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Abstract. The Gorenstein cohomological dimension is defined for any groupG and coincides
with the virtual cohomological dimension vcdG, whenever the latter is defined and finite.
Unlike the virtual cohomological dimension, the Gorenstein cohomological dimension behaves
well with respect to extensions, finite graphs of groups and ascending unions. In this paper,
we study the Gorenstein cohomological dimension GcdkG of groups G, which are of type FP∞
over a commutative ring k. We show that if 1 −→ N −→ G −→ Q −→ 1 is an extension of
groups with N of type FP∞ over a field F and GcdFQ <∞, then GcdFG = GcdFN+GcdFQ.
We also show that for any group G of type FP∞ over Z with GcdZG <∞, there exists a field
F such that GcdFG = GcdZG. This implies, in particular, that if G is a group of type FP∞
over Z and G is an extension of N by itself, then GcdZG = 2GcdZN .
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0. Introduction

If k is a commutative ring and G is a group, then the Gorenstein cohomological dimension
GcdkG of G over k is the Gorenstein projective dimension of the trivial kG-module k, i.e.
the minimal length of a resolution of k by Gorenstein projective kG-modules. This invariant
generalizes the cohomological dimension cdkG of G over k, as well as the virtual cohomological
dimension vcdkG of G over k, whenever the latter is defined; it is known that GcdkG coincides
with these, when they are finite. The Gorenstein cohomological dimension of groups over Z
is proposed in [2] to serve as an algebraic invariant, whose finiteness characterizes the groups
that admit a finite dimensional model for the classifying space for proper actions. It is related
to several numerical invariants that are studied in cohomological group theory: As shown in
[12], [17] and [18], for any group G we have a chain of inequalities

GcdZG ≤ FcdZG ≤ cdFG ≤ gdFG ≤ max{3, cdFG}.
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Here, FcdZG is the F-cohomological dimension of G over Z, which is defined in terms of the
class F of finite subgroups of G. The Bredon cohomological dimension cdFG is defined in terms
of the category of contravariant functors from the orbit categoryOFG to the category of abelian
groups and gdFG denotes the geometric Bredon dimension, i.e. the minimal dimension of a
model for the classifying space for proper actions of G. There are examples of groups for which
the inequality FcdZG ≤ cdFG is strict (cf. [16]), as well as examples of groups with FcdZG =
cdFG (cf. [1], [7]). As shown in [19], the finiteness of the F-cohomological dimension of G over
Z implies that GcdZG = FcdZG. It follows that the Gorenstein cohomological dimension over
Z coincides for certain classes of groups with the Bredon cohomological dimension.

The invariant GcdkG has many properties that are standard for ordinary group cohomology.
It is proved in [10] that:
(i) If k has finite global dimension, then the finiteness of GcdkG implies that all kG-modules
have finite Gorenstein projective dimension.
(ii) If k has finite weak global dimension and H ⊆ G is a subgroup, then GcdkH ≤ GcdkG.
(iii) If k has finite weak global dimension and N E G is a normal subgroup, then GcdkG ≤
GcdkN +Gcdk(G/N).
(iv) If k is any commutative ring, then GcdkG ≤ GcdZG.
(v) If k is any commutative ring and G is expressed as the union of a continuous ascending
chain of subgroups (Gλ)λ, then GcdkG ≤ 1 + supλ GcdkGλ.
The class of groups with finite Gorenstein cohomological dimension over Z is strictly bigger
than the class of groups with finite virtual cohomological dimension over Z and is closed under
extensions, free products with amalgamation and HNN extensions; these properties are proved
in [2]. All groups of type FP∞ which are contained in the class LHF defined by Kropholler in
[14] have finite Gorenstein cohomological dimension over Z; this is proved in Appendix A.

In this paper, we study more closely property (iii) above. We consider a normal subgroup
N E G and examine conditions, under which the inequality GcdkG ≤ GcdkN + Gcdk(G/N)
is actually an equality. First of all, we note that the latter inequality may be strict, even
if N and G/N are groups of type FP∞ with finite virtual cohomological dimension: There
are examples of groups G1, G2 of type FP∞ with finite virtual cohomological dimension, such
that vcdZ(G1 × G2) < vcdZG1 + vcdZG2; cf. [8]. Returning to the general case of a normal
subgroup N EG of type FP∞, we can prove the equality GcdkG = GcdkN +Gcdk(G/N), by
imposing additional conditions in two (transverse) directions.

In one direction, we may assume that the ring of coefficients is a field and obtain the
following result:

Theorem A. If F is a field and 1 −→ N −→ G −→ Q −→ 1 is an extension of groups with
N of type FP∞ over F and GcdFQ <∞, then GcdFG = GcdFN +GcdFQ.

This result is the analogue in the realm of Gorenstein homological algebra of a classical result
by Fel’dman [11] for ordinary group cohomology. The proof of Theorem A is very similar to
the proof of Fel’dman’s result.

On the other hand, we may assume that the coefficient ring is Z and consider extensions of
a group N of type FP∞ by itself. We then obtain the following result:

Theorem B. If 1 −→ N −→ G −→ N −→ 1 is an extension of a group N of type FP∞ by
itself, then GcdZG = 2GcdZN .

We note that Theorem B generalizes the main result of [9], which deals with the ordinary
cohomological dimension of the direct product N × N , where N is a geometrically finite



ON THE GORENSTEIN COHOMOLOGICAL DIMENSION OF GROUP EXTENSIONS 3

group. The proof of Theorem B can be reduced to Theorem A, by means of the following
result, which is perhaps of independent interest:

Theorem C. If G is a group of type FP∞ over the ring Z of integers with GcdZG <∞, then
there exists a field F , such that GcdFG = GcdZG.

In fact, we prove a slightly more general version of Theorem C, where the ring Z of integers
is replaced by any principal ideal domain.

The contents of the paper are as follows: In Section 1, we give basic definitions and record
some preliminary results that are used throughout the paper. In the following Section, we
examine groups of type FP∞ with finite Gorenstein cohomological dimension and show that
these groups admit projective resolutions consisting of finitely generated free modules in each
degree. It follows that these groups have characteristic modules of type FP and hence their
Gorenstein cohomological dimension is detected by a suitable choice of a field of coefficients;
these results are proved in Section 3. In Section 4, we prove the analogue of Fel’dman’s result
in Gorenstein homological algebra (Theorem B). In the final Section, we apply the previous
results and study the Gorenstein cohomological dimension of iterated extensions of a group
N of type FP∞ by itself. In the Appendix, we characterize the finiteness of the Gorenstein
cohomological dimension of certain groups, in terms of the associated module of bounded
functions.

Terminology. All rings are assumed to be associative and unital and all ring homomorphisms
will be unit preserving. Unless otherwise specified, all modules will be left modules.

1. Preliminaries

In this section, we collect certain basic notions and preliminary results that will be used in
the sequel. These notions include complete resolutions and the Gorenstein projective dimen-
sion of modules over any ring. We also record some related facts concerning the special case
of modules over group rings.

I. Gorenstein projective dimension. Let R be a ring. An acyclic complex of projective
R-modules

. . . −→ Pn+1 −→ Pn −→ Pn−1 −→ . . . ,

is said to be a complete projective resolution (in the strong sense) if the complex of abelian
groups

. . .←− HomR(Pn+1, P )←− HomR(Pn, P )←− HomR(Pn−1, P )←− . . .

is acyclic for any projective R-module P . An R-module M is called Gorenstein projective
if it is a syzygy of a complete projective resolution, i.e. if there exists a complete projective
resolution as above, such that M = im (Pn −→ Pn−1) for some n. Holm’s paper [13] is the
standard reference in Gorenstein homological algebra. If M is Gorenstein projective, then the
groups ExtiR(M,P ) vanish when i ≥ 1 for all projective R-modules P .

