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Abstract

The physical “continuum” is being modeled as a complex of events

interconnected by the relation of extension and forming an abstract

partially ordered structure. Operational physical procedures for dis-

cerning observable events assume their existence and validity locally,

by coordinatizing the informational content of those observable events

in terms of real-valued local observables. The localization process is

effectuated in terms of topological covering systems on the events “con-

tinuum”, that do not presuppose an underlying structure of points on

the real line, and moreover, respect only the fundamental relation of

extension between events. In this sense, the physical “continuum” is

represented by means of a fibered topos-theoretic structure, modeled as

a sheaf of algebras of continuous real-valued functions. Finally, the dy-

namics of information propagation, formulated in terms of continuous

real-valued observables, is described in the context of an appropriate

sheaf-cohomological framework corresponding to the localization pro-

cess.
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1 Prologue

The semantics of the physical “continuum” in the standard interpretation

of physical systems theories is associated with the codomain of valuation

of physical attributes (Butterfield and Isham (2000)). Usually the notion

of “continuum” is tied with the attribute of position, serving as the range

of values characterizing this particular attribution. The model adopted to

represent these values is the real line R and its powers, specified as a set the-

oretical structure of points that are independent and possess the property

of infinite distinguishability with absolute precision. The adoption of the

set-theoretic real line model is usually justified on the basis of operational

arguments. Physical attributes are associated with the conception of ob-

servables, that is, physical quantities which, in principle, can be measured.

Furthermore, physical systems theories stipulate that quantities admissible

as measured results must be real numbers, since, it is accepted that the

resort to real numbers has the advantage of making our empirical access

secure. Thus, the crucial assumption underlying the employment of the real

line and its powers for the modeling of the physical “continuum” is that real

number representability constitutes our form of observation.

In this context, the geometrization of classical field theories as fiber

bundles of some kind over a background spacetime points manifold, that is

locally a power of the real line, is necessitated by the requirement of con-

ferring numerical identity to the corresponding field events, conceived as

being localized on charts of the spacetime manifold, being homeomorphic

to a power of the real line. Closely related to the conceptualization of these

geometrical models is the issue of localization in the physical “continuum”.

Operational procedures accompanying the development of physical systems

theories can be understood as providing the means of probing the physical

“continuum”, via appropriate processes of localization in the “continuum”,

referring to localized events in terms of real-valued observable quantities.
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Thus, physical observation presupposes, at the fundamental level, the de-

velopment of localization processes in the “continuum” that accomplish the

task of discerning observable events from it, and subsequently, assigning an

individuality to them. It is important to notice however, that ascribing in-

dividuality to an event that has been observed by means of a localization

scheme is not always equivalent to conferring a numerical identity to it, by

means of a real value corresponding to a physical attribute. This is exactly

the crucial assumption underlying the almost undisputed employment of

the set theoretical model of the real line and its powers as models of the

physical “continuum”. The consequences of this common assumption, over-

looked mainly because of the successful integration of the techniques of real

analysis and classical differential geometry of smooth manifolds, in the ar-

gumentation and predictive power of physical theories, has posed enormous

technical and interpretational problems related mainly with the appearance

of singularities.

In this work we will attempt a transition in the semantics of the events

“continuum” from a set-theoretic to a sheaf-theoretic one. The transition

will be effectuated by using the syntax and technical machinery provided by

category and topos theory (Artin, Grothendieck and Verdier (1972), Mac

Lane and Moerdijk (1992), Mac Lane (1971), Borceaux (1994), Kelly (1971),

Bell (2001), (1986), (1982) and (1988)). Conceptually, the proposed seman-

tic transition is implemented and necessitated by the introduction of the

following basic requirements admitting a sound physical basis of reasoning:

Requirement I: The primary conception of the physical “continuum”

constitutes an inexhaustible complex of overlapping and non-overlapping

events. The consideration of the notion of event as a primary concept im-

mediately poses the following question: How are events being related to each

other? If continuity is to be ascribed in the relations among events, then the
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fundamental relation is extension. The relata in the relation of extension

are the events, such that each event is part of a larger whole and each event

encompasses smaller events. Extension is also inextricably tied with the

assumption of divisibility of events signifying a part-whole type of relation.

In this sense, the physical “continuum” should constitute a representation

of events ontology respecting the fundamental relation of extension. A nat-

ural working hypothesis in this sense, would be the modeling of the physical

“continuum” by a partial order of events.

Requirement II: The notion of a “continuum” of events should not be

necessarily based on the existence of an underlying structure of points on

the real line. This equivalently means that localization processes for the

individuation of events from the physical “continuum” should not depend

on the existence of points. In this sense, ascribing individuality to an event

that has been observed by means of a localization scheme should not be

tautosemous to conferring a numerical identity to it, by means of a real

value corresponding to a physical attribute, but only a limiting case of the

localization process.

In order to construct a sheaf-theoretic model of the physical “contin-

uum” based on the above physical requirements, and thus, accomplish the

announced semantic transition, we further assume that, the localization pro-

cess is being effectuated operationally in terms of suitable topological cover-

ing systems, which, do not presuppose an underlying structure of points on

the real line, and moreover, respect only the fundamental relation of exten-

sion between events. In this sense, it will become apparent that the physical

“continuum” can be precisely represented by means of a generalized fibered

structure, such that, the partial order of events fibers over a base category

of varying reference loci, corresponding to the open sets of a topological

measurement space, ordered by inclusion. Moreover, we will explicitly show
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that, this fibered structure is being modeled as a sheaf of algebras of con-

tinuous real-valued functions, corresponding to observables. Finally, we are

going to demonstrate that a sheaf-theoretic fibered construct of the physical

continuum, as briefly described above, permits the formulation of the dy-

namical aspects of information propagation, in terms of a purely algebraic

cohomological framework.

Generally speaking, the concept of sheaf expresses essentially gluing con-

ditions, or equivalently, it formalizes the requirements needed for collating

local observable information into global ones. The notion of local is char-

acterized mathematically by means of a topological covering system, which,

is the referent of topological closure conditions on the collection of covers,

instantiating a localization process in the “continuum”. It is important

to emphasize that, the transition from locally defined observable informa-

tion into global ones, elucidated by the concept of sheaf, takes place via a

globally compatible family of localized information elements over a topolog-

ical covering system of the “continuum”. For a general mathematical and

philosophical discussion of sheaves, variable sets, and related structures, the

interested reader should consult (Lawvere (1975), Zafiris (2005)). Technical

expositions of sheaf theory, being of particular interest in relation to the

focus of the present work on topological localization processes, are provided

by (Mac Lane and Moerdijk (1992), Bell (1986), Mallios (2004), and Bredon

(1997)). Various applications of sheaf-theoretic fibered structures, based on

the development of suitable localization schemes referring to the modeling

and interpretation of quantum and complex systems, have been communi-

cated, both conceptually and technically by the author, in the literature

(Zafiris (2000), (2001), (2004), (2005), (2006) and (2007)).
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2 Postulates on Observable Structures

The behavior of physical systems is adequately described by the collection

of all observed data determined by the functioning of measurement devices

in suitably specified experimental environments. Observables are precisely

associated with physical quantities that, in principle, can be measured. The

mathematical formalization of this procedure relies on the idea of expressing

the observables by functions corresponding to measuring devices. Moreover,

the usual underlying assumption on the basis of physical theories postulates

that our global form of observation is represented by real-valued coefficients,

and subsequently, global observables are modeled by real-valued functions

corresponding to measuring devices.

At a further stage of development of this notion, two fundamental re-

quirements are being postulated on the structure of observables:

Postulate I: The first postulate specifies the algebraic nature of the set of

all observables, by assuming the structure of a commutative unital algebra

A over the real numbers. The basic intuition behind this requirement is

related with the fact that we can legitimately associate to any commutative

algebra with unit a geometric object, called the spectrum of the algebra,

such that the elements of the algebra, viz. the observables, can be consid-

ered as functions on the spectrum. The implemented principle is that the

geometric structure of a measurement space can be completely recovered

from the commutative algebra of observables defined on it. From a mathe-

matical perspective, this principle has been well demonstrated in a variety

of different contexts, known as Stone-Gel’fand duality in a functional an-

alytic setting, or Grothendieck duality in an algebraic geometrical setting.

Thus, to any commutative unital algebra of observables over the real num-

bers R, we can associate a measurement space, namely its real spectrum,

such that, each element of the algebra becomes a real-valued function on
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the spectrum. For instance, a real differential manifold M can be recovered

completely from the R-algebra C∞(M) of smooth real-valued functions on

it, and in particular, the points of M may be recovered from the algebra

C∞(M) as the R-algebra morphisms (evaluations) C∞(M)→ R.

