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Abstract

We construct a sheaf-theoretic representation of quantum events
structures, in terms of Boolean localization systems. These covering
systems are constructed as ideals of structure-preserving morphisms
of quantum events algebras from varying Boolean domains, identified
with physical contexts of measurement . The modeling sheaf-theoretic
scheme is based on the existence of a categorical adjunction between
presheaves of Boolean events algebras and quantum events algebras.
On the basis of this adjoint correspondence, we also prove the exis-
tence of an object of truth values in the category of quantum logics,
characterized as subobject classifier. This classifying object plays the
equivalent role that the two-valued Boolean truth values object plays in
classical events structures. We construct the object of quantum truth
values explicitly, and furthemore, demonstrate its functioning for the

valuation of propositions in a typical quantum measurement situation.
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1 Prologue

The notion of the logic of a physical theory has been introduced in 1936 by
von Neumann and G. Birkhoff in a paper entitled “The Logic of Quantum
Mechanics’. For classical theories the appropriate logic is a Boolean algebra;
but for quantum theories a non-Boolean logical structure is necessary, which
can be characterized as an orthocomplemented lattice, or a partial Boolean
algebra, or some other structure of a related form. The logic of a physical
theory reflects the structure of the propositions describing the behavior of
a physical system in the domain of the corresponding theory.

Naturally, the typical mathematical structure associated with logic is an
ordered structure. The original quantum logical formulation of quantum
theory [1, 2] depends in an essential way on the identification of proposi-
tions with projection operators on a complex Hilbert space. A non-classical,
non-Boolean logical structure is effectively induced which has its origins
in quantum theory. More accurately the Hilbert space quantum logic is
axiomatized as a complete, atomic, orthomodular lattice. Equivalently, it
can be isomorphic to the partial Boolean algebra of closed subspaces of the
Hilbert space associated with the quantum system, or alternatively, the par-
tial Boolean algebra of projection operators of the system. On the contrary,
the propositional logic of classical mechanics is Boolean logic, meaning that
the class of models, over which validity and associated semantic notions are
defined for the propositions of classical mechanics, is the class of Boolean
logic structures.

In a previous work we have proposed a sheaf-theoretic scheme, that ac-
commodates the formalization of quantum event and observable algebras
as structured interlocking families of Boolean event algebras [3]. In the
present work our purpose is the study of the truth values structures suited
to represent accurately the quantum domain of discourse, according to the
sheaf-theoretic representation established. We will argue that generalized
classical logic structures, interconnected non-trivially, provide the building
blocks of an appropriate conceptual environment by means of which it is
possible to comprehend the complexity of the structures of quantum propo-
sitions. We hold the view that the logic of quantum propositions reflects
literal ontological structures of the quantum domain of discourse, and the
perspective offered by the proposed scheme, with respect to a logical truth

values interpretation, reveals the relevant ontological aspects as well.



Traditionally, the vast majority of the attempts to explore the logical
structures associated with quantum mechanical systems are based on a set
theoretical language. We propose a transition in the syntax of the theory
involved, which as will see effects a transition in the semantics of quantum
logics. This transition hopefully clarifies the relationship between the on-
tological structures associated with the classical and quantum domains of
discourse, as it is reflected on their logical intertransformability. The math-
ematical language which is best suited to fulfill our objectives is provided by
category and topos theory [4-10]. This is due to the fact that, these theories
provide the means to relate the form and meaning of non-Boolean quantum
logical structure with suitable interlocking local Boolean contexts, and most
importantly, this can be done in a universal way.

The development of the conceptual and technical machinery of localiza-
tion systems for generating non-trivial global events structures, as it has
been recently demonstrated in [11], effectuates a transition in the semantics
of events from a set-theoretic to a sheaf-theoretic one. This is a crucial
semantic difference that characterizes the present approach in comparison
to the vast literature on quantum measurement and quantum logic. More
precisely, quantum events algebras can be represented as sheaves for an ap-
propriate covering system defined on the Boolean localizing category. This
process is formalized categorically by the concept of localization systems,
where, the specified maps from Boolean contexts induced by measurement
situations of observables, play the role of covers of a quantum structure of
events. In more detail, the notion of local is characterized by a categori-
cal Grothendieck topology, the axioms of which express closure conditions
on the collection of covers. In this sense, the information available about
each map of the specified covering system may be used to determine com-
pletely a quantum events structure. In this paper, we will avoid to mention
Grothendieck topologies explicitly, although the definition of a Boolean lo-
calization system, gives rise to a precise Grothendieck topology [11] .

The category of sheaves is a topos, and consequently, comes naturally
equipped with an object of generalized truth values, called subobject clas-
sifier. This object of truth values, being remarkably a sheaf itself, namely
an object of the topos, is the appropriate conceptual tool for the organiza-
tion of the logical dimension of the information included in the category of

quantum events algebras, as it is encoded in Boolean localization systems.



More concretely, we will show that the logic of propositions describing a
quantum system can be comprehended via equivalence relations in the sheaf
of coefficients defined over the category of Boolean logical structures for an
appropriate covering system of the latter, defined as a Boolean localization
system. We emphasize that the significance of the sheaf-theoretical concep-
tion of a quantum logical structure, lies on the fact that it is supported by
the well defined underlying notion of multi-valued truth structure of a topos.

The fact that a quantum events algebra is actually a non-trivial global
object is fully justified by Kochen-Specker theorem [12]. According to this,
there are no two-valued homomorphisms on the algebra of quantum propo-
sitions. Consequently, a quantum logical algebra cannot be embedded into
a Boolean one. We note that a two-valued homomorphism on a classical
event algebra is a classical truth value assignment on the propositions of
the physical theory, represented by the elements of the Boolean algebra,
or a yes-no assignment on the corresponding properties represented by the
elements of the algebra. In this work, we will show eventually that the cate-
gorical environment specifying a quantum event algebra in terms of Boolean
localization systems, contains an object of truth values, or classifying object,
that constitutes the appropriate tool for the definition of a quantum truth
values assignment, corresponding to valuations of propositions describing
the behavior of quantum systems.

