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Abstract. The 23 February 1956 ground level enhancement
of the solar cosmic ray intensity (GLE05) is the most famous
among the proton events observed since 1942. But we do
not have a great deal of information on this event due to the
absence of solar wind and interplanetary magnetic field mea-
surements at that time. Furthermore, there were no X-Ray or
gamma observations and the information on the associated
flare is limited. Cosmic ray data was obtained exclusively by
ground level detectors of small size and in some cases of a
non-standard design. In the present work all available data
from neutron monitors operating in 1956 were analyzed, in
order to develop a model of the solar cosmic ray behavior
during the event. The time-dependent characteristics of the
cosmic ray energy spectrum, cosmic ray anisotropy, and dif-
ferential and integral fluxes have been evaluated utilizing dif-
ferent isotropic and anisotropic models. It is shown that the
most outstanding features of this proton enhancement were a
narrow and extremely intense beam of ultra-relativistic par-
ticles arriving at Earth just after the onset and the unusually
high maximum solar particle energy. However, the contri-
bution of this beam to the overall solar particle density and
fluency was not significant because of its very short dura-
tion and small width. Our estimate of the integral flux for
particles with energies over 100 MeV places this event above
all subsequent. Perhaps the number of accelerated low en-
ergy particles was closer to a record value, but these particles
passed mainly to the west of Earth.

Many features of this GLE are apparently explained by the
peculiarity of the particle interplanetary propagation from a
remote (near the limb) source. The quality of the available
neutron monitor data does not allow us to be certain of some
details; these may be cleared up by the incorporation into
the analysis of data from muonic telescopes and ionization
chambers operating at that time.
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1 Introduction

Although 64 GLEs have been recorded since 1956, all of
them rank below the 1956 event by more than an order of
magnitude. The superiority of this event is seen well in
Fig. 1, where the biggest changes in the neutron monitor
counting rates during proton events in the 19th, 22nd, and
23rd solar cycles are plotted as if they started at the same
time. A difference between these events is even more impres-
sive if one remembers that the South Pole station (with ge-
omagnetic cutoff rigidity about 0 GV and located at 2800 m
above the sea level) has a much better sensitivity for solar
proton observations in comparison with Leeds (cutoff rigid-
ity ∼2.2 GV and located near sea level), which recorded the
maximum effect in February 1956, as much as∼4500%.

The event on 23 February exerted essential influence on
the development of solar-terrestrial physics. It brought
widespread attention to the Sun and cosmic ray observa-
tions, promoted the organization and success of cosmic ra-
diation studies during the IGY and led to the creation of
the world-wide cosmic ray observatory network. In the first
few years after this event, numerous scientific analyses were
published (Meyer et al., 1956; Sarabhai et al., 1956; Dor-
man, 1957; Van Allen and Winckler, 1957; Pfotzer, 1958).
Many observations and results were combined and published
in the Dorman monograph (1957). While many reviews
and publications on solar cosmic rays (e.g. Dorman, 1963;
Sandstrom, 1965; Dorman and Miroshnichenko, 1968; Aka-
sofu and Chapman, 1972; Miroshnichenko, 1970; Mirosh-
nichenko, 2001; Heristchi et al., 1976, Shea and Smart, 2002)
discussed or mentioned this proton event, no one has yet con-
ducted a detailed analysis using modern techniques and con-
temporary knowledge. The only exception was a paper by
Smart and Shea (1990), where they constructed a model of
the behavior of the high energy solar particles flux and pitch
angle distributions using neutron monitor data.

Despite all of these papers, we should recognize that until
now we know much less about the 23 February 1956 event
than about later events. This restricts the possibility of de-
riving a generalized model of solar proton events, since we



2 A. Belov et al.: Solar cosmic rays on 23 February 1956FIGURES 
 
 

 
Figure 1 

 
 
 

                                  
 

Figure 2 
 

 
 
 
 
 

Fig. 1. Counting rate variations for the largest GLEs in different
solar cycles.

cannot compare this event, which was the largest, with the
more modest events that have occurred since 1956. All fu-
ture proton events will inevitably be compared with this one,
and to make the most of such a comparison we need to derive
as much as possible from the existing data. This analysis will
have bearing for our conclusions on the radiation hazards of
solar comic rays and our estimations for space weather tasks.

In this paper data from thirteen neutron monitors were in-
corporated into a comprehensive analysis of this event, in or-
der to define a more precise model for the behavior of solar
cosmic rays. Some results on this study were also elucidated
in Belov et al. (2004).

