Original article
Variation in plant diversity in Mediterranean Climate
Ecosystems: the role of climatic and topographical
stability
Richard M. Cowling ^{1*} , Alastair J. Potts ¹ , Peter Bradshaw ^{1,2} , Jonathan Colville ³ , Margar
Arianoutsou⁴, Simon Ferrier⁵, Felix Forest ⁶ , Nikolaos M. Fyllas⁴, Stephen D. Hopper ⁶ , Fernando Ojeda ⁷ , Şerban Procheş ⁸ , Rhian J. Smith ⁶ , Philip W. Rundel ⁹ , Emmanuel
Vassilakis ¹⁰ and Brian R Zutta ¹¹
Vassiakis and Bran N Zatta
¹ Department of Botany, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth 6032,
Africa, ² South African National Parks, Nelson Mandela Metropolitan University, P.O. Box 76693, Port
Elizabeth 6031, South Africa, ³ Applied Biodiversity Research Division' South African National Biodiversity
Institute, Private Bag X7, Claremont 7735, South Africa, ⁴ Department Ecology and Systematics, Faculty of Biology, University of Athens, 15784 Greece, ⁵ CSIRO Ecosystem Sciences, GPO Box 1700, Canberra, ACT 2
Australia, ⁶ Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3DS UK, ⁷ Centre of Excellence in Natura
Resource Management and School of Plant Biology, The University of Western Australia , Foreshore Hou
Abany 6330, Australia, ⁷ Departamento de Biología, Universidad de Cádiz, Campus Río San Pedro, 11510
Puerto Real, Spain, ⁸ School of Biological and Conservation Sciences, University of KwaZulu-Natal, Private X01 Scottsville 3209, South Africa, ⁹ Department of Ecology and Evolutionary Biology University of Califo
(UCLA) Los Angeles CA 90095, USA, ¹⁰ Department of Dynamic, Tectonic, Applied Geology, Faculty of Geo
and Geo-Environment, University of Athens, 15784 Greece, ¹¹ Jet Propulsion Laboratory, California Institu
Technology, 4800 Oak Grove Dr, Pasadena, CA 91109, USA.
Running header: Plant diversity and stability in Mediterranean Climate Ecosystems
ABSTRACT
Aborrater
Aire Although all five of the major Maditerraneous Climate Frequetory (NACE) of the un
Aim Although all five of the major Mediterranean Climate Ecosystems (MCE) of the w
are recognized as loci of high plant species diversity and endemism, there is considera
variation in regional-scale richness amongst them. Here we assess the role of stable
Pleistocene climate and Cenozoic topography in explaining variation in regional richne the globe's MCEs. We hypothesize that older, more climatically stable MCEs would support the stable stable between the stable stable stables.
more species since these have had more time for species to accumulate than MCEs that
are historically subject to greater topographic upheavals and fluctuating climates.
are instantiany subject to greater topographic upreavals and nuctuating climates.
Location Southwastern Africa (Cana) couthwastern Australia, California, control Chil
Location Southwestern Africa (Cape), southwestern Australia, California, central Chil
the eastern (Greece) and western (Spain) Mediterranean Basin.
Methods We estimate plant diversity for each MCE as the intercept of species area
curves homogeneous in slope across all regions. We use two down-scaled Global
*Correspondence: Richard Cowling, Department of Botany, Nelson Mandela Metropolitan University, P Box 77000, Port Elizabeth 6031, South Africa.

41 Circulation Models of Last Glacial Maximum (LGM) to quantify climate stability by

- 42 comparing the change in the location of MCE between the LGM and present. We
- 43 quantified Cenozoic topographic stability of each MCE by comparing contemporary
- 44 topographic profiles with those present in the late Oligocene and the early Pliocene.
- - **Results** The most diverse MCEs Cape and Australia have the highest Cenozoic

environmental stability, and the least diverse ones – Chile and California – have the lowest
stability.

Main conclusions Variation in plant diversity in MCEs is likely to be a consequence not of differences in diversification rates, but rather the persistence of numerous pre-Pliocene clades in the more stable MCEs. The extraordinary plant diversity of the Cape is a consequence of the combined effects of both mature and recent radiations, the latter associated with increased habitat heterogeneity produced by mild tectonic uplift in the Neogene.

57 Keywords

- 58 California, Cape, central Chile, diversification rate, mature radiation, Mediterranean Basin,
- 59 OCBIL, recent radiation, southwestern Australia, YODFEL
- 61 Abstract: 279 words (300 max)
- 62 Text (abstract, text and references): 7 190 words (7 000 max)

INTRODUCTION

67	The five Mediterranean Climate Ecosystems (MCEs) of the world have attracted interest as
68	loci for studying ecosystem and evolutionary convergence for almost 150 years (Grisebach,
69	1872; Cody & Mooney, 1978; Specht & Moll, 1983; Keeley <i>et al.</i> , 2012; Cardillo & Pratt,
70	2013). More recently, MCEs have been the focus of numerous molecular-level studies on
71	the diversification of plants e.g. (Hopper <i>et al.</i> , 2009; Verboom <i>et al.</i> , 2009; Espindola <i>et</i>
72	al., 2010; Valente et al., 2011; Buerki et al., 2012; Lancaster & Kay, 2013). Interest in plant
73	evolution in MCEs stems from their harboring the world's richest extratropical floras
74	(Cowling <i>et al.</i> , 1996; Kreft & Jetz, 2007) and having high levels of endemism across all
75	spatial scales (Cowling & Holmes, 1992; Hopper & Gioia, 2004; Georghiou & Delipetrou,
76	2010; Kraft et al., 2010). All five MCEs have been identified as biodiversity hotspots: areas
77	which share large numbers of endemic taxa that are being increasingly threatened by
70	human impacts (Nevers at al. 2000)
78	human impacts (Myers <i>et al.,</i> 2000).
78 79	numan impacts (iviyers et ul., 2000).
	numan impacts (iviyers <i>et ul.</i> , 2000).
79	While MCEs exhibit some of the best documented examples of ecological convergence
79 80	
79 80 81	While MCEs exhibit some of the best documented examples of ecological convergence
79 80 81 82	While MCEs exhibit some of the best documented examples of ecological convergence (Mooney, 1977; Cowling & Witkowski, 1994), there are equally striking examples of
79 80 81 82 83	While MCEs exhibit some of the best documented examples of ecological convergence (Mooney, 1977; Cowling & Witkowski, 1994), there are equally striking examples of divergence (Cody & Mooney, 1978; Cowling & Campbell, 1980). Researchers have resorted
79 80 81 82 83 84	While MCEs exhibit some of the best documented examples of ecological convergence (Mooney, 1977; Cowling & Witkowski, 1994), there are equally striking examples of divergence (Cody & Mooney, 1978; Cowling & Campbell, 1980). Researchers have resorted to categorizing MCEs in terms of their respective selective regimes in order to better
79 80 81 82 83 84 85	While MCEs exhibit some of the best documented examples of ecological convergence (Mooney, 1977; Cowling & Witkowski, 1994), there are equally striking examples of divergence (Cody & Mooney, 1978; Cowling & Campbell, 1980). Researchers have resorted to categorizing MCEs in terms of their respective selective regimes in order to better explain convergences and divergences among them. Thus, MCEs have been differentiated
79 80 81 82 83 84 85 86	While MCEs exhibit some of the best documented examples of ecological convergence (Mooney, 1977; Cowling & Witkowski, 1994), there are equally striking examples of divergence (Cody & Mooney, 1978; Cowling & Campbell, 1980). Researchers have resorted to categorizing MCEs in terms of their respective selective regimes in order to better explain convergences and divergences among them. Thus, MCEs have been differentiated in terms of climate (e.g. amount of summer rain, reliability of winter-rainfall) (Cowling <i>et</i>

89 nutrient status (Keeley *et al.*, 2012).

Contemporary ecological factors fail to explain comprehensively the variation in regional-scale plant diversity of MCEs (Cowling et al., 1996; Valente & Vargas, 2013). Energy regimes, as measured by potential evapotranspiration, are highest in the South West Australian Floristic Region and the California Floristic Province (Bradshaw & Cowling, 2014), which show contrasting diversity patterns. Moreover, topographical heterogeneity - a surrogate for habitat diversity - is highest in the eastern Mediterranean Basin and central Chile (relatively species-poor) and lowest in the South West Australian Floristic Region (relatively species-rich), while the Cape Floristic Region, which is the most species-rich area by far, has moderate heterogeneity (Bradshaw & Cowling, 2014). It appears that variation in contemporary plant diversity patterns in MCEs is profoundly influenced by their respective environmental histories and their impacts on patterns of diversification (speciation minus extinction) (Cowling et al., 1996; Jansson & Dynesius, 2002; Cowling et al., 2008; Linder, 2008; Hopper, 2009; Valente et al., 2011; Valente & Vargas, 2013). In this regard, Hopper's (2009) categorization of MCEs in terms of environmental stability is informative: he differentiated those associated with old, climatically buffered, infertile landscapes (OCBILS), namely the South West Australian Floristic Region (hereafter Australia) and the Cape Floristic Region of southwestern South Africa (hereafter the Cape), and those dominated by young, often disturbed, fertile landscapes (YODFELS), namely the Mediterranean Basin, the California Floristic Province (hereafter California) and central Chile (hereafter Chile). Hopper (2009) predicted higher plant richness and endemism in OCBIL than YODFEL MCEs, owing to higher rates of lineage persistence in the former. In

Journal of Biogeography

113	other words, old, stable landscapes have had more time for species to accumulate than
114	those that are historically subject to greater topographic upheavals and fluctuating
115	climates. However, Hopper's (2009) categorization lacks a quantitative basis. This we
116	5 provide in this paper.
117	
118	There are many examples in the literature of the role of climatic and topographic stability
119	in influencing the processes that determine the number of species that particular regions
120	support e.g. (Qian & Ricklefs, 2000; Graham <i>et al.</i> , 2006; Araujo <i>et al.</i> , 2007; Mittelbach <i>et</i>
121	al., 2007). No attempt has been made to comprehensively assess the role of historical
122	measures of climatic and topographical heterogeneity in explaining regional patterns of
123	plant diversity in MCEs. This is what we do in this paper by quantifying the climatic and
124	topographic stability of MCEs during the Pleistocene (climate) and the Neogene
125	(topography) in order to assess the OCBIL-YODFEL categorization of MCEs. We then test
126	whether OCBIL MCEs have more diverse floras than YODFEL ones, as predicted by Hopper
127	7 (2009).
128	7 (2009). 3
129	METHODS
130	
131	Study area
132	2
133	Our study area comprises the five MCE biodiversity hotspots, namely California, the Cape,
134	Chile, Australia and the Mediterranean Basin. The Mediterranean Basin MCE occupies a
135	huge area (2.3 million km ²) and includes a wide array of subclimates (Blondel <i>et al.</i> , 2010).
136	Consequently, we chose two subregions for further analysis, one in the western Basin
	5

