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Abstract. We study approximations of modules of finite Gorenstein flat dimension by (pro-
jectively coresolved) Gorenstein flat modules and modules of finite flat dimension. These
approximations determine the Gorenstein flat dimension and lead to descriptions of the cor-
responding relative homological dimensions, for such modules, in more classical terms. We
also describe two hereditary Hovey triples on the category of modules of finite Gorenstein
flat dimension, whose associated exact structures have homotopy categories equivalent to the
stable category of projectively coresolved Gorenstein flat modules and the stable category of
cotorsion Gorenstein flat modules, respectively.
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0. Introduction

The concept of G-dimension for commutative Noetherian rings that was introduced by Aus-
lander and Bridger in [1] has been extended to modules over any ring R through the notion of
a Gorenstein projective module by Enochs and Jenda in [13]. The class of Gorenstein injective
modules was also defined in that paper, whereas Gorenstein flat modules were introduced in
[15]. The relative homological dimensions based on these modules were defined by Holm [19] in
the standard way, by considering resolutions (or coresolutions) by modules in the given class.
Gorenstein homological algebra has developed rapidly and found interesting applications in
representation theory, algebraic geometry and cohomological group theory.

Many useful properties of the notion of Gorenstein projective dimension are consequences
of the fact that the class GProj(R) of Gorenstein projective modules contains all projective
modules and is closed under extensions, kernels of epimorphisms and direct summands. These
properties of GProj(R) were established by Holm in [loc.cit.], where the analogous (dual)
properties of Gorenstein injective modules are also proved. It follows that modules of finite
Gorenstein projective dimension admit approximations by Gorenstein projective modules and
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modules of finite projective dimension; cf. [10]. Analogous approximations exist for modules of
finite Gorenstein injective dimension. As the closure of the class GFlat(R) of Gorenstein flat
modules under extensions was not known until recently, many properties of Gorenstein flat
modules and modules of finite Gorenstein flat dimension were only available under additional
assumptions on the ground ring. For example, Holm characterized in [19] the Gorenstein flat
dimension of modules in terms of the vanishing of certain Tor-groups, in the case where the ring
R is right coherent. Bennis realized the importance of knowing that GFlat(R) is closed under
extensions and termed the rings for which this is true as being GF-closed; cf. [3]. For modules
over a GF-closed ring, he showed that the finiteness of the Gorenstein flat dimension can be
characterized in terms of the vanishing of Tor-groups, extending the above mentioned result
by Holm. It was finally proved by Saroch and Stovicek in [22] that the class GFlat(R) is closed
under extensions over any ring, so that all rings are GF-closed; in fact,

(
GFlat(R), GFlat(R)⊥

)
is a complete hereditery cotorsion pair in the category of modules. Saroch and Stovicek have
also introduced in [loc.cit.] a certain subclass of GFlat(R), formed by the so-called projectively
coresolved Gorentein flat modules (PGF-modules, for short), and showed that these modules
are Gorenstein projective.1 They showed that the class PGF(R) of these modules forms the left
hand side of another complete hereditary cotorsion pair

(
PGF(R), PGF(R)⊥

)
in the category of

modules.
In this paper, we study the class GFlat(R) of modules of finite Gorenstein flat dimension

and obtain approximations of modules therein (i) by PGF-modules and modules of finite flat
dimension and (ii) by Gorenstein flat modules and cotorsion modules of finite flat dimension. It
turns out that these approximations are essentially obtained by restricting the approximations
resulting from the complete cotorsion pairs

(
PGF(R), PGF(R)⊥

)
and

(
GFlat(R), GFlat(R)⊥

)
to the exact subcategory GFlat(R) of the module category. These approximations determine
the Gorenstein flat dimension GfdRM of any module M . The following result illustrates this
assertion, using the approximations that arise from the fact that both cotorsion pairs have
enough injectives; it is extracted from parts of Theorem 2.1, Proposition 3.9, Theorem 4.2
and Proposition 5.7.

Theorem. Let M be a module and consider an exact sequence 0 −→ M −→ K −→ L −→ 0,
where either:

(i) L ∈ GFlat(R) and K ∈ GFlat(R)⊥ or
(ii) L ∈ PGF(R) and K ∈ PGF(R)⊥.

Then, GfdRM = fdRK; in particular, M has finite Gorenstein flat dimension if and only if
K has finite flat dimension.

As a consequence of the existence of these approximations for modules in GFlat(R), we obtain
characterizations of the numerical values of the PGF-dimension (i.e. of the relative homological
dimension based on the class of PGF-modules [11]) and the Gorenstein flat dimension, in terms
of the vanishing of certain Ext-groups. We note that these characterizations are analogous
to the corresponding characterization of the Gorenstein projective dimension for modules of
finite Gorenstein projective dimension. We also note that, in the case of the Gorenstein flat
dimension, this characterization has been already established by Christensen et al. in [7].

1It is not known whether Gorenstein projective modules are always Gorenstein flat, even though Holm has
proved in [19] that this is the case if the ring R is right coherent and there is an upper bound on the projective
dimension of all modules that have finite projective dimension.
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It is easily seen that the exact categories PGF(R) and Cot(R)∩GFlat(R) of PGF-modules and
cotorsion Gorenstein flat modules respectively are both Frobenius. The projective modules
are the projective-injective objects of the former of these categories, whereas the projective-
injective objects of the latter are the flat cotorsion modules. The proof of this claim for PGF(R)
is essentially identical to the proof of the corresponding claim for the class of Gorenstein
projective modules, which can be found in [12]. The claim for Cot(R) ∩ GFlat(R) was noted
by Gillespie in [17], in the special case where the ground ring is right coherent. We point out
that cotorsion Gorenstein flat modules are particular examples of the Gorenstein flat cotorsion
modules introduced in [8]. In the sequel, we describe two hereditary Hovey triples(

PGF(R), Flat(R), GFlat(R)
)

and
(
GFlat(R), Flat(R), Cot(R) ∩ GFlat(R)

)
in the exact category GFlat(R); here, we denote by Flat(R) the class of all modules of finite
flat dimension. The exact model structures associated with these Hovey triples have homo-
topy categories which are equivalent to the stable categories of the Frobenious exact categories
PGF(R) and Cot(R)∩ GFlat(R), respectively. In order to realize these stable categories as the
homotopy categories of model structures, it is therefore sufficient to work on the subcategory
GFlat(R).

Notations and terminology. We work over a fixed unital associative ring R and, unless other-
wise specified, all modules are assumed to be left R-modules. We denote by Rop the opposite
ring of R and do not distinguish between right R-modules and left Rop-modules. The classes
of projective, flat and cotorsion modules are denoted by Proj(R), Flat(R) and Cot(R) re-
spectively. We say that a class C of modules is projectively resolving if Proj(R) ⊆ C and C is
closed under extensions and kernels of epimorphisms.

1. Preliminaries

In this section, we collect certain basic notions and preliminary results that will be used in
the sequel. These involve the concept of a Hovey triple in exact additive categories, the basics
on Gorenstein flat and PGF-modules and the notion of relative injectivity of linear maps with
respect to a class of modules.

I. Cotorsion pairs and Hovey triples. Let A be an exact additive category, in the sense
of [6]. Then, the Ext1-pairing induces an orthogonality relation between objects therein. If B
is a class of objects inA, then the left orthogonal ⊥B of B is the class consisting of those objects
X ∈ A, which are such that Ext1A(X,B) = 0 for all B ∈ B. Analogously, the right orthogonal
B⊥ of B is the class consisting of those objects Y ∈ A, which are such that Ext1A(B, Y ) = 0
for all B ∈ B. If C,D are two classes of objects in A, then the pair (C,D) is said to be a
cotorsion pair in A if C = ⊥D and C⊥ = D; cf. [14]. The kernel of the cotorsion pair is the
class C ∩ D. The cotorsion pair is called hereditary if ExtiA(C,D) = 0 for all i > 0 and all
objects C ∈ C and D ∈ D. The cotorsion pair is complete if for any object A ∈ A there exist
short exact sequences (conflations)

0 −→ D −→ C −→ A −→ 0 and 0 −→ A −→ D′ −→ C ′ −→ 0,

where C,C ′ ∈ C and D,D′ ∈ D. An example of a complete hereditary cotorsion pair in the
exact category of all modules is provided by the pair (Flat(R), Cot(R)); cf. [5].

A full subcetagory A0 ⊆ A is called exact if it has the 2-out-of-3 property for short exact
sequences (conflations): If we are given a short exact sequence in A and two of the three
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objects involved are contained in A0, then the third object is also contained in A0. If A0 is
such an exact subcategory and (C,D) is a complete cotorsion pair in A with C ⊆ A0, then
the pair (C,A0 ∩ D) is easily seen to be a complete cotorsion pair in A0; it is the restriction
of the original cotorsion pair to A0.