2 Solar and geomagnetic activity during 1956

The year 1956 belongs to the ascending phase of solar cy-
cle 19, after a deep minimum of solar activity which took
place in 1954. Over the 15 months between October 1953
and December 1954, the monthly average sunspot number
remained less than 10. New sunspots began to be generated
faster towards the end of 1955. In January–February 1956
the sunspot number became about 120, which is a typical
value for periods of high solar activity. However, some time
later in solar cycle 19 much larger sunspot numbers were ob-
served: in October 1957 the monthly average value reached
254. The GLE on 23 February 1956 (GLE 05) was the first
ground level proton enhancement in the cycle. Later, in other
cycles some GLEs were observed even at the earlier stage of
the ascending phase of solar activity (for example, GLE28
and GLE29 in September 1977, or GLE55 at the beginning of
November 1997), but all of them were significantly smaller.

The event on February 1956 occurred in sunspot group
17 351 (Greenwich catalogue), which was located in the
northern portion of the solar disk (N22) and on 16 February
1956 had a size that exceeded 1700 millionths of the solar
surface. This group evolved quickly in January, reaching a
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Fig. 2. Counting rate variations at Climax neutron monitor and Ap
index of geomagnetic activity in February 1956. Great fluxes on 23
February are not plotted. Triangles at the top of the figure corre-
spond to the SSC.

size of 1958 millionths of the solar sufrace and therefore was
the largest sunspot group in this period. From 12 to 26 Febru-
ary another sunspot group of a smaller size, 17 353, crossed
the solar disk. It appeared almost at the same heliolongitude
area as the 17 351 sunspot group, but in the Southern Hemi-
sphere. This group reached a big square only in February,
whereas in March it appeared already much smaller. The size
of sunspot group 17 351 was reduced later on but the group
was observable until June. It is noteworthy that the maximum
of flare activity for the sunspot group 17 351 manifested dur-
ing the period when both AR 17 351 and AR 17 353 were
very large and were close to their peak sizes.

Flare activity increased at the end of October 1955 and
in January 1956. The majority of the large January flares
were related to the sunspot group which became AR 17 351.
From 13 to 20 February, twelve optical flares were generated
by group 17 351, the most significant occurring on 14, 17
and 21 February. Large flares were also produced by group
17 353. It is interesting that on 21 February another sunspot
group, 17 349, located very close to AR 17 351 was also ac-
tivated, producing a 3-B flare at N40 latitude near the limb.
The most important flare occurred when group 17 351 was
passing over the limb. This 3-B importance flare started on
23 February at 03:34 UT at coordinates N25W85 and pro-
duced the outstanding GLE 05. Since it was observed so
close to the limb, we cannot exclude that it was partly behind
the limb and could have started somewhat earlier.

In conjunction with minimum solar activity, the intensity
of galactic cosmic rays peaked in 1954, and almost the same
high level remained during 1955. A decrease in cosmic ray
flux started in February 1956; for 10 GV particles it reached
2.3% (Belov et al., 1997). However, the background of galac-
tic cosmic rays was still close to the typical value obtained
during the minimum of solar activity. A series of Forbush ef-
fects, possibly related to the activity of sunspot group 17 351,
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Table 1. Neutron monitor stations which data are employed in this analysis.

Station Abbreviation Lat0 Long 0 Alt(m) Ho (mb) Rc(GV)

Albuquerque albq 35.08 –106.62 1567 800.0 4.47
Arneb USS arnb -41.28 174.77 0 1013.0 3.45
Berkley berk 37.87 –122.30 0 1005.0 4.55
Chicago chgo 41.83 –87.67 49 1000.0 1.71
Climax clmx 39.37 –106.18 3400 667.0 3.06
Gottingen gott 51.52 9.93 273 1013.0 3.00
Huancayo huan –12.03 –75.33 3400 704.0 13.44
Leeds leed 53.80 –1.55 100 1004.0 2.15
Mexico City mxco 19.33 –99.18 2274 779.0 9.74
Mt. Norikura mtnr 36.11 137.55 2770 888.0 11.35
Ottawa otwa 45.44 –75.68 57 1008.0 1.08
Sacramento Peak sacp 32.72 –105.75 3000 680.0 5.10
Stockholm sthm 59.35 17.95 0 1000.0 1.50
Weissenau weis 47.80 9.50 427 960.0 4.08

was recorded during the period before GLE05 (Fig. 2). The
sequence of these Forbush decreases resulted in a total de-
crease of the galactic cosmic rays intensity by as much as
11% (Climax neutron monitor) by 20 February. A recovery
started on 20–21 February and reached the value of 2.5% on
23 February. Interplanetary shocks arriving on 21 and 22
February did not lead to further decreases and did not even
slow the recovery process. Just before GLE 05 the level of
the galactic cosmic ray intensity was 8–9% lower than that
in solar activity minimum.