The Gorenstein projective dimension GpdRM of an R-module M is the length of a shortest
resolution of M by Gorenstein projective modules. (If there is no such resolution of finite
length, then we write GpdRM = ∞.) If M is an R-module of finite projective dimension,
then M has finite Gorenstein projective dimension and GpdRM = pdRM . In the finite case,
the Gorenstein projective dimension admits an alternative, but equivalent, description in terms
of complete resolutions. We say that an R-module M admits a complete projective resolution
of coincidence index n if there exists a complete projective resolution, which coincides with an
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ordinary projective resolution of M in degrees ≥ n. If the Gorenstein projective dimension of
M is finite, then GpdRM is actually equal to the minimal n, for which M admits a complete
projective resolution of coincidence index n.

II. Group rings. Let k be a commutative ring, G a group and consider the associated group
ring R = kG. The standard reference for group cohomology is Brown’s book [4]. The Hopf
algebra structure of kG enriches the theory of kG-modules: Using the diagonal action of the
group G, the tensor product M ⊗kN of two kG-modules is also a kG-module. Moreover, if M
is a k-projective kG-module and N is a projective kG-module, then the diagonal kG-module
M ⊗k N is projective as well. We may tensor a projective resolution P −→ N −→ 0 of any
kG-module N with a k-projective kG-module M and obtain therefore a projective resolution
M ⊗k P −→M ⊗k N −→ 0 of the diagonal kG-module M ⊗k N . It follows that we then have
an inequality pdkG(M ⊗k N) ≤ pdkGN .

A kG-module M is said to be of type FP∞ (resp. of type FP) if M admits a projective
resolution

. . . −→ Pn −→ Pn−1 −→ . . . −→ P0 −→M −→ 0,

where the Pn’s are finitely generated projective modules (resp. the Pn’s are finitely generated
projective and vanish for n� 0). The group G is said to be of type FP∞ (resp. of type FP)
over k if the trivial kG-module k is of type FP∞ (resp. of type FP). We note that any projective
resolution of the trivial kG-module k is k-split. Therefore, if k −→ k′ is a commutative ring
homomorphism, then any kG-projective resolution P −→ k −→ 0 induces a k′G-projective
resolution P⊗k k

′ −→ k′ −→ 0. It follows readily that if G is a group of type FP∞ (resp. of
type FP) over k, then G is also of type FP∞ (resp. of type FP) over k′. In particular, if G is
of type FP∞ (resp. of type FP) over the ring Z of integers, then G is of type FP∞ (resp. of
type FP) over any commutative ring k. If G is a geometrically finite group, i.e. if G admits a
finite Eilenberg-MacLane space K(G, 1), then the trivial ZG-module Z admits a resolution of
finite length, which consists of finitely generated free ZG-modules; in particular, G is of type
FP over Z.

III. Characteristic modules. Let k be a commutative ring and G a group. Then, the
Gorenstein cohomological dimension GcdkG of G over k is the Gorenstein projective dimension
of the trivial kG-module k. The following notion provides us with a useful characterization of
the finiteness of GcdkG; cf. [21].

Definition 1.1. A characteristic module for G over k is a k-projective kG-module A with
pdkGA <∞, which admits a k-split kG-linear monomorphism ι : k −→ A (where k is regarded
as a trivial kG-module).

A characteristic module for G over k may not always exist and, if it exists, it is certainly
not unique. The projective dimension though of any characteristic module for G over k is
uniquely determined by the pair (k,G).

Proposition 1.2. Let k be a commutative ring and G a group. Then:
(i) If A,B are two characteristic modules for G over k, then pdkGA = pdkGB.
(ii) If there exists a characteristic module A for G over k, then G has finite Gorenstein
cohomological dimension over k and GcdkG ≤ pdkGA.
(iii) If k has finite weak global dimension and G has finite Gorenstein cohomological dimension
over k, then there exists a characteristic module for G over k with pdkGA = GcdkG.
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Proof. Assume that there exists a characteristic module A for G over k. Then, it follows
from [10, Proposition 1.4] that GpdkGM ≤ pdkGA for any k-projective kG-module M . Since
k is a k-projective kG-module, we have GcdkG = pdkGk ≤ pdkGA and this proves (ii). If
B is another characteristic module for G over k, then pdkGB < ∞ and hence GpdkGB =
pdkGB. Since B is a k-projective kG-module, it follows that pdkGB = GpdkGB ≤ pdkGA.
Reversing the roles of A and B, we may obtain the opposite inequality and finally conclude
that pdkGA = pdkGB; this proves (i). Finally, assertion (iii) is precisely [10, Corollary 1.3]. �

Corollary 1.3. Let k be a commutative ring of finite weak global dimension and G a group.
Then, G has finite Gorenstein cohomological dimension over k if and only if there exists a
characteristic module A for G over k. In that case, we have an equality pdkGA = GcdkG. �

Remarks 1.4. (i) The assumption in Proposition 1.2(iii) and Corollary 1.3 that the com-
mutative ring k has finite weak global dimension is perhaps unnatural. Tracing back through
the arguments in the proof of [10, Corollary 1.3], one needs the following property of the pair
(k,G): Any Gorenstein projective kG-module is k-projective. The latter property holds for
any group G if the ring k has finite weak global dimension.
(ii) If k has finite global dimension and G is a group with finite Gorenstein cohomological

dimension over k, then all kG-modules M have finite Gorenstein projective dimension and
GpdkGM ≤ GcdkG+ gl.dim k (cf. [10, Corollary 1.6]).

(iii) Let A be a characteristic module for G over k and consider a homomorphism of commu-
tative rings k −→ k′. Then, the k′G-module A⊗k k

′ is a characteristic module for G over k′.
Indeed, since the kG-module A is k-projective, the k′G-module A⊗k k

′ is clearly k′-projective.
Moreover, any kG-projective resolution of finite length P −→ A −→ 0 is k-split and hence
induces a k′G-projective resolution of finite length P⊗k k

′ −→ A⊗k k
′ −→ 0; it follows that

pdk′G(A ⊗k k′) < ∞. Finally, any k-split kG-linear monomorphism ι : k −→ A induces a
k′-split k′G-linear monomorphism ι⊗ 1 : k′ −→ A⊗k k

′.

In order to find explicit examples of characteristic modules for a group G over a commutative
ring k, one may start with the coinduced module CoindG

1 k = Homk(kG, k), which is naturally
identified with the set of all functions from G to k, and then consider the kG-submodule
B(G, k) consisting of all functions from G to k whose image is a finite subset of k. This exam-
ple is analysed in Appendix A, where we examine whether B(G, k) is indeed a characteristic
module for G over k for certain groups G.

2. Groups of type FP∞ with finite Gcd

In this section we show that any group G of type FP∞ with finite Gorenstein cohomological
dimension admits a complete projective resolution by finitely generated free modules. We
begin with a couple of preliminary results, whose proof follows from the elegant arguments by
Cornick and Kropholler in [5].

Lemma 2.1. Let k be a commutative ring, G a group and assume that there exists a kG-
module A, which admits a k-split kG-linear monomorphism ι : k −→ A. We also consider a
complex of kG-modules

M : . . . −→Mn −→Mn−1 −→ . . .

and assume that the induced complex of diagonal kG-modules

M⊗k A : . . . −→Mn ⊗k A −→Mn−1 ⊗k A −→ . . .
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is contractible. Then, for any projective kG-module Q the induced complex of abelian groups

HomkG(M, Q) : . . .←− HomkG(Mn, Q)←− HomkG(Mn−1, Q)←− . . .

is acyclic.
Proof. (cf. [5, Lemma 3.5]) Let A = coker ι and consider the k-split short exact sequence of

kG-modules
0 −→ k

ι−→ A −→ A −→ 0.