A Hovey triple on A is a triple (C,W ,F) of subclasses of A, which are such that the pairs
(C,W ∩ F) and (C ∩ W ,F) are complete cotorsion pairs and the class W is thick (i.e. it is
closed under direct summands and satisfies the 2-out-of-3 property for short exact sequences
in A). Based on the work of Hovey [20], Gillespie has shown that there is a bijection between
Hovey triples on an idempotent complete exact category A and the so-called exact model
structures on A; cf. [16, Theorem 3.3]. In the context of Gillespie’s bijection, it is proved in
[16, Proposition 5.2] that for an exact model structure on A, whose associated complete cotor-
sion pairs are both hereditary, the exact category C ∩F is Frobenius with projective-injective
objects equal to C ∩W ∩F . A result of Happel [18] implies that the stable category of C ∩F
modulo its projective-objective objects is triangulated. Then, as shown in [16, Proposition 4.4
and Corollary 4.8], the homotopy category of the given exact model structure is triangulated
equivalent to the stable category of the Frobenius exact category C ∩ F .

II. Basics on modules of finite Gorenstein flat dimension. Gorentein flat modules
were defined in [15] as the syzygy modules of those acyclic complexes of flat modules that
remain acyclic after applying the functor I ⊗ for any injective right module I. It follows
that the abelian groups TorRi (I, L) are trivial if i > 0 for any injective right module I and any
Gorenstein flat module L. It is clear that the class GFlat(R) of Gorenstein flat modules con-
tains all flat modules and is closed under direct sums. As shown in [22], the class GFlat(R) is
also projectively resolving and closed under direct summands. In fact,

(
GFlat(R), GFlat(R)⊥

)
is a complete hereditary cotorsion pair in the category of modules, whose kernel coincides with
the class Cot(R) ∩ Flat(R) of flat cotorsion modules; cf. [22, Corollary 4.12].

The Gorenstein flat dimension of a module M was defined by Holm in [19] by the standard
method, using resolutions by Gorenstein flat modules. Indeed, let M be a module and n a
non-negative integer. If

0 −→ K −→ Ln−1 −→ · · · −→ L0 −→ M −→ 0,

0 −→ K ′ −→ L′
n−1 −→ · · · −→ L′

0 −→ M −→ 0

are two exact sequences of modules with L0, . . . , Ln−1, L
′
0, . . . , L

′
n−1 ∈ GFlat(R), then K ∈

GFlat(R) if and only if K ′ ∈ GFlat(R). This follows from [1, Lemma 3.12], since the class
GFlat(R) is projectively resolving, closed under direct sums and direct summands; see also
[3, Lemma 2.9]. The following result is an immediate consequence of this remark.

Corollary 1.1. The following conditions are equivalent for a module M and a non-negative
integer n:

(i) There exists an exact sequence of modules

0 −→ Ln −→ Ln−1 −→ · · · −→ L0 −→ M −→ 0,

with L0, . . . , Ln−1, Ln ∈ GFlat(R).
(ii) For any exact sequence of modules

0 −→ K −→ Ln−1 −→ · · · −→ L0 −→ M −→ 0

with L0, . . . , Ln−1 ∈ GFlat(R), we also have K ∈ GFlat(R). �
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If the equivalent conditions in the above Corollary are satisfied, we say thatM has a Gorenstein
flat resolution of length n. The Gorenstein flat dimension GfdRM of M is the shortest length
of a Gorenstein flat resolution of M . Of course, if M has no Gorenstein flat resolution of finite
length, then we write GfdRM = ∞. Since Gorenstein flat modules annihilate the functors
TorRi (I, ) for any i > 0 and any injective right module I, a dimension shifting argument
shows that TorRi (I,M) = 0 for any i > GfdRM and any injective right module I. Any flat
module is Gorenstein flat and hence we always have GfdRM ≤ fdRM . In fact, if M has finite
flat dimension, then we have an equality GfdRM = fdRM ; this is proved in [4, Theorem 2.2].
In particular, any Gorenstein flat module of finite flat dimension is necessarily flat.

For future reference, we record some basic properties of the class GFlat(R) of all modules
of finite Gorenstein flat dimension.

Proposition 1.2. Let (Mi)i be a family of modules and M =
⊕

i Mi the corresponding direct
sum. Then, GfdRM = supiGfdRMi. In particular, the class GFlat(R) is closed under finite
direct sums and direct summands.

Proof. In view of Corollary 1.1 above, this result is an immediate consequence of the fact that
the class GFlat(R) is closed under direct sums and direct summands. �
Proposition 1.3. Let 0 −→ M ′ −→ M −→ M ′′ −→ 0 be a short exact sequence of modules.
Then:

(i) GfdRM ≤ max{GfdRM
′,GfdRM

′′},
(ii) GfdRM

′ ≤ max{GfdRM,GfdRM
′′},

(iii) GfdRM
′′ ≤ 1 + max{GfdRM

′,GfdRM}.
In particular, the class GFlat(R) has the 2-out-of-3 property for short exact sequences.

Proof. Consider two projective resolutions P ′
∗ −→ M ′ −→ 0 and P ′′

∗ −→ M ′′ −→ 0 of M ′ and
M ′′ respectively. Then, we may construct by the standard step-by-step process a projective
resolution P∗ −→ M −→ 0 of M , such that Pi = P ′

i ⊕ P ′′
i and the corresponding syzygy

module ΩiM is an extension of ΩiM
′′ by ΩiM

′ for all i. Then, the inequality in (i) (resp.
in (ii)) follows by invoking Corollary 1.1 and the closure of GFlat(R) under extensions (resp.
under kernels of epimorphisms).

In order to prove (iii), we fix a short exact sequence

(1) 0 −→ K −→ P
p−→ M ′′ −→ 0,

where P is a projective module, and consider the pullback of the short exact sequence given
in the statement of the Proposition along p

0 0
↓ ↓
K = K
↓ ↓

0 −→ M ′ −→ N −→ P −→ 0
∥ ↓ p ↓

0 −→ M ′ −→ M −→ M ′′ −→ 0
↓ ↓
0 0

Since P is projective, the horizontal short exact sequence in the middle of the diagram splits
and hence N ≃ P ⊕M ′. We now invoke Proposition 1.2 and conclude that GfdRN = GfdRM

′.
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Then, the vertical short exact sequence in the middle of the diagram and assertion (ii) above
show that

GfdRK ≤ max{GfdRN,GfdRM} = max{GfdRM
′,GfdRM}.

Since we may splice any Gorenstein flat resolution of K of length GfdRK with the short exact
sequence (1) and obtain a Gorenstein flat resolution of M ′′ of length 1 + GfdRK, it follows
that

GfdRM
′′ ≤ 1 + GfdRK ≤ 1 + max{GfdRM

′,GfdRM},
as needed. �

III. Projectively coresolved Gorenstein flat modules. A variant of the Gorenstein
flat modules, the so-called projectively coresolved Gorensein flat modules (PGF-modules),
were introduced by Saroch and Stovicek. The PGF-modules are the syzygy modules of those
acyclic complexes of projective modules that remain acyclic after applying the functor I ⊗
for any injective right module I. It is clear that PGF-modules are Gorenstein flat. As shown
in [22, Theorem 4.9], the class PGF(R) of PGF-modules is also projectively resolving, closed
under direct sums and direct summands. In fact,

(
PGF(R), PGF(R)⊥

)
is a complete hereditary

cotorsion pair in the category of modules, whose kernel coincides with the class Proj(R) of
projective modules. Moreover, the right orthogonal PGF(R)⊥ is thick (i.e. it is closed under
direct summands and satisfies the 2-out-of-3 property for short exact sequences). The inclusion
PGF(R) ⊆ GFlat(R) induces an inclusion GFlat(R)⊥ ⊆ PGF(R)⊥. It turns out that a module
N is contained in GFlat(R)⊥ if and only if N is a cotorsion module contained in PGF(R)⊥,
i.e. GFlat(R)⊥ = Cot(R) ∩ GFlat(R)⊥; cf. [22, Theorem 4.12]. The homological dimension
theory, which is based on the class PGF(R), is studied in [11].

IV. Relative injectivity of linear maps. Let C be a class of modules. Following [22],
we say that a linear map f : M −→ N is C-injective provided that any linear map M −→ C
factors through f for any module C ∈ C. If f is injective and coker f ∈ ⊥C, then f is C-
injective. On the other hand, if f is injective, C-injective and N ∈ ⊥C, then coker f ∈ ⊥C. It
is easily seen that the notion of C-injectivity has the following three properties with respect
to a composable pair of morphisms f : M −→ N and g : N −→ L:

(i) If f, g are C-injective, then the composition g ◦ f is C-injective.
(ii) If the composition g ◦ f is C-injective, then f is C-injective
(iii) If f is surjective and the composition g ◦ f is C-injective, then g is C-injective.