Geomagnetic activity was relatively low in the time period
1953–1955. It increased slightly in January-February 1956
(the monthly average Ap was about 17.8 in January and about
15.4 in February). Eight magnetic storms took place in Jan-
uary 1956, but they all were minor or moderate. In February
only one magnetic storm (on 11–12 February) was recorded
before 25 February when the geomagnetic situation became
moderately disturbed and the activity was a little above av-
erage. During the next three months the geomagnetic activ-
ity increased more strongly. Sudden storm commencements
(SSC) occurred on 11, 19, 21 and 22 February, evidence of
strong interplanetary disturbances. However, in the last three
cases there were no magnetic storms. Large modulation ef-
fects in cosmic rays during 11–20 February confirm the sig-
nificance of these interplanetary disturbances. The fact that
magnetic storms did not evolve implies that the negativeBz

component of the IMF was small during these times. It is
remarkable that in this case there were no magnetic storms
following the central flares (for example, on 17 February),
whereas after the flare on 23 February (near the limb) a mag-
netic storm did actually start. The shock arrival was reg-
istered on 25 February at 03:06 UT and it was a relatively
fast interplanetary disturbance considering the remote west-
ern place of the source. This magnetic storm was the biggest
one since April 1952, reaching the level ofKp=8+.

3 Data and methods

As it was mentioned, there were no solar wind measurements
at that time (and we can only guess about IMF properties),
nor any information on CMEs; we have very limited informa-
tion about the associated flare, without X-Ray and Gamma
observations. The cosmic ray observations were carried out
only by ground level detectors: standard and nonstandard
neutron monitors, muonic telescopes and ionization cham-
bers. The main advantage, which outweighs all possible mi-
nuses, is the magnitude of the enhancement. With this large
magnitude, we can ignore the statistical accuracy of the cos-
mic ray detectors.

The majority of cosmic ray stations with standard neutron
monitors appeared during the IGY period (Shea and Smart,
2000). Regular data for earlier years (pre-1956) can be found
only for four neutron monitors. However, the GLE05 in
February 1956 was recorded by 13 neutron monitors. The
characteristics of these stations are taken from the old papers
(Dorman, 1957; Shea and Smart, 2000; Yasue et al., 1982;
Moraal et al., 2000) and presented in Table 1. Standard at-
mospheric pressure H0 was unknown as a rule. We present in
Table 1 values of H0 taken from the later data publications,
or estimated from the station altitude. In all cases where the
geomagnetic cutoff rigidity of the station was unknown we
have estimated its value by interpolation of the data presented
in Shea et al. (1965) and Shea and Smart (1975). These
neutron monitors were situated over a wide range of longi-
tudes and covered a wide range of rigidities from 1 GV (Ot-
tawa) to 13.45 GV (Huancayo), with having rather satisfac-
tory longitudinal overlapping due to their asymptotic direc-
tions (Fig. 3). Some of these data for the 23 February 1956
event were only in graphical form and it was impossible to
find the original source of the data. But modern facilities and
methods allow information on this outstanding event to be
recovered.
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Fig. 3. Asymptotic directions for vertical incident particles for en-
ergy<15 GeV registered by neutron monitors available in February
1956. The circle radii correspond to the contribution of particles at
fixed energy for power spectra with index -4.

3.1 Cosmic ray variation model

Cosmic ray variations recorded by a ground level detector
during a GLE may be written as follows (Dorman, 1963;
Belov et al., 1994):

1N

N0
(t, t0) =

Eu∫
Ec

W(E, t0, h)
1I
I0

(t, E)dE

Eu∫
Ec

W(E, t0, h)dE

, (1)

whereN0 is a basic counting rate resulting from a galac-
tic cosmic ray fluxI0 and measured at the momentt0; hi

is the atmospheric depth at the point of observation,Ec is
the least energy of the primary protons recorded by a de-
tector, which corresponds to the threshold of geomagnetic
cutoff rigidity Rc at the point of observation;Eu is the up-
per energy limit for the solar particles registered in the event.
Response functionsW(E, t0, h) are given here as dependent
on energyE (but not on rigidity R) andW(E, t0, h)dE=W(R,
t0, h)(dE/dR) dR.Long-term variations and series of the For-
bush decreases before this flare lead to the necessity of a
correction in the response functions in the following way:
W(R, t0, h)=Wmin (R, h) [1+δt0(R)]. HereWmin(R, h) are
the response functions in the solar activity minimum, and
δt0(R) is the variation of the primary spectrum of galactic
cosmic rays from minimum activity to the base timet0. Since
there was no reliable data in that time to be sufficient for the
estimation of the rigidity spectrum of galactic CR variations
δt0(R), we used a typical spectrum for long-term variations
(Belov et al., 1994) asa0

bw+(10)γ0

bw+Rγ0 . In this formulaR is mea-
sured in GV, parametersbw=5 andγ0=0.8 are selected to fit
this dependence closely to the rigidity spectrum typical for
the Forbush decrease, and parametera0=0.08 is chosen to fit
long-term variation at NM Climax. Since operating neutron
monitors were at a variety of altitudes, the response functions
Wmin(R, h), taking into account the altitudinal dependence
of the neutron component have been entered as:

Wmin(R, h) = αβe−αR−β

R−(β+1) , (2)

where α= exp(1.84+0.094∗h-0.09*exp(-11∗h);β= 1.40-
0.56*h+0.24*exp(–8.8*h) (h in bars).