From a general systemic perspective, it is generally assumed that, real-

number representability constitutes the universal form of observation instan-

tiated in terms of the readings of measuring devices. Consequently, the set

of all R-algebra morphisms A → R, assigning to each observable in A, the

reading of a measuring device in R, encapsulates all the information collected

about a physical system in measurement situations in terms of algebras of

real-valued observables. Mathematically, the set of all R-algebra morphisms

A→ R is identified as the R-spectrum of the unital commutative algebra of

observables A. The physical semantics of this connotation denotes the set

that can be R-observed by means of this algebra.

Postulate II: The second postulate referring to the conceptualization of

physical observables is related with the issue of localization. Usually, the op-

erational specification of measurement environments assumes their existence

locally, and the underlying assumption is that, the information gathered

about local observables in different measurement situations can be collated

together by appropriate means. The notion of local requires the specifica-

tion of a topology on an assumed underlying measurement space over which

algebras of observables may be localized. The net effect of this localiza-

tion procedure of algebras of observables, together with the requirement of

compatible information collation along localizations, are formalized by the

notion of sheaf, as it will become clear in the sequel. A structure sheaf of

commutative unital R-algebras of observables incorporates exactly the con-

ditions for the transition from locally collected observable data to globally

defined ones. Moreover, the assumed underlying topological space acquires
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its characteristic features from the structure sheaf of R-valued coefficients,

standing for the observables.

Apart from the above pair of fundamental requirements, it is common

practice that an extra smoothness assumption is postulated on the speci-

fication of observables. The underlying reason for the qualification of ob-

servables as real-valued smooth functions has to do with the fact that it is

desirable to consider derivatives of observables and effectively set-up a dy-

namical framework of description in terms of differential equations defined

over smooth differential manifolds. The notion of a smooth R-algebra of

observables on a differential manifold M , denoted by C∞(M), means that,

locally, C∞(M) is like the R-algebra C∞(Rn) of infinitely differentiable func-

tions on Rn. The physical adaptation of the differential geometric mech-

anism of smooth manifolds has built-in the assumption that real-number

representability constitutes our form of observation in terms of the read-

ings of measuring devices. In this sense, R-algebra morphisms (evaluations)

C∞(M) → R can be legitimately identified with the points of a space (R-

spectrum) which can be observed by means of C∞(M), namely the points

of a differential manifold M .

From the perspective of the present work, the adoption of the smoothness

assumption on the structure of the algebra of observables, as a unique uni-

versal means of implementing a dynamical framework of information prop-

agation, cannot be uncritically endorsed. More concretely, although the

requirement of continuity is essential for the implementation of a topolog-

ical localization process in the physical “continuum”, the qualification of

observables as, not only continuous, but, also smooth, real-valued functions

should be seriously questioned. Clear indications about the restricted func-

tionality of the smoothness assumption come from various sources, including

the nature of observables in the quantum regime, as well as, the collapse of

the smooth dynamical mechanism on singularities. In this sense, it seems
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reasonable to assume that the smoothness requirement on the algebra of

observables, besides continuity, constitutes just a special case of observable

coefficients, and most importantly, by no means is universally necessary,

or even not substitutable, for coordinatizing the mechanism of information

propagation in the physical “continuum”. Of course, the validity of the

inessentiality of the smoothness assumption can be verified, and thus oper-

ationally proved, in case that the development of a theory of dynamics of

observables, can be formulated purely algebraically and independently of a

smooth background manifold construct. In the sequel, we will show that

this is indeed the case, by formulating dynamics in terms of the algebraic

topological methodology of complexes and sheaf cohomology.

On the mathematical state of affairs, there exists a recently developed

framework of algebraic differential geometry suited to overcome the smooth-

ness restriction, called Abstract (Modern) Differential Geometry (ADG)

(Mallios (1998), (2002), (2004), (2005), (2006), (2007); see also Mallios and

Rosinger (1999), (2001), Mallios and Zafiris (2007), Zafiris (2007)). (ADG)

generalizes mathematically the differential geometric mechanism of smooth

manifolds, by explicitly demonstrating that most of the usual differential ge-

ometric constructions can be carried out by purely algebraic means without

any use of any sort of C∞-smoothness or any of the conventional calculus

that goes with it.

Thus, on the physical state of affairs, the possibility of construction of a

differential geometric framework along algebraic lines, like the paradigmatic

case of (ADG), permits the formulation of information dynamics indepen-

dently of any smoothness requirement on the structure of observables. This

conclusion is important from a systemic viewpoint, since it allows the le-

gitimate use of any appropriate R-algebra sheaf of observables suited to a

topological localization process, even singular algebra sheaves of general-

ized functions, without loosing the differential dynamical mechanism, prior
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believed to be solely associated with smooth manifolds. The above-stated

conclusion can be properly formulated in terms of a third postulate referring

on the dynamical structure of observables, which, signifies a relativity prin-

ciple of an algebraic-topological origin. The latter concerns the covariance

of the dynamical mechanism with respect to generalized algebras of continu-

ous observables, which comply with appropriate well-defined cohomological

conditions. These algebras of continuous observables may be conceived as

topos-theoretic reference frames in the category of all sheaves of algebras of

observables.

Postulate III: The global dynamical mechanism of information propa-

gation should be independent of the particularities of various localization

methodologies, which, besides continuity, are being locally employed for the

extraction and subsequent coordinatization of the information content in

terms of observables. Thus, algebra sheaves of smooth real-valued functions,

together with, their associated, by measurement, manifold R-spectrums, are,

by no means, unique coordinatizations of the universal physical mechanism

of qualitative information propagation in the physical “continuum” via ob-

servables. On the contrary, they constitute a particular instantiation of

information coordinatization, or equivalently, a special topos-theoretic ref-

erence frame for the formation of the localization process. As an important

consequence of the covariance property of the global dynamical mechanism,

with respect to cohomologically proper sheaves of algebras of generalized ob-

servables, effectuating a localization process, we can now conceptually and

technically disentagle the ascription of individuality to an event, that has

been observed by means of that localization process, with the conferement of

a numerical identity to it, by means of a real value, as has been undisputedly

the case until now.
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3 Localization in the Physical “Continuum”

We have initially hypothesized that the physical “continuum” may be con-

sidered as an abstract partial order of events with respect to the fundamental

relation of extension. We assume that it exists as an object in a category

of such abstract partial orders, with structure preserving morphisms as ar-

rows, denoted in the sequel by E . This category is required to be small,

by construction, such that, the families of its objects and morphisms form

genuine sets. The only technical requirement imposed is that E has all finite

or arbitrary small colimits, thus it is a cocomplete small category.

The general purpose of a localization scheme amounts to filtering the

information contained in an abstract partial order of events, representing an

extensive event “continuum” in E , through a concretely specified categori-

cal environment, which is determined by an operational physical procedure.

The latter specifies the kind of loci of variation that are used for individua-

tion of events in the physical “continuum”, such that, reference to concrete

events of the specified kind can be made possible with respect to them.

The kind of loci of variation signifies precisely the categorical environment

employed operationally, for instance, the category of open sets, ordered by

inclusion, in a topological measurement space, which, will essentially be the

subject of our exposition in this work. Consequently, the abstract event

“continuum” can obtain a concrete meaning in terms of localized events,

represented appropriately by local real-valued observables, by referring to

the categorical environment substantiated by the base open loci. In this

sense, a localization scheme can be precisely conceived as a generalization

of the notion of functional dependence. In the trivial case, the only locus is

a point serving as a unique idealized measure of localization, and moreover,

the only kind of reference frame is the one attached to a point. Pictorially,

the instantiation of a localization scheme in the physical “continuum” can

be represented as a fibered structure, such that the abstract partial order
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of events fibers over the base category of reference loci of the kind specified

by operational means, identified in our present modeling attempt with the

open sets of a topological measurement space.