Contextual topos theoretical approaches to quantum structures of truth
values have been also considered, from a different viewpoint in [13, 14], and
discussed in [15, 16]. Of particular relevance to the present work, regarding
the specification of a quantum truth values object, although not based on
category theory methods, seems to be the approach to the foundations of
quantum logic by Takeuti and Davis [17, 18], according to whom, quanti-
zation of a proposition of classical physics is equivalent to interpreting it
in a Boolean extension of a set theoretical universe, where B is a complete
Boolean algebra of projection operators on a Hilbert space.

In Section 2, we recapitulate the categorical framework that leads to the
sheaf-theoretic representation of quantum events algebras, by formulating
the existence of a categorical adjunction between the categories of Boolean
presheaves and quantum events algebras. Moreover we explain the notions of
Boolean systems of localizations for quantum events algebras and formulate

a representation theorem in terms of the counit of the Boolean-quantum



adjunction. In Section 3, we introduce the notion of a subobject functor and
specify the necessary and sufficient conditions for being representable by an
object in the category of quantum logics, to be identified as a quantum truth
values object. In Section 4, we construct the representation of the quantum
truth values object in tensor product form, and moreover, we prove that
it plays the role of subobject classifier in the category of quantum events
algebras. Furthermore, we formulate explicitly, the relevant criterion of
truth for a complete description of reality. In Section 5, we propose the use
of quantum truth values as the proper range for valuations of propositions
associated with the behavior of quantum systems and demonstrate their

functioning. Finally we conclude in Section 6.

2 The Categorical Framework of Representation

2.1 Sheaf-Theoretic Modeling of Quantum Events Algebras

Definition: A Quantum events structure is a small cocomplete cate-
gory, denoted by L, which is called the category of quantum events algebras.
The objects of £ are quantum events algebras and the arrows are quantum

algebraic homomorphisms.

Definition: A quantum events algebra L in £, is defined as an or-
thomodular c-orthoposet, that is, as a partially ordered set of quantum
events, endowed with a maximal element 1, and with an operation of ortho-
complementation [—]* : L—— L, which satisfy, for all [ € L, the following
conditions: [a] 1 < 1, [b] I** =1, [ IVI* =1, [d] I <= 1* <I* [
1Ll = 1vielL, [f]for I,i € L,1 < implies that | and [ are compatible,
where 0 := 1%, I1l:=1< l/*, and the operations of meet A and join V are

defined as usually.

Remark: We recall that [, [ € L are compatible if the sublattice generated
by {l,l*,l/, l/*} is a Boolean algebra, namely if it is a Boolean sublattice.
The o-completeness condition, namely that the join of countable families of
pairwise orthogonal events must exist, is also required in order to have a

well defined theory of observables over L.



Definition: A quantum algebraic homomorphism in £ is a morphism
K -5 I, which satisfies, for all k € K, the following conditions: [a] H(1) =
1, [b] H(k*) = [HR), [ k < k = H(k) < H(k), [d] kLk = H(kVE) <

H(k)v H(k), [e] H(\,kn) = V,,H (k) , where ki, ko, ... countable family

of mutually orthogonal events.

Definition: A Classical events structure is a small category, denoted
by B, which is called the category of Boolean events algebras. The objects
of B are o-Boolean algebras of events and the arrows are the corresponding

Boolean algebraic homomorphisms.

Definition: A functor of local Boolean coefficients, A : B—— L,
assigns to Boolean events algebras in B, that instantiates a model coor-
dinatizing category, the underlying quantum events algebras from £, and
to Boolean homomorphisms the underlying quantum algebraic homomor-

phisms.

Remark: The functor M acts as a forgetful functor, forgetting the extra

Boolean structure of B.

Definition: The functor category of presheaves on Boolean events
algebras, denoted by Sets3”, has objects all functors P : B’ —>Sets,
and morphisms all natural transformations between such functors, where

B°P is the opposite category of B.

Definition:  Each object P in Sets®” is a contravariant set-valued func-

tor on B, called a presheaf on B.

Remark: For each Boolean algebra B of B, P(B) is a set, and for each
arrow f : C—B, P(f) : P(B)—P(C) is a set function. If P is a
presheaf on B and p € P(B), the value P(f)(p) for an arrow f: C——>B in
B is called the restriction of x along f and is denoted by P(f)(p) =p- f.

Remark: Each object B of B gives rise to a contravariant Hom-functor
y[B] := Homp(—, B). This functor defines a presheaf on B. Its action on
an object C' of B is given by

y[B|(C) := Homp(C, B)



whereas its action on a morphism D—2>C, for v : C— B is given by
y[B|(x) : Homg(C, B)——> Hompg(D, B)

y[Bl(z)(v) =vox
Furthermore, y can be made into a functor from B to the contravariant
functors on B

y : B——>Sets?”

such that B—Hompg(—, B). This is called the Yoneda embedding and it is
a full and faithful functor.

Remark: The functor category of presheaves on Boolean events algebras
SetsBop, provides an instantiation of a structure known as topos. A topos
exemplifies a well defined notion of a universe of variable sets. It can be
conceived as a local mathematical framework corresponding to a generalized

model of set theory or as a generalized space.

Definition :  The category of elements of the presheaf P, denoted
by [(P,B) has objects all pairs (B,p), and morphisms (B,p)—>(B,p) are
those morphisms u : B—B of B for which p-u=p.

Definition: Projection on the second coordinate of [ (P, B), defines a func-
tor [p : [(P,B)—B. [(P,B) together with the projection functor [p is
defined as the split discrete fibration induced by P, where B is the base

category of the fibration as in the diagram below.

Remark: We note that the fibers are categories in which the only arrows
are identity arrows. If B is an object of B, the inverse image under [p of B
is simply the set P(B), although its elements are written as pairs so as to
form a disjoint union. The construction of the fibration induced by P, is an

instance of the general Grothendieck construction [8].

J(P.B)

Ip

B ——— Sets



Remark: The construction of the split discrete fibration induced by P,
where B is the base category of the fibration, incorporates the physically
important requirement of uniformity [11]. The notion of uniformity, requires
that for any two events observed over the same domain of measurement, the
structure of all Boolean contexts that relate to the first cannot be distin-
guished in any possible way from the structure of Boolean contexts relating
to the second. In this sense, all the observed events within any particular
Boolean context should be uniformly equivalent to each other. It is easy to
notice that the composition law in the category of elements of the presheaf

P, expresses precisely the above uniformity condition.