These functions have been used in many studies of galac-
tic cosmic ray variations (Belov et al., 1997; Belov, 2000 and
references) and in the analysis of GLEs (Belov et al., 1994;
Belov and Eroshenko, 1996), mainly for the NM64 moni-
tors. However, as it was shown in Clem and Dorman (2000),
the difference between the response functions for IGY and
NM64 neutron monitors is not significant. Equation (2) is
in a good agreement with data on latitudinal surveys (Stoker
et al., 1980; Villoresi et al., 2000) for rigidities>1.5–2 GV,
but it seems to be inaccurate in the low energy range. In
Belov and Struminsky (1997), the response functions within
the low energy range were found to be close to a power law
E3.17 and this was used in our study for energies E<2 GeV:

W(E, t0, h) = W(2 GeV, t0, h)(E/2 GeV)3.17 . (3)

Cosmic ray intensity variations1I(t,E) in general are sup-
posed to consist of two parts – isotropic1I0 and anisotropic
part1I1:

1I (t, E) = 1I0+1I1 + b0f0(E) + b1f1(E)91(χ, E) , (4)

whereχ is the angular parameter of the solar CR anisotropy,
91 is the axis-symmetric function equal to 1 forχ=χ0, and
b0 andb1 are the magnitude of the isotropic and anisotropic
parts of the enhancement.

To simplify the model and to reduce the number of un-
known parameters we assumed that the shape and the direc-
tion of anisotropy are independent of energy. The energy
dependence for isotropic and anisotropic parts is assumed
to be the same, (f0(E)=f1(E)). Several models have been
sampled by their best fitting to neutron monitor data, to de-
scribe the spectrum and also the anisotropy of the solar cos-
mic rays during this event. For functionf0 eight different
dependences have been checked: a) power law dependences
by energy and rigidity (1I=Eγ ; 1I=Rγ ), b) exponential de-
pendences by energy and rigidity (1I=exp(-E/E0); 1I=exp(-
R/R0 ), c) power law and exponential dependences byE for
1I/I 0 instead of1I, d) power law and exponential depen-
dences by R for1I/I 0 instead of1I. For the angular distri-
bution function91 three different models were checked:

91 = cosn(χ − χ0) , (5a)

91 = exp((χ − χ0)
2/2σ 2

1 )) , (5b)

91 = exp{−(na sin(χ − χ0))
2
} , (5c)

wheren0 in Eq. (5c) determines the width of the anisotropic
flux: the moren0 there is the more narrowing takes place in
the anisotropic flux.

3.2 Correction for the trend

Since the GLE in 1956 was a long-lasting event we must cor-
rect the data for the trend (drift). At some high-latitude sta-
tions the enhancement was observed even until the last hours
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Fig. 4. Profiles of the cosmic ray enhancement recorded at different
neutron monitors on 23 February 1956: CHGO – Chicago, CLMX –
Climax, LEED – Leeds, MTWL – Mt.Wellington, OTWA – Ottawa,
STHM – Stockholm.

of 23 February. The level of the enhancement at these sta-
tions remained quite high (some %), even 20 h after the onset.
However, the counting rate of some low-latitude stations was
continuing to rise due to the recovery of the GCR intensity
after the series of Forbush effects. Therefore, data must be
corrected for this trend, in order to study the time evolution
of the solar cosmic rays (SCR). The trend of GCR in Climax
data was found to be 0.083%/hour in assuming its almost
linear dependence. To obtain the trend for other stations,
the rigidity dependence of GCR variations was assumed as
∝R−0.8, which is sufficiently typical for the Forbush effect.
Corrections for any other arbitrary station were calculated by
means of response functions described above. None of these
corrections exceeded 1.7%, even at the end of 23 February.

4 Results and discussion

4.1 Preliminary results

It is possible to draw some preliminary conclusions even
without complicated analysis of the data:

a) The enhancement on 23 February 1956 revealed itself
to be extremely anisotropic. Counting rate variations
plotted in Fig. 4 illustrate a large difference in the on-
sets at various stations. As one can see from Fig. 5,
the observed anisotropy, as seen by the relative intensity
variations between Leeds and Chicago during the first
10 min, is almost 100%. We come to the same conclu-
sion when comparing the time profiles of CR variations
in Fig. 4 recorded by the NMs in Leeds and Chicago.
These two stations have similar cutoff rigidities (2.15
and 1.71 GV, respectively), but differ in longitude. If
the flux is isotropic, then the flux increase should be
larger at Chicago. However, the increase is observed
to be higher at Leeds, and only beginning in the sec-
ond hour after the onset does the counting rate become
higher at Chicago. High anisotropy has been observed,
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Fig. 5. Anisotropic effect of the GLE05 found as a difference of
two, close to the cutoff rigidity stations Leeds and Chicago.