In the sequel, we shall mostly use this notion of relative injectivity for the class D2(Proj(R)),
which is obtained from the class Proj(R) of projective modules by applying twice the Pon-
tryagin duality functor D to it. We recall that the functor D maps any left (resp. right)
module M onto the right (resp. left) module DM = Hom(M,Q/Z). The class D2(Flat(R))
is defined analogously.

Lemma 1.4. The following conditions are equivalent for a module M :
(i) M ∈ ⊥D2(Flat(R)),
(ii) M ∈ ⊥D2(Proj(R)),
(iii) TorR1 (I,M) = 0 for any injective right module I.

Proof. (i)→(ii): The inclusion Proj(R) ⊆ Flat(R) implies that D2(Proj(R)) ⊆ D2(Flat(R))
and hence ⊥D2(Flat(R)) ⊆ ⊥D2(Proj(R)).

(ii)→(iii): The right module DR is an injective cogenerator of the category of right modules
and hence any injective right module is a direct summand of a direct product of copies of DR.
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Therefore, it suffices to consider the case where I is a direct power of DR. For any set Λ we
have (DR)Λ = DP , where P = R(Λ) is the free module with basis Λ. Then, the standard Hom-
tensor adjunction and our assumption on M imply that DTorR1 (DP,M) = Ext1R(M,D2P ) =
0. Since the abelian group Q/Z cogenerates the category of abelian groups, it follows that
TorR1 (DP,M) = 0, as needed. �
(iii)→(i): If F is a flat module, then Lambek’s criterion [21] implies that the right module

DF is injective and hence we have Ext1R(M,D2F ) = DTorR1 (DF,M) = D0 = 0. �
Corollary 1.5. D2(Proj(R)) ⊆ GFlat(R)⊥ ⊆ PGF(R)⊥.

Proof. In view of Lemma 1.4, we have Gflat(R) ⊆ ⊥D2(Proj(R)). As we noted in III above,
we also have GFlat(R)⊥ ⊆ PGF(R)⊥. �

If M is a module with fdRM = n, then TorRn (I,M) ̸= 0 for a suitable injective right module
I. Indeed, if A is a right module with TorRn (A,M) ̸= 0 and I is any injective right module
containing A, then the triviality of the group TorRn+1(I/A,M) implies that TorRn (I,M) ̸= 0.

Lemma 1.6. Let 0 −→ M ′ f−→ M −→ M ′′ −→ 0 be a short exact sequence of modules.
(i) If TorR1 (I,M

′′) = 0 for any injective right module I, then f is D2(Proj(R))-injective.
(ii) If M ∈ ⊥D2(Proj(R)) and f is D2(Proj(R))-injective, then M ′′ ∈ ⊥D2(Proj(R)).
(iii) If M ∈ ⊥D2(Proj(R)), f is D2(Proj(R))-injective and fdRM

′′ ≤ 1, then M ′′ is flat.

Proof. (i) This follows from Lemma 1.4, which implies that M ′′ ∈ ⊥D2(Proj(R)).
(ii) This is clear.
(iii) If fdRM

′′ = 1, then TorR1 (I,M
′′) ̸= 0 for some injective right module I. Then, Lemma

1.4 implies that M ′′ is not contained in ⊥D2(Proj(R)), contradicting (ii) above. �

2. Approximations by PGF-modules

In this section, we show that modules of finite Gorenstein flat dimension can be approximated
by PGF-modules and modules of finite flat dimension, in a way that generalizes the exact
sequences obtained in [22, Theorem 4.11].

Theorem 2.1. The following conditions are equivalent for a module M and an integer n ≥ 0:
(i) GfdRM = n.
(ii) There exists a short exact sequence

0 −→ M −→ K −→ G −→ 0,

where G is a PGF-module and fdRK = n.
(iii) There exists a short exact sequence

0 −→ K
f−→ G −→ M −→ 0,

where G is a PGF-module and
(a) if n > 1, then fdRK = n− 1,
(b) if n = 1, then K is flat and f is not D2(Proj(R))-injective,
(c) if n = 0, then K is flat and f is D2(Proj(R))-injective.

(iv) There exists a projective module P , such that the direct sum M ′ = M ⊕ P fits into an
exact sequence

0 −→ G
f−→ M ′ −→ K −→ 0,

where G is a PGF-module, fdRK = n and f is PGF(R)⊥-injective.
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(v) There exists a Gorenstein flat module P , such that the direct sum M ′ = M ⊕P fits into
an exact sequence

0 −→ G
f−→ M ′ −→ K −→ 0,

where G is a PGF-module and fdRK = n. If n = 1, we also require f to be D2(Proj(R))-
injective.

Proof. (i)→(ii): We use induction on n. If n = 0, this follows from [22, Theorem 4.11(4)].
Assume that n ≥ 1 and the result is known for modules of Gorenstein flat dimension < n.
We consider a short exact sequence

0 −→ N −→ L −→ M −→ 0,

where L is Gorenstein flat and GfdRN = n − 1, and invoke the induction hypothesis to find
a short exact sequence

0 −→ N −→ K −→ G −→ 0,

where G is a PGF-module and fdRK = n− 1. We now form the pushout of that short exact
sequence along the monomorphisms N −→ L and obtain the commutative diagram with
exacts rows and columns

0 0
↓ ↓

0 −→ N −→ L −→ M −→ 0
↓ ↓ ∥

0 −→ K −→ L′ −→ M −→ 0
↓ ↓
G = G
↓ ↓
0 0

Since both L and G are Gorenstein flat, the closure of GFlat(R) under extensions implies that
L′ is also Gorenstein flat. Therefore, there exists a short exact sequence

0 −→ L′ −→ F −→ G′ −→ 0,

where F is flat andG′ ∈ PGF(R). Pushing out that short exact sequence along the epimorphism
L′ −→ M , we obtain the commutative diagram with exact rows and columns

0 0
↓ ↓

0 −→ K −→ L′ −→ M −→ 0
∥ ↓ ↓

0 −→ K −→ F −→ K ′ −→ 0
↓ ↓
G′ = G′

↓ ↓
0 0

Then, the rightmost vertical exact sequence is of the required type. Indeed, the horizontal
exact sequence in the middle shows that fdRK

′ ≤ n. In fact, the latter inequality cannot be
strict, since otherwise we would have GfdRK

′ ≤ fdRK
′ ≤ n − 1 and the rightmost vertical

exact sequence would imply that GfdRM ≤ max{GfdRK
′,GfdRG

′} ≤ n − 1; cf. Proposition
1.3(ii).
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(ii)→(iii): We fix a short exact sequence as in (ii) and note that the module K fits into a
short exact sequence

0 −→ K ′ −→ P −→ K −→ 0,

where P is projective and fdRK
′ = n− 1 (if n = 0, then K ′ is also flat). The pullback of that

short exact sequence along the monomorphism M −→ K induces a commutative diagram
with exact rows and columns

0 0
↓ ↓
K ′ = K ′

f ↓ ↓ ȷ

0 −→ G′ ı−→ P −→ G −→ 0
↓ ↓ ∥

0 −→ M −→ K −→ G −→ 0
↓ ↓
0 0

Since both P and G are PGF-modules, the closure of PGF(R) under kernels of epimorphisms
shows that G′ is also a PGF-module. Being a PGF-module, G is Gorenstein flat and hence
Lemma 1.6(i) implies that ı is D2(Proj(R))-injective. It follows that ȷ = ı◦f is D2(Proj(R))-
injective if and only if f is D2(Proj(R))-injective.
If n = 1, then fdRK = 1. Since the projective module P is obviously contained in the

left orthogonal ⊥D2(Proj(R)), Lemma 1.6(iii) implies that ȷ is not D2(Proj(R))-injective and
hence f is not D2(Proj(R))-injective either. If n = 0, then K is flat and hence Lemma 1.6(i)
implies that ȷ is D2(Proj(R))-injective. It follows that f is D2(Proj(R))-injective as well.

(iii)→(iv): We fix a short exact sequence as in (iii) and note that the PGF-module G fits
into a short exact sequence

0 −→ G
ı−→ P −→ G′ −→ 0,

where P is projective and G′ ∈ PGF(R). Then, the pushout of the latter short exact sequence
along the epimorphism G −→ M induces a commutative diagram with exact rows and columns

(2)

0 0
↓ ↓
K = K

f ↓ ↓ ȷ

0 −→ G
ı−→ P −→ G′ −→ 0

↓ ↓ ∥
0 −→ M −→ K ′ −→ G′ −→ 0

↓ ↓
0 0

Since G′ is a PGF-module, G′ is Gorenstein flat and hence ı is D2(Proj(R))-injective (cf.
Lemma 1.6(i)). It follows that ȷ = ı◦f isD2(Proj(R))-injective if and only if f isD2(Proj(R))-
injective. Now, the definition of the pushout and the injectivity of ı imply that there is a short
exact sequence

(3) 0 −→ G −→ M ⊕ P −→ K ′ −→ 0.

