprehending quantum event algebras as sheaves on

B.

We assert that a sieve S on a Boolean algebra B in B is to be a covering

sieve of B, when the arrows s : C → B belonging to the sieve S together form

an epimorphic family in L. This requirement may be equivalently expressed

in terms of a map

GS :
∐

(s:C→B)∈S
C → B

being an epi in L.

5.2 THE GROTHENDIECK TOPOLOGY OF EPI-

MORPHIC FAMILIES

We will show that the choice of covering sieves on Boolean algebras B in B, as

being epimorphic families in L, does indeed define a Grothendieck topology

on B.

First of all we notice that the maximal sieve on each Boolean algebra

B, includes the identity B → B, thus it is a covering sieve. Next, the
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transitivity property of the depicted covering sieves is obvious. It remains to

demonstrate that the covering sieves remain stable under pullback. For this

purpose we consider the pullback of such a covering sieve S on B along any

arrow h : B′ → B in B

∐
s∈SC×BB́ qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq B́

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

h

∐
s∈SC G qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq B

The Boolean algebras B in B generate the category of quantum event algebras

L, hence, there exists for each arrow s : D → B in S, an epimorphic family

of arrows
∐

[B]s → D ×B B́, or equivalently {[B]sj → D ×B B́}j, with each

domain [B]s a Boolean algebra.

Consequently the collection of all the composites:

[B]sj → D ×B B́ → B́

for all s : D → B in S, and all indices j together form an epimorphic family

in L, that is contained in the sieve h∗(S), being the pullback of S along

h : B → B́. Therefore the sieve h∗(S) is a covering sieve.

It is important to construct the representation of covering sieves within

the category of Boolean event algebras B. This is possible, if we first observe
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that for an object C of B, and a covering sieve for the defined Grothendieck

topology on B, the map

GS :
∐

(s:C→B)∈S
C → B

being an epi in L, can be equivalently presented as the coequalizer of its

kernel pair, or else the pullback of GS along itself

∐
śD́×C

∐
sD

qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq

∐
sD

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

GS

∐
śD́

GS qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq C

Furthermore, using the fact that pullbacks in L preserve coproducts, the

epimorhic family associated with a covering sieve on C, admits the following

coequalizer presentation

∐
ś,sD́×CD

q1
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqqq2

∐
sD

G qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq C

Moreover, since the the category B is a generating subcategory of L, for

each pair of arrows s : D → C and ś : D́ → C in the covering sieve S on the

Boolean algebra C, there exists an epimorphic family {B → D́×CD}, such

that each domain B is a Boolean algebra object in B.
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Consequently, each element of the epimorphic family associated with a

covering sieve S on a Boolean algebra C is represented by a commutative

diagram in B of the following form

B
l qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq D

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

k

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

s

D́
ś qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq C

At a further step we may compose the representation of epimorphic fam-

ilies by commutative squares in B, obtained previously, with the coequalizer

presentation of the same epimorphic families. The composition results in a

new coequalizer diagram in B of the following form:

∐
BB y1

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqqy2

∐
sD

G qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq C

where the first coproduct is indexed by all B in the commutative diagrams

in B, representing elements of epimorphic families.

5.3 R(L) AS A J-Sheaf

For each quantum event algebra L in L, we consider the contravariant Hom-

functor R(L) = HomL(−, L) in SetsB
op

. If we apply this representable

functor to the latter coequalizer diagram we obtain an equalizer diagram in

Sets as follows:
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∏
B HomL(B, L) qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq ∏
s∈SHomL(D,L) qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqq
qq HomL(C, L)

where the first product is indexed by all B in the commutative diagrams in

B, representing elements of epimorphic families.

The equalizer in Sets, thus obtained, says explicitly that the contravari-

ant Hom-functor R(L) = HomL(−, L) in SetsB
op

, satisfies the sheaf con-

dition for the covering sieve S. Moreover, the equalizer condition holds for

every covering sieve in the Grothendieck topology of epimorphic families. By

rephrasing the above, we conclude that the representable Hom-functor R(L)

is a sheaf for the Grothendieck topology of epimorphic families defined on

the category of Boolean event algebras.