Definition : The functor of generalized elements of a quantum
events algebra L in the environment of the category of presheaves on
Boolean events algebras, Sets® ", or functor of Boolean frames of a

quantum event algebra L, is defined by:

R : L — SetsB”

from £ to the category of presheaves of Boolean events algebras Sets?”

where, the action on an object B in B is given by
R(L)(B) := Ry(B) = Hom:(M(B), L)

whereas, the action on a morphism D—%5B in B, for v : B——L is given
by
R(L)(x) : Homg(M(B),L)——>Homg(M(D), L)

R(L)(z)(v) =vou

Theorem: There exists a pair of adjoint functors L 4 R as follows (for a
proof see [3]):

L:Sets®”" SR

The Boolean-quantum adjunction consists of the functors L and R, called
left and right adjoints with respect to each other respectively, as well as the

natural bijection:

Nat(P,R(L)) = Homg(LP, L)



Remark: The established bijective correspondence, interpreted functo-

rially, says that the functor R from £ to presheaves given by
R(L): B—Hom,/(M(B), L)

has a left adjoint L : Sets®” — £, which is defined for each presheaf of

Boolean algebras P in Sets®” as the colimit

L(P) = C’olzm{/ Bl p M
Corollary:  The Boolean coefficients functor M(B) is characterized as the
colimit of the representable presheaf on the category of Boolean algebras (for
a proof see [3]), as follows:

Ly|B] M/ (B,1p) = M(B)

Remark: The following diagram (with the Yoneda embedding y) com-

mutes.
B
y M
I A
Corollary: The colimit in the category of elements of the functor of

Boolean frames L(R(L)) is a quantum event algebra (for a proof see [3],

[11]).

Definition: A system of Boolean prelocalizations for a quantum
events algebra L in £ is a subfunctor of the Hom-functor R(L) of the form
S : B? — Sets, that is for all B in B, it satisfies S(B) C [R(L)](B).

Remark: A system of Boolean prelocalizations for a quantum events
algebra L in L is equivalent to a right ideal S > R(L), defined by the re-
quirement that, for each B in B, S(B) is a set of quantum algebraic homo-

morphisms of the form ¢ p : M(B)——> L, satisfying the following property:



3

(If Yp : M(B)—L € S(B), and M(v) : M(B)—M(B) in L, for
v:B—>Bin B, then ¢5 o M(v) : M(B)—>L € S(B) ).

Definition: A family of Boolean covers g : M(B)——>L, B in B, is the
generator of a system of Boolean prelocalizations S, if and only if,

this system is the smallest among all that contains that family.

Remark: The systems of Boolean prelocalizations constitute a partially
ordered set under inclusion. The minimal system is the empty one, namely
S(B) = 0 for all B in B, whereas the maximal system is the Hom-functor
R(L) itself.

Definition:  The pullback of the Boolean covers: g : M(B)—>L,
Bin B, and ¢ : M(B) — L, Bin B, with common codomain the quantum
events algebra L, consists of the object M(B)x M (B) and two arrows Ypg
and 1 5, called projections, as shown in the following diagram. The square
commutes and for any object T" and arrows h and g that make the outer

square commute, there is a unique v : T——>M(B)x ;M(B) that makes the

whole diagram commute.

T
u h
Q\M(B)x M(B) YnR M(B)
. VB
vg

Remark: If yp and 14 are injective, then their pullback is isomorphic

with the intersection M(B) N M(B).

10



Definition: The pasting isomorphism of Boolean covers, is defined as

follows:

Qp g pp(M(B)),M(B))——t,5(M(B)(), M(B))

_ -1
QB,B’ =vYppovpp

Theorem: The Boolean coordinatizing maps vz ,(M(B) x M(B)) and

Y (M(B)xM(B)) cover the same part of a quantum events algebra in a

compatible way.

Proof: An immediate consequence of the previous definition is the satis-

faction of the following Boolean coordinates cocycle conditions:

Qpp=1B 1p :identity of B

’
’ 7

Qp oy ;=0 if M(B)NM(B)NM(B) #0

BB
Qpp=0""gp if MB)NM(B)#0
Thus, the pasting morhism assures that 14 5 (M(B) X M(B)) and VYpp(M(B) X M(B))

cover the same part of a quantum events algebra in a compatible way.

Definition:  Given a system of prelocalizations for a quantum events alge-
bra L € L, we call it a system of Boolean localizations, or equivalently,
a structure sheaf of Boolean coefficients, iff the Boolean coordinates
cocycle conditions are satisfied, and moreover, the quantum algebraic events

structure is preserved.

Definition:  For any presheaf P € Sets?” | the unit is defined as
op : P——>RLP

On the other side, for each quantum event algebra L in £ the counit is
defined as
er, :LR(L)——L

Boolean Representation Theorem: The representation of a quantum
events algebra L in £, in terms of a coordinatization system of localiza-
tions, consisting of Boolean coefficients, is full and faithful, if and only if the
counit of the Boolean-quantum adjunction, restricted to that system, is an

isomorphism, that is, structure-preserving, injective and surjective.

11



Remark: The counit of the adjunction, restricted to a system of local-
izations is a quantum algebraic isomorphism, if and only if the right ad-
joint functor is full and faithful, or equivalently, if and only if the cocone
from the functor Mo [ r(z) b0 the quantum event algebra L is universal for
each L in L. In the latter case we characterize the coordinatization functor

M : B—— L, a proper modeling functor.

2.2 Physical Semantics

The physical significance of this representation lies on the fact that the whole
information content in a quantum events algebra is preserved by every cov-
ering Boolean system, qualified as a system of measurement localizations.
The preservation property is established by the counit isomorphism. It is
remarkable that the categorical notion of adjunction provides the appropri-
ate formal tool for the formulation of invariant properties, giving rise to
preservation principles of a physical character.

If we return to the intended representation, we realize that the surjective
property of the counit guarantees that the Boolean domain covers, being
themselves objects in the category of elements [(R(L), B), cover entirely
the quantum event algebra L, whereas its injective property guarantees that
any two covers are compatible in a system of measurement localizations.
Moreover, since the counit is also a homomorphism, it preserves the algebraic
structure.

In the physical state of affairs, each cover corresponds to a set of Boolean
events actualized locally in a measurement situation. The equivalence classes
of Boolean domain covers represent quantum events in L through compatible
coordinatizations by Boolean coefficients. Consequently, the structure of
a quantum event algebra is being generated by the information that its
structure preserving maps, encoded as Boolean covers in localization systems
carry, as well as their compatibility relations. Most significantly, the same
compatibility conditions provide the necessary relations for understanding
a system of localizations for a quantum event algebra as a structure sheaf
of Boolean coefficients associated with local contexts of measurement of
observables.