while the difference in CR variations at these two sta-
tions was negative. During the first 20 min of the en-
hancements the anisotropy reached almost 100% (see
Fig. 5) and exceeded the value of 30% even at 04:30 UT
(i.e. 48 min later the onset).

b) A fast arrival of the first particles is evident just after the
onset. Even if we assume that the particle acceleration
took place at the very beginning of the flare, the esti-
mated time of the first particle arrival appears to be quite
early, indicating that these first protons almost keep up
with the light.

c) The maximum flux was reached relatively quickly:
in 10–15 min at favorably located stations (Leeds,
Stokholm) whose asymptotic cones of acceptance
viewed in the direction of the maximum of the
anisotropy flux. At the other stations the intensity
peaked approximately in one hour.

d) The energy range of the accelerated particles extended
far above 15 GeV, although there were no stations with
such a rigidity, but this conclusion follows from the
magnitude of the enhancement recorded at the stations
Huancayo, Mt. Norikura and Mexico (Rc=13.45; 11.35
and 9.56 GV, correspondingly) and at the muonic de-
tectors and ionization chambers, as well (which are
not considered in this paper). The effect as much as
110% at low latitude NMs and up to 7% at Tokyo
ionization chamber is evidence that 10–15 GeV is not a
limit for the solar particles in this flux.

4.2 Results of modeling

Several different models have been evaluated by fitting to the
neutron monitor data, in order to determine the spectrum and
the anisotropy of the solar cosmic rays during this event.
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Fig. 6. Behavior of the minimal, maximal, isotropic and mean
fluxes of solar cosmic rays of 1GeV energy at the beginning of the
event. Here and in succeeding figures Pfu means the number of
particles per s.cm2.sr

a) Isotropic model

The simplest isotropic model arises from Eq. (4) when the
existence of the second term is ignored. In studying the
observational data, one suspects that such an assumption
would not be acceptable for the initial stage of enhance-
ment. However, in 1.5 h after the onset, the anisotropy is
sufficiently reduced and therefore the isotropic model can
be applied. The isotropic model allows a choice between
different energy dependences. We found that the best
agreement between observational data and model occurs
after having applied a power law spectrum. The residual
dispersions differ almost by an order of magnitude in the
models with power law and exponential spectra. All power
law spectra (in energy or in rigidity) gave almost similar
results, however, the best fit was seen for1I=Eγ . Neverthe-
less, we also tested a more complicated spectrum where the
spectral index also depends on energy:γ (E)=γ0+γ1·E. The
value ofγ1 was found to be very small, hence we decided
to use the approximation1I=Eγ (with γ=γ0), leaving a
possible application of a more complicated spectrum for the
muonioc data case.

b) Anisotropic models

Assuming an anisotropic model for the cosmic ray intensity
variations three different cases of the angular distribution
function 91 (Eqs. (5a, b, c)) were tested separately. Equa-
tion (5a) gave a better fit to the real distribution of the effect
than Eq. (5b), while Eq. (5c) gave the best results over all.
Thus, for the angular distribution of the solar particle flux we
used the approximation exp(–(nasin (χ−χ0))

2) in our further
study. The model for the NM counting rate can be written as:

1N

N0

∣∣∣∣
i

(t) = b0(t)C0i(Ei, hi, γ, Eu, t)

+b1(t)C1i(Ei, hi, γ, Eu, λ, ϕ) (6)
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Fig. 7. Variation of the power law index (exponent) in isotropic
(diamonds) and anisotropic (circles) models.

with coefficients:

C0i=

∫ Eu

Ei

W(E, t0, hi)E
γ (t, E)dE

/ ∫
∞

Ei

W(E, t0, hi)dE (7)

C1i =

∫ Eu

Ei

W(E, t0, hi)E
γ (t, E)

exp(−n2
α sin2(χ(E)−χ0))

/ ∫
∞

Ei

W(E, t0, hi)dE , (8)

whereb0, b1, γ , Eu, na andχ0 are time dependent parame-
ters. The first term in Eq. (6) describes an isotropic part and
the second one describes the anisotropic portion of the CR
variation.

In order to define the position of the anisotropy source,
the parameters of latitudeλ0 and longitudeϕ0, instead of
χ0, are used in Eq. (8). As a result we have seven free pa-
rameters, which were calculated by the least-square method.
Since the total amount of detectors recording the event was
rather small (only 14), we tried to simplify our model by re-
ducing the number of unknown parameters. We utilized ex-
clusively the anisotropic model for the first two 5-min inter-
vals of the event and the isotropic model for the later stage.
In other words, for the first two 5-min intervals we took into
consideration only the second term of the relation (6) and for
the later time we could ignore the anisotropic influence in
relation (6) and used only the first term, which allowed the
number of unknown parameters to be reduced to three.