6 EQUIVALENCE OF GROTHENDIECK TOPOS

Sh(B,J) WITH L

We claim, that if the functor R from L to presheaves R(L) : B 7→HomL(A(B), L)

sends quantum event algebras L in L not just into presheaves, but into

sheaves for the Grothendieck topology of epimorphic families, J, on the cate-

gory of Boolean event algebras B, the fundamental adjunction restricts to an

equivalence of categories Sh(B,J) ∼= L. The proof of this claim is presented

in detail below and occupies the remainder of Section 6.
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6.1 COVERING SIEVES ON QUANTUM EVENT

ALGEBRAS

If we consider a quantum event algebra L, and all quantum algebraic ho-

momorphisms of the form ψ : E → L, with domains E, in the generating

subcategory of Boolean algebras B, then the family of all these maps ψ,

constitute an epimorphism:

T :
∐

(E∈B,ψ:E→L)
E → L

We notice that the quantum algebraic epimorphism t is actually the same

as the map

T :
∐

(E∈B,ψ:A(E)→L)
A(E) → L

since the coordinatization functor A, is, by the fact that B is a full subcate-

gory of L, just the inclusion functor A : B ↪→ L.

Subsequently, we may use the same arguments as in the discussion of

the Grothendieck topology of epimorphic families of the previous section, in

order to assert that the epimorphism T can be presented in the form of a

coequalizer diagram in L as follows:

∐
νB

y1
qqqqqqqqqqqqqqqqq

q
qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqqy2

∐
(E∈B,ψ:E→L)E

T qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq L

where the first coproduct is indexed by all ν, representing commutative dia-

grams in L, of the form [DI]:
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B
l qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq E

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

k

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

ψ

É
ψ́

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq L

where B, E, É are objects in the generating subcategory B of L.

We say that a sieve on a quantum event algebra defines a covering sieve

by objects of its generating subcategory B, when the quantum algebraic

homomorphisms belonging to the sieve define an epimorphism

T :
∐

(E∈B,ψ:A(E)→L)
A(E) → L

In this case the epimorphic families of quantum algebraic homomorphisms

constituting covering sieves of quantum event algebras fit into coequalizer

diagrams of the latter form [DI].

From the physical point of view covering sieves by Boolean algebras, are

equivalent with Boolean localization systems of quantum event algebras [14,

15]. These localization systems filter the information of the quantum species

of structure through Boolean domains, associated with procedures of mea-

surement of observables. The key idea behind the notion of a system of

localizations for a quantum event algebra amounts to coordinatizing the in-

formation contained in a quantum event algebra L in L by means of struc-

ture preserving morphisms B qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq L having as their domains, locally defined
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Boolean event algebras B in B for measurement of observables. Any single

map from a Boolean domain to a quantum event algebra is not enough for

a complete determination of its information content, and hence, it contains

only a limited amount of information about it. This problem is tackled by

employing a sufficient amount of maps, organized in terms of covering sieves,

from the coordinatizing Boolean domains to a quantum event algebra simul-

taneously, so as to cover it completely. These maps play exactly the role of

covers for the filtration of the information associated with a quantum event

structure, in terms of Boolean coefficients, associated with measurement sit-

uations. The introduction of covering sieves, is furthermore, motivated by

the consequences of Kochen-Specker theorem, according to which, it is not

possible to characterize completely a quantum system in terms of observable

attributes by employing a single Boolean experimental device globally. On

the other side, in every concrete experimental context, the set of events that

have been actualized in this context forms a Boolean algebra. Consequently,

any Boolean domain cover in a covering sieve for quantum event algebra,

corresponds to a set of Boolean events that become actualized in the experi-

mental context of B. Moreover, the organization of covering sieves in terms of

the requirements characterizing a categorical topology, physically correspond

to conditions for the compatibility of the information content gathered in dif-

ferent Boolean filtering mechanisms associated with measurement of observ-
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ables. In this manner, covering sieves of quantum event algebras incorporate

all the necessary conditions for the analysis of the information content of a

quantum event structure in terms of a sheaf of Boolean coefficients, for the

Grothendieck topology specified, associated with measurement localization

contexts. The sheaf concept is introduced to express precisely the pasting

conditions that the locally defined Boolean covers have to satisfy on their

overlapping regions, or else, the specification by which local data, providing

Boolean coefficients obtained in measurement situations, can be collated.

6.2 UNIT AND COUNIT OF THE ADJUNCTIVE

CORRESPONDENCE

We focus again our attention in the fundamental adjunction and investigate

the unit and the counit of it. For any presheaf P ∈ SetsBop

, we deduce that

the unit δP : P qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq HomL(A( ),P⊗BA) has components:

δP(B) : P(B) qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq HomL(A(B),P⊗BA)

for each Boolean algebra object B of B.