Finally, the operational substantiation of the sheaf theoretical scheme
of representation of quantum event algebras, is naturally provided by the

application of Stone’s representation theorem for Boolean algebras. Accord-
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ing to this theorem, it is legitimate to replace Boolean algebras by fields of
subsets of a space, playing the equivalent role of a local context for measure-
ment. We note that in an equivalent topological interpretation, we could
consider a local measurement space as a compact Hausdorff space, the com-
pact open subsets of which are the maximal filters or the prime ideals of the
underlying Boolean algebra. If we replace each Boolean algebra B in B by
its set-theoretical representation [3, By, consisting of a local measurement
space X and its local field of subsets By, it is possible to define local mea-
surement space covers (Byx,¥py, : A(Byx)——>L) and corresponding space
localization systems for a quantum event algebra L in £. Again from lo-
cal measurement space covers (By, ¥ p,, : M(By)—>L) we may form their
equivalence classes by using the colimits construction in the category of ele-
ments of R(L). Then by taking into account the conditions for compatibility
on overlaps we can establish a full and faithful representation of quantum
events in L by equivalence classes of local measurement space covers. Un-
der these circumstances we may interpret these equivalence classes as the
statistical experimental actualizations of the quantum events in £. The
pullback compatibility condition, which is in bijective correspondence with
the one in £ since it holds in a localization system, may be interpreted in
the operational context as denoting that two local space representations of
quantum events satisfy the compatibility condition on overlaps if and only
if they support measurements of observables sharing the same experimental
arrangement.

The above set-up could be the ideal starting point for the development
of quantum probability, as a contextual probability theory on a structure
sheaf of Boolean coefficients associated with local contexts of measurement
of observables. Following this line of thought we may obtain important in-
sights regarding probabilistic notions in quantum theory. In the prologue
we have expressed the thesis that the logic of quantum propositions reflects
literal ontological structures of the quantum domain of discourse. Of course
the substantiation of this claim necessitates a thorough investigation of the
truth values structures suited to express the quantum domain of discourse.
In classical theories it is well known that the logic of events, or equivalently,
propositions referring to the behavior of a classical system is character-
ized by valuations into the trivial Boolean two-valued truth values object

2 := {0, 1} stating that a proposition is true or false. Moreover the notion

13



of probability has been designed as a superstructure on the truth values
object 2, expressing an ignorance of all the relevant details permitting a
sharp true/false value assignment on the propositions of the theory. In this
sense classical probabilities are not objective, but constitute a measure of
ignorance. On the other side, in quantum theories a true/false value assign-
ment is possible under the specification of a Boolean preparatory context of
measurement and only after a measurement device provides a response as a
result of its interaction with a quantum system. This state of affairs is at
the heart of the problem of quantum measurement and makes necessary a
careful re-examination of all the relevant assumptions concerning valuations
of propositions that belong in quantum event structures. In this manner,
if the truth values structures suited for valuations of quantum propositions
prove to be different from the trivial two-valued classical ones, the notion of
quantum probability acquires an objective meaning and its interpretation
cannot be based on ignorance. Rather, it can be conceived as a measure
of indistinguishability in the generalized topological sense of covering sys-
tems on categories, being in agreement at the same time, with the physical
semantics of a sheaf theoretical interpretation. In the sequel, our objec-
tive will be exactly the investigation of the truth values structures suited to
express valuations in quantum event algebras. Fortunately the categorical

framework provides all the necessary means for this purpose.

3 The Subobject Functor

3.1 Existence of the Subobject Functor in £

We have seen previously that the counit of the fundamental adjunction, re-
stricted to localization systems of a quantum event algebra is a quantum
algebraic isomorphism, iff the right adjoint functor is full and faithful. This
fact is important, because it permits us to consider the category of quantum
events algebras as a reflection of the category of presheaves of Boolean event
algebras Sets?”. Tt is methodologically appropriate to remind that the co-
ordinatization functor, M : B—— L, is called a proper modeling functor iff
the right adjoint functor of the established adjunction is full and faithful.
In this sense, a proper modeling functor guarantees a full and faithful cor-

responding representation of quantum event algebras in terms of Boolean

14



localization systems, such that the whole information content contained in
a quantum structure of events is totally preserved by its covering systems
of Boolean domain coordinatizations. Furthermore, the fact that £ can be
conceived as reflection of Sets®” secures that £ is a complete category,
as well as that, monic arrows are preserved by the right adjoint functor R.
Since L is a complete category, there is a terminal object for insertion of
information related with the structure of events it represents, and also, there
exist pullbacks securing the satisfaction of compatibility relations. In par-
ticular, since pullbacks of monic arrows also exist, there exists a subobject

functor.

Definition: The subobject functor of the category of quantum event

algebras is defined as:
Sub : L — Sets

This is, remarkably, a contravariant functor by pulling back. Composition
of this functor with a proper modeling functor provides a presheaf functor

in Sets®” as follows:
SuboM : B? — L7 — Sets
In a compact notation we obtain:
O(M(—-)) : B’ — Sets

such that:
B 5 B+ [Dom(m)—"M(B)] € Sets

where the range denotes an equivalence class of monic algebraic homomor-
phisms to M(B).

Definition: We say that ©(IM(B)), is the set of all subobjects of M(B)
in the category of quantum events algebras L.
Furthermore it is easy to verify that, ©(M(B)) is a partially ordered set

under inclusion of subobjects.

3.2 Representation of the Subobject Functor in £

A natural question that arises in this context, is if it could be possible to

represent the subobject functor by means of a quantum events algebra, €2,

15



that is an object of £, which would play the role of a classifying object in
L. The representation of the subobject functor in L, is significant from a
physical perspective, since it would allow to associate the concrete classify-
ing object €2, with the functioning of a truth values object, in a sense similar
to the role played by the two-valued Boolean object 2 := {0,1}, in charac-
terization of the logic of propositions referring to the behavior of classical
systems. In that case, subobjects of a quantum events algebra should be
characterized in terms of characteristic functions, that take values, not in
2, but precisely, in the truth values object €2 in £. Most importantly, in
that case the category of quantum events algebras £, is endowed with a

subobject classifier, defined categorically as follows:

Definition: The subobject classifier of the category of quantum events

algebras is a universal monic quantum homomorphism,
T:=True:1—

such that, to every monic arrow, m : K — L in L, there is a unique
characteristic arrow ¢,,, which, with the given monic arrow m, forms a

pullback diagram

This is equivalent to saying that every subobject of L in L, is uniquely a

pullback of the universal monic 7.