137	(Spain) and one in the eastern Basin (Greece). These regions differ substantially climatically
138	and biogeographically. The western Basin, west of the Sicily-Cap Bon line has less intense
139	summer aridity and higher autumn and spring rainfall relative to winter compared to the
140	eastern Basin (Blondel et al., 2010). Furthermore, climate-driven isolation and vicariant
141	differentiation of many Mediterranean taxa seem to have occurred in the western and
142	eastern ends of the Mediterranean Basin during the Messinian Salinity Crisis (Migliore et
143	al., 2012) and, particularly, the Pleistocene glaciations (Rodríguez-Sánchez & Arroyo,
144	2008). This, together with the west-east climatic differences, translates into different
145	biogeographical regions (Blondel et al., 2010). Thus, we identified a total of six MCE
146	regions for analysis.
147	
148	Delimitation of Mediterranean-climate ecosystems
149	
149 150	There is no consensus regarding a global classification of MCEs, although the general
	There is no consensus regarding a global classification of MCEs, although the general definition of cool, wet winters and warm, dry summers applies to all. To avoid using an
150	
150 151	definition of cool, wet winters and warm, dry summers applies to all. To avoid using an
150 151 152	definition of cool, wet winters and warm, dry summers applies to all. To avoid using an MCE delimitation that may bias our results, we used three models of MCE classification.
150 151 152 153	definition of cool, wet winters and warm, dry summers applies to all. To avoid using an MCE delimitation that may bias our results, we used three models of MCE classification. The first is the long-standing, expert-opinion classification proposed by Köppen (Geiger,
150 151 152 153 154	definition of cool, wet winters and warm, dry summers applies to all. To avoid using an MCE delimitation that may bias our results, we used three models of MCE classification. The first is the long-standing, expert-opinion classification proposed by Köppen (Geiger, 1961), and the remainder use algorithms widely applied in the field of distribution
150 151 152 153 154 155	definition of cool, wet winters and warm, dry summers applies to all. To avoid using an MCE delimitation that may bias our results, we used three models of MCE classification. The first is the long-standing, expert-opinion classification proposed by Köppen (Geiger, 1961), and the remainder use algorithms widely applied in the field of distribution modelling (Franklin, 2010), specifically maximum entropy and generalized additive models
150 151 152 153 154 155 156	definition of cool, wet winters and warm, dry summers applies to all. To avoid using an MCE delimitation that may bias our results, we used three models of MCE classification. The first is the long-standing, expert-opinion classification proposed by Köppen (Geiger, 1961), and the remainder use algorithms widely applied in the field of distribution modelling (Franklin, 2010), specifically maximum entropy and generalized additive models (Hastie & Tibshirani, 1990; Phillips <i>et al.</i> , 2006). Both expert-opinion and statistical models
150 151 152 153 154 155 156 157	definition of cool, wet winters and warm, dry summers applies to all. To avoid using an MCE delimitation that may bias our results, we used three models of MCE classification. The first is the long-standing, expert-opinion classification proposed by Köppen (Geiger, 1961), and the remainder use algorithms widely applied in the field of distribution modelling (Franklin, 2010), specifically maximum entropy and generalized additive models (Hastie & Tibshirani, 1990; Phillips <i>et al.</i> , 2006). Both expert-opinion and statistical models were used to establish the distribution of, and then changes between, Mediterranean

Journal of Biogeography

3
4 5 6 7
э 6
7
8
9 10
11
12
13 14
14
16
8 9 10 11 12 13 14 15 16 17 18
18 19
20
21
21 22 23 24 25
23 24
25
26
27 28
29
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
31 32
33
34
35
30 37
38
39
40 41
42
43
44 45
46
47
48 40
49 50
51
52
53 54
51 52 53 54 55 56 57
56
57 59
58 59
60

161	temperate, with minimum monthly temperatures between -3°C and 18°C, and with at least
162	four months are above 10°C. Köppen (Geiger, 1961) applied three criteria to ensure that
163	winter precipitation predominates, namely 1) that the summer monthly minimum rainfall
164	amount is less than the minimum winter monthly rainfall amount; 2) that maximum winter
165	monthly rainfall amount is three times the minimum summer monthly rainfall amount; 3)
166	that the minimum summer monthly rainfall amount is less than 40 mm. To differentiate
167	between Mediterranean and more arid winter rainfall regions, Köppen (Geiger, 1961)
168	applied an aridity index, so that annual precipitation exceeds 20 times mean annual
169	temperature (where two-thirds of precipitation occurs in winter).
170	
171	The two statistical models were trained using the distribution of Mediterranean-type
172	vegetation and five bioclimatic variables (annual mean temperature, maximum
173	temperature of the warmest month, annual temperature range, precipitation of the
174	warmest quarter and precipitation of the wettest quarter) (Hijmans et al., 2005). These
175	climate variables capture aspects of temperature, precipitation, seasonality and
176	continentality. However, there are two potential problems. Firstly, there is no standardized
177	global floristic or vegetation map of Mediterranean-type vegetation. Secondly,
178	Mediterranean climate and Mediterranean-type vegetation are not always strongly
179	associated (Keeley et al., 2012); for example, the fynbos of the Cape Floristic Region
180	extends far into a non-seasonal rainfall regime. We identified the distribution of
181	Mediterranean-type vegetation from available floristic or vegetation maps, and where
182	these maps were misleading (e.g. the eastern Cape Floristic Region), we employed expert
183	opinion to refine the area further (see Appendix S1 for further details). From within each
184	regional vegetation map, we selected 500 localities at random. We used these, in

2
3
4
5
6
7
1
8
9
10
11
12
12
13
14
15
16
17
18
19
$egin{array}{c} 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$
20
21
22
23
24
25
20
20
27
28
29
30
21
00
32
33
34
35
36
27
31
38
39
40
41
42
42 43
43
44
45
46
47
48
49
50
51
52
53
51
54
35
56
50 51 52 53 54 55 56 57
57
57 58
57

185	conjunction with 10,000 background points sampled across the earth's terrestrial surface,
186	to train and test the distribution models. To avoid any bias that may have been introduced
187	by the non-standardized vegetation maps and any expert-opinion alteration thereof, for
188	any given MCE region we trained the statistical models using all the localities except those
189	from the region in question. This also avoids any potential circularity of including mapped
190	vegetation for a given MCE region that, in part, may have included climate as a delimiter.
191	These excluded locality points were then used to test the model (i.e. k-folding with each
192	fold representing an MCE) and to calculate the threshold to convert the continuous
193	probability of occurrence maps into binary presence/absence. The conversion to the binary
194	maps utilized the equal sensitivity plus specificity threshold criterion; the relative ranking
195	of the results were robust to the threshold criterion selected (e.g. maximum Kappa or
196	maximum sum of sensitivity plus specificity; results not shown).
197	
198	We constructed the expert opinion climate model and statistical models in R version 3.0.1
199	(Development Core Team, 2013), the latter using the dismo library (Hijmans <i>et al.</i> , 2013),
200	and using climate layers from the worldclim database (Hijmans et al., 2005).
201	
202	Plant diversity
203	
204	We compiled regional richness data (native species only) for MCEs from Cowling et al.
205	(1996, 1997). Additional sources were as follows: Australia (NatureMap,

- (1996, 1997). Additional sources were as follows: Australia (NatureMap, 205
- 206 http://naturemap.dec.wa.gov.au/default.aspx), Cape (Cowling & Lombard, 2002), and
- Spain (Ojeda et al., 2000). Since there are no suitable data from mainland Greece, we had 207
- to use data from the larger islands of the Aegean Sea (see Appendix S2 for data sources). 208

Journal of Biogeography

209	With the exception of Thira (Santorini) which is an active volcanic caldera and Kos, the
210	southwest part of which is characterized by contemporary volcanic activity, the islands are
211	continental islands. Nonetheless, we would expect that the species-area relationship
212	would have a steeper curve and lower intercept than mainland samples (Rosenzweig,
213	1995). All sites were located within the strictly MCE area of each region. We fitted the
214	species-area data for each of the six regions to a double logarithmic regression model and
215	tested for homogeneity of slopes (z) and intercepts (c), following Rosenzweig (1995).
216	
217	Climate stability
218	
219	We assessed climate stability of MCEs as the difference in climate between the Last Glacial
220	Maximum (LGM) and present times, representing one of the largest fluctations in climate
221	conditions experienced during the Quaternary. We used two down-scaled Global
222	Circulation Models (GCMs) of LGM climate that are currently available: the Community
223	Climate System Model (Collins et al., 2004) and the Model for Interdisciplinary Research on
224	Climate (Hasumi & Emori, 2004). These LGM climate estimates have been statistically
225	down-scaled using the WorldClim data set (Hijmans <i>et al.,</i> 2005) and GCM data from the
226	Paleoclimate Modelling Intercomparison Project II (PMIP2) and are available at
227	http://www.worldclim.org. We performed analyses using both GCMs for each of the MCE
228	delimitations. We calculated climate stability by comparing the change in the location of
229	MCE between the LGM and present, i.e. the percentage of the MCE area under current
230	climate that persists under LGM conditions.
231	
232	Topographic stability

2	233	
2	234	We located ca. 350 km transects in each MCE that are representative of each region's
2	235	topography. Using published sources (Table 1), we manually reconstructed topographic
2	236	profiles for each region during the late Oligocene (ca 20 million years ago (Mya)) and the
2	237	early Pliocene (ca. 5 Mya) (Fig. 1). We chose the late Oligocene as a starting point since it
2	238	preceded a period of prolonged relative aridity which, in conjunction with fire, would have
2	239	promoted the expansion of sclerophyllous vegetation allied to that in present-day MCEs
2	240	(Cowling et al., 2009; Keeley et al., 2012). The Oligocene also witnessed radiation of many
2	241	MCE lineages, especially in Australia and the Cape (Linder, 2005; Hopper et al., 2009). In
2	242	order to quantify the topographic stability for the two geological periods (late Oligocene to
2	243	Late Miocene and Early Pliocene to present) we developed a stability index based on the
2	244	information in Figure 1 and Table 1. This stability index captures the altitudinal change
2	245	relative to the horizontal axis of the MCE region. It was calculate as:
2	246	stability index = $1 - \frac{\Delta A l t}{D i s t}$, where $\Delta A l t$ is the change in altitude over the horizontal
2	247	distance. A value of 1 is complete stability, whereas a value of 0 or less indicates equal or
2	248	greater vertical movement than the horizontal distance.
2	249	Relationships between diversity and stability
2	250	
2	251	We assessed relationships between an index of diversity (quantified as the intercept of the
2	252	respective species-area model) and measures of climatic and topographic stability
2	253	described above.
2	254	
2	255	RESULTS
2	256	