Before proceeding in the technical exposition of the mathematical struc-

tures involved, it is instructive to discuss briefly a localization scheme of

such an abstract partial order of events, over a base categorical environment

O(X ), consisting of open sets of a topological measurement space X, the

arrows between them being inclusions. In other words, the reference loci in

this operational environment are all the open sets of X, partially ordered

by inclusion, or equivalently, the open sets U ⊆ X are considered as vary-

ing base open loci, over which the partial order of the event “continuum”

E fibers. This means that individuation of events in E from the perspec-

tive of the associated fibered structure of the induced localization scheme

has meaning only with reference to the base open loci. Furthermore, it is

essential to understand the shift in the semantics of continuous functions

f : X → R, from the viewpoint of the fibered structure corresponding to

the present localization scheme. If we consider local observers associated

with the varying reference loci of the base category, then each of them in

an measurement situation taking place over his reference locus U , individ-

uates events by means of local real-valued observables, being continuous

maps U → R. Thus, the local observers do not have a global perception of

continuous functions f : X → R, but rather perceive events localized over

their reference loci in terms of local observables. Of course, appropriate

conditions are further needed for pasting their findings together, which, as

we are going to explain in the sequel, constitute the necessary and sufficient

conditions for a sheaf-theoretic construct. Intuitively, at this stage, we no-

tice that in the present fibered structure of the events “continuum” , the

viewpoint offered by a reference locus is not that of a real valued continu-

ous function, but that of a continuously variable real number over the open
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locus, named local observable section and interpreted simply as a localized

and accordingly individuated event. According to the interpretation put

forward, we obtain a well-defined notion of localized events in the physical

“continuum”, varying over a multiplicity of domains of the kind determined

by the topological categorical environment they share. Equivalently, there is

constituted a resolution of the physical “continuum” as a variable multi-form

structure of local observables over domains, characterized as reference loci,

that admit a precise operational specification as open sets of a topological

measurement space.

From a physical systemic perspective, the meaningful representation of

an event “continuum” by means of a fibered structure, of the form described

above, should incorporate the important notion of uniformity. The notion of

uniformity in the physical “continuum”, as filtered through the categorical

environment of the open reference domains in a localization scheme, requires

that, for any two events observed by means of local real-valued observables

over the same open domain of measurement, the structure of all open refer-

ence loci that relate to the first cannot be distinguished, in any possible way,

from the structure of open loci relating to the second. In this sense, all the

localized events, within any particular reference locus, should be uniformly

equivalent to each other. Moreover, the coherence of the localization scheme

with respect to uniformity is secured, if the partial order of the event “con-

tinuum”, represented as a fibered construct, is properly induced by lifting

the partial order structure of open sets inclusions, form the base category

O(X ) to the fibers. The satisfaction of the above requirements, concerning

a uniform fibered structure representation of an abstract partial order of

events over a base categorical environment O(X ), consisting of open sets

of a topological measurement space X, lies at the basis of the sheaf theo-

retical conceptualization of the physical “continuum”, which is going to be

formalized categorically in the sequel.
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4 Sheaf-Theoretic Fibered Structures

For the category of open sets O(X ) on a topological measurement space

X, ordered by inclusion, we will be considering the category of presheaves

SetsO(X )op

of all contravariant functors from O(X ) to Sets and all nat-

ural transformations between these functors. A functor P is a structure-

preserving morphism of these categories, that is, it preserves composition

and identities. A functor in the category SetsO(X )op

can be thought of, as

constructing an image of O(X ) in Sets contravariantly, or equivalently, as a

contravariant translation of the language of O(X ) into that of Sets. Given

another such translation (contravariant functor) Q of O(X ) into Sets we

need to compare them. This can be done by giving, for each object U in

O(X ) a transformation TU : P(U)→ Q(U) which compares the two images

of the open set U . Not any morphism will do, however, as we would like

the construction to be parametric in U , rather than ad hoc. Since U is an

object in O(X ) while P(U) is in Sets we cannot link them by a morphism.

Rather the goal is that the transformation should respect the morphisms

of O(X ), or in other words the interpretations of f : V → U by P and Q

should be compatible with the transformation under T . Then T is a natural

transformation in the category of presheaves SetsO(X )op

.

A presheaf P of SetsO(X )op

may be understood as a right action of

O(X ) on a set, which is partitioned into sorts, parameterized by the objects

of O(X ), and such that, whenever F : V → U is an inclusion arrow in O(X )

and p is an element of P of sort U , then p ◦ F is specified as an element of

P of sort V . Such an action P is referred as a O(X )-variable set.

Thus, if O(X )op is the opposite category of O(X ), then SetsO(X )op

de-

notes the functor category of presheaves on varying reference loci U , being

open sets of a topological measurement space X, partially ordered by in-

clusion, with objects all functors P : O(X )op → Sets, and morphisms all

natural transformations between such functors. Each object P in this cate-
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gory is a contravariant set-valued functor on O(X ), called a presheaf of sets

on O(X ).

For each base open set U of O(X ), P(U) is a set, and for each arrow

F : V → U , P(f) : P(U) → P(V) is a set function. If P is a presheaf on

O(X ) and p ∈ P(U), the value P(F )(p) for an arrow F : V → U in O(X ) is

called the restriction of p along F and is denoted by P(f)(p) = p · F .

Each base reference locus U of O(X ) gives rise to a contravariant Hom-

functor y[U ] := HomO(X )(−, U). This functor defines a presheaf on O(X ).

Its action on an object V of O(X ) is given by

y[U ](V ) := HomO(X )(V,U)

whereas, its action on a morphism x : W → V , for v : V → U is given by

y[U ](x) : HomO(X )(V,U)→ HomO(X )(W,U)

y[U ](x)(v) = v ◦ x

Furthermore y can be made into a functor from O(X ) to the contravariant

functors on O(X ):

y : O(X )→ SetsO(X )op

U 7→HomO(X )(−, U)

This is called the Yoneda embedding and it is a full and faithful functor.

The category of elements of a presheaf P, denoted by
∫

(P,O(X)), ad-

mits the following objects-arrows description: The objects of
∫

(P,O(X)) are

all pairs (U, p), with U in O(X) and p ∈ P(U). The arrows of
∫

(P,O(X)),

that is, (Ú , ṕ)→(U, p), are those morphisms Z : Ú→U in O(X), such that

ṕ = P(Z)(p) := p · Z. Notice that the arrows in
∫

(P,O(X)) are those

morphisms Z : Ú→U in the base category O(X), that pull a chosen element

p ∈ P(U) back into ṕ ∈ P(Ú).

The category of elements
∫

(P,O(X)) of a presheaf P, together with,

the projection functor
∫

P :
∫

(P,O(X))→O(X) is called the split discrete
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fibration induced by P, where O(X) is the base category of the fibration.

We note that the fibers are categories in which the only arrows are identity

arrows. If U is a open reference locus of O(X), the inverse image under
∫

P

of U is simply the set P(U), although its elements are written as pairs so as

to form a disjoint union. The construction of the fibration induced by P, is

an instance of the general Grothendieck construction.

The relevance of the Grothendieck construction for the implementation

of a localization process in the physical “continuum”, according to the re-

quirements of Section 3, has to do with the realization, that, the split discrete

fibration induced by P, where O(X) is the base category of the fibration,

provides a well-defined notion of a uniform homologous fibered structure, in

the following sense: Firstly, by the arrows specification defined in the cat-

egory of elements of P, any element p, determined over the reference locus

U , is homologously related with any other element ṕ over the reference locus

Ú , and so on, by variation over all the reference loci of the base category.

Secondly, all the elements p of P, of the same sort U , viz. determined over

the same reference locus U , are uniformly equivalent to each other, since all

the arrows in
∫

(P,O(X)) are induced by lifting arrows from the base O(X).

From a physical viewpoint, the purpose of introducing the notion of a

presheaf P on O(X ), in the environment of the functor category SetsO(X )op

,

amounts to the identification of an element of P of sort U , that is p ∈ P(U),

with an event observed by means of a physical procedure over the refer-

ence locus U , being an open set of a topological measurement space X,

such that, the interrelations of observed events over all reference domains

of the base category O(X ), fulfill the requirement of a uniform homologous

fibered structure, explained in detail previously. The next crucial step of

the construction, aims to the satisfaction of the following essential physical

requirement: Since the operational specification of measurement environ-

ments assumed their existence locally, the information gathered about local
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events in different measurement situations should be collated together by

appropriate means. Mathematically, this requirement is implemented by

the methodology of sheafification or localization of the presheaf P. In our

context of enquiry, sheafification represents the process of conversion of the

category of element-events of the presheaf P into a category of continu-

ous real-valued functions, that is local observables, identified with the local

sections of the corresponding sheaf.

A sheaf is an arbitrary presheaf P that satisfies the following condition:

If U =
⋃

AUa, Ua ∈ O(X ) and elements pa ∈ P(Ua), a ∈ I, are such that

for arbitrary a, b ∈ I it holds:

pa | Uab = pb | Uab

where Uab := Ua
⋂

Ub, and the symbol | denotes the operation of restriction

on the corresponding open domain, then there exists a unique element p ∈

P(U), such that p | Ua = pa for each a in I. Then an element of P(U) is

called a section of the sheaf P over the open domain U . The sheaf condition

means that sections can be glued together over the reference loci of the base

category O(X ).