Subobject Representation Theorem: The subobject functor can be
represented in the category of quantum event algebras, £, iff there exists a
classifying object Q in L, that is, iff there exists an isomorphism for each

Boolean domain object of the model category, as follows:

O(M(—)) ~R(Q2) := Hom,/(M(—),)

16



Proof: We have seen previously, that the counit of the adjunction, for

each quantum event algebra object L of L, is
e, : LR(L)——L

€1, being a a quantum algebraic isomorphism, guarantees a full and faithful
representation of a quantum event algebra in terms of a covering or localiza-
tion system consisting of Boolean domain coordinatizations via the action
of a proper modeling functor. From the other side, we have seen that for

any presheaf P € Sets®” | the unit is defined as
op: P——>RLP

It is easy to see that if we consider as P € Sets®”, the subobject functor

O(M(—)) we obtain the following arrow:
Som(-)) : OM(=)) ——RLO(M(-))
or equivalently:
dom(-)) : OM(=))——> Hom(M(—-), LO(M(-))

Hence, by inspecting the unit of the adjunction arrow dgg(-)), we conclude
that the subobject functor becomes representable in the category of quantum

events algebras if we, equivalently, prove the following:

Subobject Unit Theorem: Given that the counit of the Boolean-quantum
adjunction is an isomorphism, if the unit dgn(—)) is also an isomorphism,
then the subobject functor becomes representable in £, by the quantum
events algebra classifying object €, characterized explicitly as, 2 := LO(M(—)),
and thus, the category of quantum events algebras £ is endowed with a sub-
object classifier, that functions as a quantum truth values object in £. The

inverse of the theorem also obviously holds.

Proof: Firstly, it is easy to notice that, in case, the unit dgmng(-)) is an
isomorphism, then the classifying quantum event algebra 2, is constructed
by application of the left adjoint functor, that is, as the colimit taken in the

category of elements of the modeled subobject functor, according to:
Q:=LO(M(-))

17



We may verify the above immediately, by realizing that if the unit dg ()

is an isomorphism, then;
Q:=LO(M(—)) ~ LIRLO(M(—-))] ~ LRQ

is precisely an expression of the counit isomorphism for the quantum event
algebra ().

Next, we will show explicitly that, if the unit dg(ng(—)) is an isomorphism,
the category of quantum events algebras L is endowed with a subobject
classifier, that functions as a quantum truth values object in L. For this
purpose, we consider a monic quantum homomorphism [ : K — L, denoting

a subobject of L, in £, and subsequently, we define a natural transformation

. op
in SetsZ”:

&, R(L) — O(M(-))
specified for each Boolean event algebra B, in B by:
(@] : R(L)(B) — ©(M(B))
such that for an element e in R(L)(B), we have:
[@]p(e) :==1xe

where the monic arrow [ * e, denotes the pullback of [ along e in L, as in the

following diagram:

Dom(lxe)——> K

ke l

M(B)—&%— L

Furthermore, if we take into account the subobjects of the terminal object 1
in £, denoted by the uniquely defined monic quantum algebraic homomor-

phisms x : K < 1, we may define a natural transformation in Sets®”:
T:R(1) — O(M(-))
specified for each Boolean event algebra B, in B by:

(Y5 : R(1)(B) — 6(M(B))

18



such that for the unique element «(B) in R(1)(B), we have:
[T]p(a(B)) := idni(B)

At a next stage, we may combine the natural transformations, defined previ-
ously, in order to obtain, for each monic quantum algebraic homomorphism
| : K — L, the following commutative diagram in Sets®”, that by con-

struction is a pullback as it can be easily seen.

R(K)—— > R(1)
) Y
O g

R(L) ——6(M(-))

Moreover we consider the arrows obtained by composing, the arrows [®]

and [Y], with the unit isomorphism dgni(—y) as follows:

dom(—)) © P R(L) — O(M(-)) — R(©2)

Concerning the latter composite arrow, we may define:
R(T) = 5@(1\/[(_)) oY : R(l) — R(Q)

and using the fact that the right adjoint functor is full and faithful, by the
counit isomorphism, we obtain a uniquely defined monic quantum homo-
morphism

T:=true:1— Q

The previous pullback diagram, together with the composite arrows
domv(-)) 2P, dom(—) o T, facilitate the immediate verification of the claim,
as follows: We wish to show that, if the unit of the adjunction dgng—)) is

an isomorphism, then

Sub(L) ~ Homp (L, )
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such that that the category of quantum event algebras L is endowed with a

subobject classifier. So we define a map
wr, : Sub(L) — Homp(L, Q)
such that the element e of the range, defined by:
Sub(L)>l—[e: L — Q]
is specified by the requirement:
R(e) = domm(—)) o @1 : R(L) — R(Q)

Hence, for the subobject [ of L, in £, and the element e of Homp(L,),

with e = @, (1), we obtain the following pullback diagram in Sets?”,

R(K)— R(1)

J/R(l)
(L) R(e) R

R(L)————>R(Q))

R(T)

Using again the argument of the counit isomorphism, that specifies the right

adjoint as a full and faithful functor, we obtain a pullback diagram in L:

|
K —— 1

~

L —5— 0
Moreover, it is straightforward to show that, wy, : Sub(L) — Homp(L, )
is 1-1 and epi. Thus, we have verified that, if the unit dgn(—)) is an isomor-
phism, then the category of quantum events algebras, £, is endowed with
a subobject classifier, according to the above pullback diagram. Precisely
stated, the subobject classifier in £, is specified by the monic quantum alge-
braic homomorphism 7':= T'rue : 1 — §, such that, R(T) := dgam-) o T.
It is easy to notice that the inverse obviously holds. As a consequence we

conclude that the diagram below;
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Dom(\) LR(1)
A LY =T
M(B) PN =C o))

is a pullback square for each quantum algebraic homomorphism

@m(p)(A) = ¢ M(B) — LO(M(-))

from a Boolean domain modelled object, such that A is a subobject of M(B).