If we make use of the representable presheaf y[B] we obtain

δy[B] : y[B] → HomL(A( ),y[B]⊗BA)

Hence for each object B of B the unit, in the case considered, corresponds
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to a map

A(B) → y[B]⊗BA

But, since

y[B]⊗BA = LAy[B](B) ∼= A ◦Gy[B](B, 1B) = A(B)

the unit for the representable presheaf of Boolean algebras, which is a sheaf

for the Grothendieck topology of epimorphic families, is clearly an isomor-

phism. By the preceding discussion we can see that the diagram commutes

B

y

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

HHHHHHHHHHHHHHqqqqqqqqqqqqq
qqqqq
qqqqqqqqqqqqqqqqqq

A

SetsB
op [

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq
−]⊗LA L

Thus the unit of the fundamental adjunction referring to the representable

sheaf y[B] of the category of Boolean event algebras provides a map (quan-

tum algebraic homomorphism) A(B) qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq y[B]⊗BA which is an isomorphism.

On the other side, for each quantum event algebra object L of L the

counit is

εL : HomL(A( ), L)⊗BA qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq L

The counit corresponds to the vertical map in the following coequalizer dia-

gram [DII]:
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∐
v:B→EA(B)

ζ
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqqη

∐
(E,ψ)A(E) qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq [R(L)](−)⊗BA

@
@

@
@

@
@qqqqqqqqqqq

qqqqqqq
qqqqqqqqqqqqqqqqqq

pppppppppppppppppqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
q

εL

L

where the first coproduct is indexed by all arrows v : B → E, with B, E

objects of B, whereas the second coproduct is indexed by all objects B in B

and arrows ψ : A(E) → L, belonging to a covering sieve of L by objects of

its generating subcategory.

It is important to notice the similarity in form of diagrams [DI] and

[DII]. Based on this observation it is possible to prove that if the domain

of the counit of the adjunction is restricted to sheaves for the Grothendieck

topology of epimorphic families on B, then the counit defines a quantum

algebraic isomorphism

εL : HomL(A( ), L)⊗BA ' L

In order to substantiate our thesis we inspect diagrams [DI], and [DII],

observing that it is enough to prove that the pairs of arrows (ζ, η) and (y1, y2)

have isomorphic coequalizers, since, then, the counit is obviously an isomor-

phism. Thus, we wish to show that a covering sieve of a quantum event

algebra

T :
∐

(E∈B,ψ:A(E)→L)
A(E) → L

34



is the coequalizer of (y1, y2) iff it is the coequalizer of (ζ, η). In the following

discussion, we may omit the explicit presence of the inclusion functor A, for

the same reasons stated previously.

We consider a covering sieve of quantum event algebra L, consisting of

quantum algebraic homomorhisms T(E,ψ), that together constitute an epimor-

phic family in L. We observe that the condition T · y1 = T · y2 is equivalent

to the condition [CI]

T(E,ψ) · l = T(É,ψ́) · k

for each commutative square ν. Furthermore, the condition T · ζ = T · η is

equivalent to the condition [CII]

T(E,ψ) · u = T(É,ψ·u)

for every Boolean homomorphism u : É → E, with B, E objects of B and

ψ : E → L, belonging to a covering sieve of L by objects of its generating

subcategory. Therefore our thesis is proved if we show that [CI] ⇔ [CII].

On the one hand, T · ζ = T · η, implies for every commutative diagram of

the form ν:

B
l qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq E

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

k

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

ψ

É
ψ́

qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq L
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the following relations:

T(E,ψ) · l = T(B,ψ·l) = T(B,ψ́·k) = T(É,ψ́) · k

Thus [CI] ⇒ [CII]

On the other hand, T · y1 = T · y2, implies that for every Boolean homo-

morphism u : É → E, with B, E objects of B and ψ : E → L, the diagram

of the form ν

É
u qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq E

id

qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqq
q

ψ

É
ψ · u

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq L

commutes and provides the condition

T(E,ψ) · u = T(É,ψ·u)

Thus [CI] ⇐ [CII].

Consequently, the pairs of arrows (ζ, η) and (y1, y2) have isomorphic co-

equalizers, proving that the counit of the fundamental adjunction restricted

to sheaves for the Grothendieck topology of epimorphic families on B is an

isomorphism.