We will show that if A is the contravariant functor that assigns to each

open set U ⊂ X, the set of all real-valued continuous functions on U , then A

is actually a sheaf. First of all, it is instructive to clarify that the specification

of a topology on a measurement space X is solely used for the definition of

the continuous functions on X; in the present case the continuous functions

from any open set U in X to the real numbers R. We notice that the

continuity of each function f : U → R can be determined locally. This

property means that continuity respects the operation of restriction to open

sets, and moreover that, continuous functions can be collated in a unique

manner, as it is required for the satisfaction of the sheaf condition.

More concretely, if f : U → R is a continuous function and V ⊂ U

is an open set in the topology, then the function f restricted to V is also
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continuous. The operation of restriction f 7→ f | V , corresponds to a

morphism of sets A(U)→ A(V ). Moreover, if W ⊂ V ⊂ U stand for three

nested open sets in the topology partially ordered by inclusion, the operation

of restriction is transitive. Thus, the assignments;

U 7→ A(U)

{V ↪→ U} 7→ {A(U)→ A(V ) by f 7→ f | V }

amount to the definition of a presheaf functor A on O(X ), in the category

SetsO(X )op

. Furthermore, if we consider that U is covered by open sets Ua,

such that U =
⋃

AUa, Ua ∈ O(X ), and also that, the I-indexed family of

functions fa : Ua → R consists of continuous functions for all a in I, due

to local determination of continuity, there is at most one continuous real-

valued function f : U → R, with restrictions f | Ua := fa for all a in the

index set I. Nevertheless, such a continuous function f : U → R exists, if

and only if, the fa can be collated together on all the overlapping domains

Ua
⋂

Ub := Uab, such that:

fa | Uab = fb | Uab

Consequently, the presheaf of sets A of continuous real-valued functions

on O(X ), satisfies the sheaf condition, permitting in this sense, the char-

acterization of events over the reference loci U ⊂ X as local observables

represented by real-valued continuous functions, the latter being local sec-

tions of the sheaf of sets A. Actually, A is a sheaf of algebras over the

field of the reals R, because it is obvious that each set of sort U , A(U), is

an R-algebra under pointwise sum, product, and scalar multiple; whereas

the morphisms A(U)→ A(V ) stand for R-linear morphism of rings. In this

algebraic setting, the sheaf condition means that the following sequence of

R-algebras of local observables is left exact;

0→ A(U)→
∏

a
A(Ua)→

∏
a,b

A(Uab)
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Furthermore, we can define the inductive limit of R-algebras A(U), denoted

by colim[A(U)] as follows:

Let us consider that x is a point of the topological measurement space X.

Moreover, let B be a set consisting of open subsets of X, containing x, such

that the following condition holds: For any two open reference domains U , V ,

containing x, there exists an open set W ∈ B, contained in the intersection

domain U
⋂

V . We may say that B constitutes a basis for the system of

open reference domains around x. We form the disjoint union of all A(U),

denoted by;

D(x) :=
∐

U∈B
A(U)

Then we can define an equivalence relation in D(x), by requiring that f ∼ g

for f ∈ A(U), g ∈ A(V ), provided that they have the same restriction to a

smaller open set contained in B. Then we define;

colimB[A(U)] := D(x)/∼B

Furthermore, if we denote, generally, the inclusion mapping of V into U by;

iV,U : V ↪→ U

and also, the restriction morphism from U to V by;

%U,V : A(U)→ A(V )

we can introduce well-defined notions of addition and scalar multiplication

on the set colimB[A(U)], making it into an R-module, or even an R-algebra,

as follows:

[fU ] + [gV ] := [%U,W (fU ) + %V,W (gV )]

λ[gV ] := [λgV ]

where fU and gV are elements in A(U) and A(V ), that is real-valued contin-

uous functions defined over the open domains U , V respectively, and λ ∈ R.

Now, if we consider that B and C are two bases for the system of open sets
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domains around x ∈ X, we can show that there are canonical isomorphisms

between colimB[A(U)] and colimC [A(U)]. In particular, we may take all

the open subsets of X containing x: Indeed, we consider first the case when

B is arbitrary and C is the set of all open subsets containing x. Then C ⊃ B

induces a morphism

colimB[A(U)]→ colimC [A(U)]

which is an isomorphism, since whenever V is an open subset containing x,

there exists an open subset U in B contained in V . Since we can repeat that

procedure for all bases of the system of open sets domains around x ∈ X,

the initial claim follows immediately.

The inductive limit defined above, is denoted by Ax, and referred as the

stalk of A at the point x ∈ X. For an open reference domain W containing

the point x, we obtain an R-homomorphism of A(W ) into the stalk at the

point x;

iW,x : A(W )→ Ax

For an element f ∈ A(W ) its image iW,x(f) := fx is called the germ of f at

the point x.

The fibered structure that corresponds to the sheaf of real-valued con-

tinuous functions on a topological measurement space X is a bundle defined

by the continuous mapping ϕ : A→ X, where;

ϕ−1(x) = Ax = colim{x∈U}[A(U)]

The mapping ϕ is locally a homeomorphism of topological spaces. The

topology in A is defined as follows: for each f ∈ A(U), the set {fx, x ∈ U}

is open, and moreover, an arbitrary open set is a union of sets of this form.

In the physical state of affairs, we remind that we have identified an

element of A of sort U , that is a local section of A, with an event f observed

by means of a continuous physical procedure over the reference locus U .
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Then the equivalence relation, used in the definition of the stalk Ax at the

point x ∈ X is interpreted as follows: Two events f ∈ A(U), g ∈ A(V ),

induce the same contextual information at x in X, provided that, they have

the same restriction to a smaller open locus contained in the basis K. Then,

the stalk Ax is the set containing all contextual information at x, that is

the set of all equivalence classes. Moreover, the image in the stalk Ax of an

event f ∈ A(U), that is the equivalence class of this event f , is precisely the

germ of f at the point x.

The sheaf of real-valued continuous functions on a topological measure-

ment space X is an object in the functor category of sheaves Sh(X) on

varying reference loci U , being open sets of a topological measurement space

X partially ordered by inclusion. The morphisms in Sh(X) are all natural

transformations between such sheaf functors. It is instructive to notice that

a sheaf makes sense only if the base category of reference loci is specified,

which is equivalent in our context to the determination of a topology on

an underlying measurement space X. Once this is accomplished, a sheaf

can be thought of as measuring the space X. The functor categories of

both, presheaves SetsO(X )op

, and sheaves Sh(X), provide exemplary cases

of categories, characterized as topoi. A topos can be conceived as a lo-

cal mathematical framework, corresponding to a generalized model of set

theory, or as a generalized algebraic space, corresponding to a categorical

universe of variable information sets over the multiplicity of the reference

loci of the base category. We recall that, formally a topos is a category,

which has a terminal object, pullbacks, exponentials, and a subobject clas-

sifier, which is understood as an object of generalized truth values. The

particular significance of the sheaf of real-valued continuous functions on

X, that we have used as a uniform fibered structure of local observables

for modeling an event “continuum”, according to the physical requirements

posed previously, is due to the following isomorphism: The sheaf of continu-
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ous real-valued functions on X, is isomorphic to the object of Dedekind real

numbers in the topos of sheaves Sh(X), denoted in the sequel by A. The

aforementioned isomorphism validates the physical intuition of considering

a local observable as a continuously variable real number over its locus of

definition.

5 Topological Covering Systems

Until now, it has become evident that a sheaf-theoretic fibered model of the

physical “continuum” is not based on an underlying structure of points. On

the contrary, the fundamental entities are the base reference loci and their

transformations, for instance, the open sets of a topological measurement

space X, partially ordered by inclusion. The basic intuition behind their

functioning is related with the expectation that, the reference domains of

the base category in that fibered construct, serve the purpose of generaliz-

ing the notion of localization of events. In this sense, the unique measure of

localization of the set-theoretical model, being a point, is substituted by a

variety of localization measures, instantiated, for example, by the open sets

of the base category ordered by inclusion. In the latter context, a point-

localization measure, is identified precisely with the ultrafilter of open set

domains containing the point. This identification permits the conception of

other topological filters, being formed by the base reference loci, as gener-

alized measures of localization. The meaningful association of filters with

generalized localization measures in the physical “continuum” has to meet

certain requirements, that, remarkably, have a sound physical basis, as it

will become clear in the sequel, and leads to the notion of topological cover-

ing systems. It is significant, that, once the notion of a topological covering

system has been crystallized, the sheaf-theoretic fibered model of an event

“continuum” can be defined explicitly in its descriptive terms.

Topological covering systems are being effectuated by means of systems
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of covering devices on the base category of reference loci, called, in cate-

gorical terminology, covering sieves. Firstly, we shall explain the general

notion of sieves, and afterwards, we shall specialize our exposition to the

notion of covering sieves, showing that their applicability meets the physical

requirements necessary for a conception of a points-free event “continuum”.