If n > 1, the vertical short exact sequence in the middle shows that TorRn ( , K ′) = TorRn−1( , K)

is non-zero and TorRn+1( , K ′) = TorRn ( , K) = 0, so that fdRK
′ = n. If n = 1, then K is
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flat and f is not D2(Proj(R))-injective. It follows that fdRK
′ ≤ 1 and ȷ is not D2(Proj(R))-

injective. Then, Lemma 1.6(i) implies that K ′ is not flat and hence fdRK
′ = 1. If n = 0, then

K is flat and hence fdRK
′ ≤ 1, as before. Since f is assumed to be D2(Proj(R))-injective

in this case, it follows that ȷ is also D2(Proj(R))-injective. The projective module P being
obviously contained in ⊥D2(Proj(R)), Lemma 1.6(iii) implies that K ′ is flat.
In order to show that the short exact sequence (3) has the required additional property, we

note that for any module Q ∈ PGF(R)⊥ the two horizontal short exact sequences in diagram
(2) above induce a commutative diagram of abelian groups with exact rows

0 −→ HomR(G
′, Q) −→ HomR(P,Q) −→ HomR(G,Q) −→ 0

∥ ↑ ↑
0 −→ HomR(G

′, Q) −→ HomR(K
′, Q) −→ HomR(M,Q) −→ 0

It follows readily that there is an induced sequence of abelian groups

0 −→ HomR(K
′, Q) −→ HomR(M,Q)⊕ HomR(P,Q) −→ HomR(G,Q) −→ 0,

as needed.
(iv)→(v): This is immediate, since Proj(R) ⊆ GFlat(R) and D2(Proj(R)) ⊆ PGF(R)⊥; cf.

Corollary 1.5.
(v)→(i): Consider an exact sequence as in (v) and note that Proposition 1.2 implies that

GfdRM
′ = GfdRM . Therefore, it suffices to prove that GfdRM

′ = n. Since the PGF-module
G is Gorenstein flat and GfdRK ≤ fdRK = n, Proposition 1.3(i) implies that GfdRM

′ ≤ n. It
remains to show that the latter inequality cannot be strict. Indeed, let us assume that n ≥ 1
and GfdRM

′ ≤ n− 1.
If n = 1, then M ′ is Gorenstein flat and hence M ′ ∈ D2(Proj(R))⊥; cf. Lemma 1.4. Since

f is assumed to be D2(Proj(R))-injective, Lemma 1.6(iii) implies that the equality fdRK = 1
cannot occur. If n > 1, then the PGF-module G is Gorenstein flat and hence the functor
TorRn−1( , G) vanishes on all injective right modules. Since GfdRM

′ ≤ n − 1, TorRn ( ,M ′)

vanishes on all injective right modules as well. It follows that TorRn ( , K) also vanishes on all
injective right modules. This is a contradiction, since fdRK = n. �

Remarks 2.2. (i) In the case where n = 1, it is necessary to impose some restrictions on
the short exact sequences appearing in Theorem 2.1(iii) and (v). Indeed, if P is any non-zero
projective module and G is a PGF-module, then the split short exact sequence

0 −→ P −→ P ⊕G −→ G −→ 0

is of the type appearing in Theorem 2.1(iii) for n = 1, but GfdRG = 0 ≠ 1. On the other
hand, if K is a non-flat module with pdRK = 1, then a projective resolution of K provides
an exact sequence

(4) 0 −→ P1 −→ P0 −→ K −→ 0

of the type appearing in Theorem 2.1(v) for n = 1, but GfdRP0 = 0 ̸= 1.
(ii) The short exact sequence (4) is of the type appearing in Theorem 2.1(iii) for n = 0,

but GfdRK ̸= 0. (Any Gorenstein flat module of finite flat dimension is necessarily flat.) We
conclude that it is necessary to impose some additional restriction to the short exact sequence
appearing in Theorem 2.1(iii), in the case where n = 0, in order to get that the third term of
that exact sequence is Gorenstein flat.2

2The necessity of such an additional restriction was also noted in [22, Theorem 4.11(ii)].
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(iii) The proof of the implication (v)→(i) in Theorem 2.1 uses only the weaker assumption
that the module G in (v) is Gorenstein flat.

Recall that the (left) finitistic flat dimension fin.f.dimR of the ring is the supremum of the flat
dimensions of all modules that have a finite flat dimension. Analogously, the (left) finitistic
Gorenstein flat dimension fin.Gf.dimR is the supremum of the Gorenstein flat dimension of
all modules that have a finite Gorenstein flat dimension. The next result generalizes [19,
Theorem 3.24].

Proposition 2.3. For any ring R we have an equality fin.f.dimR = fin.Gf.dimR.

Proof. Since the Gorenstein flat dimension is a refinement of the flat dimension, it is clear
that fin.f.dimR ≤ fin.Gf.dimR. In order to prove the reverse inequality, consider a module M
of finite Gorenstein flat dimension, say with GfdRM = n. Then, Theorem 2.1(ii) implies that
there exists a module K with fdRK = n. It follows that n ≤ fin.f.dimR. Since fin.Gf.dimR
is the supremum of these n’s, we conclude that fin.Gf.dimR ≤ fin.f.dimR, as needed. �

3. The relation to the cotorsion pair
(
PGF(R), PGF(R)⊥

)
In this section, we use the approximation sequences in Theorem 2.1 to characterize the PGF-
modules and, more generally, the PGF-dimension of modules (which is introduced in [11])
within Gflat(R), in terms of the vanishing of certain Ext-groups. We obtain a hereditary
Hovey triple in Gflat(R), such that the homotopy category of the associated exact model
structure is triangulated equivalent to the stable category of PGF-modules. It will turn out
that the exact sequences in Theorem 2.1 are precisely the approximation sequences of the
complete cotorsion pair

(
PGF(R), PGF(R)⊥

)
obtained in [22, Theorem 4.9], when applied to

modules of finite Gorenstein flat dimension.
It follows from [22, Corollary 4.5] that Ext1R(M,F ) = 0, whenever M is a PGF-module and

F is flat. We elaborate on this result and provide a characterization of PGF-modules among
modules in GFlat(R), as an application of Theorem 2.1.

Lemma 3.1. If M ∈ GFlat(R), then the following conditions are equivalent:
(i) M ∈ PGF(R),
(ii) ExtiR(M,F ) = 0 for any i > 0 and any flat module F ,
(iii) ExtiR(M,F ) = 0 for any i > 0 and any module F of finite flat dimension,
(iv) Ext1R(M,F ) = 0 for any module F of finite flat dimension.

Proof. (i)→(ii): This follows from [22, Corollary 4.5], since the syzygies of a PGF-moduleM in
any projective resolution of it are PGF-modules and hence ExtiR(M,F ) = Ext1R(Ωi−1M,F ) =
0 for any i > 0 and any flat module F .
The implication (ii)→(iii) follows by induction on the flat dimension of F , whereas the

implication (iii)→(iv) is immediate.
(iv)→(i): Since M has finite Gorenstein flat dimension, Theorem 2.1(iii) implies that there

exists a short exact sequence

0 −→ K −→ G −→ M −→ 0,

where G ∈ PGF(R) and K ∈ Flat(R). Then, our assumption implies that this sequence splits
and hence M is a direct summand of the PGF-module G. Since the class PGF(R) is closed
under direct summands, we conclude that M is a PGF-module. �
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The next result provides a characterization of the PGF-dimension for modules in GFlat(R)
that extends [11, Proposition 3.6] and reduces to Lemma 3.1, in the case where n = 0.

Proposition 3.2. The following conditions are equivalent for a module M ∈ GFlat(R) and
a non-negative integer n:
(i) PGF-dimRM ≤ n,
(ii) ExtiR(M,F ) = 0 for any i > n and any flat module F ,
(iii) ExtiR(M,F ) = 0 for any i > n and any module F of finite flat dimension.
(iv) Extn+1

R (M,F ) = 0 for any module F of finite flat dimension.

Proof. (i)→(ii): We consider a PGF-resolution of length n

0 −→ Gn −→ Gn−1 −→ · · · −→ G0 −→ M −→ 0

and fix a flat module F . Since the functors ExtjR( , F ) vanish on PGF-modules for all j > 0
(cf. Lemma 3.1), the desired vanishing follows by dimension shifting.

(ii)→(iii): This follows by induction on the flat dimension of the module F .
(iii)→(iv): This is immediate.
(iv)→(i): Let

0 −→ K −→ Gn−1 −→ · · · −→ G0 −→ M −→ 0

be an exact sequence, where G0, . . . , Gn−1 are PGF-modules. The modules M,G0, . . . , Gn−1

have finite Gorenstein flat dimension and hence an iterated application of Proposition 1.3(ii)
shows that K has finite Gorenstein flat dimension as well. Since the functors ExtjR(Gi, )
vanish on modules of finite flat dimension for all j > 0 and all i = 0, . . . , n − 1 (cf. Lemma
3.1), a dimension shifting argument shows that Ext1R(K,F ) = Extn+1

R (M,F ) = 0 for any
module F of finite flat dimension. Invoking Lemma 3.1 again, we conclude that K is a PGF-
module and hence PGF-dimRM ≤ n. �

We note that the triviality of the group Ext1R(M,F ), whenever M is a PGF-module and F
has finite flat dimension, provides also a characterization of modules of finite flat dimension
among all modules of finite Gorenstein flat dimension.