Diversity patterns

Journal of Biogeography

3
4
5
5
6
7
8
9
10
11
10
12
13
14
15
16
17
10
10
19
20
21
$\begin{array}{c} 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 13 \\ 14 \\ 5 \\ 16 \\ 17 \\ 18 \\ 19 \\ 21 \\ 22 \\ 3 \\ 4 \\ 25 \\ 27 \\ 28 \\ 9 \\ 01 \\ 12 \\ 33 \\ 4 \\ 35 \\ 37 \\ 8 \\ 9 \\ 01 \\ 12 \\ 33 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 31 \\ 12 \\ 33 \\ 34 \\ 35 \\ 6 \\ 7 \\ 8 \\ 9 \\ 01 \\ 12 \\ 22 \\ 34 \\ 25 \\ 27 \\ 28 \\ 9 \\ 01 \\ 12 \\ 33 \\ 34 \\ 35 \\ 6 \\ 7 \\ 8 \\ 9 \\ 01 \\ 12 \\ 33 \\ 34 \\ 35 \\ 6 \\ 7 \\ 8 \\ 9 \\ 01 \\ 12 \\ 22 \\ 34 \\ 25 \\ 27 \\ 28 \\ 9 \\ 01 \\ 33 \\ 34 \\ 35 \\ 37 \\ 8 \\ 9 \\ 01 \\ 12 \\ 33 \\ 34 \\ 35 \\ 6 \\ 7 \\ 8 \\ 9 \\ 01 \\ 12 \\ 22 \\ 23 \\ 25 \\ 27 \\ 28 \\ 9 \\ 01 \\ 33 \\ 34 \\ 35 \\ 37 \\ 8 \\ 9 \\ 01 \\ 12 \\ 33 \\ 34 \\ 35 \\ 37 \\ 8 \\ 9 \\ 01 \\ 12 \\ 33 \\ 34 \\ 35 \\ 6 \\ 7 \\ 8 \\ 9 \\ 01 \\ 12 \\ 33 \\ 34 \\ 35 \\ 6 \\ 7 \\ 8 \\ 9 \\ 01 \\ 12 \\ 33 \\ 34 \\ 35 \\ 6 \\ 7 \\ 8 \\ 9 \\ 01 \\ 12 \\ 33 \\ 34 \\ 35 \\ 6 \\ 7 \\ 8 \\ 9 \\ 01 \\ 12 \\ 34 \\ 35 \\ 6 \\ 7 \\ 8 \\ 9 \\ 01 \\ 12 \\ 34 \\ 35 \\ 37 \\ 8 \\ 9 \\ 01 \\ 12 \\ 34 \\ 35 \\ 37 \\ 8 \\ 9 \\ 01 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 $
23
24
25 25
20
26
27
28
29
30
21
31
32
33
34
35
36
37
20
38
39
40
41
42
43
44
45
46
47
48
49
50
50 51
52
53
54
55
56
57
57 58
20
59
60

258	
259	Species-area relations for the six MCEs are shown in Fig. 2. While intercepts (c) of the
260	regressions were significantly different among the MCEs (F = 34.967, dfd = 5, dfn = 67, P <
261	0.0001), the slopes were homogeneous (F = 0.484, P = 0.787). Therefore, it was acceptable
262	to compute the c ratio for any two curves, namely the ratio of the values of the intercepts
263	in arithmetic space (Gould, 1979). This ratio provides a measure of relative species
264	densities (Rosenzweig, 1995). We computed c ratios for the Cape, the region with the
265	highest value, and all the other MCEs. This showed that for similar sized area, the Cape was
266	1.23 times richer than Australia, 1.62 times richer than Spain, 1.91 times richer than
267	California, 2.08 times richer than Greece and 2.63 times richer than Chile.
268	
269	Climate stability
270	
	The stability estimates of the MCE area predicted to remain MCE at the LGM varied
270	
270 271	The stability estimates of the MCE area predicted to remain MCE at the LGM varied
270 271 272	The stability estimates of the MCE area predicted to remain MCE at the LGM varied between the Mediterranean climate models (i.e. Köppen, Maxent and GAM) and the global
270 271 272 273	The stability estimates of the MCE area predicted to remain MCE at the LGM varied between the Mediterranean climate models (i.e. Köppen, Maxent and GAM) and the global climate model (MIROC and CCSM) used, resulting in high intra- and inter-region variance of
270 271 272 273 274	The stability estimates of the MCE area predicted to remain MCE at the LGM varied between the Mediterranean climate models (i.e. Köppen, Maxent and GAM) and the global climate model (MIROC and CCSM) used, resulting in high intra- and inter-region variance of stability estimates (Fig. 3, Table S2). Nonetheless, general patterns were evident. The Cape
270 271 272 273 274 275	The stability estimates of the MCE area predicted to remain MCE at the LGM varied between the Mediterranean climate models (i.e. Köppen, Maxent and GAM) and the global climate model (MIROC and CCSM) used, resulting in high intra- and inter-region variance of stability estimates (Fig. 3, Table S2). Nonetheless, general patterns were evident. The Cape and Australia had consistently high stability with one exception for Australia (Table S2).
270 271 272 273 274 275 276	The stability estimates of the MCE area predicted to remain MCE at the LGM varied between the Mediterranean climate models (i.e. Köppen, Maxent and GAM) and the global climate model (MIROC and CCSM) used, resulting in high intra- and inter-region variance of stability estimates (Fig. 3, Table S2). Nonetheless, general patterns were evident. The Cape and Australia had consistently high stability with one exception for Australia (Table S2). Chile had the lowest climate stability, followed by California. Spain and Greece had levels

1	
∠ 3	
4	
5	
6	
7	
8	
9 10	
10	
12	
13	
14	
15	
16 17	
18	
19	
20	
21	
2 3 4 5 6 7 8 9 10 1 12 3 4 15 16 7 8 9 21 22 3 4 5 6 7 8 9 10 1 12 3 4 15 16 7 8 9 21 22 3 24 5 6 7 8 9 30 1 23 3 4 5 6 7 8 9 30 1 23 3 4 5 6 7 8 9 30 1 23 3 4 5 6 7 8 9 30 1 2 3 3 4 5 6 7 8 9 30 1 2 3 3 4 5 6 7 8 9 30 1 2 3 3 4 5 6 7 8 9 30 1 2 3 3 4 5 6 7 8 9 30 1 2 3 3 4 5 6 7 8 9 30 1 2 3 3 4 5 6 7 8 9 30 1 2 3 3 4 5 6 7 8 9 30 1 2 3 4 5 6 7 8 9 30 1 2 3 4 5 6 7 8 9 30 1 2 3 4 5 6 7 8 9 30 1 2 3 4 5 6 7 8 9 30 1 2 3 4 5 6 7 8 9 30 1 2 3 4 5 6 7 8 9 30 1 2 3 4 5 6 7 8 9 30 1 2 3 4 5 6 7 8 9 30 1 2 3 4 5 6 7 8 9 30 1 2 3 3 4 5 6 7 8 9 30 1 2 3 4 5 6 7 8 9 30 1 2 3 4 5 6 7 8 9 30 1 2 3 4 5 6 7 8 9 30 1 2 3 3 4 5 6 7 8 9 30 1 2 3 3 4 5 6 7 8 9 30 1 2 3 3 4 5 6 7 8 9 30 1 2 3 3 4 5 6 7 8 9 30 1 2 3 3 4 5 6 7 8 9 30 1 2 3 3 4 5 6 7 8 9 30 1 2 3 3 4 5 6 7 8 9 30 1 2 3 3 4 5 6 7 8 9 30 1 2 3 3 4 5 6 7 8 9 30 1 2 3 3 4 5 6 7 8 9 30 1 2 3 3 4 5 6 7 8 9 3 1 2 3 3 4 5 6 7 8 9 3 1 2 3 3 4 5 6 7 8 9 3 1 2 3 3 4 5 6 7 8 9 3 1 2 3 3 4 5 6 7 8 9 3 1 2 3 3 4 5 6 7 8 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
23	
24	
20	
27	
28	
29	
30	
31	
33	
34	
35	
36	
37	
38	
39 40	
41	
42	
43	
44	
45 46	
46 47	
48	
49	
50	
51	
52 53	
53 54	
55	
56	
57	
58	
59 60	
60	

281	While Chile, California and the Mediterranean Basin represent zones of tectonic plate
282	convergence, the Cape and Australia are located away from plate boundaries (Table 1).
283	Hence, the former three regions have experienced considerable, albeit varied topographic
284	instability during the Neogene. Within the Mediterranean Basin, Cenozoic topographic
285	instability has been almost twice as high in the east (Greece) than in the west (Spain),
286	which experienced the least stable conditions among all MCEs. In California and Chile,
287	overall instability was driven largely by the very high values recorded for the late Pliocene-
288	Present period. Paleogene landscapes in the two regions were much more stable than
289	Neogene ones. On the other hand, the Cape and Australia have remained largely
290	unchanged during the Cenozoic (Fig. 1). Even so, the Cape experienced some Neogene
291	uplift and this exposed clay-rich substrata on the coastal forelands, areas that had
292	previously been mantled with duricrusts and sandplains.
292 293	previously been mantled with duricrusts and sandplains.
	previously been mantled with duricrusts and sandplains.
293	previously been mantled with duricrusts and sandplains. Relationships between diversity and stability
293 294	
293 294 295	
293 294 295 296	Relationships between diversity and stability
293 294 295 296 297	Relationships between diversity and stability Generally, the highest plant diversity – quantified as the intercept (c-value) of the
293 294 295 296 297 298	Relationships between diversity and stability Generally, the highest plant diversity – quantified as the intercept (c-value) of the respective MCE - was recorded for the most climatically and topographically stable MCEs,
293 294 295 296 297 298 299	Relationships between diversity and stability Generally, the highest plant diversity – quantified as the intercept (c-value) of the respective MCE - was recorded for the most climatically and topographically stable MCEs, namely Cape and Australia (Fig. 3). Spain, a MCE having the lowest topographic stability
293 294 295 296 297 298 299 300	Relationships between diversity and stability Generally, the highest plant diversity – quantified as the intercept (c-value) of the respective MCE - was recorded for the most climatically and topographically stable MCEs, namely Cape and Australia (Fig. 3). Spain, a MCE having the lowest topographic stability but relatively high climatic stability, showed intermediate diversity scores. California and

- 304
- 12

Journal of Biogeography

DISCUSSION

307	Our results are consistent with research for many different biomes and taxa: regions of
308	high environmental stability during the Cenozoic are associated with high species (and
309	genetic) diversity (e.g. Graham <i>et al.</i> , 2006; Araujo <i>et al.</i> , 2007; Carnaval <i>et al.</i> , 2009;
310	Werneck et al., 2011; 2012). To our knowledge, no studies have attempted to quantify the
311	degree of both climatic and topographic stability within all examples of a particular biome
312	on Earth, and to link this to contemporary diversity of plant species. In this sense, our
313	results are novel and interesting. However, we acknowledge the limitations of this study.
314	Firstly, statistical inference is constrained by the low degrees of freedom associated with
315	our study system. However, in our favour is the global scale of the system. Secondly, there
316	is an unavoidable mismatch between the temporal scale we used for climate and
317	topographic stability. Unfortunately, it is not yet feasible to hind cast climates, at the scale
318	required for this study, much beyond the mid Pleistocene. Nonetheless, climate instability
319	during the Pleistocene has been more intense than any other time during the Cenozoic
320	(Zachos et al., 2001) and this is likely to have had a profound effect on plant extinctions
321	(Jansson & Dynesius, 2002). Furthermore, hind casting topographic dynamics to the point
322	that accurate assessments of changes in landscape structure can be made, as well as
323	identifying threshold of topo-stability relevant to evolutionary processes, is not yet
324	feasible. Nevertheless, the results presented here provide new information on the
325	quantification of MCE's climatic and topographic stability in relation to OCBIL and YODFEL
326	categorization and address some fundamental issues about the evolution of plant diversity.
327	
220	Consulty many stable NACEs, both alignstically and to a supplically (Constant Australia)