It is important to notice, that in this case:

WM(B)()‘) = 5®(M(B))()‘)
and since this holds for arbitrary subobject A of M(B), we have

wM(B) = doM(B))

The above completes the proof of the theorem.

It is instructive to remark the significance of the subobject representa-
tion theorem, in relationship with the notion of quantum sets. This notion
can acquire a precise meaning in the present framework, if we remind the
analogy with classical sets. We notice that classical sets are specified by the
rule which states that the subsets of any set are represented as characteristic
functions into 2. By analogy, we may say that quantum sets admit a spec-
ification by the rule according to which, the subsets of a quantum set are
represented as characteristic arrows in the quantum truth values object €.
We may easily associate a quantum set, specified as above, by the colimit in
the category of elements of a presheaf of local spaces, where each local space
is the representation of a Boolean event algebra using Stone’s representation

theorem, as has already been explained in Section 2.2.
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4 Tensor Product Representation of the Quantum

Subobject Classifier

4.1 Quantum Truth Values Representation

The quantum truth values object €2, has been characterized as 2 = LO(M(—)),
that is, as the colimit taken in the category of elements of the modeled sub-
object functor. In what follows, we are going to exploit the categorical
construction of the colimit defined above, as a coequalizer of a coproduct.
For this purpose, it is necessary to consider the category of elements of
O(M(—)), denoted by [(@(M(—)), B). Its objects are all pairs (B, pnm(p)),
where n(py is a subobject of M(B), that is, a monic quantum homomor-
phism in M(B). The morphisms of the category of elements of ©(M(—))
are given by the arrows (B, d)M(B))H(B, ¢Mm(B)), namely they are those
morphisms u : B—— B of B for which oy *u = ng(B), where ©np(p) * u

,

denotes the pullback of the subobject of M(B), ¢n(p), along u.

Tensor Product Representation Theorem: The quantum truth val-
ues object {2, given by the colimit in the category of elements of the modeled
subobject functor, @ = LO(M(—)), admits the following coequalizer repre-

sentation in tensor product form:

HvBﬂBM(B) Y ST ¢ g; H(B"pM(B)))M(B) %@(M(_))(g)BM

In the diagram above the second coproduct is over all the objects (B, ©M(B))
with png(p) € O(M(B)) of the category of elements, while the first coprod-
uct is ove}r all the maps v : (B, d)M(B))H(B, em(B)) of that category, so
that v : B—— B and the condition @nyp) * u = ¢M(B) is satisfied.

The proof of the theorem above, makes use of standard category theo-
retical arguments, regarding the representation of a colimit as a coequalizer
of coproduct [5]. For physical purposes, it is essential to describe the truth
values of Q@ = ©(M(—))®sM explicitly, and then, demonstrate how they
can be used for valuations of propositions in typical quantum measurement

situations.
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Quantum Truth Values Theorem: The quantum truth values in (2

admit a tensor product representation in the following form:
[dovi(B)™ME) (b) = Py @b
where
[om(m)y*v]®b = onm@v(b),  enmen) € OM(B),be M(B),v: B — B,v(b) =b

and a Boolean cover of the truth values object in a localization system, using

the unit of the adjunction, is expressed as:

dov(n) (PMm(B)) = [Pom(m)|™™M®

Proof: First of all, it is essential to prove that, the set ©(M(—))®@gM
endowed with the relevant structure, is actually a quantum event algebra,
for every B in B, so that, its elements can be interpreted as quantum truth
values.

According to the coequalizer representation of the colimit established
previously, if we consider its interpretation in the category of Sets, the
coproduct II, ( B))1\/I(B) is a coproduct of sets, which is equivalent to the
product ©(M(B)) x M(B) for B € B. The coequalizer is thus the definition
of the tensor product ©(M(—)) ® A of the set valued functors:

O(M(—)) : B ——Sets, M : B——Sets

1 s©(M(B)) x Hom(B, B) x M(B) ﬁ

)

ﬁ [150(M(B)) x M(B)% ©(M(-)) ® M(B)

According to the preceding diagram for elements pnyp) € O(M(B)), v :
B — B and ¢ € M(B) the following equations hold:

Clemepys v, 4) = (omm)y *v,4),  nlems), ;4 = (oM, v(4))

symmetric in ©(M(B)) and M. Hence the elements of the set ©(M(B))®zM
are all of the form x(¢m(By),q). This element can be written as

x(emB)), @) = emB) @ ¢ ¢m() € OM(B)),q € M(B)
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Thus if we take into account the definitions of ¢ and 1 above, we obtain
lem(B)*v]®@4 = em)@v(4),  pmp) € OM(B),§ € M(B),v: B——>B

We conclude that the set ©(M(B))®sM is actually the quotient of the set
IpO(M(B)) x M(B) by the equivalence relation generated by the above

equations. Furthermore, if we define:
[om(p) * v] = dppp

v(d) =q

where ¢y ) is a subobject of M(B) and ¢ € M(B), we obtain the equations:

QbM(B”) ®q= PM(B) ® 4

At a next stage, since pullbacks exist in £ , we may consider the arrows
h : M(D) — M(B) and h : M(D) — M(B) and the following pullback

diagram in L:

M(D)—" sM(B)

N

M(B)——> L

such that the relations that follow are satisfied: h(d) = ¢, h(d) = ¢ and
oM(B) ® h = QSM(B) Q h. Then we obtain:

oM(B)®4 = pm(B)@h(d) = [pm(p)*h|@d = [¢M(B)*ﬁ]®d = ¢M(B)®fl(d) = ¢M(B)®é
We may further define:
om(B) *h = bpg ) * b= emp)
Then, it is obvious that:
eM(B) ® ¢ =emp) ®d
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It is then evident that we may define a partial order on the set ©(M(B))®3M

as follows:
emB) @b < om(c) ® ¢

iff there exist quantum algebraic homomorphisms 3 : M(D) — M(B) and
v : M(D) — M(C), and some dj, d2 in M(D), such that: (3(di) = b,

v(dz) = ¢, and eMm(B) * B = om(c) * 7 = em(p)- Thus we obtain:
eM(B) ® b =emp) ® di
oM(0) ® ¢ = em(p) ® do
We conclude that:
¥YM(B) ®b < oM(C) Rc
iff
EM(D) @ dy < EM(D) @ dy <= dy < do