εL : HomL(A( ), L)⊗BA ' L
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7 CONCLUSIONS

The representation of quantum event algebras as sheaves for the Grothendieck

topology of epimorphic families on B, through the counit isomorphism, and

subsequently the comprehension of the category of quantum event algebras

as a Grothendieck topos is of remarkable physical significance. If we re-

mind the discussion of the physical meaning of the adjunction, expressed

in terms of the information content, communicated between Boolean win-

dows and quantum event algebras, we arrive to the following conclusion:

the totality of the content of information included in the quantum species

of event structure remains invariant under Boolean encodings, correspond-

ing to local Boolean modeling algebras for measurement of observables, in

covering sieves of quantum event algebras, if and only if the counit of the

fundamental adjunction is a quantum algebraic isomorphism. Phrased dif-

ferently, in this case, the category of quantum event algebras is equivalent

to a Grothendieck topos for the covering sieves of epimorphic families from

the the base Boolean localization category, or else, the category of sheaves

for the Grothendieck topology of epimorphic families on the modeling gen-

erating subcategory of Boolean algebras. We may, furthermore, argue that

the sheaf theoretical representation of a quantum event algebra reveals that

its deep conceptual significance is related not to its poset axiomatization
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(which has been the starting point of almost all subsequent discussions of

quantum logics), but, on the precise manner that distinct Boolean local

contexts of observation are interconnected, so as its informational content

is preserved in the totality of its operational encodings. By the latter, we

precisely mean contextual operational procedures for probing the quantum

regime of structure, which categorically give rise to covering sieves, substan-

tiated as interconnected epimorphic families of the objects of the category of

elements of the sheafified Hom-functor R(L). From a logical point of view

these objects are comprehended as unsharp Boolean algebras of events, in

agreement with the interpretational framework put forward in [15], and also,

introduced from a non-categorical viewpoint in [21,22]. The sheaf theoretical

representation expresses exactly the compatibility of these unsharp Boolean

algebras of events on their overlaps in such a way as to leave invariant the

amount of information contained in a quantum system. We may adopt the

term Boolean reference frames to refer to these local contexts of encoding

the information related to a quantum system, emphasizing their prominent

role in the organization of meaning associated with a quantum algebra of

events, through the establishment of covering sieves, that, precisely, medi-

ate in the subsequent equivalence of quantum event algebras with Boolean

localization systems. Moreover this rerminology signifies the intrinsic con-

textuality of quantum events, as filtered through the base localizing category,
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and is suggestive of the introduction of a relativity principle in the quantum

level of observable structure related with the invariance of the informational

content with respect to Boolean reference frames contained in covering sieves

of quantum event algebras. This is a crucial observation concerning the in-

terpretation of quantum event algebras as quantum logics. It underlines the

fact that the conceptual significance of a logic of propositions referring to

the description of a quantum system is to be sought, not at the level of non-

contextual propositions forming the original axiomatized poset structure, but

on the level of propositions holding in distinct Boolean reference frames. The

latter are endowed with different unsharp Boolean propositional languages,

not always compatible with each other. The sheaf theoretical representation

contains the necessary and sufficient conditions for the compatibility of these

languages associated with Boolean reference frames in covering sieves, such

that the content of information associated with a quantum system is pre-

served under its operational unfoldments, in Boolean localization systems.

The above remarks constitute a basis for a consistent interpretation of the

category of logics of quantum propositions from the sheaf theoretical per-

spective of the present paper. Most significantly, this task, which will be

presented in detail in a future work, is facilitated by the fact that the cate-

gory of sheaves on the Boolean localizing category, is a Grothendieck topos,

and consequently comes naturally equipped with an object of generalized
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truth values, called subobject classifier. This object of truth values, being

remarkably a sheaf itself, namely an object of the Grothendieck topos, is the

appropriate conceptual tool for the organization of the logical dimension of

the information included in the category of quantum event algebras, as it is

encoded in Boolean localization systems.
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A APPENDIX

A.1 On the definition of a quantum event algebra

The definition used in the paper is the following: A quantum event algebra is

a partially ordered set of Quantum events, endowed with a maximal element

1, and with an operation of orthocomplementation [−]∗ : L qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq L, which

satisfy, for all l ∈ L the following conditions: [a] l ≤ 1, [b] l∗∗ = l, [c] l∨l∗ = 1,

[d] l ≤ ĺ ⇒ ĺ∗ ≤ l∗, [e] l⊥ĺ ⇒ l ∨ ĺ ∈ L, [f] l ∨ ĺ = 1, l ∧ ĺ = 0 ⇒ l = ĺ∗, where

0 := 1∗, l⊥ĺ := l ≤ ĺ∗, and the operations of meet ∧ and join ∨ are defined

as usually.

We can check the following:

[1]. In the Hilbert space formalism of Quantum theory events are consid-

ered as closed subspaces of a seperable, complex Hilbert space corresponding

to a physical system. Then the quantum event structure is identified with

the lattice of closed subspaces of the Hilbert space, ordered by inclusion and

carrying an orthocomplementation operation which is given by the orthog-

onal complement of the closed subspaces. For a seperable complex Hilbert

space of dimension at least three, the lattice is also a quantum event algebra

(the Hilbert space quantum event algebra).