328 Generally, more stable MCEs - both climatically and topographically (Cape and Australia) -

Journal of Biogeography

1
2
3
4
5
6
7
8
0
3
10
11
12
13
14
15
16
17
18
10
20
∠∪ 04
21
22
23
2 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 7 8 9 10 112 3 14 5 7 8 9 10 112 3 14 5 7 8 9 10 112 3 112 112 112 112 112 112 112 112 1
25
26
27
28
20
29
30
31 32 33 34 35 36 37 38 39
32
33
34
35
36
37
38
20
39
40
41
42
43
44
45
46
47
48
40
49 50
50
51
52
53
54
55
56
57
58
59
59 60
υo

1

329	had highest contemporary plant diversity, while the least stable (California and Chile) had
330	lowest diversity. Spain, an area of low topographic and high climatic stability, occupied an
331	intermediate position in terms of diversity. Greece had a lower diversity than expected
332	from its stability (see below). Differences in Neogene plant diversification rates are unlikely
333	to have produced these patterns: rates, albeit variable, are highest in the Mediterranean
334	Basin, similar in California and the Cape, and lowest in Australia (Linder, 2008; Madrinan et
335	al., 2013). Studies on lineages shared amongst MCEs indicate that contrasting
336	diversification rates do not explain differences in extant species richness (Hopper, 2009;
337	Sauquet <i>et al.</i> , 2009; Valente <i>et al.</i> , 2011; Buerki <i>et al.</i> , 2012; Valente & Vargos, 2013).
338	Instead, we suggest that the persistence of older clades in the more stable MCEs of the
339	Cape and Australia is a more likely explanation for contemporary diversity patterns. These
340	regions include many extant, species-rich clades that began diversifying as early as the
341	Eocene but mostly from the early Oligocene to mid-Miocene (Linder, 2005; Hopper et al.,
342	2009; Sauquet <i>et al.,</i> 2009; Verboom <i>et al.,</i> 2009; Schnitzler <i>et al.,</i> 2011; Cardillo & Pratt,
343	2013; Valente & Vargos, 2013), a feature largely absent from other MCEs, where ancient
344	lineages are rare, and when extant, show little evidence of diversification, i.e. they are
345	relicts e.g. (Rodríguez-Sánchez & Arroyo, 2008; Sauquet <i>et al.</i> , 2009; Lancaster & Kay,
346	2013).
347	

There are, of course, factors other than environmental stability that could determine differences in patterns of regional plant diversity among MCEs. Notable are differences in disturbance regimes (history of human impacts, fire regimes) (Blondel *et al.*, 2010; Keeley *et al.*, 2012) and soil fertility (Wisheu *et al.*, 2000; Lambers *et al.*, 2010). With regard to the latter, it may be argued that the association between landscape stability and low soil

Journal of Biogeography

fertility (Hopper, 2009) makes it impossible to untangle the independent effects of either factor. However, young landscapes can have infertile soils (e.g. the pine barrens of eastern North America and the mountain heathlands of south-western Spain) and old landscapes can have fertile soils (e.g. exposures of mudstones in the Cape and dolerite outcrops in Australia). The patterns of plant diversity in these regions is more consistent with OCBIL theory than a theory based on soil fertility *per se* (Ojeda et al., 2001; RMC & SDH, pers. obs.).

Within the overall pattern we document, there are some interesting anomalies. Why does Australia have lower diversity than the Cape, given their similar environmental histories? We can think of at least two reasons. The lower topographic heterogeneity of Australia both now (Bradshaw & Cowling, 2014) and during the Tertiary, may have constrained opportunities for radiation owing to shallower environmental gradients than the Cape, with its impressive and ancient topography (Tinker et al., 2008). Secondly, mild Neogene uplift in the Cape eroded duricrusts and sandplains to create large tracts of novel, moderately fertile habitats associated with shale bedrock (Cowling et al., 2009), which initiated a flurry of recent diversification (Verboom et al., 2009). Moreover, the now submerged Agulhas Bank comprised a relatively fertile landscape, covering an area more than half the size of the present-day Cape, that was exposed for much of the Pleistocene (Fisher et al., 2010); this YODFEL supported a largely extinct fauna of grazing mammals (Marean et al., 2014) associated with – in the context of the present-day Cape – novel habitats that were likely the locus of Pleistocene plant radiations. Products of these radiations likely persist on the present-day Cape littoral and adjacent lime-rich hinterland (Cowling & Holmes, 1992). In Australia, more recent, YODFEL-like landscapes are mainly

377	restricted to the Swan Coastal Plain and south coast and associated offshore shelf, a much
378	smaller zone than in the Cape. However, like the Cape, this region is associated with recent
379	diversification, albeit on a much smaller scale than in the Cape, and with evident
380	persistence of old lineages as well (Coates et al., 2003; Nevill et al., 2014). Overall, as
381	shown by Linder (2008), the poorer Australian flora may be dominated by mature (pre-
382	Pliocene) radiations, while the richer Cape flora includes an abundance of both recent
383	(Plio-Pleistocene) radiations – associated with the younger, lowland landscapes - and
384	mature radiations associated with the ancient Cape mountains (Verboom et al., 2009;
385	Slingsby <i>et al.</i> , in press)
386	
387	Why does Greece have lower plant diversity than expected on the basis of its
388	environmental history? An obvious reason is our use of island data to assess regional
389	richness patterns in Greece. In particular, as predicted by island biogeographic theory, the
390	depauperate floras of the smaller islands elevated the slope, albeit not significantly, and
391	depressed the c-value for the Greek data; the larger islands had comparable diversity to
392	similar-sized regions in nearby Spain. Moreover, the MCE part of mainland Greece, which
393	comprises an area similar to the CFR, supports half the number of species (Valente &
394	Vargos, 2013); this is consistent with our reported Cape-Greece c-ratio of 2.08. Thus, there
395	may be a longitudinal (west-east) gradient of declining plant diversity in the Mediterranean
396	Basin, as has been demonstrated for the Cape (Cowling & Lombard, 2002) and Australia
397	(Sniderman <i>et al.</i> 2013).
398	
399	
400	
400	Our results are consistent with the notion that given sufficient stability, plant

Page 29 of 51

1 2

Journal of Biogeography

2 3 4 5 6 7 8 9 10 11 12 13
4
5
6
7
8
9
10
11
12
13
13 14 15
15
16 17
17
18 19
19 20 21
20 21
∠ i 22
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39 40
40 41
42
43
44
45
46
47
48
49
50
51 52 53
52
53
54 55 56
55
56
57 58
58 59
59 60
00

401	hyperdiversity can develop outside of the humid tropics (Cowling et al., 1996; Cowling et
402	al., 2009; Hopper et al., 2009; Sniderman et al., 2013) implying that water-energy variables
403	are not consistent predictors of high regional-scale plant richness (Davies et al., 2004;
404	Davies et al., 2005; Kreft & Jetz, 2007; Cowling et al., 2008; Hopper, 2009). The
405	concentration of plant species in the humid tropics of the world is likely a consequence of
406	Cenozoic environmental stability at these latitudes (Ricklefs, 2004). Moreover, rich floras
407	can be the product of mature radiations (Australia and the Cape mountains) or recent
408	radiations, such as the succulent karoo and the Cape lowlands (Linder, 2008; Verboom et
409	al., 2009) and alpine habitats in the tropics (Hughes & Eastwood, 2006; Madrinan et al.,
410	2013). The extraordinary plant diversity of the Cape is a consequence of the combined
411	effects of both mature and recent radiations (Linder, 2008). This raises the issue of the
412	importance of relative stability, or how much stability is necessary for the evolution of
413	hyperdiversity? Too much stability, especially topographic stability, leads to a drop in
414	diversification rates, as may be the case in Australia (Linder, 2008) and on the Cape
415	mountains (Slingsby et al., in press). Too much instability, as witnessed by California and
416	Chile during the Pleistocene, results in high extinction rates and the depression of species
417	numbers. The Cape appears to have had – at least for many of its component lineages –
418	just the right amount of environmental heterogeneity for the preservation of old clades
419	and the radiation of younger ones.
420	
421	The hypothesis presented here – that environmentally stable MCEs have higher diversity

The hypothesis presented here – that environmentally stable MCEs have higher diversity
owing to greater persistence of lineages over time – yields predictions that can be tested
using dated molecular phylogenies. For example, lineage-through time plots would differ
systematically among the five MCEs. The environmentally stable MCEs

1 2 3 4	
3 4 5 6 7 8 9	
9 10 11 12 13	
14 15 16 17	
18 19 20 21	
10 11 12 13 14 15 16 17 18 20 21 22 23 24 25 27 28 30 31	
27 28 29 30	
31 32 33 34 35 36 37	
36 37 38 39	
40 41 42 43	
44 45 46 47 48	
49 50 51 52	
53 54 55 56	
57 58 59 60	

425	- Cape and Australia - would show a greater spread of lineages across time slices of the
426	Cenozoic (i.e. a relatively constant rate of diversification), whereas the less stable MCEs
427	would show patterns skewed in favour of younger lineages (i.e. increased diversifications
428	rates towards the present). Limited available data are largely consistent with this
429	hypothesis (Hopper <i>et al.</i> , 2009; Sauquet <i>et al.</i> , 2009; Valente <i>et al.</i> , 2011; Buerki <i>et al.</i> ,
430	2012; Valente & Vargos, 2013).
431	
432	In conclusion, the patterns we have shown and the processes invoked to explain them are
433	largely consistent with the predictions of Hopper's (2009) OCBIL theory: old, climatically
434	buffered landscapes are associated with high contemporary diversity, owing to the
435	persistence of old lineages. However, the hyperdiversity of the Cape may well be a
436	consequence of the juxtaposition of an ancient and topographically heterogeneous
437	landscape (the Cape Fold Belt) and a relatively young lowland landscape. The former has
438	provided a pool of lineages for colonizing and diversifying recently and rapidly on these
439	lowlands.
440	
441	Acknowledgements
442	
443	We thank the South African National Biodiversity Institute for hosting the workshop on
444	which this contribution is based. R.M.C. acknowledges the National Research Foundation
445	and Nelson Mandela Metropolitan University for funding. P.W.R. was supported by funding
446	from the Stunt Ranch Santa Monica Mountains Reserve. M.A. thanks Dr M. Panitsa and Dr
447	I. Bazos for providing references for the flora of islands of the Aegean.