We also consider a projective kG-module Q and the induced short exact sequence of kG-
modules (with diagonal action)

0 −→ Homk

(
A,Q

)
−→ Homk(A,Q)

ι∗−→ Q −→ 0.

Since the kG-module Q is projective, the exact sequence above splits and hence Q is a direct
summand of Homk(A,Q). The acyclicity of the complex HomkG(M, Q) will therefore follow
if we show the acyclicity of the complex

HomkG(M,Homk(A,Q)) ' HomkG(M⊗k A,Q).

But the complex M⊗k A is contractible by hypothesis and hence HomkG(M⊗k A,Q) is also
contractible; in particular, the latter complex is acyclic, as needed. �
Proposition 2.2. Let k be a commutative ring, G a group and K a finitely generated kG-
module. We assume that there exists a k-projective kG-module A, which admits a k-split
kG-linear monomorphism ι : k −→ A and is such that the diagonal kG-module K ⊗k A is
projective. Then:
(i) There exists a short exact sequence of kG-modules 0 −→ K −→ T −→ N −→ 0, such that
T is finitely generated free and the diagonal kG-module N ⊗k A is projective.
(ii) There exists an exact sequence of kG-modules

0 −→ K −→ T−1 −→ T−2 −→ . . . ,

where Ti is finitely generated free and the image Ki = im (Ti −→ Ti−1) is such that the diagonal
kG-module Ki ⊗k A is projective for all i ≤ −1.
(iii) Any projective resolution P of the kG-module K

. . . −→ Pm −→ Pm−1 −→ . . . −→ P0 −→ K −→ 0

may be completed to a complete projective resolution

T : . . . −→ Pm −→ Pm−1 −→ . . . −→ P0 −→ T−1 −→ T−2 −→ . . .

with K = im (P0 −→ T−1), such that Ti is a finitely generated free kG-module for all i ≤ −1.
Proof. (i) (cf. [5, Lemma 4.1]) Let A = coker ι and consider the k-split short exact sequence

of kG-modules
0 −→ k

ι−→ A −→ A −→ 0.

Since A is k-projective, it follows that A is k-projective as well. We also consider the induced
k-split short exact sequence of diagonal kG-modules

(1) 0 −→ K
1K⊗ι−→ K ⊗k A −→ K ⊗k A −→ 0.

Since the kG-module A is k-projective and K ⊗k A is kG-projective (by assumption), the
kG-module (K⊗k A)⊗k A = (K⊗k A)⊗k A is kG-projective as well. It follows that the short
exact sequence

(2) 0 −→ K ⊗k A −→ (K ⊗k A)⊗k A −→ (K ⊗k A)⊗k A −→ 0,
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which is obtained from (1) by tensoring with A over k, is split over kG. Since the kG-module
K ⊗k A is projective, there exists a projective kG-module L such that L⊕ (K ⊗k A) is free.
We now consider the k-split short exact sequence

(3) 0 −→ K
ȷ−→ L⊕ (K ⊗k A) −→ L⊕ (K ⊗k A) −→ 0,

which is obtained as the direct sum of (1) and the short exact sequence

0 −→ 0 −→ L
1L−→ L −→ 0.

The short exact sequence (3) induces upon tensoring with A over k a short exact sequence,
which is also split over kG; in fact, the tensored exact sequence is the direct sum of (2) and
the short exact sequence

0 −→ 0 −→ L⊗k A
1L⊗kA−→ L⊗k A −→ 0.

Since the kG-module K is finitely generated and L⊕ (K ⊗k A) is free, there exists a finitely
generated free direct summand T ⊆ L ⊕ (K ⊗k A), such that im ȷ ⊆ T . Therefore, letting
N = T/im ȷ, we conclude that the short exact sequence of kG-modules

(4) 0 −→ K −→ T −→ N −→ 0

is a direct summand of the short exact sequence (3). In particular, the short exact sequence
(4) induces upon tensoring with A over k a split short exact sequence of kG-modules

0 −→ K ⊗k A −→ T ⊗k A −→ N ⊗k A −→ 0.

Since T is a free kG-module and A is k-projective, the diagonal kG-module T⊗kA is projective.
Being isomorphic with a direct summand of T ⊗kA, the kG-module N ⊗kA is then projective
as well.

(ii) This follows from (i) using induction. We may construct an exact sequence as in the
statement, by splicing together the short exact sequences obtained by a repeated application
of (i).

(iii) We may splice any projective resolution P of K as in the statement with the exact
sequence provided in (ii) and obtain an acyclic complex of projective kG-modules

T : . . . −→ Pm −→ Pm−1 −→ . . . −→ P0 −→ T−1 −→ T−2 −→ . . .

with K = im (P0 −→ T−1), such that Ti is a finitely generated free kG-module for all i ≤ −1.
Since A is a k-projective kG-module, the induced exact sequence of diagonal kG-modules
T⊗k A is acyclic as well. In view of (ii), the images Ki = im (Ti −→ Ti−1) are such that the
diagonal kG-modules Ki ⊗k A are projective for all i ≤ −1. Since the modules Ki ⊗k A are
precisely the syzygies of T ⊗k A, it follows that the latter complex is contractible. Invoking
Lemma 2.1, we conclude that the complex of abelian groups HomkG(T, Q) is acyclic for any
projective kG-module Q. Therefore, T is a complete projective resolution, as needed. �
Theorem 2.3. Let k be a commutative ring of finite weak global dimension. We also consider
a group G with GcdkG <∞ and a k-projective kG-module M of type FPn, where n ≥ GcdkG.
Then, M admits a complete projective resolution T = (Ti)i of coincidence index n, such that
Ti is a finitely generated free kG-module for all i ≤ n− 1.
Proof. Since M is of type FPn, there exists a projective resolution P of M

. . . −→ Pm −→ Pm−1 −→ . . . −→ P0 −→M −→ 0,

such that the n-th syzygy module Kn = im (Pn −→ Pn−1) is finitely generated (as a kG-
module). Since the commutative ring k has finite weak global dimension and GcdkG ≤ n <∞,
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we may choose a characteristic module for G over k; there exists a k-projective kG-module
A with pdkGA = GcdkG ≤ n, which admits a k-split kG-linear monomorphism ι : k −→ A.
Since A is k-projective, there is an induced projective resolution of the diagonal kG-module
M ⊗k A

. . . −→ Pm ⊗k A −→ Pm−1 ⊗k A −→ . . . −→ P0 ⊗k A −→M ⊗k A −→ 0.

Since M is k-projective, it follows that pdkG(M ⊗k A) ≤ pdkGA ≤ n. Therefore, the n-th
syzygy module of the latter resolution, namely Kn ⊗k A = im (Pn ⊗k A −→ Pn−1 ⊗k A), is
projective (as a kG-module).

Since Kn is a finitely generated kG-module possessing a projective resolution

. . . −→ Pm −→ Pm−1 −→ . . . −→ Pn −→ Kn −→ 0

and Kn⊗kA is kG-projective, we may apply Proposition 2.2(iii) and conclude that there exists
a complete projective resolution

T : . . . −→ Pm −→ Pm−1 −→ . . . −→ Pn −→ Tn−1 −→ Tn−2 −→ . . . ,

with Kn = im (Pn −→ Tn−1), such that Ti is a finitely generated free kG-module for all
i ≤ n − 1. Since T is a complete projective resolution, which coincides with the projective
resolution P of M in degrees ≥ n, the proof is complete. �

The following result is an immediate consequence of Theorem 2.3 and its proof.

Corollary 2.4. Let k be a commutative ring of finite weak global dimension, G a group with
GcdkG = n < ∞ and M a k-projective kG-module of type FP∞. Then, for any projective
resolution P of M , which consists of finitely generated free kG-modules in each degree, there
exists a complete projective resolution T of M , which consists of finitely generated free kG-
modules in each degree and coincides with P in degrees ≥ n.