A U -sieve with respect to a locus U in O(X ), is defined as a family S of

O(X )-morphisms with codomain U , such that if V → U belongs to S and

D → V is any O(X )-morphism, then the composite D → V → U belongs

to S. We may think of a U -sieve as a right U -ideal, or equivalently, since

O(X )-morphisms are inclusions, as a downwards closed U -subdomain.

If we consider the contravariant representable functor of U in O(X ),

denoted by y[U ] := HomO(X )(−, U), then it is easy to realize that a U -sieve

is equivalent to a subfunctor S ↪→ y[U ] in SetsO(X )op

.

In detail, given a U -sieve S, we define:

S(V ) = {g/g : V → U, g ∈ S} ⊆ y[U ](V )

This definition yields a functor S in SetsO(X )op

, which is obviously a sub-

functor of y[U ]. Conversely, given a subfunctor S ↪→ y[U ] in SetsO(X )op

,

the set:

S = {g/g : V → U, g ∈ S(V )}

for some locus V in O(X ), is a U -sieve. Thus, epigramatically, we state:

〈 U -sieve: S 〉=〈 Subfunctor of y[U ]: S ↪→ y[U ] 〉

We notice that if S is a U -sieve and h : V → U is any arrow to the locus

U , then:

h∗(S) = {f/cod(f) = V, (h ◦ f) ∈ S}

is a V -sieve, called the pullback of S along h. Consequently, we may define

a presheaf functor Ω in SetsO(X )op

, such that its action on locoi U in O(X ),

is given by:

Ω(U) = {S/S : U − sieve}
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and on arrows h : V → U , by h∗(−) : Ω(U)→ Ω(V ), given by:

h∗(S) = {f/cod(f) = V, (h ◦ f) ∈ S}

We notice that for a locus U in O(X ), the set of all arrows into U , called

the maximal sieve on U , and denoted by t(U) := tU , is a U -sieve.

The natural question that arises in our context of enquiry is the follow-

ing: How is it possible to restrict Ω(U), that is the set of U -sieves for each

locus U in O(X ), such that each U -sieve of the restricted set can acquire the

interpretation of a covering U -sieve with respect to a topological covering

system. Equivalently stated, we wish to impose the satisfaction of appro-

priate conditions on the set of U -sieves for each locus U in O(X ), such that

the subset of U -sieves obtained, denoted by Ωχ(U), implement the relation

of extension between events in the physical “continuum”. In this sense, the

U -sieves of Ωχ(U), for each locus U in O(X ), to be thought as topological

covering U -sieves, can be legitimately used for the definition of a localization

scheme in the physical “continuum”. The appropriate physical requirements

for our purpose are the following:

[1]. The relation of extension among events in the physical “continuum”

should be implemented by an appropriate relational property of open refer-

ence domains U in the base category O(X ). In this sense, an arrow V → U ,

such that V , U in O(X ), is interpreted as a figure of U , and thus U , is

interpreted as an extension of V in O(X ). It is a natural requirement that

the set of all figures of U should belong in Ωχ(U) for each locus U in O(X).

[2]. The covering sieves should be stable under pullback operations, and

most importantly, the stability conditions should be expressed functorially.

This requirement means in particular that the intersection of covering sieves

should also be a covering sieve for each open reference domain U in the base

category O(X ).

[3]. Finally, it would be desirable to impose: (i) a transitivity require-

ment on the specification of the covering sieves, such that intuitively stated,
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covering sieves of figures of a locus in covering sieves of this locus, should be

covering sieves of the locus themselves, and (ii) a requirement of common

refinement of covering sieves.

If we take into account the above requirements we can define a topological

covering system in the environment of O(X ) as follows:

A topological covering system on O(X ) is an operation J , which assigns

to each open reference domain U in O(X ), a collection J(U) of U -sieves,

called topological covering U -sieves, such that the following three conditions

are satisfied:

[1]. For every open reference domain U in O(X ) the maximal sieve

{g : cod(g) = U} belongs to J(U) (maximality condition).

[2]. If S belongs to J(U) and h : V → U is a figure of U , then h∗(S) =

{f : V → U, (h ◦ f) ∈ S} belongs to J(V ) (stability condition).

[3]. If S belongs to J(U), and if for each figure h : Vh → U in S there

is a sieve Rh belonging to J(Vh), then the set of all composites h ◦ g, with

h ∈ S, and g ∈ Rh, belongs to J(U) (transitivity condition).

As a consequence of the conditions above, we can check that any two U -

covering sieves have a common refinement, that is: if S, R belong to J(U),

then S ∩R belongs to J(U).

If we consider the partially ordered set of open subsets of a topological

measurement space X, viewed as the category of base reference loci O(X ),

then we specify that S is a covering U -sieve if and only if U is contained

in the union of open sets in S. The above specification fulfills the require-

ments of topological covering sieves posed above, and consequently, defines

a topological covering system on O(X ).

Obviously a topological covering system J exists as a presheaf functor

Ωχ in SetsO(X )op

, such that: by acting on loci U in O(X ), J gives the set

of all covering U -sieves, denoted by Ωχ(U), whereas by acting on figures

h : V → U , it gives a morphism h∗(−) : Ωχ(U) → Ωχ(V ), expressed as:
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h∗(S) = {f/cod(f) = V, (h ◦ f) ∈ S}, for S ∈ Ωχ(U).

Having introduced the notion of a topological covering system on the

base category O(X ), we can re-express the definition of a sheaf for that

covering system on O(X ), entirely in terms of covering sieves as follows:

A presheaf Q is a sheaf if and only if, for every covering U -sieve S, the

inclusion morphism S ↪→ y[U ] induces an isomorphism;

Hom(S,Q) ∼= Hom(y[U ],Q)

The theoretical advantage of the above relies on the fact that it provides a de-

scription of sheaves entirely in terms of objects of the category of presheaves.

From a physical perspective, the consideration of covering sieves as gen-

eralized measures of localization of events in the physical “continuum”, to-

gether with the requirements posed for the formation of topological cover-

ing systems, elucidates the sheaf-theoretic fibered model of local real-valued

observables established previously, and moreover, justifies conceptually its

relevance for the comprehension of a points-free events “continuum” that

respects only the fundamental relation of extension between events.

6 Information Dynamics of Observables

The development of physical theories within the context of sheaf-theoretic

fibered constructs of the physical “continuum”, would require mechanisms of

expressing the dynamics of information propagation in terms of continuous

local observables, analogous to the ones afforded by the usual differential

geometry of smooth manifolds.

For this purpose, we consider a sheaf of algebras of continuous real-valued

functions on X, denoted by A, which, represents a homologous and uniform

fibered construct of the physical “continuum” in terms of scalar coefficients,

characterized as local observables. In order to avoid unnecessary excess

wording we refer to A, simply, as an algebra of observables, interpreted
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inside the topos of sheaves Sh(X). In physical terminology, the introduction

of new local attributes, related with the variation of the obsevables included

in A, is conceived as the result of local interactions caused by the presence

of a field.

Algebraically, the process of extending the local form of observation with

respect to the algebra of observables A, due to field interactions, is described

by means of a fibering, defined as an injective morphism of R-algebras ι :

A ↪→ B. Thus, the R-algebra B is considered as a module over the algebra

A. A section of the fibering ι : A ↪→ B, is represented by a morphism of

R-algebras s : B→ A, left inverse to ι, that is ι ◦ s = idB. The fundamental

extension of scalars of the R-algebra A is obtained by tensoring A with itself

over the distinguished subalgebra of the reals, that is ι : A ↪→ A
⊗

RA.

Trivial cases of scalars extensions, in fact isomorphic to A, induced by the

fundamental one, are obtained by tensoring A with R from both sides, that

is, ι1 : A ↪→ A
⊗

RR, ι2 : A ↪→ R
⊗

RA. In the present context of enquiry,

the sought algebraic fibering should refer to an extension of the local form

of observation, suitable for the description of local observables’ infinitesimal

variations, caused by local field interactions. The physical underpinning

of that local fibering is based on the conception that, variable geometric

configurations should be generated infinitesimally.