- 448
- 18

Journal of Biogeography

1		
2	110	Deferences
3	449	References
4		
5	450	Alpers, C.N. & Brimhall, G.H. (1988) Middle Miocene climatic change in the Atacama Desert, northern Chile:
6	451	Evidence from supergene mineralization at La Escondida. Geological Society of America Bulletin 100,
7	452	1640-1656.
8	453	Anand, R.R. (2005) Weathering history, landscape evolution and implications for exploration. Regolith
9	454	Landscape Evolution Across Australia: A compilation of regolith landscape case studies with regolith
10	455	landscape evolution models (ed. by R.R. Anand and P. De Broekert), pp. 15-45. CRC LEME Perth
11	456	Monograph, Perth.
12	457	Anand, R.R. & Paine, M. (2002) Regolith geology of the Yilgarn Craton, Western Australia: implications for
13	458	exploration. Australian Journal of Earth Sciences 49 , 3-162.
14	459	Araujo, M.B., Nogués-Bravo, D., Diniz-Filho, J.A.F., Haywood, A.M., Valdes, P.J. & Rahbek. C. (2007)
15	460	Quaternary climate changes explain diversity among reptiles and amphibians. Ecography 31 , 8-15.
16	461	Blondel, J., Aronson, J., Boudiou, J.Y., & Boeuf, G. (2010) The Mediterranean Basin – biological diversity in
17	462	space and time. Oxford University Press, Oxford.
18	463	Bradshaw, P.L. & Cowling, R.M. (2014) Landscapes, rock types and climate of the Greater Cape Floristic
19	464	Region. Ecology and evolution of fynbos. Megadiversity in a changing world (ed. by N. Allsopp, J.
20	465	Colville and G.A. Verboom), Oxford University Press, Oxford (in press).
21	466	Braga, J.C., Martin, J.M. & Quesada, C. (2003) Patterns and average rates of late Neogene-Recent uplift of the
22	467	Betic Cordillera, SE Spain. Geomorphology, 50, 3-26.
23	468	Buerki, S., Jose, S., Yadav, S.R., Goldblatt, P., Manning, J.C. & Forest, F. (2012) Contrasting biogeographic and
24	469	diversification patterns in two Mediterranean-type ecosystems. <i>PLoS One</i> , 7 , e39377.
25	470	Cardillo, M. & Pratt, R. (2013) Evolution of a hotspot genus: geographic variation in speciation and extinction
26	471	rates in <i>Banksia</i> (Proteaceae). <i>BMC Evolutionary Biology</i> , 13 , 155.
27	472	Carmel, Y. & Flather, C.H. (2004) Comparing landscape scale vegetation dynamics following recent
28	473	disturbance in climatically similar sites in California and the Mediterranean basin. Landscape Ecology
29	474	19 , 573-590.
30	475	Carnaval, A.C., Hickerson, M.J., Haddad, C.F., Rodrigues, M.T. & Moritz, C. (2009) Stability predicts genetic
31	476	diversity in the Brazilian Atlantic forest hotspot. <i>Science</i> , 323 , 785-789.
32	477 478	Charrier, R. Baeza, O., Elgueta, S., Flynn, J.J., Gans P., Kay, S.M., Muñoz, N., Wyss, A.R. & Zurita. E. (2002)
33	478 479	Evidence for Cenozoic extensional basin development and tectonic inversion south of the flat-slab
34	479 480	segment, southern Central Andes, Chile (33°–36°S.L.). <i>Journal of South American Earth Sciences</i> 15 , 117-139.
35	480 481	Coates, D.J., Carstairs, S. & Hamley, V.L. (2003) Evolutionary patterns and genetic structure in localized and
36	481	widespread species in the <i>Stylidium caricifolium</i> complex (Stylidiaceae). <i>American Journal of Biology</i> ,
37	482	90, 997-1008.
38	483	Cody, M.L. & Mooney, H.A. (1978) Convergence versus nonconvergence in mediterranean-climate
39	485	ecosystems. Annual Review of Ecology and Systematics 9, 117-139.
40	486	Collins, W., Bitz, C., Blackmon, M., Bonan, G. <i>et al.</i> (2004) The Community Climate System Model Version 3
41	487	(CCSM3) Journal of Climate, 19 , 2122-2143.
42	488	Cowling, R.M. & Witkowski, E. (1994) Convergence and non-convergence of plant traits in climatically and
43	489	edaphically matched sites in Mediterranean Australia and South Africa. Australian Journal of Ecology
44	490	19 , 220-232.
45	491	Cowling, R.M., Ojeda, F., Lamont, B.B, Rundel, P.W. & Lechmere-Oertel, R. (2005) Rainfall reliability, a
46	492	neglected factor in explaining convergence and divergence of plant traits in fire-prone
47	493	Mediterranaean-climate ecosystems <i>Global Ecology and Biogeography</i> 14 , 509-519.
48	494	Cowling, R.M. & Campbell, B.M. (1980) Convergence in vegetation structure in the mediterranean
49	495	communities of California, Chile and South Africa. <i>Vegetatio</i> , 191-197.
50	496	Cowling, R.M. & Holmes, P.M. (1992) Endemism and speciation in a lowland flora from the Cape Floristic
51	497	Region. <i>Biological Journal of the Linnean Society</i> 47 , 367-383.
52	498	Cowling, R.M. & Lombard, A.T. (2002) Heterogeneity, speciation/extinction history and climate: explaining
53	499	regional plant diversity patterns in the Cape Floristic Region. <i>Diversity and Distributions</i> , 8 , 163-179.
54	500	Cowling, R.M., Proches, S. & Partridge, T.C. (2009) Explaining the uniqueness of the Cape flora: incorporating
55	501	geomorphic evolution as a factor for explaining its diversification. <i>Molecular Phylogenetics</i>
56	502	Evolution, 51 , 64-74.
57	503	Cowling, R.M., Rundel, P.W., Lamont, B.B., Kalin Arroyo, M. & Arianoutsou, M. (1996) Plant diversity in
58	504	mediterranean-climate regions. <i>Trends in Ecology and Evolution</i> , 11 , 362-6.
59	505	Davies, T.J., Savolainen, V., Chase, M.W., Moat, J. & Barraclough, T.G. (2004) Environmental energy and
60		19

	506	evolutionary rates in flowering plants. Proceedings of the Royal Society of Biological Sciences, 271,
	507	2195-2200.
	508	Davies, T.J., Savolainen, V., Chase, M.W., Goldblatt, P. & Barraclough, T.G. (2005) Environment, area, and
	509	diversification in the species-rich flowering plant family Iridaceae. American Naturalist, 166 , 418-
	510	425.
	511	Development Core Team (2013) A language and environment for statistical computing. Foundation for
	512	Statistical Computing, Vienna.
)	513	Erlanger, E., Granger, D. & Gibbon, R. (2012) Rock uplift rates in South Africa from isochron burial of fluvial
	514	and marine terraces. <i>Geology</i> 40 , 1019-1022.
2	515	Espindola, A., Buerki, S., Bedalov, M., Kupfer, P. & Alvarez, N. (2010) New insights into the phylogenetics and
3	516 517	biogeography of <i>Arum</i> (Araceae): unravelling its evolutionary history <i>Botanical Journal of the</i>
1	517	Linnean Society 163 , 14-32. Finkl, C. & Fairbridge, R. (1979) Paeogeographic evolution of a rifted cratonic margin: S.W. Australia.
5	518	Palaeogeography, Palaeoclimatology, Palaeoecology 26 , 221-252.
6	520	Fisher, E., Bar-Matthews, M., Jerardino, A. & Marean, C. (2010) Middle and Late Pleistocene paleoscape
7	520	modeling along the southern coast of South Africa. <i>Quaternary Science Reviews</i> , 29 , 1382-1398.
3	522	Franklin, J. (2010) Mapping species distributions: Spatial inference and prediction. Cambridge University
)	523	Press, Cambridge.
)	524	Geiger, R. (1961) Überarbeitete Neuausgabe von Geiger, R.: Köppen-Geiger / Klima der Erde. (Wandkarte
	525	1:16 Mill.) Klett-Perthes, Gotha.
2	526	Georghiou, K. & Delipetrou, P. (2010) Patterns and traits of the endemic plants of Greece. <i>Botanical Journal</i>
3	527	of the Linnean Society, 162 , 130-422.
1	528	Gould, S. (1979) An allometric interpretation of species-area curves: the meaning of the coefficient. American
5	529	Naturalist, 335-343.
6	530	Graham, C., Moritz, C. & Williams, S. (2006) Habitat history improves prediction of biodiversity in rainforest
7	531	fauna. Proceedings of the National Academy of Sciences of the United States of America 103, 632-
3	532	636.
)	533	Gregory-Wodzicki, K. (2000) Uplift history of the Central and Northern Andes: A review. Geological Society of
)	534	America Bulletin, 112 , 1091-1105.
	535	Grisebach, A. (1872) Die Vegetation der Erde nach Ihrer Klimatischen Anordnung (The Earth's vegetation after
2	536	its climatic arrangement). W Engelmann, Leipzig.
3	537	Hartley, A. (2003) Andean uplift and climate change. <i>Journal of the Geological Society, London</i> , 160 , 7-10.
1	538	Hastie, T. & Tibshirani, R. (1990) Generalized Additive Models. Chapman and Hall, London.
5	539	Hasumi, H. & Emori, S. (2004) K-1 coupled GCM (MIROC) description. In. Center for Climate System Research,
6	540	University of Tokyo, Tokyo.
7	541	Hijmans, R., Cameron, S., Parra, J., Jones, P. & Jarvis, A. (2005) Very high resolution interpolated climate
3	542	surfaces for global land areas. International Journal of Climatology 25, 1965-1978.
)	543	Hijmans, R., Cameron, S., Parra, J., Jones, P. & Jarvis, A. (2013) Species distribution modeling. <i>R package</i>
)	544	version 0.8-11. <u>http://CRAN.R-project.org/package=dismo</u> ,
	545	Hopper, S,D. (2009) OCBIL theory: towards an integrated understanding of the evolution, ecology and
2	546	conservation of biodiversity on old, climatically buffered, infertile landscapes. <i>Plant and Soil</i> 322 , 49-
3	547	
+	548	Hopper, S.D. & Gioia, P. (2004) The Southwest Australian Floristic Region: evolution and conservation of a
)	549	global hotspot of biodiversity. Annual Review of Ecology, Evolution and Systematics 35 , 623-650.
5	550	Hopper, S.D., Smith, R.J., Fay, M.F., Manning, J.C. & Chase, M.W. (2009) Molecular phylogenetics of
/	551 552	Haemodoraceae in the Greater Cape and Southwest Australian Floristic Regions. <i>Molecular</i>
3	552 553	Phylogenetics and Evolution, 51 , 19-30. Hughes, C. & Eastwood, R. (2006) Island radiation on a continental scale: exceptional rates of plant
)	555 554	diversification after uplift of the Andes. Proceedings of the National Academy of Sciences USA, 103 ,
J	554 555	10334-9.
	556	Iribarren, L., Vergés, J. & Fernàndez, M. (2009) Sediment supply from the Betic-Rif orogen to basins through
<u> </u>	557	Neogene. Tectonophysics, 475 , 68-84.
5	558	Jakica, S., Quigley, M., Sandiford, M., Clark, D., Fifield, L. & Alimanovic, A. (2011) Geomorphic and cosmogenic
+	559	nuclide constraints on escarpment evolution in an intraplate setting, Darling Escarpment, Western
	560	Australia. Earth Surface Processes and Landforms 36 , 449-459.
7	561	Jansson, R. & Dynesius, M. (2002) The fate of clades in a world of recurrent climatic change: Milankovitch
,)	562	oscillations and evolution. Annual Review of Ecology and Systematics 33 , 741-777.
))	563	Kahle, H., Straub, C., Reilinger, R., McClusky, S., King, R., Hurst, T., Veis, G., Kastens, K. & Cross, P. (1998) The
<i>1</i>		20
J		20