Lemma 3.3. If M ∈ GFlat(R), then M ∈ Flat(R) if and only if Ext1R(G,M) = 0 for any
PGF-module G.

Proof. As we noted above, the Ext-group is trivial if M ∈ Flat(R). Conversely, assume that
M is a module of finite Gorenstein flat dimension contained in PGF(R)⊥. Invoking Theorem
2.1(ii), we obtain a short exact sequence

0 −→ M −→ K −→ G −→ 0,

where G ∈ PGF(R) and K ∈ Flat(R). In view of our assumption on M , this sequence splits
and hence M is a direct summand of K. Then, fdRM ≤ fdRK < ∞ and hence M ∈ Flat(R),
as needed. �

The (left) Gorenstein weak global dimension Gwgl.dimR of R is defined as the supremum of
the Gorenstein flat dimensions of all modules. By considering the Gorenstein flat dimension of
direct sums of modules, we can easily deduce that Gwgl.dimR < ∞ if and only if GfdRM <
∞ for any module M . In order to characterize the finiteness of Gwgl.dimR, the relevant
homological invariants are sfliR, the supremum of the flat lengths (dimensions) of injective
modules, and its analogue sfliRop for the opposite ring Rop. By considering the flat dimension
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of products of injective modules, it is easily seen that sfliR < ∞ if and only if fdRI < ∞ for
any injective module I. As shown in [9], the following conditions are equivalent:
(i) Gwgl.dimR < ∞,
(ii) Gwgl.dimRop < ∞,
(iii) the invariants sfliR and sfliRop are finite.

If these conditions are satisfied, then Gwgl.dimR = Gwgl.dimRop = sfliR = sfliRop. For rings
that satisfy these equivalent conditions, we may describe the class PGF(R) of PGF-modules
and its right orthogonal in classical terms.

Corollary 3.4. Let R be a ring and assume that all injective modules (both left and right)
have finite flat dimension. Then, PGF(R) = ⊥Flat(R) and PGF(R)⊥ = Flat(R).

Proof. Our assumption implies that all modules have finite Gorenstein flat dimension, i.e.
that GFlat(R) = R-Mod. Then, the two equalities in the statement follow from Lemma 3.1
and Lemma 3.3. �

Remarks 3.5. (i) Since the hypothesis in Corollary 3.4 is left-right symmetric, we also have
(under the same assumptions) analogous conclusions for the ring Rop, i.e. for the corresponding
classes of right modules.

(ii) Since injective modules are obviously contained in the right orthogonal PGF(R)⊥ and
the same is true for right modules, the hypothesis in Corollary 3.4 is also necessary for the
equalities PGF(R)⊥ = Flat(R) and PGF(Rop)⊥ = Flat(Rop) to hold.

The category GFlat(R) of modules of finite Gorenstein flat dimension is an extension closed
subcategory of the abelian category of all modules (cf. Proposition 1.3(i)), which is also closed
under direct summands (cf. Proposition 1.2). Therefore, GFlat(R) is an idempotent complete
exact additive category [6].

Proposition 3.6. The pair
(
PGF(R), Flat(R)

)
is a complete hereditary cotorsion pair in the

exact category GFlat(R).

Proof. Since GFlat(R) ∩ PGF(R)⊥ = Flat(R) (cf. Lemma 3.3), the pair
(
PGF(R), Flat(R)

)
is

the restriction of the cotorsion pair
(
PGF(R), PGF(R)⊥

)
of [22, Theorem 4.9] to GFlat(R). �

We note that the class Flat(R) of modules of finite flat dimension is thick; it is closed under
direct summands and has the 2-out-of-3 property for short exact sequences. We also note that
the category PGF(R) of PGF-modules is a Frobenius exact category with projective-injective
objects the projective modules. Since PGF(R) ∩ PGF(R)⊥ = Proj(R), all projective modules
are injective objects in PGF(R). The very definition of PGF-modules implies that the exact
category PGF(R) has enough injective objects and all of these objects are necessarily projective
modules. Of course, all projective modules are projective objects in PGF(R). Since PGF(R) is
projectively resolving, it follows that it has enough projective objects and all of these objects
are necessarily projective modules. In view of the following result, we may realize the stable
category of PGF(R) as the homotopy category of the exact model structure induced by a
hereditary Hovey triple in GFlat(R).

Theorem 3.7. The triple
(
PGF(R), Flat(R), GFlat(R)

)
is a hereditary Hovey triple in the

idempotent complete exact category GFlat(R). The homotopy category of the associated exact
model structure is equivalent, as a triangulated category, to the stable category of the Frobenius
exact category PGF(R) modulo its projective-injective objects, i.e. modulo Proj(R).
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Proof. We need to prove that the pairs(
PGF(R), Flat(R) ∩ GFlat(R)

)
and

(
PGF(R) ∩ Flat(R), GFlat(R)

)
are complete and hereditary cotorsion pairs in the exact category GFlat(R). We note that
Flat(R)∩GFlat(R) = Flat(R) and hence Proposition 3.6 takes care of the claim for the first
of these pairs. Since PGF-modules are Gorenstein flat, it follows that

PGF(R) ∩ Flat(R) ⊆ GFlat(R) ∩ Flat(R) = Flat(R),

where the latter equality follows since any Gorenstein flat module of finite flat dimension is
necessarily flat. It follows that

PGF(R) ∩ Flat(R) ⊆ PGF(R) ∩ Flat(R) ⊆ PGF(R) ∩ PGF(R)⊥ = Proj(R).

On the other hand, projective modules are contained in both classes PGF(R) and Flat(R) and
hence PGF(R) ∩ Flat(R) = Proj(R). Thus, the second of the pairs displayed above becomes(

Proj(R), GFlat(R)
)
.

Of course, GFlat(R) is the right orthogonal of Proj(R) within GFlat(R). In order to prove
that Proj(R) is the left orthogonal of GFlat(R) within GFlat(R), we let M be a module of
finite Gorenstein flat dimension which is also contained in ⊥GFlat(R) and consider a short
exact sequence

0 −→ M ′ −→ P −→ M −→ 0,

where P is projective. Then, Proposition 1.3(ii) implies that M ′ has also finite Gorenstein
flat dimension and hence Ext1R(M,M ′) = 0. In particular, the exact sequence above splits.
It follows that M is a direct summand of P and hence M is projective. The cotorsion pair(
Proj(R), GFlat(R)

)
in GFlat(R) is hereditary (since all higher Ext’s with a projective first

argument vanish) and complete (since the class GFlat(R) is projectively resolving). The final
statement follows from [16, Proposition 4.4 and Corollary 4.8]. �

We shall now prove that the equality GFlat(R)∩PGF(R)⊥ = Flat(R) of Lemma 3.3 preserves
the filtrations of the categories GFlat(R) and Flat(R) induced by the the Gorenstein flat
dimension and the flat dimension, respectively. We recall that GFlat(R)∩PGF(R)⊥ = Flat(R)
(cf. [22, Theorem 4.11].

Proposition 3.8. If M ∈ PGF(R)⊥, then GfdRM = fdRM .

Proof. Since any flat module is Gorenstein flat, we always have GfdRM ≤ fdRM . In order to
prove the reverse inequality, it suffices to assume that GfdRM = n < ∞. Then, the truncation
of a flat resolution of M provides an exact sequence

0 −→ K −→ Fn−1 −→ · · · −→ F0 −→ M −→ 0,

where F0, . . . , Fn−1 are flat modules and K ∈ GFlat(R). Since the class PGF(R)⊥ is thick and
contains the flat modules, our assumption that M ∈ PGF(R)⊥ implies that K ∈ PGF(R)⊥ as
well. Therefore, K ∈ GFlat(R) ∩ PGF(R)⊥ = Flat(R). We conclude that M admits a flat
resolution of length n and hence fdRM ≤ n = GfdRM , as needed. �

We shall conclude this section by showing that the approximation sequences of Theorem 2.1
are precisely the approximation sequences of the complete cotorsion pair

(
PGF(R), PGF(R)⊥

)
of [22, Theorem 4.9], applied to modules of finite Gorenstein flat dimension. To that end, we
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fix a module M and note that the completeness of the cotorsion pair provides two short exact
sequences

(5) 0 −→ M −→ N −→ G −→ 0 and 0 −→ N ′ −→ G′ −→ M −→ 0,

where G,G′ ∈ PGF(R) and N,N ′ ∈ PGF(R)⊥. We may also consider a short exact sequence

0 −→ K −→ P −→ N −→ 0,

where P is projective, and consider its pullback along the monomorphism M −→ N , in order
to obtain a commutative diagram with exact rows and columns

0 0
↓ ↓
K = K
↓ ↓

0 −→ G′′ −→ P −→ G −→ 0
↓ ↓ ∥

0 −→ M −→ N −→ G −→ 0
↓ ↓
0 0

Since PGF(R) is closed under kernels of epimorphisms, the horizontal short exact sequence in
the middle shows that G′′ is a PGF-module. Letting N ′′ = N , we thereby obtain a third short
exact sequence

(6) 0 −→ G′′ −→ M ⊕ P −→ N ′′ −→ 0,

where G′′ ∈ PGF(R), N ′′ ∈ PGF(R)⊥ and P is projective.