Proof. Consider a projective resolution P of M , consisting of finitely generated free kG-
modules in each degree. Then, the complete projective resolution T constructed in the proof
of Theorem 2.3 has coincidence index n and consists of finitely generated free kG-modules
in each degree: In degrees ≥ n, this follows since P consists of finitely generated free kG-
modules, whereas in degrees ≤ n− 1 this follows from Theorem 2.3. �

We conclude by recording the special case where M = k is the trivial kG-module; for an
alternative proof of the following result, the reader may consult [2, Theorem 4.2(vi)].

Corollary 2.5. Let k be a commutative ring of finite weak global dimension and G a group
of type FP∞ over k with GcdkG = n < ∞. Then, for any projective resolution P of G over
k, which consists of finitely generated free kG-modules in each degree, there exists a complete
projective resolution T of G over k, which consists of finitely generated free kG-modules in
each degree and coincides with P in degrees ≥ n. �

3. Characteristic modules for FP∞ groups with finite Gcd

Using the results of the previous section, we shall now prove that a group of type FP∞
with finite Gorenstein cohomological dimension has a characteristic module of type FP. As a
consequence, it will follow that the Gorenstein cohomological dimension of such groups (at
least in the case where k = Z is the ring of integers) is detected by a suitable choice of a field
of coefficients.
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Theorem 3.1. Let k be a commutative ring of finite weak global dimension and G a group of
type FP∞ over k with GcdkG < ∞. Then, there exists a characteristic module for G over k
of type FP.

Proof. Let P be a projective resolution of G over k, which consists of finitely generated free
modules in each degree. We also let GcdkG = n and consider a complete projective resolution
T of G over k, which consists of finitely generated free modules in each degree and is such that
Ti = Pi for all i ≥ n; cf. Corollary 2.5. Since the complexes of abelian groups HomkG(T, Pi)
are acyclic for i = 0, 1, . . . , n− 1, the identity maps Ti −→ Pi, i ≥ n, extend to a chain map
τ : T −→ P

. . . −→ Tn+1 −→ Tn −→ Tn−1 −→ . . . −→ T0 −→ T−1 −→ · · ·
‖ ‖ τn−1 ↓ τ0 ↓ τ−1 ↓

. . . −→ Pn+1 −→ Pn −→ Pn−1 −→ . . . −→ P0 −→ 0 −→ · · ·

We may reduce to the case where the linear maps τi are surjective in degrees i < n. Indeed,
for each i = 0, 1, . . . , n − 1 we may consider the (contractible) complex Xi, which consists
of Pi in degrees i, i − 1 and 0’s elsewhere with differential in degree i given by the identity
map of Pi. Let fi : Xi −→ P be the unique chain map whose component in degree i is the
identity map of Pi. Then, the direct sum T′ = T ⊕ Xn−1 ⊕ . . . ⊕ X1 ⊕ X0 is a complete
projective resolution of G over k and the chain map T′ −→ P, which is induced by τ and the
fi’s, i = 0, 1, . . . , n− 1, is surjective in degrees ≤ n− 1 (and coincides with τ in degrees ≥ n).

We now consider the (Gorenstein projective) modules

K = coker (Tn+1 −→ Tn) , L = coker (T1 −→ T0) and M = coker (T0 −→ T−1) .

The chain map τ induces a commutative diagram

(5)
0 −→ K −→ Tn−1 −→ . . . −→ T0 −→ L −→ 0

‖ τn−1 ↓ τ0 ↓ t ↓
0 −→ K −→ Pn−1 −→ . . . −→ P0 −→ k −→ 0

with exact rows whose vertical maps are surjective. (Here, t = τ0 is the map induced by τ0 by
passage to the quotients.) We let N = ker t and Qi = ker τi for all i = 0, 1, . . . , n− 1. Then,
there is an induced exact sequence

(6) 0 −→ Qn−1 −→ . . . −→ Q0 −→ N −→ 0.

Indeed, viewing (5) as a surjective chain map between acyclic complexes, the complex (6) is
its kernel (which must therefore be acyclic). Since the Pi’s are projective, the surjective linear
maps τi split and hence Qi is a direct summand of Ti for all i = 0, 1, . . . , n− 1. It follows that
Qi is a finitely generated projective module for all i = 0, 1, . . . , n− 1.
Pushing out the short exact sequence

0 −→ L −→ T−1 −→M −→ 0
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by the linear map t : L −→ k, we obtain a commutative diagram

0 0
↓ ↓
N = N
↓ ↓

0 −→ L −→ T−1 −→ M −→ 0
t ↓ ↓ ‖

0 −→ k
ι−→ A −→ M −→ 0

↓ ↓
0 0

with exact rows and columns. Since M is Gorenstein projective as a kG-module, our assump-
tion that k has finite weak global dimension implies that M is k-projective (cf. Remark 1.4(i)).
It follows that the kG-linear monomorphism ι splits and A is k-projective. Splicing the exact
sequence (6) with the vertical short exact sequence in the middle of the diagram above, we
obtain an exact sequence of kG-modules

0 −→ Qn−1 −→ . . . −→ Q0 −→ T−1 −→ A −→ 0.

Since T−1 and the Qi’s are finitely generated projective kG-modules, the kG-module A is of
type FP and pdkGA ≤ n < ∞. It follows that A is a characteristic module for G over k of
type FP, as needed. �

As we have already pointed out in the Introduction, for any commutative coefficient ring k
the Gorenstein cohomological dimension of a group over k is bounded by the corresponding
dimension over Z; if G is any group, then GcdkG ≤ GcdZG. Our next goal is to show that one
can always find a field F with GcdFG = GcdZG, provided that G is a group of type FP∞ with
GcdZG <∞. To that end, we shall adopt a more general point of view and record a few simple
auxiliary results. If k is a principal ideal domain (or, more generally, a unique factorization
domain), then any non-unit element a ∈ k may be expressed as a product a =

∏n
i=1 pi of

prime (irreducible) elements p1, . . . , pn and this expression is essentially unique. In particular,
the number n is uniquely determined by a; we write n = λ(a). In this way, λ(a) = 1 if a is a
prime element, λ(a) = 2 if a is a product of two prime elements, etc.

Lemma 3.2. Let k be a principal ideal domain and R be a k-algebra.
(i) Let C 6= 0 be a finitely generated R-module, which is torsion as a k-module. Then, there
exists a prime element p ∈ k, such that pC 6= C.
(ii) Let f : M −→ N be an R-linear map and assume that N is finitely generated. If f is
not surjective, then there exists a k-algebra F , such that F is a field and the induced map
f ⊗ 1 : M ⊗k F −→ N ⊗k F is not surjective either.

Proof. (i) Let c1, . . . , cn be generators of the R-module C. Since C is torsion as a k-module,
there exists an element a ∈ k, such that aci = 0 ∈ C for all i = 1, . . . , n. It follows readily
that aC = 0. Since C 6= 0, the element a is not a unit in k and we may assume that λ(a) is
minimal in the set Λ = {λ(a′) : a′ ∈ k and a′C = 0}. If p ∈ k is a prime element dividing a,
then we necessarily have pC 6= C. Indeed, if pC = C and we write a = bp, then we would
have bC = b(pC) = aC = 0 and λ(b) = λ(a)− 1, contradicting the minimality of λ(a) ∈ Λ.
(ii) Let C = coker f and consider the exact sequence of R-modules

M
f−→ N −→ C −→ 0.



ON THE GORENSTEIN COHOMOLOGICAL DIMENSION OF GROUP EXTENSIONS 11

Since N is finitely generated, it follows that C is finitely generated as well. For any k-algebra
F there is an induced exact sequence

M ⊗k F
f⊗1−→ N ⊗k F −→ C ⊗k F −→ 0.