Journal of Biogeography

2		
3	564	strain rate field in the eastern Mediterranean region, estimated by repeated GPS measurements.
4	565	Tectonophysics, 294 , 237-252.
5	566	Keeley, J., Bond, W., Bradstock, R., Pausas, J. & Rundel, P. (2012) Fire in mediterranean ecosystems: Ecology,
6	567	evolution and management. Cambridge University Press., Cambridge.
7	568	Kellogg, K. & Minor, S.A. (2005) Pliocene transpressional modification of depositional basins by convergent
	569	thrusting adjacent to the "Big Bend" of the San Andreas fault: An example from Lockwood Valley,
8	570	southern California. Tectonics 24, TC1004, doi:10.1029/2003TC001610.
9	571	Kendrick, G., Wyrwoll, K. & Szabo, B. (1991) Pliocene-Pleistocene coastal events and history along the
10	572	western margin of Australia. Quaternary Science Reviews, 10 , 419-439.
11	572	
12		Kraft, J., Baldwin, B. & Ackerly, D. (2010) Range size, taxon age and hotspots of neoendemism in the
13	574	California flora. <i>Diversity and Distributions</i> , 16 , 403-413.
14	575	Kreft, H. & Jetz, W. (2007) Global patterns and determinants of vascular plant diversity. <i>Proceedings of the</i>
15	576	National Academy of Science USA 104 , 5925-5930.
16	577	Lambers, H., Brundrett, M.C., Raven, J.A. & Hopper, S.D. (2010) Plant mineral nutrition in ancient landscapes:
17	578	high plant species diversity on infertile soils is linked to functional diversity for nutritional strategies.
	579	Plant and Soil 334, 11–31.Lancaster, L. & Kay, K. (2013) Origin and diversification of the California
18	580	flora: re-examining classic hypotheses with molecular phylogenies. <i>Evolution</i> , 67 , 1041-1054.
19	581	Linder, H.P. (2005) Evolution of diversity: the Cape flora. <i>Trends in Plant Sciences</i> , 10 , 536-541.
20	582	Linder, H.P. (2008) Plant species radiations: where, when, why? Philosophical Transactions of the Royal
21	583	Society B Biological Sciences, 363 , 3097-3105.
22	584	Madrinan, S., Cortes, A.J. & Richardson, J.E. (2013) Paramo is the world's fastest evolving and coolest
23	585	biodiversity hotspot. <i>Frontiers in Genetics</i> , 4 , doi: 10.3389/fgene.2013.00192.
24	586	Marean, C., Cawthra, H., Cowling, R.M., Esler, K., Fisher, E., Milewski, A., de Vynck, J., Potts, A. & Singels, E.
25	587	(2014) Stone Age people in a changing Cape. <i>Ecology and evolution of fynbos. Megadiversity in a</i>
26	588	changing world (ed. by N. Allsopp, J. Colville and G.A. Verboom), Oxford University Press, Oxford (in
27	589	
28		press).
29	590	Martín, J., Braga, J., Aguirre, A. & Puga Bernabéu, A. (2009) History and evolution of the North-Betic Strait
	591	(Prebetic Zone, Betic Cordillera): A narrow, early Tortonian, tidal-dominated, Atlantic-
30	592	Mediterranean marine passage. Sedimentary Geology 216, 80-90.
31	593	Michard, A., Chalouan, A., Feinberg, H., Goffé, B. & Montigny, B. (2002) How does the Alpine belt end
32	594	between Spain and Morocco. <i>Bulletin de la Société Géologique de France</i> 173 , 3-15.
33	595	Migliore, J., Baumel, A., Juin, M. & Médail, F. (2012) From Mediterranean shores to central Saharan
34	596	mountains: key phylogeographical insights from the genus Myrtus. Journal of Biogeography, 39 ,
35	597	942-956.
36	598	Mittelbach, G.G., Schemske, D.W., Cornell, H.V., Allen, A.P., Brown, J.M., Bush, M.B., Harrison, S.P., Hurlbert,
37	599	A.H., Knowlton, N., Lessios, H.A., McCain, C.M., McCune, A.R., McDade, L.A., McPeek, M.A., Near,
38	600	T.J., Price, T.D., Ricklefs, R.E., Roy, K., Sax, D.F., Schluter, D., Sobel, J.M. & Turelli, M. (2007) Evolution
39	601	and the latitudinal diversity gradient: speciation, extinction and biogeography. Ecology Letters, 10,
40	602	315-31.
41	603	Mix, H., Mulch, A., Kent-Corson, L. & Chamberlain, C. (2011) Cenozoic migration of topography in the North
42	604	American cordillera. <i>Geology</i> , 39 , 87-90.
43	605	Montgomery, D. (1993) Compressional uplift in the central California Coast ranges. <i>Geology</i> , 21 , 543-546.
44	606	Mooney, H. (1977) Convergent evolution in Chile and California. Mediterranean Climate Ecosystems. Dowden,
	607	Hutchinson, & Ross, Inc., Stroudsburg.
45		
46	608	Myers, N., Mittermeier, R.A., Mittermeier, C.G., da Fonseca, G.A. & Kent, J. (2000) Biodiversity hotspots for
47	609	conservation priorities. <i>Nature</i> , 403 , 853-8.
48	610	Nevill, P., Bradbury, D., Williams, A., S, T. & Krauss, S. (2014) Genetic and palaeo-climatic evidence for
49	611	widespread persistence of the coastal tree species <i>Eucalyptus gomphocephala</i> (Myrtaceae) during
50	612	the Last Glacial Maximum. Annals of Botany, 113 , 55-67.
51	613	Ojeda, F., Marañón, T. & Aroyo, J. (2000) Plant diversity patterns in the Aljibe Mountains (S. Spain): a
52	614	comprehensive account Biodiversity and Conservation, 9, 1323-1343.
53	615	Ojeda, F., Simmons, M.T., Arroyo, J., Marañón, T. & Cowling R.M. (2001) Biodiversity in South African fynbos
54	616	and Mediterranean heathland. Journal of Vegetation Science 12, 867-874.
55	617	Papanikolaou, D. & Royden, L. (2007) Disruption of the Hellenic arc: Late Miocene extensional detachment
56	618	faults and steep Pliocene-Quaternary normal faults - Or what happened at Corinth? Tectonics 26,
	619	no. 5.
57	620	Partridge, T. & Maud, R. (1987) Geomorphic evolution of southern Africa since the Mesozoic. South African
58	621	Journal of Geology, 19 , 179-208.
59	021	
60		21

Journal of Biogeography

622	Pearce, F., Rondenay, S., Sachpazi, M., Charalampakis, M. & Royden, L. (2012) Seismic investigation of the
623	transition from continental to oceanic subduction along the western Hellenic Subduction Zone.
624	Journal of Geophysical Research, 117 , B07306.
625	Phillips, S., Anderson, R. & Schapire, R. (2006) Maximum entropy modeling of species geographic
626	distributions. <i>Ecological Modelling</i> , 190 , 231-259.
627	Pillans, B. (2007) Pre-quaternary landscape inheritance in Australia. <i>Journal of Quaternary Science</i> 22, 439-
628	447.
629	Qian, H. & Ricklefs, R.E. (2000) Large-scale processes and the Asian bias in species diversity of temperate
630	plants. <i>Nature</i> , 407 , 180-2.
631	Reilinger, R., McClusky, S., Paradissis, D., Ergintav, S. & Vernant, P. (2010) Geodetic constraints on the
632	tectonic evolution of the Aegean region and strain accumulation along the Hellenic subduction
633	zone. Tectonphysics, 448, 22-30.
634	Ricklefs, R. (2004) A comprehensive framework for global patterns in biodiversity. <i>Ecology Letters</i> , 7 , 1-5.
635	Rodríguez-Sánchez, F. & Arroyo, J. (2008) Reconstructing the demise of Tethyan plants: climate-driven range
636	dynamics of <i>Laurus</i> since the Pliocene. <i>Global Ecology and Biogeography</i> , 17 , 685-695.
637	Rosenzweig, M. (1995) Species diversity in space and time. Cambridge University Press, Cambridge.
638	Royden, L. & Husson, L. (2006) Trench motion, slab geometry and viscous stresses in subduction systems.
639	Geophysical Journal International 167 , 881-905.
640	Sauquet, H., Weston, P.H., Anderson, C.L., Barker, N.P., Cantrill, D.J., Mast, A.R. & Savolainen, V. (2009)
641	Contrasted patterns of hyperdiversification in Mediterranean hotspots. Proceedings of the National
642	Academy of Science U S A, 106 , 221-225.
643	Scharf, T., Codilean, A., De Wit, M., Jansen, J. & Kubik, P. (2013) Strong rocks sustain ancient postorogenic
644	topography in southern Africa. <i>Geology</i> , 41 , 331-334.
645	Schnitzler, J., Barraclough, T.G., Boatwright, J.S., Goldblatt, P., Manning, J.C., Powell, M.P., Rebelo, T. &
646	Savolainen, V. (2011) Causes of plant diversification in the Cape biodiversity hotspot of South Africa.
647	Systematic Biology, 60 , 343-57.
648	Slingsby, J., Britton, M. & Verboom, A. (in press) Ecology limits the diversity of the Cape flora: phylogenetics
649	and diversification of the genus <i>Tetraria</i> . <i>Molecular Phylogenetics and Evolution</i> .
650	Small, E. & Anderson, R. (1995) Geomorphically driven late Cenozoic rock uplift in the Sierra Nevada,
651	California, <i>Science</i> , 277-280.
652	Sniderman, J.M.K, Jordan, G.J. & Cowling, R.M. (2013) Fossil evidence for a hyperdiverse sclerophyll flora
653	under a non-mediterranean type climate. <i>National Academy of Sciences USA</i> , 110 , 3423-3428.
654	Specht, R.L. & Moll, E.J. (1983) Mediterranean-type heathlands and sclerophyllous shrublands of the world:
655	An overview. <i>Mediterranean-type ecosystems: The role of nutrients</i> (ed. by F.J. Kruger, D.T. Mitchell
656	and J.U.M. Jarvis), pp 41-65. Springer Verlag, Berlin.
657	Tinker, J., de Wit, M. & Brown, R. (2008) Mesozoic exhumation of the southern Cape, South Africa, quantified
658	using apatite fission track thermochronology. <i>Tectonophysics</i> , 455 , 77-93.
659	Valente, L.M., Savolainen, V., Manning, J., Goldblatt, P. & Vargas, P. (2011) Explaining disparities in species
660	richness between Mediterranean floristic regions: a case study in Gladiolus (Iridaceae). <i>Global</i>
661	Ecology and Biogeography 20 , 881-892.
662	Valente, L.M. & Vargas, P. (2013) Contrasting evolutionary hypotheses between two mediterranean-climate
663	floristic hotpots: the Cape of southern Africa and the Mediterranean Basin. <i>Journal of Biogeography</i> ,
664	40 , 2032-2046.
665	Vassilakis, E., Royden, L. & Papanikolaou, D. (2011) Kinematic links between subduction along the hellenic
666	trench and extension in the gulf of corinth, greece: A multidisciplinary analysis. <i>Earth and Planetary</i>
667	Science Letters, 303 , 108-120.
668 669	Verboom, G.A., Archibald, J.K., Bakker, F.T., Bellstedt, D.U., Conrad, F., Dreyer, L.L., Forest, F., Galley, C., Goldblatt, P., Henning, J.F., Mummenhoff, K., Linder, H.P., Muasya, A.M., Oberlander, K.C.,
670	
	Savolainen, V., Snijman, D.A., van der Niet, T. & Nowell, T.L. (2009) Origin and diversification of the
671 672	Greater Cape flora: ancient species repository, hot-bed of recent radiation, or both? <i>Molecular</i>
672	Phylogenetics and Evolution, 51 , 44-53. Wornack, F., Casta, G., Calli, G., Brada, D. & Sitas, Ir. J. (2011) Powisiting the historical distribution of
673	Werneck, F., Costa, G., Colli, G., Prado, D. & Sites Jr, J. (2011) Revisiting the historical distribution of
674	Seasonally Dry Tropical Forests: new insights based on palaeodistribution modelling and
675	palynological evidence. <i>Global Ecology and Biogeography</i> , 20 , 272-288.
676	Werneck, F., Nogueira, C., Colli, G., Sites, J. & Costa, G. (2012) Climatic stability in the Brazilian Cerrado:
678	implications for biogeographical connections of South American savannas, species richness and conservation in a biodiversity betspet, <i>Journal of Piogeography</i> 39 , 1695, 1706
678	conservation in a biodiversity hotspot. <i>Journal of Biogeography</i> , 39 , 1695-1706. Wisheu, I. C. , Rosenzweig M. L., Olsvig-Whittaker, L. & Shmida, A. (2000). What makes nutrient-poor
079	
	22