Consequently, if we follow the above algebraic line of reasoning, variable

spectrum geometry, generated infinitesimally as a result of interactions, re-

quires the extension of scalars of the algebra A by infinitesimal quantities,

defined as a fibration:

d∗ : A ↪→ A⊕M · ε

f 7→ f + d(f) · ε

where d∗(f) =: df is considered as the infinitesimal part of the extended

scalar, and ε the infinitesimal unit obeying ε2 = 0. The algebra of infinitesi-

mally extended scalars, viz. A⊕M · ε, is called the algebra of dual numbers
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over A with coefficients in the A-module M. It is immediate to see that the

algebra A⊕M · ε, as an abelian group is just the direct sum A⊕M, whereas

the multiplication is defined by:

(f + df · ε) • (f́ + d́f · ε) = f · f́ + (f · d́f + f́ · df) · ε

Note that we further require that the composition of the augmentation A⊕

M · ε → A, with d∗ is the identity. Equivalently, the above fibration, viz.,

the homomorphism of algebras d∗ : A ↪→ A⊕M · ε, can be formulated as a

derivation, that is, in terms of an additive R-linear morphism:

d : A→M

f 7→ df

that, moreover, satisfies the Leibniz rule:

d(f · g) = f · dg + g · df

Since the formal symbols of differentials {df, f ∈ A}, are reserved for the

universal derivation, the A-module M is identified as the free A-module Ω of

1-forms generated by these formal symbols, modulo the Leibniz constraint.

The crucial fact, regarding the algebraic construction above, has to do

with the observation that, the locally free A-module Ω can be constructed

explicitly from the fundamental form of scalars extension of A, namely,

ι : A ↪→ A
⊗

RA by considering the morphism:

δ : A
⊗

R
A→ A

f1 ⊗ f2 7→ f1 · f2

Then by taking the kernel of this morphism of algebras, that is the ideal:

I = {f1 ⊗ f2 ∈ A
⊗

R
A : δ(f1 ⊗ f2) = 0} ⊂ A

⊗
R
A
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it can be shown that the morphism of A-modules:

Σ : Ω→ I
I2

df 7→ 1⊗ f − f ⊗ 1

is an isomorphism.

We can prove the above isomorphism as follows: The fractional object
I
I2

has an A-module structure defined by:

f · (f1 ⊗ f2) = (f · f1)⊗ f2 = f1 ⊗ (f · f2)

for f1 ⊗ f2 ∈ I, f ∈ A. We can check that the second equality is true by

proving that the difference of (f · f1)⊗ f2 and f1⊗ (f · f2) belonging to I, is

actually an elememt of I2, viz., the equality is true modulo I2. So we have:

(f · f1)⊗ f2 − f1 ⊗ (f · f2) = (f1 ⊗ f2) · (f ⊗ 1− 1⊗ f)

The first factor of the above product of elements belongs to I, by assumption,

whereas, the second factor also belongs to I, since we have that:

δ(f ⊗ 1− 1⊗ f) = 0

Hence the product of elements above belongs to I · I = I2. Consequently, we

can define a morphism of A-modules:

Σ : Ω→ I
I2

df 7→ 1⊗ f − f ⊗ 1

Now, we construct the inverse of that morphism as follows: The A-module

Ω can be made an ideal in the algebra of dual numbers over A, viz., A⊕Ω ·ε.

Moreover, we can define the morphism of algebras:

A× A→ A⊕Ω · ε

(f1, f2) 7→ f1 · f2 + f1 · df2ε
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This is an R-bilinear morphism of algebras, and thus, it gives rise to a

morphism of algebras:

Θ : A⊗RA→ A⊕Ω · ε

Then, by definition we have that Θ(I) ⊂ Ω, and also, Θ(I2) = 0. Hence,

there is obviously induced a morphism of A-modules:

Ω← I
I2

which is the inverse of Σ. Consequently, we conclude that:

Ω ∼=
I
I2

Thus the free A-module Ω of 1-forms is isomorphic with the free A-

module I
I2

of Kähler differentials of the algebra of scalars A over R, conceived

as a distinguished ideal in the algebra of infinitesimally extended scalars

A ⊕ Ω · ε, due to interactions, according to the following split short exact

sequence:

Ω ↪→ A⊕Ω · ε � A

or equivalently formulated as:

0→ ΩA → A
⊗

R
A→ A

By dualizing, we obtain the dual A-module of Ω, that is Ξ := Hom(Ω, A).

Thus we have at our disposal, expressed in terms of infinitesimal scalars

extension of the algebra of observables A, semantically intertwined with the

generation of variable geometry as a result of local interaction, new types of

observables related with the incorporation of differentials and their duals,

called codifferentials or vectors.

Before proceeding further, it is instructive at this point to clarify the

meaning of a universal derivation, playing a paradigmatic role in the con-

struction of extended algebras of scalars, as above, in appropriate category-

theoretic terms as follows: The covariant functor of left A-modules valued
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derivations of A:
←−
∇A(−) :M(A) →M(A)

is being representable by the left A-module of 1-forms Ω1(A) in the category

of left A-modules M(A), according to the isomorphism:

←−
∇A(N) ∼= HomA(Ω1(A),N)

Thus, Ω1(A) is characterized categorically as a universal object in M(A),

and the derivation:

d : A→ Ω1(A)

as the universal derivation. Furthermore, we can define algebraically, for

each n ∈ N , n ≥ 2, the n-fold exterior product:

Ωn(A) =
∧n

Ω1(A)

where Ω(A) := Ω1(A), A := Ω0(A), and finally show analogously that the

left A-modules of n-forms Ωn(A) inM(A) are representable objects inM(A)

of the covariant functor of left A-modules valued n-derivations of A, denoted

by
←−
∇

n

A(−) :M(A) →M(A). We conclude that, all infinitesimally extended

algebras of scalars, which, have been constructed from A by fibrations, pre-

sented equivalently, as derivations, are representable as left A-modules of

n-forms Ωn(A) in the category of left A-modules M(A).

We emphasize that the intelligibility of the algebraic modeling frame-

work of dynamics, giving rise to variable geometric spectra, is based on the

conception that infinitesimal variations in the observables of A, are caused

by interactions, meaning that they are being effectuated by the presence

of a physical field. Thus, it is necessary to establish a purely algebraic

representation of the notion of a physical field, as the causal agent of lo-

cal interactions, and moreover, explain the functional role it assumes for

the interpretation of the theory. The key idea for this purpose amounts
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to expressing the process of scalars extension, due to local interactions, co-

variantly, viz. in suitable functorial terms, and subsequently, identify that

functor of infinitesimal scalars extension, induced by local interactions, with

the functioning of a physical field that causes it. Regarding the first step of

this strategy, we clarify that the general process of scalars extension from

an algebra W to an algebra T is represented functorially by means of the

functor of scalars extension, from W to T as follows:

F :M(W) →M(T)

E 7→ T
⊗

W
E

The second step involves the application of the functorial algebraic procedure

for the case admitting the identifications:

W = A

T = [A⊕Ω1(A) · ε]

corresponding to infinitesimal scalars extension. Consequently, the function-

ality of the notion of a physical field, as the causal agent of local interactions,

admits a purely algebraic description as the functor of infinitesimal scalars

extension, called a connection-inducing functor:

∇̂ :M(A) →M(A⊕Ω1(A)·ε)

E 7→ [A⊕Ω1(A) · ε]
⊗

A
E

In this sense, the vectors of the left A-module E, are being infinitesimally

extended into vectors of the left (A⊕Ω1(A) · ε)-module [A⊕Ω1(A) ·ε]
⊗

AE.

It is significant to notice that, these two kinds of vectors are being defined

over different algebras. Hence, in order to compare them, we have to pull

the infinitesimally extended ones back to the initial algebra of scalars, viz.,

the R-algebra A. Algebraically, this process is implemented by restricting

the left (A⊕Ω1(A) · ε)-module [A ⊕ Ω1(A) · ε]
⊗

AE to the R-algebra A.
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If we perform this base algebra change, we obtain the left A-module E ⊕

[Ω1(A)
⊗

AE] · ε. Thus, the effect of the action of the physical field on the

vectors of the left A-module E can be expressed by means of the following

comparison morphism of left A-modules:

∇?
E : E→ E⊕ [Ω1(A)

⊗
A
E] · ε

Equivalently, the irreducible amount of information incorporated in the com-

parison morphism, can be now expressed as a connection on E, viz., as an

R-linear morphism of A-modules:

∇E : E→ Ω1(A)
⊗

A
E = E

⊗
A
Ω1(A) := Ω1(E)

such that, the following Leibniz type constraint is satisfied:

∇E(f · v) = f · ∇E(v) + df ⊗ v

for all f ∈ A, v ∈ E. Consequently, after having expressed the process of

scalars extension in functorial algebraic terms, we can identify the functor of

infinitesimal scalars extension, due to interactions, with the functional de-

pendence induced by a physical field causing it. Thus, a local causal agent

of a variable interaction geometry, viz., a physical field acting locally and

causing infinitesimal variations of local observables, can be faithfully repre-

sented by means of a pair (E,∇E), consisting of a left A-module E and a

connection∇E on E. We conclude, by emphasizing that, the functorial mod-

eling of the universal mechanism of encoding physical interactions, by means

of causal agents, as above, namely, physical fields effectuating infinitesimal

scalars extension, is covariant with the algebra-theoretic specification of the

structure of observables. Equivalently stated, the only actual requirement

for the intelligibility of functoriality of interactions, by means of physical

fields, rests on the algebra-theoretic specification of what we characterize

structures of observables.
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The next stage of development of a genuine functorial mechanism of

dynamics, understood in the sense of local interactions caused by a physical

field, involves the satisfaction of appropriate global constraints, that impose

consistency requirements referring to the transition from the infinitesimal

to the global. For this purpose it is necessary to employ the methodology

of homological algebra. We start by reminding the algebraic construction,

for each n ∈ N , n ≥ 2, of the n-fold exterior product as follows: Ωn(A) =∧nΩ1(A) where Ω(A) := Ω1(A), A := Ω0(A). We notice that there exists

an R-linear morphism:

dn : Ωn(A)→ Ωn+1(A)

for all n ≥ 0, such that d0 = d. Let ω ∈ Ωn(A), then ω has the form:

ω =
∑

fi(dli1
∧

. . .
∧

dlin)

with fi, lij , ∈ A for all integers i, j. Further, we define:

dn(ω) =
∑

dfi

∧
dli1

∧
. . .