The parameters calculated from different models have
been used to define the isotropic flux by our isotropic model
and the maximal and minimal fluxes by our anisotropic and
total models (the results are presented in Fig. 6). Moreover,
the mean flux of the solar cosmic rays was also calculated by
averaging angular dependences for all directions:

Imean
E)γ

4π
(4πb0+b1

∫ π

0
exp(−n2

a sin2(χ(E)−χ)) sin(χ)dχ

= (b0 +
b1

n2
(1 − e−n2

))Eβ . (9)
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Fig. 8. Behavior of the power law index (exponent) for isotropic
(starting from the 16th 5-min interval), and anisotropic (the first 15
five-min intervals) models, together with mean flux, averaged by all
directions (for 1 GeV energy).

At the beginning, while the anisotropy is very big, the max-
imal flux greatly exceeds the minimum and isotropic fluxes,
which show similar variation with time. The mean and
isotropic fluxes are approximately the same, even during the
time of the high anisotropy, and one hour after the onset both
fluxes nearly coincide. The maximum flux of the particles
arriving in a very narrow beam during the first 15–20 min ex-
ceeds the maximum diffusion flux by a factor greater than 20.
This narrow particle beam is the reason why the 23 February
1956 event was outstanding. The spectral indices derived
from different models throughout the event become almost
the same starting from the second hour, as is shown in Fig. 7.
A difference in the indices exceeds their statistical error only
at the very beginning of the event.

Our results, based on the application of a complete model
(isotropic plus anisotropic), begin to be less reliable during
the second and third hours of the event. This is not surprising
since low-latitude stations had not yet observed the enhance-
ment by that time, and we need to define 6–7 model param-
eters using the data from only 8–9 stations. Additionally,
the contribution of the false variations increases along with
a decrease in the solar particle effect. So, the most complete
model under some conditions turns out to be less reliable.
Fortunately, the behavior of the spectral index, as well as the
solar CR flux, gives an opportunity to use a simple isotropic
model during the later phase of the event. Therefore, in this
analysis, we used:

1. a complete anisotropic model for the period
03:40–03:50 UT,

2. a mixed model – for the period 03:50–04:55 UT and

3. an isotropic model, starting from 04:55 UT.

One can see from Fig. 8 that the mean flux of solar cosmic
rays, which may be considered as their density, increases
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Fig. 9. Differential fluxes of solar protons with energies 0.5, 1, 2, 4,
8 and 16 GeV.

quickly at the beginning of the event and reaches maxi-
mum in about 55 min: 4·10−4 cm−2s−1sr−1 for 1 GeV en-
ergy. This is only 3 times more than the flux of galactic CR.
In the beginning of the event the spectrum of solar cosmic
rays is hard: from 03:50 to 03:55 UT the spectral indexγ

reached the value of –3.1±0.5. Throughout the next 45 min
the absoluteγ value gradually increased and during the rest
of the time exceeded 5. Such a behavior of the spectral index
is typical for a GLE. An analogous time evolution ofγ was
also observed during the GLE on September 1989 (Baisul-
tanova et. al., 1990, 1992; Smart and Shea, 1991). After
11:00 UT the spectrum tends to harden but this result ap-
pears not to be reliable since the solar CR flux at that time
became small and comparable with the statistical variations
in the baseline neutron monitor counting rate.

The solar CR differential flux was calculated for different
energies employing the mean flux variations and spectral in-
dex presented in Fig. 8. The results are plotted in Fig. 9. It is
clearly seen from this figure that the peak flux timetmax de-
pends on the energy of the cosmic ray particles. We applied a
diffusion model for the cosmic particle propagation, assum-
ing that tmax is proportional to the inverse effective diffusion
coefficientk, which depends on the energy asκ (E)∝Eα.
The value of theα index within the energy range 2–8 GeV
was obtained asα=0.6±0.2. Consequently, if we are to judge
from the neutron monitor data, the proton enhancement near
Earth for 16 GeV (and even for 8 GeV) was very short in du-
ration.

Drawing this conclusion we have to take into account that
the upper energy limit Eu for the accelerated particles can-
not be found reliably in this event from the neutron monitor
data. The maximal cutoff rigidity at which the enhancement
is still observed at a certain instant (Fig. 10), gives a lower
limit for the Eu, but varying Eu in the higher energy region
gives very weak changes in the residual dispersion that leads
to uncertainty in the Eu definition. It means that even a rather
large upper limit of energy for accelerated particles (for ex-
ample, 100 GeV) does not contradict the neutron monitor
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Fig. 10. Behavior of upper limited energy Eu of solar CR (dia-
monds) and their effective energy Eeff from neutron monitor net-
work registration.