Proposition 3.9. Let M be a module and consider the three short exact sequences in (5) and
(6), where G,G′, G′′ ∈ PGF(R), N,N ′, N ′′ ∈ PGF(R)⊥ and P is projective.

(i) If M ∈ GFlat(R), then N,N ′, N ′′ ∈ Flat(R).
(ii) If one of the modules N,N ′, N ′′ is contained in Flat(R), then M ∈ GFlat(R).

Proof. We note that GFlat(R) is a thick subcategory which contains all Gorenstein flat
modules (and hence all PGF-modules).

(i) Assuming that M (and hence M ⊕P for any projective module P ) has finite Gorenstein
flat dimension, the thickness of GFlat(R) implies that the modules N,N ′ and N ′′ have finite
Gorenstein flat dimension as well. Then, Proposition 3.8 implies that N,N ′, N ′′ ∈ Flat(R).

(ii) Since Flat(R) ⊆ GFlat(R), the result follows from the thickness of GFlat(R). �

Remark 3.10. Using the equality PGF(R) ∩ PGF(R)⊥ = Proj(R), we may proceed as in the
proof of Proposition 3.8 and show that PGF-dimRM = pdRM for any M ∈ PGF(R)⊥. Let
PGF(R) be the class of modules of finite PGF-dimension. It follows that PGF(R)∩ PGF(R)⊥ =
Proj(R) (cf. [11, Proposition 3.8(i)]), with that equality preserving the filtrations of the cat-
egories PGF(R) and Proj(R) induced by the PGF-dimension and the projective dimension,
respectively. In particular, the cotorsion pair

(
PGF(R), Proj(R)

)
in the exact category PGF(R)

considered in [11, §4] is precisely the restriction of the cotorsion pair
(
PGF(R), PGF(R)⊥

)
therein. Moreover, the thickness of the category PGF(R) can be used as in Proposition 3.9,
to show that modules in PGF(R) can be characterized by the assertion that one (and hence
all) of the modules N,N ′ and N ′′ in the exact sequences (5) and (6) be of finite projective
dimension.
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4. Approximations by Gorenstein flat modules

In this section, we show that modules of finite Gorenstein flat dimension can be approximated
by Gorenstein flat modules and cotorsion modules of finite flat dimension, in a way analogous
to the exact sequences obtained in Section 2.

As shown in [22, Corollary 4.12], the right orthogonal GFlat(R)⊥ coincides with the class of
those cotorsion modules which are contained in PGF(R)⊥, i.e. GFlat(R)⊥ = Cot(R)∩PGF(R)⊥.
In view of Lemma 3.3, we have an equality GFlat(R) ∩ PGF(R)⊥ = Flat(R); it follows that
GFlat(R)∩GFlat(R)⊥ = Cot(R)∩Flat(R). Therefore, by restricting the hereditary complete
cotorsion pair

(
GFlat(R), GFlat(R)⊥

)
established in [22, Corollary 4.12] to the exact category

GFlat(R), we obtain the hereditary complete cotorsion pair
(
GFlat(R), Cot(R) ∩ Flat(R)

)
therein. The result presented in Proposition 4.2 below is well-expected, in view of Theorem
2.1, since the latter cotorsion pair is the supremum of the cotorsion pair

(
PGF(R), Flat(R)

)
of Proposition 3.6 and the restriction of the cotorsion pair (Flat(R), Cot(R)) to GFlat(R).

We first state an auxiliary result we need.

Lemma 4.1. Let L be a Gorenstein flat module. Then, there exists a short exact sequence

0 −→ L −→ C −→ L′ −→ 0,

where L′ is Gorenstein flat and C is flat cotorsion. If L is a cotorsion Gorenstein flat module,
then L′ is a cotorsion Gorenstein flat module as well.

Proof. We consider a short exact sequence

0 −→ L −→ F −→ L′ −→ 0,

where L′ is Gorenstein flat and F is flat. Since the cotorsion pair (Flat(R), Cot(R)) is com-
plete, we may also consider a short exact sequence

0 −→ F −→ C −→ F ′ −→ 0,

where F ′ is flat and C is cotorsion. Of course, C is then flat cotorsion. Pushing out the latter
short exact sequence along the epimorphism F −→ L′, we obtain a commutative diagram
with exact rows and columns

0 0
↓ ↓
L = L
↓ ↓

0 −→ F −→ C −→ F ′ −→ 0
↓ ↓ ∥

0 −→ L′ −→ L′′ −→ F ′ −→ 0
↓ ↓
0 0

Since L′ and F ′ are Gorenstein flat, the closure of GFlat(R) under extensions implies that L′′

is Gorenstein flat as well. Then, the vertical exact sequence in the middle has the required
properties.

The final claim in the statement follows since the class of cotorsion modules is closed under
cokernels of monomorphisms. �
Theorem 4.2. The following conditions are equivalent for a module M and a non-negative
integer n:
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(i) GfdRM = n.
(ii) There exists a short exact sequence

0 −→ M −→ C −→ L −→ 0,

where L is a Gorenstein flat module and C is cotorsion with fdRC = n.
(iii) There exists a short exact sequence

0 −→ C
f−→ L −→ M −→ 0,

where L is a Gorenstein flat module and
(a) if n > 1, then C is cotorsion with fdRC = n− 1,
(b) if n = 1, then C is flat cotorsion and f is not D2(Proj(R))-injective,
(c) if n = 0, then C is flat cotorsion and f is D2(Proj(R))-injective.
(iv) There exists a flat cotorsion module F , such that the module M ′ = M ⊕ F fits into an

exact sequence

0 −→ L
f−→ M ′ −→ C −→ 0,

where L is Gorenstein flat, C is cotorsion with fdRC = n and f is GFlat(R)⊥-injective.
(v) There exists a Gorenstein flat module F , such that the module M ′ = M ⊕F fits into an

exact sequence

0 −→ L
f−→ M ′ −→ C −→ 0,

where L is Gorenstein flat and C is cotorsion with fdRC = n. If n = 1, we also require f to
be D2(Proj(R))-injective.

Proof. (i)→(ii): In view of Theorem 2.1(ii), there exists a short exact sequence

0 −→ M −→ K −→ G −→ 0,

where G is a PGF-module and fdRK = n. The cotorsion pair (Flat(R), Cot(R)) is complete
and hence there exists an exact sequence

0 −→ K −→ C −→ F −→ 0,

where C is cotorsion and F is flat. Then, the functors TorRi ( , K) and TorRi ( , C) are isomor-
phic if i > 0 and hence fdRC = fdRK = n. Taking the pushout of the latter exact sequence
along the epimorphism K −→ G, we obtain a commutative diagram with exact rows and
columns

0 0
↓ ↓

0 −→ M −→ K −→ G −→ 0
∥ ↓ ↓

0 −→ M −→ C −→ L −→ 0
↓ ↓
F = F
↓ ↓
0 0

Since G is a PGF-module and F is flat, both of these modules are Gorenstein flat. The class
GFlat(R) is closed under extensions and hence the rightmost vertical exact sequence shows
that L is Gorenstein flat as well. Then, the horizontal sequence in the middle is of the required
type.
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(ii)→(iii): We fix a short exact sequence as in (ii) and use again the completeness of the
cotorsion pair (Flat(R), Cot(R)) in order to find a short exact sequence

0 −→ C ′ −→ F −→ C −→ 0,

where F is flat and C ′ cotorsion. Of course, we also have fdRC
′ = n − 1 (if n = 0, then C ′

is also flat). The pullback of that short exact sequence along the monomorphism M −→ C
induces a commutative diagram with exact rows and columns

0 0
↓ ↓
C ′ = C ′

↓ ↓
0 −→ L′ −→ F −→ L −→ 0

↓ ↓ ∥
0 −→ M −→ C −→ L −→ 0

↓ ↓
0 0

Since both F and L are Gorenstein flat, the closure of GFlat(R) under kernels of epimorphisms
shows that L′ is also Gorenstein flat. Since L is Gorenstein flat, we can show that the leftmost
vertical exact sequence is of the required type, as in the proof of the corresponding step in
Theorem 2.1.