If C is not torsion as a k-module, then C ⊗k K 6= 0, where K is the field of fractions of k,
and we may choose F = K. If C is torsion as a k-module, then we may apply (i) and find a
prime element p, such that pC 6= C. In that case, C⊗k k/pk = C/pC 6= 0 and we may choose
F = k/pk. �

In order to apply Lemma 3.2, the following simple general observation will be useful. Let R
be a ring and N an R-module with endomorphism ring EndRN . Then, for any R-module M
the abelian group HomR(M,N) is endowed with the structure of an EndRN -module, where
elements of EndRN act on linear maps M −→ N by composition to the left. This EndRN -
module structure is clearly natural in M ; in other words, any R-linear map f : M −→ M ′

induces an additive map f ∗ : HomR(M
′, N) −→ HomR(M,N), which is linear with respect

to the EndRN -module structures on the two Hom-groups. In particular, letting N = R, we
conclude that the abelian group HomR(M,R) admits a natural structure of a right R-module:
For any r ∈ R and any R-linear map f : M −→ R the R-linear map f · r : M −→ R is defined
by letting (f · r)(m) = f(m)r ∈ R for any m ∈M . The right R-module HomR(R

n, R), which
is obtained as above by letting M = Rn, is naturally identified with the right R-module Rn

for any non-negative integer n. As an immediate consequence of this observation, we obtain
the following result.

Lemma 3.3. If M is a finitely generated projective R-module, then the right R-module
HomR(M,R) defined above is also finitely generated projective. �

We now let k be a commutative ring, R,S be two k-algebras and consider an R-module N .
Then, for any R-module M we consider the additive map

ξM : HomR(M,N)⊗k S −→ HomR⊗kS(M ⊗k S,N ⊗k S),

which is defined by letting ξM(f ⊗ s) : M ⊗k S −→ N ⊗k S be the R ⊗k S-linear map
m⊗ s′ 7→ f(m)⊗ ss′ ∈ N ⊗k S, m⊗ s′ ∈ M ⊗k S, for all f ∈ HomR(M,N) and s ∈ S. It is
clear that ξM is natural in M .

Lemma 3.4. Let R,S be two rings and consider an R-module N . Then:
(i) If M,M ′ are two R-modules, then the additive map ξM⊕M ′ is naturally identified with the
direct sum ξM ⊕ ξM ′ of the additive maps ξM and ξM ′.
(ii) The additive map ξM is bijective for any finitely generated projective R-module M .

Proof. Assertion (i) is clear, whereas (ii) is obvious in the special case where M = R. The
general case of a finitely generated projective R-module follows from that special case, in view
of (i). �
Proposition 3.5. Let k be a principal ideal domain, R be a k-algebra and M an R-module
of type FP. We assume that both R and M are torsion-free as k-modules. Then, there exists
a k-algebra F , such that F is a field and pdR⊗kF

(M ⊗k F ) = pdRM .
Proof. Let pdRM = n and consider a resolution

(7) 0 −→ Pn
f−→ Pn−1 −→ . . . −→ P0 −→M −→ 0,

where Pi is a finitely generated projective R-module for all i = 0, 1, . . . , n. Since pdRM = n,
the monomorphism f does not split and hence ExtnR(M,Pn) 6= 0. The R-module Pn being
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a direct summand of a finitely generated free R-module, we conclude that ExtnR(M,R) 6= 0.
Hence, the exactness of the sequence

HomR(Pn−1, R)
f∗
−→ HomR(Pn, R) −→ ExtnR(M,R) −→ 0

shows that the map f ∗ is not surjective. As noted above, the groups HomR(Pn−1, R) and
HomR(Pn, R) can be viewed as right R-modules and f ∗ is then R-linear. Since the right R-
module HomR(Pn, R) is finitely generated (cf. Lemma 3.3), we may apply Corollary 3.2 and
conclude that there exists a k-algebra F , such that F is a field and the induced map

f ∗ ⊗ 1 : HomR(Pn−1, R)⊗k F −→ HomR(Pn, R)⊗k F

is not surjective either. In view of Lemma 3.4(ii), the latter map is identified with

(8) (f ⊗ 1)∗ : HomR⊗kF (Pn−1 ⊗k F,R⊗k F ) −→ HomR⊗kF (Pn−1 ⊗k F,R⊗k F ).

Since M and the Pi’s are torsion-free as k-modules, (7) induces a projective resolution

0 −→ Pn ⊗k F
f⊗1−→ Pn−1 ⊗k F −→ . . . −→ P0 ⊗k F −→M ⊗k F −→ 0

of M ⊗k F as an R ⊗k F -module. It follows that the cokernel of the map (8) computes the
group ExtnR⊗kF

(M ⊗k F,R⊗k F ). We therefore conclude that ExtnR⊗kF
(M ⊗k F,R⊗k F ) 6= 0

and hence pdR⊗kF
(M ⊗k F ) = n, as needed. �

We shall now apply the previous discussion to the special case that we are really interested in,
namely to the study of the projective dimension of characteristic modules for groups of finite
Gorenstein cohomological dimension. In the special case where k = Z is the ring of integers,
the following result reduces to Theorem C, as stated in the Introduction.

Theorem 3.6. Let k be a principal ideal domain and G be a group of type FP∞ over k with
GcdkG <∞. Then, there exists a k-algebra F , such that F is a field and GcdFG = GcdkG.
Proof. Since gl.dim k ≤ 1, Theorem 3.1 implies that there exists a characteristic module A

for G over k of type FP. Then, Proposition 3.5 shows that we can find a k-algebra F , such that
F is a field and pdFG(A⊗k F ) = pdkGA. Since A⊗k F is a characteristic module for G over F
(cf. Remark 1.4(iii)), Corollary 1.3 implies that GcdFG = pdFG(A⊗k F ) = pdkGA = GcdkG,
as needed. �

4. Gorenstein cohomological dimension of certain group extensions

Our goal in this section is to formulate and prove the analogue of Fel’dman’s computation
of the cohomological dimension of certain group extensions [11] in Gorenstein homological
algebra. To that end, we shall follow closely the excellent presentation of Fel’dman’s result
given in Bieri’s notes [3].

We fix a commutative ring k and consider an extension of groups

1 −→ N −→ G −→ Q −→ 1

and two kG-modulesM,V . The groupG acts (diagonally) on the abelian group HomkN(M,V ).
Given g ∈ G and f ∈ HomkN(M,V ), the map g · f : M −→ V is defined by letting x 7→
gf(g−1x) ∈ V , x ∈M . (Since N is normal in G, the map g ·f is easily seen to be kN -linear; the
diagonal action of G on Homk(M,V ) restricts to its subgroup HomkN(M,V ), which is thereby
a kG-submodule of it.) As the action of elements of N is obviously trivial, we actually obtain
an action of the quotient group Q on HomkN(M,V ). The kQ-module structure defined in this
way on the abelian group HomkN(M,V ) is natural in M ; any kG-linear map h : M −→ M ′
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induces an additive map h∗ : HomkN(M
′, V ) −→ HomkN(M,V ), which is kQ-linear. In other

words, for any g ∈ G and f ∈ HomkN(M
′, V ) we have g · (f ◦h) = (g · f) ◦h ∈ HomkN(M,V ).

We note that the subgroup of Q-invariant elements in HomkN(M,V ) consists precisely of the
kG-linear maps from M to V , i.e. H0(Q,HomkN(M,V )) = HomkG(M,V ).