∧
dlin

Then, we can easily see that the resulting sequence of R-linear morphisms;

A→ Ω1(A)→ . . .→ Ωn(A)→ . . .

is a complex of R-modules, called the algebraic de Rham complex of A, de-

noted consisely by 〈Ω(A)〉. The notion of complex means that the composi-

tion of two consequtive R-linear morphisms vanishes, that is dn+1 ◦ dn = 0,

simplified symbolically as:

d2 = 0

If we assume that (E,∇E) is an interaction field, defined by a connection

∇E on the A-module E, then ∇E induces a sequence of R-linear morphisms:

E→ Ω1(A)
⊗

A
E→ . . .→ Ωn(A)

⊗
A
E→ . . .
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or equivalently:

E→ Ω1(E)→ . . .→ Ωn(E)→ . . .

where the morphism:

∇n : Ωn(A)
⊗

A
E→ Ωn+1(A)

⊗
A
E

is given by the formula:

∇n(ω ⊗ v) = dn(ω)⊗ v + (−1)nω ∧∇(v)

for all ω ∈ Ωn(A), v ∈ E. It is immediate to see that ∇0 = ∇E. Let us

denote by:

R∇ : E→ Ω2(A)
⊗

A
E := Ω2(E)

the composition ∇1 ◦∇0. We see that R∇ is actually an A-linear morphism,

that is A-covariant, and is called the curvature of the connection ∇E. We

notice that, the latter sequence of R-linear morphisms, is actually a complex

of R-modules if and only if: R∇ = 0. We say that the connection ∇E is

integrable if R∇ = 0, and we refer to the above complex as the algebraic

de Rham complex of the integrable connection ∇E on E in that case. It

is also usual to call a connection ∇E flat if R∇ = 0. A flat connection

defines a maximally undisturbed process of dynamical variation caused by

the corresponding physical field. In this sense, a non-vanishing curvature

signifies the existence of disturbances from the maximally symmetric state

of that variation. These disturbances can be cohomologically identified as

obstructions to deformation caused by physical sources. In that case, the

algebraic de Rham complex of the algebra of scalars A is not acyclic, viz. it

has non-trivial cohomology groups. These groups measure the obstructions

caused by physical sources and are responsible for a non-vanishing curvature

of the connection. Therefore, the field equations in the absence of physical

sources simply read:

R∇ = 0

36



It is essential to emphasize, that the algebraic cohomological framework

of formulation of dynamical notions referring to the physical “continuum”,

which, is modeled by a sheaf-theoretic fibered structure of real-valued con-

tinuous observables, is based for its conceptualization and operative efficacy,

neither, on the methodology of real Analysis, nor, on the restrictive assump-

tion of smoothness of observables, but only, on the functorial expression of

the process of infinitesimal scalars extensions. Nevertheless, it is instructive,

to apply this algebraic framework for the case of smooth observables, in or-

der to reproduce the smooth differential geometric mechanism of smooth

manifolds geometric spectra. For this purpose, we consider that A stands

for the sheaf of algebras of R-valued smooth functions on X, denoted by

C∞, whereas, Ωn(A) stand for the locally free sheaves of C∞-modules of

differential n-forms on X. In this case, the algebraic de Rham complex of

A, gives rise to the corresponding differential de Rham complex of C∞, as

follows:

C∞ → Ω1(C∞)→ . . .→ Ωn(C∞)→ . . .

The crucial mathematical observation concerning this complex, refers to the

fact that, the augmented differential de Rham complex

0→ R→ C∞ → Ω1(C∞)→ . . .→ Ωn(C∞)→ . . .

is actually exact. The exactness of the augmented differential de Rham com-

plex, as above, constitutes an expression of the lemma of Poincaré, according

to which, every closed C∞-form on X is exact at least locally in X. Thus,

the well-definability of the differential geometric dynamical mechanism of

smooth manifolds is precisely due to the exactness of the augmented dif-

ferential de Rham complex. This mathematical observation for the case of

smooth observable coefficients, raises the issue of enrichment of the general

functorial mechanism of infinitesimal scalars extensions, by the requirement

of exactness of the respective augmented algebraic de Rham complex, se-

curing in this sense, the well-definability of the dynamical mechanism for
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the general case, and reproducing the corresponding differential geometric

mechanism of smooth manifolds faithfully, as well.

A positive settlement of this subtle issue comes from the mathematical

theory of Abstract Differential Geometry (ADG). Actually, the axiomatic

development of (ADG) à la Mallios in a fully-fledged mathematical theory,

has been based on the exploitation of the consequences of the above-stated

mathematical observation for the case of smooth observable coefficients. In

this sense, the operational machinery of (ADG) is essentially implemented

by the imposition of the exactness requirement of the following abstract de

Rham complex, interpreted inside the topos of sheaves Shv(X):

0→ R→ A→ Ω1(A)→ . . .→ Ωn(A)→ . . .

(ADG)’s power of abstracting and generalizing the classical calculus on

smooth manifolds basically lies in the possibility of assuming other more

general coordinate sheaves A, while, at the same time retaining, via the ex-

actness of the algebraic augmented de Rham complex, as above, the mecha-

nism of differentials, instantiated paradigmatically, in the first place, in the

case of classical differential geometry on smooth manifolds.

For our physical purposes, we conclude any cohomologically appropriate

sheaf of algebras A, characterized by the exactness property posed previ-

ously, can be legitimately regarded as a sheaf of local observables, capable of

providing a well-defined dynamical mechanism, independently of any smooth

manifold background, analogous, however, to the one supported by smooth

manifolds.

Conclusively, it is instructive to recapitulate and add some further re-

marks on the physical semantics associated with the preceding algebraic co-

homological dynamical framework by invoking the sheaf-theoretic terminol-

ogy explicitly. The basic mathematical objects involved in the development

of that framework consists of a sheaf of commutative unitary algebras A,

identified with the sheaf of algebras of real-valued local observables, a sheaf
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of locally free A-modules E of rank n, as well as, the sheaf of locally free

A-modules of universal 1-forms Ω of rank n. We assume that these sheaves

have a common base space, over which they are localized, namely, an arbi-

trary topological measurement space X. A topological covering system of

X is defined simply by an open covering U = {U ⊆ X : U open in X} of

X such that, any locally free A-module sheaf N splits locally, by definition,

that is, with respect to every U in U , into a finite n-fold Whitney sum An of

A with itself as N|U = An|U . For this reason, a topological covering system

U of X may be called a coordinatizing open cover of N. Hence, the local

sections of the structure R-algebra sheaf A relative to the coordinatizing

open cover U obtain the meaning of local coordinates, while A itself may

be called ‘the coefficient’ or ‘continuously variable real number coordinate

sheaf’ of N. Furthermore, a pair (E,∇E), consisting of a left A-module

sheaf E and a connection ∇E on E, represents a local causal agent of a vari-

able interaction geometry, viz., a physical field acting locally and causing

infinitesimal variations of coordinates, standing for local observables. In this

sense, the local sections of A-module sheaf E, relative to the open cover U ,

coordinatize the states of the corresponding physical field. The connection

∇E on E, is given by an R-linear morphism of A-modules sheaves:

∇E : E→ Ω1(A)
⊗

A
E = E

⊗
A
Ω1(A) := Ω1(E)

such that, the following Leibniz condition holds:

∇E(f · v) = f · ∇E(v) + df ⊗ v

for all f ∈ A, v ∈ E. Notice that, by definition, the connection ∇E is

only an R-linear morphism of A-modules sheaves. Hence, although it is R-

covariant, it is not A-covariant as well. The connection ∇E on E contains

the irreducible amount of information encoded in the process of infinitesimal

scalars extension caused by local interactions, induced by the corresponding

field.
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A significant observation has to do with the fact that if E = A, considered

as an A-module over itself, then, the R-linear morphism of sheaves of A-

modules

d : Ω0(A) := A→ Ω(A)1 := Ω(A)

is a natural connection, which is also integrable, or flat, since, 〈Ω(A)〉 is

actually a complex, namely the algebraic de Rham complex of A.