(iii)→(iv): We fix a short exact sequence as in (iii) and apply Lemma 4.1 to the Gorenstein
flat module L, in order to find a short exact sequence

0 −→ L −→ C ′ −→ L′ −→ 0,

where L′ is Gorenstein flat and C ′ is flat cotorsion. Then, the pushout of the latter short
exact sequence along the epimorphism L −→ M induces a commutative diagram with exact
rows and columns

(7)

0 0
↓ ↓
C = C
↓ ↓

0 −→ L −→ C ′ −→ L′ −→ 0
↓ ↓ ∥

0 −→ M −→ C ′′ −→ L′ −→ 0
↓ ↓
0 0

Since both C and C ′ are cotorsion modules, it follows that C ′′ is cotorsion as well. Since L′

is Gorenstein flat, the horizontal exact sequences in the diagram remain exact after applying
the functor Hom( , Q) for any module Q ∈ GFlat(R)⊥. We can now show that the induced
short exact sequence

0 −→ L −→ M ⊕ C ′ −→ C ′′ −→ 0

is of the required type, as in the proof of the corresponding step in Theorem 2.1.
(iv)→(v): This is immediate, since flat cotorsion modules are Gorenstein flat and the class

D2(Proj(R)) is contained in GFlat(R)⊥; cf. Corollary 1.5.
(v)→(i): This follows as in the proof of the corresponding step in Theorem 2.1; cf. Remark

2.2(iii). �
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Remark 4.3. As with Theorem 2.1, it is necessary to impose some restrictions on the short
exact sequences appearing in Theorem 4.2(iii) and (v), in the case where n = 1.3 The same is
also true for the short exact sequence appearing in Theorem 4.2(iii), in the case where n = 0.

5. The relation to the cotorsion pair
(
GFlat(R), GFlat(R)⊥

)
In this section, we use the approximation sequences in Theorem 4.2 to characterize the Goren-
stein flat modules and, more generally, the Gorenstein flat dimension of modules within the
class Gflat(R), in terms of the vanishing of certain Ext-groups. We also obtain a hereditary
Hovey triple in Gflat(R), such that the homotopy category of the associated exact model
structure is triangulated equivalent to the stable category of the Frobenius exact category of
cotorsion Gorenstein flat modules.

As we have noted earlier, the very definition of Gorenstein flat modules (and modules
of finite Gorenstein flat dimension) implies that these modules have trivial Tor-groups with
injective right modules (in degrees exceeding the Gorenstein flat dimension). It was shown by
Holm in [19] that, for modules in GFlat(R), the triviality of these Tor-groups characterizes
Gorenstein flat modules (and, more generally, the value of their Goresntein flat dimension),
provided that the ring is right coherent. The latter assumption on the ring was removed in [3,
Theorem 2.8], where it was shown that Holm’s characterization is actually valid over any ring,
pending the proof of the closure of GFlat(R) under extensions, that was achieved in [22]. For
modules within GFlat(R), we may also characterize the Gorenstein flat modules (and, more
generally, the value of their Gorenstein flat dimension), in terms the Ext-functors.

It follows from Lemma 3.1 that any module of finite flat dimension is contained in PGF(R)⊥.
Therefore, we conclude that Cot(R) ∩ Flat(R) ⊆ Cot(R) ∩ PGF(R)⊥ = GFlat(R)⊥, i.e. the
group Ext1R(M,C) is trivial for any Gorenstein flat module M and any cotorsion module C
with fdRC < ∞. A proof of the next result may be also found in [7, Lemma 5.4].

Lemma 5.1. If M ∈ GFlat(R), then the following conditions are equivalent:
(i) M ∈ GFlat(R),
(ii) ExtiR(M,C) = 0 for any i > 0 and any flat cotorsion module C,
(iii) ExtiR(M,C) = 0 for any i > 0 and any cotorsion module C of finite flat dimension,
(iv) Ext1R(M,C) = 0 for any cotorsion module C of finite flat dimension.

Proof. (i)→(ii): This follows from the discussion above, since the syzygies of a Gorenstein flat
module in any projective resolution of it are Gorenstein flat modules as well and hence the
abelian groups ExtiR(M,C) = Ext1R(Ωi−1M,C) are trivial for any i > 0 and any flat cotorsion
module C.

The implication (ii)→(iii) follows by induction on the flat dimension of the cotorsion module
C, since such a module admits (by taking successive flat covers) a resolution of finite length
by flat cotorsion modules.

(iii)→(iv): This is immediate.
(iv)→(i): Since M has finite Gorenstein flat dimension, Theorem 4.2(iii) implies that there

exists a short exact sequence

0 −→ C −→ L −→ M −→ 0,

3As in Remarks 2.2(i) and (ii), this necessity is illustrated by considering the direct sum C ⊕ L of a flat
cotorsion module C with a Gorenstein flat module L and a flat resolution of a cotorsion module of flat
dimension 1.
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where L is Gorenstein flat and C is cotorsion with fdRC < ∞. In view of our assumption on
M , this sequence splits and hence M is a direct summand of the Gorenstein flat module L.
Since the class GFlat(R) is closed under direct summands, we conclude that M is Gorenstein
flat, as needed. �

The next result provides a characterization of the Gorenstein flat dimension for modules in
GFlat(R) in terms of the Ext-functors, that reduces to Lemma 5.1 in the case where n = 0.
An alternative proof follows by combining [7, Theorem 4.5 and Theorem 5.7].

Proposition 5.2. The following conditions are equivalent for a module M ∈ GFlat(R) and
a non-negative integer n:
(i) GfdRM ≤ n,
(ii) ExtiR(M,C) = 0 for any i > n and and any flat cotorsion module C,
(iii) ExtiR(M,C) = 0 for any i > n and any cotorsion module C of finite flat dimension,
(iv) Extn+1

R (M,C) = 0 for any cotorsion module C of finite flat dimension.

Proof. (i)→(ii): We consider a Gorenstein flat resolution of length n

0 −→ Ln −→ Ln−1 −→ · · · −→ L0 −→ M −→ 0

and fix a flat cotorsion module C. Since the functors ExtjR( , C) vanish on Gorenstein flat
modules for all j > 0 (cf. Lemma 5.1), the desired vanishing follows by dimension shifting.

The implication (ii)→(iii) follows by induction on the flat dimension of the cotorsion module
C, since such a module admits (by taking successive flat covers) a resolution of finite length
by flat cotorsion modules.

(iii)→(iv): This is immediate.
(iv)→(i): Let

0 −→ K −→ Ln−1 −→ · · · −→ L0 −→ M −→ 0

be an exact sequence, where L0, . . . , Ln−1 are Gorenstein flat. The modules M,L0, . . . , Ln−1

have finite Gorenstein flat dimension and hence an iterated application of Proposition 1.3(ii)
shows that K has finite Gorenstein flat dimension as well. Since the functors ExtjR(Li, )
vanish on cotorsion modules of finite flat dimension for all j > 0 and all i = 0, . . . , n− 1 (cf.
Lemma 5.1), a dimension shifting argument shows that Ext1R(K,C) = Extn+1

R (M,C) = 0 for
any cotorsion module C of finite flat dimension. Invoking Lemma 5.1 again, we conclude that
K is Gorenstein flat and hence GfdRM ≤ n. �

As we noted in the beginning of Section 4, the pair
(
GFlat(R), Cot(R) ∩ Flat(R)

)
is a hered-

itary complete cotorsion pair in the exact category GFlat(R). In particular, the triviality of
the group Ext1R(M,C), wheneverM is a Gorenstein flat module and C is cotorsion of finite flat
dimension, may also provide a characterization of cotorsion modules of finite flat dimension,
if we restrict to modules of finite Gorenstein flat dimension.4

Lemma 5.3. If M ∈ GFlat(R), then M ∈ Cot(R) ∩ Flat(R) if and only if Ext1R(L,M) = 0
for any Gorenstein flat module L. �

For rings of finite Gorenstein weak global dimension, we obtain a description of the class of
Gorenstein flat modules and its right orthogonal in classical terms.

4As with Lemma 3.3, this result may be also proved using the exact sequences in Theorem 4.2(ii).
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Corollary 5.4. Let R be a ring and assume that all injective modules (both left and right) have
finite flat dimension. Then, GFlat(R) = ⊥(Cot(R) ∩ Flat(R)

)
and GFlat(R)⊥ = Cot(R) ∩

Flat(R). �

Remarks 5.5. (i) Since the hypothesis of Corollary 5.4 is left-right symmetric, we have (under
the same assumptions) the analogous conclusions for the ring Rop, i.e. for the corresponding
classes of right modules.

(ii) Since injective modules are obviously contained in the right orthogonal GFlat(R)⊥ and
the same is true for right modules, the hypothesis in Corollary 5.4 is also necessary for the
equalities GFlat(R)⊥= Cot(R) ∩ Flat(R) and GFlat(Rop)⊥= Cot(Rop) ∩ Flat(Rop) to hold.