 
Figure 11 

 
 
 

 
 

Figure 12 
 

Fig. 11. Integral flux of protons with energies>100 MeV,
>300 MeV,>1, >3 and>10 GeV.

data. Thus, Eu turns out to be the least meaningful param-
eter among all calculated, and therefore it can be reasonable
specified in advance without a big loss in the accuracy of the
other parameters. The uncertainty in the measurement of Eu

is a peculiarity of this event in which solar CR were acceler-
ated up to unusually high energies.

The upper energy Eu, as well as the effective energy Eeff

for solar cosmic rays recorded by neutron monitors, are pre-
sented in Fig. 10. The effective energy for each separate de-
tector is defined as the energy Eei at which the density vari-
ation Imean(E) of the primary solar cosmic rays is equal to
the counting rate variationδi . In the case of a power law
spectrum:

ln(Eei) = γ −1(ln(δi) − ln(Imean(1 GeV))) . (10)

The effective energy Eeff for the whole neutron monitor net-
work has been calculated for each time interval by averag-
ing Eei over the neutron monitor network with the weighting
function assumed to be equal to the magnitude of the effect

 
Figure 11 

 
 
 

 
 

Figure 12 
 

Fig. 12. Energy spectra of the CR mean flux at two different mo-
ments of enhancement and peak spectrum for GLE 23 February de-
rived from the neutron monitor data.

 
                                                            Figure 13 
 
 
 
 
 
 

 
                                                            Figure 14  
 
 
 
 
 
 
 
 
 
 

Fig. 13. Location of the solar CR anisotropy source at 03:40–
03:50 UT (isometric curves of the equal fluxes) and asymptotic di-
rections of vertical incident particles with energy<15 GeV for two
stations (Gottingen and Leeds) with maximal effect (black points)
and two stations (Ottawa and Chicago) with zero effect at this time
(opened circles).

δi at each NM from solar cosmic rays:

Eeff =

n∑
i=1

Eeiδi

/ n∑
i=1

δi . (11)

The effective energy seems to be high only at the begin-
ning of the event. In less than one hour it decreased to 4–
5 GeV. In the later phase of the enhancement the values Eeff
and Eu became almost the same. Near Eeff the energy spectra
slope can be obtained with the best accuracy.

In Fig. 11 the behavior of integral fluxes of the solar CR is
presented. The rapid drop in the high energy particle flux is
more evident in the integral presentation than in the differen-
tial. The results displayed in Fig. 11 for energies greater than
300 MeV and 100 MeV are, of course, derived by extrapola-
tion. No neutron monitor in 1956 could record cosmic ray
particles with energies<500 MeV and dependences for low
energy cosmic rays are obtained with the assumption that the



A. Belov et al.: Solar cosmic rays on 23 February 1956 9

 
                                                            Figure 13 
 
 
 
 
 
 

 
                                                            Figure 14  
 
 
 
 
 
 
 
 
 
 

Fig. 14. Behavior of the anisotropy contribution Apart and coeffi-
cient na , characterizing a width of angular distribution of the solar
CR anisotropic flux.

 

 

 

 

 
Figure 15 

 
 
 

 
Figure 16 

 
 
 
 

Fig. 15. Dynamic of the longitudinal distribution of the solar cos-
mic ray flux at the Earth’s equator during the first 75 min of the
enhancement. Along the ordinate axis the flux of solar cosmic rays
is plotted in pfu/MeV*105.

spectra shape and the spectral indexγ are independent of en-
ergy. Nevertheless, it would be interesting to compare the
estimations obtained with some real onboard measurements
by IMP-8 and GOES. The biggest fluxes for>100 MeV pro-
tons (about 600 pfu) were recorded on 29 September 1989
and on 14 July 2000. Thus, the estimated flux for>100 MeV
particles in February 1956 exceeds by only a factor of two

 

 

 

 

 
Figure 15 

 
 
 

 
Figure 16 

 
 
 
 

Fig. 16. Changes in the geographic longitude and latitude of the
anisotropy source along the event duration.

the observed maximal values in the satellite epoch. Having
worked out time and magnitude of the peak fluxes for differ-
ent energies we obtained the peak spectrum within the energy
range from 500 MeV to 25 GV (Fig.12) – the energy depen-
dence of the maximum fluxes of solar protons.

In the diffusion approximation the peak spectrum corre-
sponds to the release spectrum in the source, which is not
distorted with the particle propagation. As we see, it is quite
close to a power law spectrum. Within the energy range 2.7–
4.5 GeV the spectral index is 4.51±0.13. Some hardening
in the high energy range may be due to a contribution to the
maximum fluxes of high energy protons, which came with-
out scattering. At the beginning of the event the particles
arrived in a very narrow beam. In Fig. 13 the position of the
particles’ source (na=8) at 03:40–03:50 UT is presented, to-
gether with the asymptotic directions for those stations which
observed the largest effect and the zero effect. The outward
curve corresponds to a flux of about 10% of the maximum
in the assumption that the angular dependencena in Eq. (5c)
is equal to 8. As it follows from Fig. 13 the directions with
maximum and minimum effect are close to each other at the
longitude∼100◦. If the angle distribution turned out to be
even 1.5 wider, the effect would be recorded at all stations.
How narrow was this particle beam? This is one more ques-
tion which could be answered by means of the data from
ionization chambers and muonic telescopes operating at that
time.