Using general principles (cf. the discussion before Lemma 3,3), we can define on the abelian
group HomkN(M,kN) the structure of a right kN -module. In this way, given n ∈ N and
f ∈ HomkN(M,kN), the map f ·n : M −→ kN is defined by letting x 7→ f(x)n ∈ kN , x ∈M .
We may extend this right kN -module structure on HomkN(M,kN) to a right kG-module
structure as follows: Given g ∈ G and f ∈ HomkN(M,kN), the map f ·g : M −→ kN is defined
by letting x 7→ g−1f(gx)g ∈ kN , x ∈M . (As before, using the fact that N is normal in G, it is
easily seen that the map f ·g is well-defined and kN -linear.) This right kG-module structure on
the abelian group HomkN(M,kN) is natural in M ; any kG-linear map h : M −→M ′ induces
an additive map h∗ : HomkN(M

′, kN) −→ HomkN(M,kN), which is kG-linear. In other
words, for any g ∈ G and f ∈ HomkN(M

′, kN) we have (f ◦h)·g = (f ·g)◦h ∈ HomkN(M,kN).
Using the inversion map ofG, we define the structure of a (left) kG-module on HomkN(M,kN),
by letting any element g ∈ G act as right multiplication by g−1.

We now consider the diagonal action of G on the tensor product HomkN(M,kN) ⊗kN V .
Given g ∈ G, f ∈ HomkN(M,kN) and v ∈ V , we have g · (f ⊗ v) = (f · g−1)⊗ gv. Since N is
normal in G, it is easily seen that this action is well-defined. Moreover, the elements of N act
trivially and hence we obtain an action of the quotient group Q on HomkN(M,kN) ⊗kN V .
The kQ-module structure defined in this way on HomkN(M,kN)⊗kN V is natural in M .

There is a additive map

(9) Φ = ΦM : HomkN(M,kN)⊗kN V −→ HomkN(M,V ),

which is natural in M , given by letting Φ(f ⊗ v) be the map x 7→ f(x)v ∈ V , x ∈ M , for
all f ∈ HomkN(M,kN) and v ∈ V . The map Φ is kG-linear (i.e. kQ-linear) with respect to
the module structures defined above; for any g ∈ G, f ∈ HomkN(M,kN) and v ∈ V we have
Φ[g · (f ⊗ v)] = g · Φ(f ⊗ v) ∈ HomkN(M,V ).

Remark 4.1 Let k be a commutative ring. We may formally generalize the definition of
the additive map Φ as follows: For any group N and any two kN -modules L,U there is an
additive map

Ψ = ΨL : HomkN(L, kN)⊗kN U −→ HomkN(L,U),

which is natural in L, given by letting Ψ(f ⊗ u) be the map x 7→ f(x)u ∈ U , x ∈ L, for all
f ∈ HomkN(L, kN) and u ∈ U . Here, the right kN -module structure on the abelian group
HomkN(L, kN) is that defined by the generalities discussed before Lemma 3.3. It is clear that
ΨL is bijective in the special case where L = kN . Moreover, if L,L′ are two kN -modules, then
the additive map ΨL⊕L′ is naturally identified with the direct sum ΨL ⊕ ΨL′ of the additive
maps ΨL and ΨL′ . It follows readily that ΨL is bijective if L is any finitely generated projective
kN -module.

We now consider a projective resolution P of the trivial kG-module k

. . . −→ Pi −→ Pi−1 −→ . . . −→ P0 −→ k −→ 0.

Since any projective kG-module is kN -projective as well, P is also a projective resolution of
k as a kN -module. Hence, we can (and will) compute the cohomology groups of N using P.
The naturality of the kQ-module structure defined above on the abelian groups HomkN(Pi, V )
shows that HomkN(P, V ) is a complex of kQ-modules, In particular, the cohomology groups
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H i(N, V ) are kQ-modules as well. Since H0(Q,HomkN(P, V )) = HomkG(P, V ), it is precisely
this kQ-module structure that is involved in the E2-term of the Lyndon-Hochschild-Serre
spectral sequence

E2
pq = Hp(Q,Hq(N, V )) =⇒ Hp+q(G, V )

that computes the cohomology of G with coefficients in V . In an analogous way, the naturality
of the kQ-module structure defined above on the abelian groups HomkN(Pi, kN)⊗kN V shows
that HomkN(P, kN)⊗kN V is also a complex of kQ-modules, (It follows that its cohomology
groups are kQ-modules as well.) The naturality of the kQ-linear maps

ΦPi
: HomkN(Pi, kN)⊗kN V −→ HomkN(Pi, V ),

defined above, shows that these are the components of a map between cochain complexes of
kQ-modules

(10) Φ : HomkN(P, kN)⊗kN V −→ HomkN(P, V ).

Proposition 4.2. Let k be a commutative ring and consider an extension of groups

1 −→ N −→ G −→ Q −→ 1,

where N is a group of type FP∞ over k. We also consider a projective resolution P of the
trivial kG-module k and a kG-module V . Then:
(i) The cochain complex map (10) defined above is a quasi-isomorphism.
(ii) If V is flat as a kN -module, then Φ induces an isomorphism of kQ-modules

ϕi : H
i(N, kN)⊗kN V −→ H i(N, V )

for all i ≥ 0. (Here, the group G acts diagonally on the tensor product.)
Proof. (i) Since the group N is of type FP∞ over k, there exists a resolution P′ of the trivial

kN -module k, which consists of finitely generated projective kN -modules in each degree. We
know that there exists a homotopy equivalence f : P′ −→ P in the category of cochain
complexes of kN -modules. Of course, f induces homotopy equivalences

f ∗ : HomkN(P, kN) −→ HomkN(P
′, kN) and f ∗ : HomkN(P, V ) −→ HomkN(P

′, V )

in the category of cochain complexes of abelian groups. The naturality of the right kN -module
structure defined on the HomkN( , kN)-groups implies that the former of these two homotopy
equivalences is actually a homotopy equivalence in the category of cochain complexes of right
kN -modules. Therefore, there is an induced homotopy equivalence

f ∗ ⊗ 1 : HomkN(P, kN)⊗kN V −→ HomkN(P
′, kN)⊗kN V

in the category of cochain complexes of abelian groups.
In the same way that the natural maps (9) lead to the cochain complex map (10), one may

use the natural maps Ψ defined in Remark 4.1 and define a cochain complex map

Ψ : HomkN(P
′, kN)⊗kN V −→ HomkN(P

′, V ).

Since the chain complex P′ consists of finitely generated projective kN -modules in each degree,
the above cochain complex map is bijective.

We now claim that the following diagram of cochain complex maps

(11)
HomkN(P, kN)⊗kN V

Φ−→ HomkN(P, V )
f∗⊗1 ↓ ↓ f∗

HomkN(P
′, kN)⊗kN V

Ψ−→ HomkN(P
′, V )
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is commutative. In other words, we claim that the following diagram of abelian groups

HomkN(Pi, kN)⊗kN V
ΦPi−→ HomkN(Pi, V )

f∗
i ⊗1 ↓ ↓ f∗

i

HomkN(P
′
i , kN)⊗kN V

ΨP ′
i−→ HomkN(P

′
i , V )

is commutative for all i ≥ 0. (Here, we denote by fi the components of f .) Indeed, since the
Φ’s are particular instances of the Ψ’s, the commutativity of the latter diagram follows from
the naturality of Ψ. Since the two vertical maps of diagram (11) are homotopy equivalences
and the horizontal map at the bottom is bijective, all of these three cochain complex maps are
quasi-isomorphisms. It follows readily that the horizontal cochain complex map at the top of
that commutative diagram is also a quasi-isomorphism, as needed

(ii) This is an immediate consequence of (i), since the i-th cohomology groups of the com-
plexes HomkN(P, kN)⊗kN V and HomkN(P, V ) coincide with H i(N, kN)⊗kN V and H i(N, V )
respectively. �
Corollary 4.3. Let k be a commutative ring and consider an extension of groups