The set ©(M(B))®M may be further endowed with a maximal element

which admits the following presentations:

l=epmiz)®1 V5M(Z) € O(M(2))

and an orthocomplementation operator:
[em(z) ® 2" = em(z) ® 2"

Then it is easy to verify that the set ©(M(—))®sM endowed with the
prescribed operations is actually a quantum event algebra, for every B in

B. Consequently, the truth values in ) are represented in the form
[dov(B)|?M®) (b) = om(B) ® b

where

[SDM(B)*U](X)I; = (PM(B)®U(6)7 YM(B) € O(M(B),b € M(B),v: B— B,v(b) =b

and a Boolean cover of the truth values object in a localization system, using

the unit of the adjunction, is expressed as:

dev(B)) (PMm(B)) = [domm))|™™M®
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4.2 Criterion of Truth in the Quantum Regime

In order to understand the functioning of the quantum truth values object €2
in the category of quantum event algebras, we need to establish a criterion
of truth, that can be used for valuations of propositions describing quantum
events.

First of all, it is necessary to provide a definition of the value true. For

this purpose we remind the following:

True : LR(1) — LO(M(-))
T:R(1) - ©(M(—-))

specified for each Boolean event algebra B, in B by:
[Y]5 : R(1)(B) — 6(M(B))
such that for the unique element «(B) in R(1)(B), we have:
[Y]p(a(B)) := idnyp)
Then by the commutativity of the diagram below

M(B)

[Or(1)]*P) Pom(s))

LR(1) True LOM(-))
we may easily conclude that

1 = idyi(p) ® b= True(([og(1)]*) (b)) := true

Having specified the value true of the quantum truth values object €2, we
define the notion of truth with respect to the category of quantum event

algebras as follows:
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Criterion of Truth: The notion of truth with respect to the category of

quantum events algebras is specified as follows:

[5@(M(B))]¢M(B>(b> = (PM(B) ® b = true iff be Dom(gpM(B))

where
[enmyxv]@b = enm@v(B),  oms) € OM(B),be M(B),v: B — B,v(bh) =b
and a Boolean cover of the truth values object in a localization system, using

the unit of the adjunction, is expressed as:

Sov(B)) (PMm(B)) = [Somv(p))|™™ME)

Furthermore according to the pullback diagram below, ¢ a(p) = [ * e, for a
subobject of a quantum event algebra [ : K — L, and a Boolean domain
cover e : A(B) — L.

Dom(lxe)—— K
ke !

AB—&—— [

We conclude that, the characteristic function of a subobject of a quantum
event algebra [ : K — L, is specified as an equivalence class of pullbacks of
the subobject along its restrictions on a localization system of compatible
Boolean domain covers. In particular, if the Boolean covers are monic mor-
phisms, each pullback is expressed as the intersection of the subobject with
the corresponding cover in the Boolean localization system. Moreover, the
value 1 = true in §Q is assigned to all those b that belong in Dom(gpM(B))
according to the pullback diagram above, or equivalently, to all those b, that
belong to the restrictions of a subobject of a quantum event algebra along
the covers of a localization system of the latter. We emphasize that the
specification of the classifying object €2, characterized by the truth values
[dov(B))*M®) (b) = @) @ b, implies a localization of truth in the quan-
tum regime, with respect to Boolean points belonging to a covering system

of a quantum events algebra.
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Furthermore, we may identify the value 1 = true in 2, with the maximal

element of €, as follows:
l=emiz)®1 Vem(z) € ©O(M(2))

The identity above implies that 1 belongs in eny(z), for all eng(z) € O(M(Z2)).
Thus, the quantum truth values can be characterized as equivalence classes
of filters of covers in a Boolean localization system, and the maximal value
true corresponds to an equivalence class of ultrafilters. Using this obser-
vation, it is straightforward to state the truth value criterion, in case of
monic covers in a Boolean localization system of a quantum events algebra

as follows:

Criterion of Truth for Monic Boolean Covers:

Bomrenl™@(c) = ome) ®@c=true  iff  c=Qpc(1)

that is, if and only if, ¢ is in the image of the maximal element in M(B),

via the isomorphism pasting map g ¢, where;

Q5 ¢ ova) (M(B) (Y M(B)) — oy 5 (M(B) (| M(B))

according to the pullback diagram below:

M(B)NM(B) 2L M (B)
PM(B) (02
Vi

M(B)—2L— L

is defined by;

QB,B = PM(B) © 'QM(B)_l

5 Application in Quantum Measurement

The use of the quantum truth values object €2, in conjunction with the

language of Boolean reference frames, for valuations of propositions related
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with the behavior of quantum systems, provide a powerful formal mecha-
nism capable of resolving the problems associated with the quantum regime
of description of reality. The provocative claim that follows from the topos-
theoretic logical framework developed in the previous Sections, has to do
with the realization that the quantum measurement problem, as well as its
associated problem of quantum state reduction, are not related with any
actual physical mechanism, but on the contrary, are logical consequences
of the use of an inappropriate classifying object in the category of quan-
tum event algebras. More concretely, the two elements Boolean algebra 2,
used for valuations of propositions related with the behavior of a classical
system, cannot be also used for valuations of propositions of quantum sys-
tems, because it cannot play the role of a subobject classifier in the category
of quantum event algebras, as in the classical case. Thus, the conceptual
essence of existence of a quantum truth values object €2 in the category of
quantum event algebras, as specified concretely in the previous Section, is
associated with the fact that € constitutes the appropriate quantum algebra
or quantum logic for valuations of propositions describing the behavior of a
quantum system, in correspondence with the classical case, where the two
elements Boolean algebra 2 is properly used.

In this sense, propositions associated with the description of the behavior
of a quantum system in various contexts of observation, identified by Boolean
covers in localization systems of a quantum event algebra, are being properly

assigned truth values in 2, by means of:
[bovi(r))|*M®) (b) = sy @b
where
[SDM(B)*U]®6 = (PM(B)®U(6)7 YM(B) € O(M(B),b€ M(B),v: B — B,v(b) =b

and furthermore b may be though as representing the element (for instance
projection operator) that identifies a proposition p in the context of M(B).
It is instructive to notice that the description of reality in the quantum
regime, by means of the quantum truth values in 2, is relativized and local-
ized with respect to Boolean reference frames.