Journal of Biogeography

680	mediterranean heathlands so rich in plant diversity? <i>Evolutionary Ecology Research</i> , 2 , 935–955.
681	Wolfe, J., Forest, C. & Molnar, P. (1998) Paleobotanical evidence of Eocene and Oligocene paleaoaltitudes in
682	midlatitude western North America. GSA Bulletin, 110, 664-678.
683	Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. (2001) Trends, rhythms, and aberrations in global
684	climate 65 Ma to present. Science, 292, 686-93.
685 686	
687	SUPPORTING INFORMATION
688	Additional Supporting Information may be found in the online version of this article:
689	
690	Appendix S1. The vegetation layers used to build the maximum entropy and generalized
691	additive model
692	
693	Appendix S2. Data sources for plant species richness of Greek islands.
694	Appendix 52. Data sources for plant species nemiess of dreek islands.
695	
696	
697	Biosketch
698	Richard Cowling has a keen interest in the comparative ecology and evolution of the
699	world's Mediterranean Climate Ecosystems. He has collaborated on this and other topics
700	with many of the coauthors of this paper. R.M.C., P.B., J.C., S.F., F.F., S.D.H., S.P. and P.W.R.
701	conceived the project, contributed data and edited the manuscript. R.M.C. led the writing.
702	M.A., N.K.M., F.O., R.J.S. and E.V. and B.R.Z. contributed data and edited the manuscript.
703	R.M.C and A.J.P. performed the analyses.
704	
705	Editor: Melodie McGeoch

706 Caption for figures

Figure 1. Topographic profiles in the six Mediterranean Climate Ecosystems (MCEs) in the late Oligocene (dotted), early Pliocene (dashed) and present day (solid lines). Vertical arrows refer to historical coastlines at the corresponding times. Shaded horizontal bars delimit the extent of MCE along the profiles. Note that owing to the low topographic change in Australia, differences in the profiles for each period have been exaggerated.

Figure 2. Plant species-area relationships for the six Mediterranean Climate Ecosystems(MCEs) with regression models.

- 716 Figure 3. Relationships between diversity indices (c-value of species-area regression; see
- Fig.2) and mean values of topographic and climate stability in the six Mediterranean
- 718 Climate Ecosystems (MCEs). A topographic stability index of 1 indicates complete stability.
- 719 The down-facing triangle is the index for the late Oligocene- to late Miocene period; up-
- 720 facing triangles for the early Pliocene to Present period. Mean climate stability values for
- 721 Mediterranean climate models (Köppen, Maxent, GAM) and downscaled global clime
- simulations (MIROC and CCSM) are shown with black dots, whereas individual
- 723 combinations are shown in grey. All values are given in Appendix S2.

5 6

MCE	Late Oligocene to late Miocene	Early Pliocene to Pleistocene	References
California	Multiple orogenies, dating back to the middle Mesozoic and resulting from subduction associated with the Farallon and Pacific Plates, have uplifted the proto Sierra Nevada, but to a much lesser extent than the contemporary mountains. The current area of the Coast Ranges remains beneath the Pacific Ocean. The Central Valley, which began as a trough associated with tectonic forces of subduction in the Mesozoic, forms a large marine embayment for most of the Cenozoic	Although until recently it was thought that fault-block tilting during the past 10-5 Ma was largely responsible for the uplift of the high elevation of the modern Sierra Nevada, new data from analyses of tectonics suggest that the range achieved heights > 3000 m in the Paleogene and remained high through subsequent millennia. However, the form, topography, and elevation of the modern Sierra Nevada were strongly influenced by extensional and faulting processes over the past 3 million years which added major uplift to the southern Sierra Nevada. This orogeny has left a legacy of volcanic geomorphology in the northern portion of the range. All but the lowest peaks are severely glaciated during the Pleistocene glacials. Significant uplift of the Coast Ranges begins in the Pliocene about 3.5 Ma and is still ongoing. Uplift is a response to compressional deformation associated with strike-slip movement of the Pacific and North American Plates along the San Andreas Fault. These ranges have a complex geological history with granitic basement rock lying west of the fault and deep ocean metamorphic and sedimentary rocks, including serpentines, east of the fault. Scattered volcanic activity exists all along the ranges. Rotational movements of microplates along a bend in the fault produce the east-west orientation of the Transverse Ranges of contemporary southern California. The onset of uplift of the Coast Ranges blocks the connection of the Central Valley to the Pacific Ocean, and the basin is filled with continental sediments derived from the growing Sierra Nevada. As late as the late Pleistocene, however, large areas of the valley form a freshwater lake of glacial meltwater.	(Montgomery, 1993; Small & Anderson, 1995; Wolfe <i>et al.</i> , 1998; Kellogg & Minor, 2005; Mix <i>et al.</i> , 2011)
Spain	The Betic Cordillera at the southern end of the Iberian Peninsula has achieved moderate uplift resulting from collision between the Alborán Terrane and the Iberian microplate. However, only the proto Sierra Nevada, the westernmost mountain range of the European Alpine belt, is emergent from the sea at this time.	Ongoing orogeny results in the uplift of mountains in the western Betic by the middle Miocene. By the Late Messinian (ca 5 Ma), the Betic Cordillera approximates its present topography	(Michard <i>et al.</i> , 2002; Braga <i>et al.</i> , 2003; Iribarren <i>et al.</i> , 2009; Martín <i>et al.</i> , 2009)
Greece	Except for the easternmost range, including present-day Mt Olympus, the region is submerged. Considerable topography, trending along and east- west axis, exists in this zone and	Shortly after the Late Miocene, mainland Greece - a more-or-less rigid slab - is rotated clockwise, a consequence of the westward movement of the Anatolian Plate towards the Aegean Sea. This produces the contemporary NNW-trending direction of the Hellenides and results the uplift of the Pindos mountain chain at the western mainland as well as the emergence of numerous basins and	(Kahle et al., 1998; Royden & Husson, 2006; Papanikolaou & Royden, 2007; Reilinger et al., 2010; Vassilakis et al., 2011; Pearce et al., 2012)

	molassic sediments are being deposited on its western margin (Meteora), building a thick conglomerate cover derived from continental material. This topography is a consequence of the subduction of the African Plate beneath Eurasia.	ranges (the Hellenides) between this chain and the Olympus massif, which remains active to this day.	
Chile	Proto-Andean orogeny, dating from the late Protoerozoic to the breakup of Pangea at the end of the Permian, has produced considerable relief, albeit much less than at present. The region is still exposed to the incursion of moist air from the Atlantic Ocean to the east.	The uplift of the Andean Cordillera is initiated in the early Miocene, a consequence of the subduction of the Nazca Plate beneath the continental South American Plate. The compressional forces along the western margin of the South American Plate, result in the uplifting, faulting and folding of ancient sedimentary and metamorphic cratons to the east. By 15 Ma the Andes has uplifted sufficiently to develop the hyperarid conditions of the Atacama Desert. South of 33°S the dip angle of the subducting plate is relatively steep, producing active volcanism. North of this at 28-33°S the dip angle is gentle and volcanism over this latitude ended 9-10 Ma. The Cordillera de la Costa (Coast range) in central Chile separates from the Andes in the Neogene as the result of subsidence which formed the Central Valley. This range is dominated by granites of Carboniferous to Permian age, which represent part a proto-Andean orogeny.	(Alpers & Brimhall, 1988; Gregory-Wodzicki, 2000; Charrier <i>et al.</i> , 2002; Hartley, 2003)
Саре	The quartzitic sandstone core of the Cape Folded Belt, exhumed by the break-up of Gondwana in the Cretaceous (140-65 Mya), is subject to erosion that decreases markedly in the Cenozoic. Essential features of Cretaceous erosion persist in the complex topography of the mountains, with topography similar to present. Lowlands and intermontane valleys are capped with silcretes and ferricretes that were deposited in the early Palaeocene	Mild tectonic uplift during the Miocene and early Pliocene, and the consequent denudation of the lowlands – underlain by shales – results in the erosion of sil- ferricretes and the exposure of clay-rich substrata. Owing to slow denudation rates associated with the dominant quartzitic sandstones, mountain topography remains largely unchanged although some incision of softer (shale) intermontane valleys probably occurred. The entire region is tectonically stable during the mid Pliocene although regression during Pleistocen glacials exposes a large area (up to 200 km offshore from the present day) of the Agulhas Bank in the south east and 60-80 km offshore along the west coast.	(Partridge & Maud, 1987; Tinker <i>et al.</i> , 2008; Cowling <i>e</i> <i>al.</i> , 2009; Fisher <i>et al.</i> , 2010; Erlanger <i>et al.</i> , 2012; Scharf <i>et al.</i> , 2013)
Australia	Tectonically stable since the mid- Proterozoic, the landscape is a gently- dissected and slowly eroding palaeo- surface on basement granitoid rock. The Darling Scarp and its southcoast equivalent (the Ravensthorpe Ramp) are	Very slow erosion and weathering is associated with accentuated aridity and the onset of Mediterranean climate. Among the oldest persistent landscapes on Earth survived this period with relatively little change. Shorelines oscillated with sea level change during the Pleistocene, up to 100 km offshore from present day at the last glacial maximum.	(Finkl & Fairbridge, 1979; Kendrick <i>et al.</i> , 1991; Anand & Paine, 2002; Anand, 2005; Pillans, 2007; Jakica <i>et al.</i> , 2011)

Journal of Biogeography

elevated – starting in the mid Cenozoic - by minor marginal up-warping. On the Darling Plateau a phase of hematite formation occurs at 10Ma. The Stirling Range is an old intrusion of quartzite, offering the highest peaks (to 1100 m) on the otherwise subdued paleoland surface.

Journal of Biogeography

Appendix S1. The vegetation layers used to build the maximum entropy and generalized additive model,

Distribution models of Mediterranean climate ecosystems.