1 −→ N −→ G −→ Q −→ 1,

where N is a group of type FP∞ over k. Then, the cohomology group H i(N, kG) is isomorphic

as a kQ-module with the induced module IndQ
1 H

i(N, kN) = H i(N, kN)⊗k kQ for all i ≥ 0.
Proof. Fix a non-negative integer i. Invoking Proposition 4.2(ii), we know that there exists

a kQ-module isomorphism H i(N, kG) ' H i(N, kN)⊗kN kG, where G acts diagonally on the
tensor product. Therefore, the result follows from the existence of a kQ-module isomorphism
between the diagonal module H i(N, kN)⊗kN kG and the induced module IndQ

1 H
i(N, kN) =

H i(N, kN) ⊗k kQ. (If we write Q = G/N , then such a kQ-module isomorphism is given by
letting t⊗g ∈ H i(N, kN)⊗kN kG map onto tg⊗gN ∈ H i(N, kN)⊗k kQ for all t ∈ H i(N, kN)
and g ∈ G.) �
Corollary 4.4. Let k be a commutative ring and consider an extension of groups

1 −→ N −→ G −→ Q −→ 1,

where N is a group of type FP∞ over k, and a non-negative integer i.
(i) If the k-module H i(N, kN) is projective, then the kQ-module H i(N, kG) is projective.
(ii) If the k-module H i(N, kN) contains a copy of k as a direct summand, then the kQ-module
H i(N, kG) contains a copy of kQ as a direct summand. �

We are now ready to state and prove the Gorenstein homological algebra analogue of
Fel’dman’s result [11]. As a prelude to one of the assumptions that will be made in the follow-
ing theorem, we note that if k is a commutative ring and N is a group with GcdkN = n <∞,
then the cohomology groups H i(N, kN) vanish for all i > n. Is N is, in addition, of type
FP∞ over k, then Hn(N, kN) 6= 0. Indeed, as shown by Holm in [13, Theorem 2.20]), we
have Hn(N,P ) 6= 0 for a suitable projective kN -module P . Since P is a direct summand of a
direct sum of copies of kN and the cohomology functor Hn(N, ) commutes with direct sums
(in view of the FP∞ assumption on N), it follows that the group Hn(N, kN) must be indeed
non-trivial.

Theorem 4.5. Let k be a commutative ring and consider an extension of groups

1 −→ N −→ G −→ Q −→ 1,



16 IOANNIS EMMANOUIL AND OLYMPIA TALELLI

such that:
(i) N is a group of type FP∞ over k,
(ii) both GcdkN and GcdkQ are finite and
(iii) if GcdkN = n, then the k-modules H i(N, kN) are projective for all i < n and Hn(N, kN)
contains a copy of k as a k-module direct summand.
Then, we have GcdkG = GcdkN +GcdkQ.
Proof. Let GcdkQ = m. As shown by Holm in [13, Theorem 2.20], we have an equality

m = sup{i : H i(Q,P ) 6= 0 for some projective kQ-module P},
i.e. an equality

m = sup{i : H i(Q,L) 6= 0 for some free kQ-module L}.
In particular, there exists a cardinal number α, such that the cohomology functor Hm(Q, )
does not vanish on the free kQ-module L of rank α.

As shown in [10, Proposition 2.9], we always have an inequality GcdkG ≤ n+m. In order to
prove that GcdkG = n+m, it suffices to show (in view of Holm’s result mentioned above) that
the cohomology functor Hn+m(G, ) does not vanish on a suitable free kG-module. We shall
prove that this functor does not vanish on the free kG-module V of rank α. We can compute
the cohomology groups of G with coefficients in V by means of the Lyndon-Hochschild-Serre
spectral sequence

E2
pq = Hp(Q,Hq(N, V )) =⇒ Hp+q(G, V ).

As we have already noted above, assumption (i) implies that the cohomology functorsHq(N, )
commute with direct sums. Therefore, Hq(N, V ) is isomorphic as a kQ-module with the direct
sum Hq(N, kG)(α) of α copies of Hq(N, kG) for all q ≥ 0. Since GcdkN = n and kG is kN -
projective, the cohomology groups Hq(N, V ) = Hq(N, kG)(α) vanish when q > n; hence,
E2

pq = Hp(Q,Hq(N, V )) = Hp(Q, 0) = 0 if q > n. If q < n, then assumption (iii) implies that

the cohomology groups Hq(N, V ) = Hq(N, kG)(α) are projective as kQ-modules (cf. Corollary
4.4(i)). Since GcdkQ = m, it follows that E2

pq = Hp(Q,Hq(N, V )) = 0 if p > m and q < n.

The E2-page of the spectral sequence is thus concentrated on the square [0,m] × [0, n] and
the line {(p, n) : p ≥ 0}. It follows readily that

Hn+m(G, V ) = E∞
mn = E2

mn = Hm(Q,Hn(N, V )).1

Assumption (iii) also implies that the cohomology group Hn(N, V ) = Hn(N, kG)(α) contains
a copy of the free kQ-module L of rank α as a kQ-module direct summand (cf. Corollary
4.4(ii)). It follows that the abelian group Hm(Q,Hn(N, V )) contains a copy of Hm(Q,L) as
a direct summand. As the latter group is non-zero (by the choice of the cardinal number α),
we conclude that Hn+m(G, V ) = Hm(Q,Hn(N, V )) 6= 0, as needed. �
Corollary 4.6. Let k be a commutative ring and consider an extension of groups

1 −→ N −→ G −→ Q −→ 1,

such that:
(i) N is a group of type FP∞ over k,
(ii) both GcdkN and GcdkQ are finite and

1It also follows that Hi(G,V ) = E∞
i−n n = E2

i−n n = Hi−n(Q,Hn(N,V )) for all i > n+m. Since we already

know that GcdkG ≤ n+m, we conclude that the cohomology groups Hj(Q,Hn(N,V )) are trivial in degrees
j > m.
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(iii) if GcdkN = n, then the k-modules H i(N, kN) are free for all i ≤ n.
Then, we have GcdkG = GcdkN +GcdkQ.

Proof. As we have already noted before, our assumption that N is a group of type FP∞ with
GcdkN = n implies that Hn(N, kN) 6= 0. Therefore, the result is an immediate consequence
of Theorem 4.5. �

In the special case where the coefficient ring is a field, assumption (iii) in the statement of
Corollary 4.6 is redundant. The following result is stated in the Introduction as Theorem A.

Corollary 4.7. Let F be a field and consider an extension of groups

1 −→ N −→ G −→ Q −→ 1,

where N is a group of type FP∞ over F and GcdFQ <∞. Then, GcdFG = GcdFN +GcdFQ.
Proof. Since N is a subgroup of G, [10, Proposition 2.4] implies that GcdFN ≤ GcdFG;

hence, the equality to be proved is clear if GcdFN = ∞. If GcdFN < ∞, the result is an
immediate consequence of Corollary 4.6. �

5. An application

Having in mind the geometric interpretation of the various cohomological invariants that
are associated with a group, the most interesting case of a commutative coefficient ring is
that of the ring Z of integers. In this final section, we apply the previous results in order
to compute the Gorenstein cohomological dimension over Z of certain group extensions. In
this way, we obtain genuine generalizations for some of the results in [9], where the ordinary
cohomological dimension of certain products of geometrically finite groups is considered.

If N is a group and m a positive integer, then we define inductively an iterated m-fold
extension G of N by itself, as follows: If m = 1, then G = N . If m > 1, then G must fit into
an extension of groups

0 −→ N −→ G −→ Q −→ 1,

where Q is an iterated (m− 1)-fold extension of N by itself. In the special case where m = 2,
the following result reduces to Theorem B, as stated in the Introduction.

Theorem 5.1. Let N be a group of type FP∞ over Z. If m is a positive integer and G is an
iterated m-fold extension of N by itself, then GcdZG = mGcdZN .