More specifically, a complete description of reality is characterized

by the requirement that:
true =1 = epp(z) @ 1 Vem(z) € O(M(2))
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true =1 =idyyp) ®b Vb€ M(B)

Now, we are in a position to interpret from our perspective, a typical mea-
surement situation referring to a quantum system prepared to pass through
a slit, where a counter has been put to record by clicking, the passage
through the slit. If we denote a Boolean domain preparation context, that
contains both the measuring apparatus as well as the system observed, by
M(B), then we may form the propositions: (p) :=counter clicks, {q) :=sys-
tem passes through the slit, as well as, the composite proposition ( Counter
clicks = system passes through the slit ):=( p — q )

The proposition ( p — ¢ ) is assigned the value true in ), expressing
a complete description of the state of affairs. Moreover, in every Boolean
cover of a localization system, the maximal element corresponds to (p —
q) = (—pV q). We notice that, the above is not enough to infer that (g) is
true. In order to infer the above, we need to use the Boolean reference frame
that contains only the measuring apparatus, being obviously a subobject of
the preparatory Boolean frame M(B). If we denote by eny(p), the monic
that corresponds to the specified subobject, we easily deduce that

EM(B) ® p = true

since obviously p is contained in Dom(aM( B)), and for notational convenience
we have identified the proposition (p) with its corresponding element p in
M(B). Now, it is evident that, with respect to the Boolean frame contain-
ing only the apparatus, we can say that the proposition (q) :=system passes
through the slit is true. In this perspective, the existence of a measuring
apparatus plays the role of an ultrafilter in the preparatory context M(B),
transforming truth with respect to 2, into two-valued truth with respect to
2. This is effectuated by the fact that the monic subobject of M(B), con-
taining only the measuring apparatus, is equivalent to a classical valuation
map A(B) — 2, as can be easily seen from the ultrafilter characterization.

Thus, the role of the measuring apparatus in a typical measurement sit-
uation as the above, provides precisely the means for the transformation of
the quantum truth values object €2, into the classical object 2. In this sense,
we conclude that the physics of the apparatus specifies a Boolean frame, in
which a unique decomposition of the proposition p — ¢ is possible, such that

the proposition q is legitimately assigned the value true, only with respect to
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that frame, namely an ultrafilter in M(B). From that perspective, Kochen-
Specker theorem is an expression of the fact that a unique apparatus cannot
reduce all propositions in a quantum event algebra to classical two-valued
truth, or equivalently, that truth/false assignments cannot be performed in
a global quantum logic with respect to a unique Boolean cover. The latter
realization justifies again, a posteriori, the use of variable Boolean contexts
interlocking non-trivially in localization systems of a quantum algebra of
events, interpreted as Boolean reference frames in a sheaf-theoretic environ-
ment. We may further argue that, the variation of the base Boolean events
algebra is actually arising from any operational procedure aiming to fix the
state of a quantum system, and corresponds in this sense, to the variation of
all possible Boolean preparatory contexts for measurement. In this setting,
the notion of truth is adjacent to equivalent classes of compatible filters,
instantiating subobjects of preparatory contexts for measurement, whereas
the value true, that provides a complete description of reality, is prescribed
by the rule true = 1 = epgpy @ 1 Vempy € ©(M(B)).

6 Epilogue

In this paper, we have proposed a category-theoretic framework for the in-
terpretation of quantum events structures and their logical semantics. The
scheme of interpretation is based on the existence of the Boolean-quantum
adjunction. From that adjunction, characterized by means of the counit and
unit natural transformations, we have constructed a sheaf-theoretic repre-
sentation of quantum events algebras in terms of Boolean localization sys-
tems, as well as, a quantum subobject classifier, that plays the role of a
classifying object in the quantum universe of discourse. In this sense, the
Boolean-quantum adjunction incorporates both, the semantics of represen-
tation of quantum logics as sheaves of local Boolean coeflicients, and, the
semantics of truth values encoded in the specification of a classifying object
in the category of quantum logics.

Thus, from a physical viewpoint, the Boolean-quantum adjunction stands
as a theoretical platform for decoding the global structural information con-
tained in quantum algebras of events via processes of localization in Boolean
reference frames, realized as physical contexts for measurement of observ-

ables, and subsequent processes of information classification in terms of
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truth values. The functioning of this platform is based on the establishment
of a bidirectional dependence between the Boolean and quantum structural
levels of events in local or partial congruence. Most significantly, the de-
pendence takes place through the topos-theoretic universe of sheaves of sets
over the Boolean points of quantum events algebras, where these generalized
points play the role of local Boolean covers, effectuating in this sense the
idea of partial congruence mentioned above. Of course, the sheaf-theoretic
requirements secure the compatibility of the Booleanized information in the
overlapping regions of physical measurement contexts.

Additionally the global closure of this bidirectional dependence, is nec-
essary to be constrained to obey certain conditions, such that its total con-
stitutive information content, unfolded in the multitude of local Boolean
reference frames, is both, preserved and, coherently organized in a logical
manner. Remarkably, the necessary and sufficient conditions for both of
these requirements, that is:

[i] preservation of the quantum information content in Boolean localiza-
tion systems, and,

[ii] logical classification of quantum information by means of truth values,
is supplied by the Boolean-quantum adjunctive correspondence itself, via the
counit and unit natural transformations respectively.

More concretely, regarding the first condition, we conclude that it is
satisfied if the counit of the adjunction is an isomorphism for each quan-
tum events algebra. In this case, there exists a full and faithful sheaf-
theoretic representation of quantum events algebras in the descriptive terms
of Boolean covering systems, characterized as Boolean localization systems
of measurement. Regarding the second condition, we conclude that it is
satisfied, given the validity of the first condition, if the unit of the adjunc-
tion is an isomorphism for the subobject functor. In this case respectively,
the subobject functor is representable in the category of quantum events
algebras by a classifying object in that category, called subobject classifier.
The classifying object plays the role of a quantum truth values object and
may be legitimately used for valuations of quantum propositions, in exact
correspondence with the use of the two-valued Boolean object, used for val-
uations of classical propositions. Moreover, the quantum subobject classifier
provides the key logical device for the analysis of typical quantum measure-

ment situations, providing a criterion of truth for a complete description of
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reality in the quantum regime.
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