MTE	Comments	Reference
Austalia	Entire South West Australian Floristic Region	Hopper and Gioia, 2004
California	California chaparral and woodlands, including California	Olson & Dinerstein,
	coastal sage and chaparral, California interior chaparral	1998, 2002
	and woodlands and California montane chaparral and	
	woodlands, but excluding Pacific Temperate Rainforests	
Cape	The following bioregions (Mucina and Rutherford,	Mucina and Rutherford,
	2006) were selected as representative of MTV,	2006
	Southwest Fynbos (but excluding Potberg Sandstone	
	Fynbos and Potberg Ferricrete Fynbos which were too	
	far east and thus in the more aseasonal rainfall area),	
	Northwest Fynbos (but excluding the coastal too arid	
	Namaqualand Sand Fynbos), West Coast Renosterveld,	
	West Strandveld and Namaqualand Cape Shrublands	
	(but excluding the northerly very arid Stinkfonteinberge	
	Quartzite Fynbos).	
Chile	The Central Chilean Province	Luebert & Pliscoff, 2006
		Pliscoff & Luebert, 2011
Greece	Aegean & West Turkey sclerophyllous and mixed forest	Pahino & Augusto, 2005
	and Crete Mediterranean forests	DMEER, 2012
Spain	From the Region Mediterránea, in the Super-province	Rivas-Martinez, 1987
	Mediterraneo-Iberoatlántica, the Luso-	
	Extremadurense, Gaditano-Onubo-Algarviense and	
	Bética Provinces (but excluding the Carpetano-Ibérico-	
	Leonesa Province)	

DMEER (2012) Digital map of European Ecological Regions (DMEER): Version 2012. European Environmental Agency, available from at: <u>http://www.eea.europa.eu/data-and-maps/data/digital-map-of-european-ecological-regions</u> (accessed 2012-12-15).

- Hopper, S.D. & Gioia P. (2004) The Southwest Australian Floristic Region: evolution and conservation of a global hotspot of biodiversity. *Annual Review of Ecology, Evolution and Systematics*, **35**, 623–650.
- Mucina, L. & Rutherford, M. C. (2006) *Vegetation Map of South Africa, Lesotho, and Swaziland*. Strelitzia 19. South African National Botanical Institute. Pretoria.
- Olson, D.M. & Dinerstein, E. (2002) The Global 200: Priority ecoregions for global conservation. *Annals of the Missouri Botanical Garden*, **89**, 199–224.
- Pahino, M. & Augusto, G. (2005) A digital map of European ecological regions (DMEER): Application and analysis of the map of the natural vegetation of Europe. *BfN-Skripten*, **156**, 446.
- Pliscoff, P.Y. & Luebert, F. (2006) *Ecosistemas terrestres. En: Biodiversidad de Chile: Patrimonio y desafíos.* Comisión Nacional del Medio Ambiente, Santiago.
- Pliscoff, P. & Luebert, F. (2011) *Pisos de Vegetación de Chile (Terrestrial Ecosystems of Chile)*. National Environmental Commission, available at the Data Basin Database: <u>http://databasin.org/datasets/46a0ca242b174b09aaa24e34e613023e</u> (accessed 2013-07-15).
- Rivas-Martinez, S. (1987) *Memoria Del Mapa De Series De Vegetacion De Españia*. Catedrático de Botánica de la Universidad Complutense. Madrid.

1 2 3 4 5 6 7 8 9 10	
$2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 32 \\ 4 \\ 25 \\ 26 \\ 27 \\ 28 \\ 29 \\ 30 \\ 132 \\ 33 \\ 4 \\ 35 \\ 6 \\ 37 \\ 38 \\ 38 \\ 38 \\ 38 \\ 38 \\ 38 \\ 38$	
23 24 25 26 27 28 29 30 31 32 33	
39 40 41 42 43 44	
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60	

Appendix S2.	Data sources for	plant species	richness of	Greek islands.
, .ppca	Bata Sources for	piant species	1101111000 01	er cent ionamaon

Island	Source	
Symi	Carlstropm, A. (1987). A survey of the Flora and Phytogeography of Rodhos, Simi, Tilos and the Marmaris Peninsula (SE Greece, SW Turkey). PhD Thesis. University of Lund, Sweden.	
Tilos	Carlstrom, A. (1987). A survey of the Flora and Phytogeography of Rodhos, Simi, Tilos and the Marmaris Peninsula (SE Greece, SW Turkey). PhD Thesis. University of Lund, Sweden.	
Kalimnos	Hansen, A. (1980). Eine Listeder Flora der Inseln Kos, Kalimnos, Pserimos, Telendos und Nachbar-Inselchen (Ostagais, Griechenland). Biologia Gallo-Hellenenica 9, 3 -105.	
Thira	Hansen, A. (1971). Flora der Inselgruppe Santorin. Candollea 26, 109-163.	
	Raus, Th. (1988). Vascular plant colonization and vegetation development on sea-born volcanic islands in the Aegean (Greece). Vegetatio 77(1-3),139-147.	
	Raus, Th. (1991). Die Flora (Farne und Blütenpflanzen) des Santorin-Archipels. In Schmalfuss, H. (ed.): Santorin - Leben auf Schutt und Asche. Ein naturkundlicher Reiseführer, Weikersheim: Verlag Josef Markgraf, pp. 109-124.	
Skopelos	Economidou, E. (1973). Contribution ü l ıtude de la flore et de la phytogeographie de l' IIe de Skopelos. Phytogeographie des Sporades du Nord, II. Biologia Gallo-Hellenica 5, 78-121.	
Kasos	Greuter, W., Pleger, R. & Raus, Th. (1983). The vascular flora of the Karpathos island group (Dodecanesos, Greece). A preliminary checklist. Willdenowia 13, 43-78. Raus T, 1989. Die Flora von Armathia und der Kleininseln um Kasos (Dodekanes, Griechenland). Botanika Chronika, 9, 19-39.	
Samothraki	Strid, A. & Tzanoudakis, D. (1999). Contribution to the Greek insular flora: The flora and the phytogeographical connections of Samothraki. In: E.P. Eleftheriou (ed). Proceedings of the 7 th Panhellenic Scientific Conference, Thessaloniki, pp. 332-335.	
Paros	Raus, Th. (1996). Flora von Paros und Antiparos (Kykladen, Griechenland). Ann. Naturhistorischen Museum Wien 98 B Suppl., 237-278.	
Ikaria	Christodoulakis, D. (1996).The flora of Ikaria (Greece, E. Aegean islands). Phyton (Horn, Austria) 36, 63-91.	
Kos	Hansen, A. (1980). Eine Liste der Flora der Inseln Kos, Kalimnos, Pserimos, Telendos und Nachbar-Inselchen (Ostagais,Griechenland). Biologia Gallo-Hellenica 9, 3-105.	
Thasos	Strid, A. & Tan, K. (1998). Flora and Vegetation of North East Greece Icluding Thasos and Samothraki: Report of a Student Excursion from the University of Copenhagen. Botanical Institute,	

	University of Copenhagen, 98 pages.
Naxos	Böhling, N.B. (1994). Studien zur landschaftsokologischen
nux oo	Raumgliederung auf der mediterranen Insel Naxos
	(Griechenland);
	unter besonderer Berócksichtigung von Zeigerpflanzen.
	Dissertationes Botanicae, J Cramer Verlag, Berlin, Stuttgart, 230
	p.
	Böhling, N.B. (1995). Zeigerwerte der Phanerogamen-Flora von
	Naxos(Griechenland). Ein Beitrag zur ökologischen
	Kennzeichnung der mediterranen Pflanzenwelt. Stuttgarter Beitr.
	Naturk., A 533, 1-75.
Limnos	Panitsa, M., Snogerup, B., Songerup, S. & Tzanoudakis, D. (2003).
	Floristic Investigation of Lemnos Island (NE Aegean Area,
	Greece). Willdenowia, 33(1), 79-105.
Samos	Christodoulakis D (1986) The Flora and Vegetation of the Island
Carried	of Samos, Greece. Ph.D Thesis, University of Patras (In Greek with
	German summary).
	Snogerup, S. & Snogerup. B. (1993). Additions to the flora of
	Samos, Greece. Flora Mediterranea, 3, 211-222.
	Burton R. M. (1999). Yet more new plants from the East Aegean
	island of Samos. – Annals Museum Goulandris 10, 45–51.
Karpathos	Greuter, W., Pleger, R. & Raus, T. (1983). The vascular flora of the
	Karpathos island group (Dodecanesos, Greece). A preliminary
	checklist. Willdenowia, 13, 43-78.
	Raus, T. (1996). Additions and amendments to the flora of the
	Karpathos island group (Dodekanesos, Greece). Botanika
	Chronika, 12, 21-53.
	Jahn, R. & Schonfelder, P. (1995). Exkursionsflora fór Kreta.
	Eugen
	Ulmer, Stuttgart.
Rodos	Carlstrom, A. (1987). A survey of the Flora and Phytogeography
	of Rodhos, Simi, Tilos and the Marmaris Peninsula (SE Greece,
	SW Turkey). PhD Thesis. University of Lund, Sweden.
Lesvos	Bazos, I. (2005). Study of the Flora and Vegetation of Lesvos. Ph D
	Thesis. University of Athens. In Greek with an English summary
Euroia	
Evvoia	Rechinger, K.H. (1961). Die Flora von Euboea. Bot. Jahrb. Syst. 80,
	294-465.
	Triggs D. & Latrou G. (2000) The local andomic flore of Strice (M
	Trigas P. & latrou, G. (2000). The local endemic flora of Evvia (W
	Aegean, Greece). Willdenowia 36, 257-270.
Chios	Meikle, R.D. (1954). A survey of the Flora of Chios. Kew Bulletin
	9(1), 85-199.
Kriti	Jahn, R. & Schonfelder, P. (1995). Exkursionsflora fór Kreta.
	Eugen

2	· · · · · · · · · · · · · · · · · · ·
2 3 4	Ulmer, Stuttgart.
4	
5	
6	
7	
8	
9	
5 6 7 8 9 10	
11	
12	
13	
11 12 13 14 15 16 17 18 19	
15	
16	
17	
18	
19	
20	
20	
21 22	
23	
20	
25	
26	
20 21 22 23 24 25 26 27 28 29	
28	
29	
30	
31	
30 31 32 33 34 35 36 37 38 39 40	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55 56 57	
56	
57	
58	
59	
60	

Table S3. The stability of Mediterranean climate between current and Last Glacial Maximum conditions (as % of current) using one expert-opinion (Köppen) and two statistical models (GAM and Maxent).

	Climate						
MTE model	simulation model	Australia	California	Cape	Chile	Greece	Spain
Köppen	CCSM	84.0	59.7	98.4	81	89.3	92.8
	MIROC	100.0	59.4	91.6	61.6	92.7	93.3
GAM	CCSM	99.9	58.9	86.4	42.3	58.1	74.7
	MIROC	85.2	63.8	82.7	41.3	54.9	55.8
Maxent	CCSM	94.3	76.0	88.3	41.0	84.8	83.7
	MIROC	66.4	83.4	88.3	53.0	73.3	70.0

Page 49 of 51

119x149mm (300 x 300 DPI)

149x149mm (300 x 300 DPI)