Proof. Since N is a subgroup of G, [10, Proposition 2.4] implies that GcdZN ≤ GcdZG;
hence, the equality to be proved is clear if GcdZN =∞. We may therefore assume below that
GcdZN <∞. In view of Theorem 3.6, there exists a field F , such that GcdFN= GcdZN . We
shall prove by induction on m that GcdFG = mGcdFN . This is clear if m = 1. Assume now
that m > 1 and the result holds for any iterated (m − 1)-fold extension of N by itself. The
group G fits into an extension

0 −→ N −→ G −→ Q −→ 1,

for a suitable (m−1)-fold extension Q of N by itself. Since N is of type FP∞ over Z, it is also of
type FP∞ over F . The induction hypothesis implies that GcdFQ = (m− 1)GcdFN <∞ and
hence we can apply Corollary 4.7, in order to conclude that GcdFG = GcdFN +GcdFQ, i.e.
that GcdFG = mGcdFN . We note that [10, Proposition 2.1] implies that GcdFG ≤ GcdZG,
whereas a repeated application of [10, Proposition 2.9] shows that GcdZG ≤ mGcdZN . Since

mGcdZN = mGcdFN = GcdFG ≤ GcdZG ≤ mGcdZN <∞,

it follows that GcdZG = mGcdZN , as needed. �
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Corollary 5.2. Let N be a group of type FP∞ over Z. If m is a positive integer and Nm is
the product of m copies of N , then GcdZN

m = mGcdZN . �
As we mentioned in the Introduction, the Gorenstein cohomological dimension of a group

coincides with its virtual cohomological dimension, in the case where the latter is defined and
finite. Therefore, the following result is an immediate consequence of Theorem 5.1.

Corollary 5.3. Let N be a group of type FP∞ over Z with vcdZN = n < ∞ and consider a
positive integer m. Then:
(i) If G is an iterated m-fold extension of N by itself, then GcdZG = mn.
(ii) If Nm is the product of m copies of N , then GcdZN

m = vcdZN
m = mn. �

Remarks 5.4. (i) The argument in the proof of Theorem 5.1 breaks down if we consider
arbitrary iterated extensions of groups of type FP∞, even if these groups have finite Gorenstein
cohomological dimension. In particular, if

1 −→ N −→ G −→ Q −→ 1

is an extension, where N,Q are two (possibly different) groups of type FP∞ with finite Goren-
stein cohomological dimension over Z, then the inequality GcdZG ≤ GcdZN + GcdZQ may
be strict. Indeed, since there is no way of knowing that there exists a field F for which both
equalities GcdFN = GcdZN and GcdFQ = GcdZQ hold, the reduction to the case of a field of
coefficients may not be always possible. In fact, the analogue of Corollary 5.3(ii) does not hold
for the product of two groups of type FP∞ with finite virtual cohomological dimension over
Z. Dranishnikov has constructed in [8] groups G1, G2 of type FP∞ with finite virtual coho-
mological dimension over Z, such that GcdZ(G1 ×G2) = vcdZ(G1 ×G2) < vcdZG1 + vcdZG2.
This example also shows that assumption (iii) in the statement of Theorem 4.5 cannot be
completely omitted.

(ii) All results in this section are also valid more generally if the ring Z of integers is replaced
by any principal ideal domain.

Appendix A. Characteristic modules for LHF-groups

let k be a commutative ring, G a group and consider the kG-module B(G, k) of all functions
from G to k, whose image is a finite subset of k (cf. the end of §1). If B(G, k) is a characteristic
module for G over k, then Proposition 1.2(ii) implies that GcdkG < ∞. Our goal in this
Appendix is to show that the converse of the latter assertion is true, in the case where k has
finite global dimension and G is a group in Kropholler’s class LHF.

We note that B(G, k) is generated as a k-module by the characteristic functions χA, where
A runs through the power set of G. Any f ∈ B(G, k) admits a unique expression as a sum∑n

i=1 λiχAi
, where A1, . . . , An ⊆ G form a partition of G and λ1, . . . , λn ∈ k are the distinct

values that f assumes. If k −→ k′ is a homomorphism of commutative rings, then there is a
natural k′G-linear map

B(G, k)⊗k k
′ −→ B(G, k′),

which maps f⊗λ′ onto the function f ′ ∈ B(G, k′), which is defined by letting g 7→ f(g)λ′ ∈ k′,
g ∈ G, for all f ∈ B(G, k) and λ′ ∈ k′. This map is bijective and its inverse

B(G, k′) −→ B(G, k)⊗k k
′

maps an element
∑n

i=1 λ
′
iχAi

∈ B(G, k′), where A1, . . . , An form a partition of G and λ′
1, . . . , λ

′
n

are distinct elements of k′ as above, onto
∑n

i=1 χAi
⊗λ′

i ∈ B(G, k)⊗k k
′. In particular, for any

commutative ring k there is an isomorphism of kG-modules B(G, k) ' B(G,Z)⊗Z k.
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The kG-module B(G, k) is k-free; more generally, B(G, k) is kH-free for any finite subgroup
H ⊆ G. This is proved in [15] if k = Z; in the general case, the result follows since B(G, k) '
B(G,Z) ⊗Z k. For any element λ ∈ k the constant function ι(λ) ∈ B(G, k) with value λ is
invariant under the action of G. The map ι : k −→ B(G, k) which is defined in this way is
therefore kG-linear. It is clear that ι is k-split; for any fixed element g ∈ G, we may obtain a
k-linear splitting for ι by evaluating functions at g.

In order to examine whether the kG-module B(G, k) has finite projective dimension, we
restrict our attention to the case where G is a group contained in the class LHF defined by
Kropholler in [14]. The class HF is the smallest class of groups, which contains the class F
of finite groups and is such that whenever a group G admits a finite dimensional contractible
G-CW-complex with stabilizers in HF, then we also have G ∈ HF. Then, the class LHF consists
of those groups, all of whose finitely generated subgroups are in HF. All soluble groups, all
groups of finite virtual cohomological dimension and all automorphism groups of Noetherian
modules over a commutative ring are LHF-groups. The class LHF is closed under extensions,
ascending unions, free products with amalgamation and HNN extensions.

Theorem A.1. Let k be a commutative ring of finite global dimension and consider an LHF-
group G. Then:

(i) B(G, k) is a characteristic module for G over k if and only if GcdkG <∞ and
(ii) GcdkG = pdkGB(G, k).
Proof. As we noted above, the kG-module B(G, k) is k-free and admits a k-split kG-linear

monomorphism ι : k −→ B(G, k). Therefore, B(G, k) is a characteristic module for G over k
if and only if pdkGB(G, k) <∞.

(i) If B(G, k) is a characteristic module for G over k, then GcdkG <∞, in view of Proposi-
tion 1.2(ii). Conversely, assume that GcdkG <∞. Then, [10, Corollary 1.6] implies that any
projective kG-module has injective dimension bounded by GcdkG + gl.dim k. It follows that
for any kG-module M of finite projective dimension we have pdkGM ≤ GcdkG + gl.dim k.
Since B(G, k) is free as a kH-module for any finite subgroup H ⊆ G, the argument in the
proof of [20, Theorem 6], which is based on [6, Theorem C], shows that pdkGB(G, k) <∞.
(ii) It follows from (i) that GcdkG =∞ if and only if pdkGB(G, k) =∞. In the case where

GcdkG is finite, the equality to be proved follows from (i) and Proposition 1.2(i),(iii). �
Theorem A.2. If G is an LHF-group of type FP∞, then GcdZG = pdZGB(G, k) <∞.

Proof. This is an immediate consequence of Theorem A.1 above and [6, Corollary B.2(2)],
which is valid for LHF-groups (and not just for HF-groups, as stated therein). �
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