The contribution of the anisotropic part of solar cosmic ray
flux to the total flux from all directions was calculated by:

Apart =
b1

b0n2
a

(
1 − e−n2

a

)
. (12)

This parameter is shown in Fig. 14, together with parame-
ter na controlling the width of the angular distribution. As
clearly seen from Fig. 14, the anisotropy dominates dur-
ing the first 30 min of the effect and then decreases quickly
with time. The narrowest beam is observed at the begin-
ning of the effect and at that exact time the data certainly
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contradict the assumption of a wide angular distribution, al-
though this assumption becomes more acceptable with time.
The time evolution of the angular distribution is presented in
Fig. 15. Next, Fig. 16 illustrates the time-dependent variation
of the position of the source of the solar particle anisotropy
near Earth in geographic coordinates. The source of the
anisotropy (direction to the flux maximum) was located close
to the ecliptic plane and in the same quadrant as the nominal
IMF. A sharp change in the source longitude (∼23◦) 10 min
after the onset stands out in Fig. 16. This cannot be attributed
to a difference between the models, although at this moment
we replaced an anisotropic model by a mixed one. More-
over, this longitudinal jump also appears even if we do not
change the model. It is noteworthy to say that at the same
moment the essential changes in the energetic spectrum oc-
curred, and only 15 min after the onset the spectrum started to
soften gradually. Of course, the anomaly in the parameters’
behavior during the first 10–15 min could also be attributed
to the quality of the interpolated data; however, we think that
it is evidence of a real anomaly in the solar particles’ behav-
ior.

Since the flare and assumed source of the particle accelera-
tion were located far to the west from the Sun-Earth line, it is
natural to expect that charged particles reached the force lines
that were erathward after some delay. Perhaps they came to
these lines after diffusion transversely on the field over∼10–
15 min. The particle flux focused along our force line began
to dominate only after the third 5-min interval. Afterwards
the source of anisotropy was placed between 154◦ and 164◦

longitudes, which corresponds to the direction along the clas-
sic Archimedean spiral path for a high solar wind velocity
(Smart and Shea, 1990). But the first, most energetic par-
ticles were on our force line near the Earth’s orbit, so their
source was seen as more western. This subject of course is
still unanswered but we hope to obtain some more reliable
conclusions after employing the data from muonic detectors
and ionization chambers.

5 Summary

The worldwide neutron monitor network in its modern con-
figuration began to be created during the International Geo-
physical Year – 1957. Nevertheless, several neutron detec-
tors were operating in 1956, although not all in the modern
standard configuration, and were sufficient to obtain the main
characteristics and dynamics of the 23 February 1956 ground
level enhancement of solar cosmic rays.

The results of our analysis are in agreement with Smart
and Shea (1990), complementing and extending them. The
most outstanding feature of this proton enhancement was a
narrow and extremely intensive beam of ultra-relativistic par-
ticles arriving at Earth during the first minutes of the event.
The neutron monitors whose asymptotic directions viewed
the anisotropy source (to meet the stream) recorded an en-
hancement of thousands of percents. None of the succeeding
64 GLEs (perhaps except for the last GLE in January 2005)

gave amplitudes in cosmic ray variations comparable with
this effect. However, this unique beam was observed during
the short time and its width did not exceed 30–40◦. Thus, its
contribution to the solar particle density, as well as to their
fluency, was not very significant.

Although the estimation of the integral flux for particles
with energies graeter than 100 MeV ranks this event above
all succeeding, nevertheless, it does not drop out from the
common distribution. For the particles of>10 MeV energy
(if to prolong an extrapolation) this event appears not to be
unique but rather one of the largest proton enhancements.
This is in fairly good agreement with riometer data (Shea
and Smart, 1990), on which the effect during the more recent
events was even stronger than in February 1956. Perhaps the
number of accelerated low energy particles also reached a
record figure, but these particles passed mainly to the west of
the Earth.

Many features of this GLE apparently may be explained
by the peculiarity of the particle interplanetary propagation
from a remote (limb or behind the limb) source.

The quality of the data which we used, although allow-
ing us to extract much more information on this event, does
not give full confidence in some details: the unusual changes
in the anisotropy characteristics; the energy spectrum dur-
ing the first 15 min of the enhancement; the spectra changes
during the late stage of the event and also the spectra hard-
ening with increasing energy. A joint analysis of data from
NMs, ionization chambers and muonic telescopes will possi-
bly lead to more reliable answers as to whether these changes
are real or not.
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