We note that the category Cot(R)∩GFlat(R) of cotorsion Gorenstein flat modules is a Frobe-
nius exact category with projective-injective objects the flat cotorsion modules. Indeed, as
shown in [22, Corollary 4.12], we have GFlat(R)∩ GFlat(R)⊥ = Cot(R)∩ Flat(R) and hence
all flat cotorsion modules are injective objects in Cot(R) ∩ GFlat(R). Lemma 4.1 implies
that the exact category Cot(R) ∩ GFlat(R) has enough injective objects and all of these ob-
jects are necessarily flat cotorsion modules. On the other hand, the flat cotorsion modules
are obviously projective objects in Cot(R) ∩ GFlat(R). Considering flat covers of cotorsion
Gorenstein flat modules, it follows that Cot(R)∩GFlat(R) has enough projective objects and
all of these objects are necessarily flat cotorsion modules.5 The following result shows that we
may realize the stable category of Cot(R) ∩ GFlat(R) as the homotopy category of the exact
model structure induced by a hereditary Hovey triple in GFlat(R).

Theorem 5.6. The triple
(
GFlat(R), Flat(R), Cot(R) ∩ GFlat(R)

)
is a hereditary Hovey

triple in the idempotent complete exact category GFlat(R). The homotopy category of the
associated exact model structure is equivalent, as a triangulated category, to the stable category
of the Frobenius exact category Cot(R)∩ GFlat(R) modulo its projective-injective objects, i.e.
modulo Cot(R) ∩ Flat(R).

Proof. We need to prove that the pairs(
GFlat(R), Flat(R) ∩ Cot(R) ∩ GFlat(R)

)
and

(
GFlat(R) ∩ Flat(R), Cot(R) ∩ GFlat(R)

)
are complete and hereditary cotorsion pairs in the exact category GFlat(R). Since Flat(R) ⊆
GFlat(R), the first one of these pairs is the pair

(
GFlat(R), Cot(R) ∩ Flat(R)

)
we considered

above, i.e. the restriction of the complete hereditary cotorsion pair
(
GFlat(R), GFlat(R)⊥

)
to

the exact category GFlat(R). On the other hand, any Gorenstein flat module of finite flat
dimension is necessarily flat and hence we have an equality GFlat(R)∩Flat(R) = Flat(R). It
follows that the second pair is the restriction

(
Flat(R), Cot(R) ∩ GFlat(R)

)
of the complete

hereditary cotorsion pair (Flat(R), Cot(R)) to the exact category GFlat(R).
The final assertion in the statement of the Theorem follows from [16, Proposition 4.4 and

Corollary 4.8]. �

5Since Cot(R)∩GFlat(R) has enough projective and injective objects, which coincide with the flat cotorsion
modules, it follows that any cotorsion Gorenstein flat module can be realized as a syzygy of an acyclic complex
of flat cotorsion modules, that remains acyclic after applying the functor I ⊗ for any injective right module
I. Conversely, the syzygy modules of any acyclic complex of flat cotorsion modules that remains acyclic after
applying the functor I ⊗ for any injective right module I are cotorsion, in view of [2, Theorem 4.1(2)], and
Gorenstein flat.
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We fix a moduleM and note that the complete cotorsion pair
(
GFlat(R), GFlat(R)⊥

)
provides

two short exact sequences

(8) 0 −→ M −→ N −→ L −→ 0 and 0 −→ N ′ −→ L′ −→ M −→ 0,

where L,L′ ∈ GFlat(R) and N,N ′ ∈ GFlat(R)⊥. We may also consider a short exact sequence

0 −→ K −→ P −→ N −→ 0,

where P is projective and consider its pullback along the monomorphism M −→ N , in order
to obtain a commutative diagram with exact rows and columns

0 0
↓ ↓
K = K
↓ ↓

0 −→ L′′ −→ P −→ L −→ 0
↓ ↓ ∥

0 −→ M −→ N −→ L −→ 0
↓ ↓
0 0

Since GFlat(R) is closed under kernels of epimorphisms, the horizontal short exact sequence
in the middle shows that L′′ is Gorenstein flat. Letting N ′′ = N , we thereby obtain a third
short exact sequence

(9) 0 −→ L′′ −→ M ⊕ P −→ N ′′ −→ 0,

where L′′ ∈ GFlat(R), N ′′ ∈ GFlat(R)⊥ and P is projective.
Using the thickness of the category GFlat(R) and the equality GFlat(R) ∩ GFlat(R)⊥ =

Cot(R) ∩ Flat(R), we may prove as in Proposition 3.9 the following result.

Proposition 5.7. Let M be a module and consider the three short exact sequences in (8) and
(9), where L,L′, L′′ ∈ GFlat(R), N,N ′, N ′′ ∈ GFlat(R)⊥ and P is projective.

(i) If M ∈ GFlat(R), then N,N ′, N ′′ ∈ Cot(R) ∩ Flat(R).
(ii) If one of the modules N,N ′, N ′′ is contained in Flat(R), then M ∈ GFlat(R). �

References

[1] Auslander, M., Bridger, M.: Stable Module Theory, American Mathematical Society, Providence, RI,
1969, Memoirs of the American Mathematical Society 94

[2] Bazzoni, S., Cortés-Izurdiaga, M., Estrada, S.: Periodic modules and acyclic complexes. Algebr. Repre-
sent. Theory 23, 1861-1883 (2020)

[3] Bennis, D.: Rings over which the class of Gorenstein flat modules is closed under extensions. Comm.
Algebra 37, 855-868 (2009)

[4] Bennis, D.: A note on Gorenstein flat dimension. Algebra Colloq. 18, 155–161 (2011)
[5] Bican, L., El Bashir, R., Enochs, E.: All modules have flat covers. Bull. London Math. Soc. 33, 385-390

(2001)
[6] Bühler, T.: Exact categories. Expo. Math., 28, 1-69 (2010)
[7] Christensen, L.W., Estrada, S., Liang, L., Thompson, P., Wu, D., Yang, G.: A refinement of Gorenstein

flat dimension via the flat–cotorsion theory. J. Algebra 567, 346-370 (2021)
[8] Christensen, L.W., Estrada, S., Thompson, P.: Homotopy categories of totally acyclic complexes with ap-

plications to the flat–cotorsion theory, Categorical, Homological and Combina-torial Methods in Algebra,
Contemp. Math. 751, 99-118 (2020)



MODULES OF FINITE GORENSTEIN FLAT DIMENSION AND APPROXIMATIONS 23

[9] Christensen, L.W., Estrada, S., Thompson, P.: Gorenstein weak global dimension is symmetric. Mathe-
matische Nachrichten 294, 2121-2128 (2021)

[10] Christensen, L.W., Frankild, A., Holm, H.: On Gorenstein projective, injective and flat dimensions - a
functorial description with applications. J. Algebra 302, 231-279 (2006)

[11] Dalezios, G., Emmanouil, I.: Homological dimension based on a class of Gorenstein flat modules.
arXiv:2208.05692 [math.RA]

[12] Dalezios, G., Estrada, S., Holm, H.: Quillen equivalences for stable categories. J. Algebra 501, 130-149
(2018)

[13] Enochs, E.E., Jenda, O.M.G.: Gorenstein injective and projective modules. Math. Z. 220, 611-633 (1995)
[14] Enochs, E.E., Jenda, O.M.G.: Relative Homological Algebra (volume 1). Berlin: Walter de Gruyter &

Co. KG 2011
[15] Enochs, E.E., Jenda, O.M.G., Torrecillas, B.: Gorenstein flat modules. Nanjing Daxue Xuebao Shuxue

Bannian Kan 10, 1-9 (1993)
[16] Gillespie, J.: Model structures on exact categories. J. Pure Appl. Algebra 215, 2892-2902 (2011)
[17] Gillespie, J.: The flat stable module category of a coherent ring. J. Pure Appl. Algebra 221, 2025-2031

(2017)
[18] Happel, D.: Triangulated categories in the representation theory of finite-dimensional algebras, London

Mathematical Society Lecture Note Series 119, Cambridge University Press, Cambridge (1989)
[19] Holm, H.: Gorenstein homological dimensions. J. Pure Appl. Algebra 189, 167-193 (2004)
[20] Hovey, M.: Cotorsion pairs, model category structures, and representation theory. Math. Z. 241, 553-592

(2002)
[21] Lambek, J.: A module is flat if and only if its character module is injective. Canad. Math. Bull. 7, 237-243

(1964)
[22] Saroch, J., Stov́ıcek, J.: Singular compactness and definability for Σ-cotorsion and Gorenstein modules.

Selecta Math. (N.S.) 26, 2020, Paper No. 23

Department of Mathematics, University of Athens, Athens 15784, Greece

E-mail address: emmanoui@math.uoa.gr