If we consider a coordinatizing open cover eU ≡ {U ; (ei)0≤i≤n−1} of the

A-module sheaf E of rank n, every continuous local section s ∈ E(U), where,

U ∈ U , can be expressed uniquely as a superposition

s =
n∑

i=1

siei

with coefficients si in A(U). The action of ∇E on these sections of E is

expressed as follows:

∇E(s) =
n∑

i=1

(si∇E(ei) + ei ⊗ d(si))

where,

∇E(ei) =
n∑

i=1

ei ⊗ ωij , 1 ≤ i, j ≤ n

where, ω = (ωij) denotes an n × n matrix of sections of local 1-forms.

Consequently we have;

∇E(s) =
n∑

i=1

ei ⊗ (d(si) +
n∑

j=1

sjωij) ≡ (d + ω)(s)

Thus, every connection ∇E, where, E is a locally free finite rank-n sheaf of

modules E on X, can be decomposed locally as follows:

∇E = d + ω

In this context, ∇E is identified as a covariant derivative, being decomposed

locally as a sum consisting of a flat part tautosemous with d, and a generally
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non-flat part ω, called the gauge potential (vector potential), signifying a

measure of deviation from the maximally undisturbed process of dynamical

variation (represented by the flat part), caused by the corresponding physical

field. The behavior of the gauge potential part ω of ∇E under local gauge

transformations constitutes the ‘transformation law of vector potentials’ and

is established in the following manner: Let eU ≡ {U ; ei=1···n} and hV ≡

{V ; hi=1···n} be two coordinatizing open covers of E over the open sets U

and V of X, such that U
⋂

V 6= ∅. Let us denote by g = (gij) the following

change of local gauge matrix:

hj =
n∑

i=1

gijei

Under such a local gauge transformation (gij), the gauge potential part ω

of ∇E transforms as follows:

ω
′
= g−1ωg + g−1dg

Furthermore, it is instructive to find the local form of the curvature R∇ of

a connection ∇E, where, E is a locally free finite rank-n sheaf of modules E

on X, defined by the following A-linear morphism of sheaves:

R∇ := ∇1 ◦ ∇0 : E→ Ω2(A)
⊗

A
E := Ω2(E)

Due to its property of A-covariance, a non-vanishing curvature represents

in this context, the A-covariant, and thus, observable (by A-scalars) distur-

bance from the maximally symmetric state of the variation caused by the

corresponding physical field. In this sense, it may be accurately character-

ized physically as ‘gauge field strength’. Moreover, since the curvature R∇

is an A-linear morphism of sheaves of A-modules, R∇ may be thought of as

an element of End(E)
⊗

AΩ2(A) := Ω2(End(E)), that is:

R∇ ∈ Ω2(End(E))
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Hence, the local form of the curvature R∇ of a connection ∇E, consists of

local n× n matrices having for entries local 2-forms on X.

The behavior of the curvature R∇ of a connection ∇E under local gauge

transformations constitutes the ‘transformation law of gauge field strengths’.

If we agree that g = (gij) denotes the change of gauge matrix, we have

previously considered in the discussion of the transformation law of gauge

potentials, we deduce the following local transformation law of gauge field

strengths:

R∇
g7→ R∇

′ = g−1(R∇)g

7 Epilogue

The basic nucleus of ideas at the core of this article, aiming at a concep-

tual and technical replacement of the axiomatic set-theoretic model of the

physical “continuum” by a constructive fibered sheaf-theoretic topos model,

taking into account, the realistic operational systemic procedures of localiza-

tion processes for discerning and coordinatizing observable events, resolves

around four crucial physical issues of paramount importance.

The first of them refers to the enunciation of the meaning of an appro-

priate structure of observables, used for the coordinatization of events in the

physical “continuum”. The term appropriate is being qualified precisely by

a twofold determination of observable structures. The first component con-

cerns their algebraic nature, by stipulating the structure of a commutative

unital algebra A over the real numbers. The significance of this stipulation

lies on the fact that the categorical dual of a commutative unital algebra is

understood as a geometric space, called the spectrum of the algebra, such

that, the elements of the algebra, viz. the observables, can be considered

as functions on the spectrum. This consideration can be properly actual-

ized, by employing the second component of determination of appropriate

observable structures, concerning their topological nature. The latter is re-
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sponsible for the localization of the information contained in the algebras of

observables, with respect to a category of reference loci, being amenable to

an operational specification. The net effect of the algebraic and topological

organization of information, realized by means of a vertical (on the fibers)

and horizontal (on the reference base) conceptual dimension respectively,

can be formalized by the notion of a sheaf of commutative unital algebras

of continuous real-valued observables, functioning as a homologous uniform

and coherent fibered construct of the physical “continuum”.

The second physical issue concerns a novel conception of the notion of

systemic localization precesses. More concretely, in classical theories local-

ization has been conceived by means of metrical properties on a pre-existing

smooth set-theoretic spacetime manifold. In contradistinction, we have ar-

gued that general localization schemes, in agreement with realistic opera-

tional measurement procedures, should be understood in terms of topolog-

ical covering systems of the physical “continuum”. These covering systems

elucidate the primary functionality of a localization process, being consti-

tuted by the properties of covariance with respect to pullback operations of

covering sieves and transitivity. Furthermore, they invoke suitable criteria

for collating local observables into global ones. Notice that, the notion of

functional dependence introduced by localization schemes, is formalized ex-

clusively in functorial algebraic terms of relational information content with

respect to the category of base reference loci, without any supporting notion

of a smooth metrical set-theoretic backround manifold. In this sense, the

resolution focus in the physical “continuum” has been shifted from point-set

to topological localization models, that effectively, induce a transition in the

semantics of observables from a set-theoretic to a sheaf-theoretic one. Sub-

sequently, that semantic transition effectuates the conceptual replacement of

the classical metrical ruler of localization on a smooth background manifold,

with a multiplicity of sheaf-cohomological rulers of algebraic topological lo-
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calization in the respective spectra of the topos of all sheaves of algebras of

continuous observables.

The third physical issue concerns the functoriality, or equivalently stated,

covariance of the dynamical mechanism of information propagation, with re-

spect to generalized algebras of continuous observables, complying with the

cohomological conditions for the formation of exact complexes. The sig-

nificance of this covariance property, invoking the formulation of functorial

dynamics in the physical “continuum”, lies on the fact that, algebra sheaves

of smooth real-valued functions, together with, their associated, by mea-

surement, manifold R-spectrums do not constitute unique coordinatizations

of the universal physical mechanism of qualitative information propagation

via observables. Thus, the smoothness assumption on the structure of ob-

servables is not necessary for the formulation of the dynamical mechanism.

In this perspective, the assumed collapse of dynamics at singularities of

a base manifold is actually only phenomenal, meaning that, it appears to

break down exclusively due to the employment of inappropriate coefficients

(smooth functions) for the coordinatization of these loci in the physical

“continuum”.

Finally, the fourth physical issue concerns the functorial modeling of

the notion of a physical field, which, is endowed with the semantics of a

causal agent inducing local interactions, implemented by the algebraic pro-

cess of infinitesimal scalar extensions of the algebra sheaf of local observables,

coordinatizing events in the physical “continuum”. In the context of this

conceptualization, admitting a well-defined functorial algebraic formulation,

the dynamics of information propagation being caused by the presence of

some interaction field, as a particular application of the general functorial

mechanism, can be adequately generated by the connection morphism. The

flat instantiation of the connection defines a maximally undisturbed process

of dynamical variation caused by that field. In general, a connection can
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be decomposed into the sum of a flat component and a non-flat one. The

non-flat part, called gauge potential, constitutes a measure of deviation from

the maximally symmetric state of dynamical variation, defined respectively

by the flat or integrable part. The disturbance from that maximally sym-

metric state of dynamical variation, caused by the non-integrability of the

connection, becomes observable geometrically, meaning that, it becomes co-

variantly represented with respect to the local sections of the algebra sheaf

of observables, by means of a non-vanishing curvature. Thus, the latter is

legitimately endowed with the physical semantics of gauge field strength.

Finally, disturbances of the previous form and functionality may be coho-

mologically identified as obstructions to topological deformation caused by

physical sources.
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