[2]. Obviously every Boolean event algebra is also a quantum event alge-

bra.
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[3]. The Lindenbaum algebra corresponding to propositions describing

the behavior of a quantum system is also a quantum event algebra.

If the reader does not feel comfortable with the definition of a quantum

event algebra as above, it is possible to modify the definition slightly, without

any change in the arguments of the paper, as follows:

A quantum event algebra is an orthomodular orthoposet. More con-

cretely, each object L in the category L, is considered as a partially ordered

set of Quantum events, endowed with a maximal element 1, and with an op-

eration of orthocomplementation [−]∗ : L qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq L, which satisfy, for all l ∈ L,

the following conditions: [a] l ≤ 1, [b] l∗∗ = l, [c] l∨l∗ = 1, [d] l ≤ ĺ ⇒ ĺ∗ ≤ l∗,

[e] l⊥ĺ ⇒ l ∨ ĺ ∈ L, [f] for l, ĺ ∈ L, l ≤ ĺ implies that l and ĺ are compatible,

where 0 := 1∗, l⊥ĺ := l ≤ ĺ∗, and the operations of meet ∧ and join ∨ are

defined as usually. We also recall that l, ĺ ∈ L are compatible if the sublat-

tice generated by {l, l∗, ĺ, ĺ∗} is a Boolean algebra, namely if it is a Boolean

sublattice.

Furthermore it is obvious that if someone wishes may also impose a σ-

completeness condition, namely that the join of countable families of pairwise

orthogonal events must exist, in order to have a well defined theory of ob-

servables over L.
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A.2 On the explicit construction of colimits

It is important to notice that the key colimit is defined over the category of

elements of the functor

R(L) : B 7→HomL(A(B), L)

by the relation

L(P) = Colim{G(P,B) GP qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq B A qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq L}

for the presheaf P = R(L).

In order to cope with relevant ambiguities in the exposition of the argu-

ments it is worthwhile to construct the colimit expicitly, and show that it is

actually a quantum event algebra. For this purpose we consider the set:

L(R(L)) = {(ψB, q)/(ψB : A(B) qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq L) ∈ [G(R(L),B)]0, q ∈ A(B)}

We notice that if there exists u : ψB́ → ψB such that: u(q́) = q and ψB ◦ u =

ψB́, where [R(L)u](ψB) := ψB ◦ u as usual, then we may define a transitive

and reflexive relation < on the set L(R(L)). Of course the inverse also holds

true. We notice then that

(ψB ◦ u, q)<(ψB, u(q́))

for any u : A(B́) → A(B) in the category B. The next step is to make this

relation also symmetric by postulating that for ζ, η in L(R(L)), where ζ, η
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denote pairs in the above set, we have:

ζ ∼ η

if and only if ζ<η or η<ζ. Finally by considering a sequence ξ1, ξ2, . . . ,ξk of

elements of the set L(R(L)) and also ζ, η such that:

ζ ∼ ξ1 ∼ ξ2 ∼ . . . ∼ ξk−1 ∼ ξk ∼ η

we may define an equivalence relation on the set L(R(L)) as follows:

ζ ./ η := ζ ∼ ξ1 ∼ ξ2 ∼ . . . ∼ ξk−1 ∼ ξk ∼ η

Then for each ζ ∈ L(R(L)) we define the quantum at ζ as follows:

Qζ = {ι ∈ L(R(L)) : ζ ./ ι}

We finally put

L(R(L))/ ./:= {Qζ : ζ = (ψB, q) ∈ L(R(L))}

and use the notation Qζ = ‖(ψB, q)‖. The set L(R(L))/ ./ is naturally

endowed with a quantum algebra structure if we are careful to notice that:

[1]. The orthocomplementation is defined as: Q∗
ζ=‖(ψB, q)‖∗= ‖(ψB, q∗)‖.

[2]. The unit element is defined as: 1 = ‖(ψB, 1)‖.

[3]. The partial order structure on the set L(R(L))/ ./ is defined as:

‖(ψB, q)‖ ¹ ‖(ψC , r)‖ if and only if d1 ¹ d2 where we have made the

following identifications: ‖(ψB, q)‖ = ‖(ψD, d1)‖ and ‖(ψC , r)‖ = ‖(ψD, d2)‖,

with d1, d2 ∈ A(D) according to the pullback diagram of event algebras:
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A(D)
β

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq A(B)

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

γ

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

A(C) qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq L

such that β(d1) = q, γ(d2) = r. The rest of the requirements such that

L(R(L))/ ./, namely the colimit in question, actually carries the structure

of a quantum event algebra are obvious.
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