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ABSTRACT

Modern Graph Theory is heavily influenced by the seminal work of N.
Robertson and P. Seymour, known as Graph Minors. Through this work,
a wealth of structural, combinatorial, as well as algorithmic, results has
been introduced, in a series of papers having as ultimate goal to give an af-
firmative answer to Wagner’s Conjecture. In this doctoral thesis we focus
on the study of Obstruction Sets, one of the most important combinatorial
concepts of this theory. In particular, we study the combinatorics and the
algorithmic and computability aspects of graph obstructions and their re-
lation to graph parameters emerging from Graph Layouts, Vertex Deletion
Problems, and Graph Searching Problems. We consider several partial or-
dering relations on graphs such as minors, immersions, and contractions.
Our study includes results on the existence and the computability of ob-
struction sets, combinatorial bounds on their size, and their interplay with
parameterized complexity and kernelization.





ΠΕΡΙΛΗΨΗ

Η σύγχρονη Θεωρία Γραφημάτων έχει επηρεαστεί σε μεγάλο βαθμό
από την δουλειά των N. Robertson και P. Seymour. Μέσα από
αυτήν, πληθώρα από δομικά, συνδυαστικά, καθώς και αλγοριθμικά
αποτελέσματα εισήχθηκαν, σε μία σειρά από εργασίες που είχε απώτερο
στόχο την απόδειξη της εικασίας του Wagner. Σε αυτή την διδακτορική
διατριβή επικεντρωνόμαστε στην μελέτη των Συνόλων Παρεμπόδισης,
μία από τις σημαντικότερες συνδυαστικές έννοιες αυτής της θεωρίας.
Πιο συγκεκριμένα, μελετάμε την συνδυαστική και αλγοριθμική πτυχή,
καθώς και την υπολογισιμότητα, των γραφημάτων παρεμπόδισης, σε
σχέση με παραμέτρους γραφημάτων που πηγάζουν από Διατάξεις
σε Γραφήματα, Προβλήματα Διαγραφής Κορυφών και Προβλήματα
Ανίχνευσης Γραφημάτων. Η μελέτη αυτή είναι βασισμένη σε σχέσεις
μερικής διάταξης γραφημάτων, όπως τα ελάσσονα, οι εμβυθίσεις και οι
συνθλίψεις. Η μελέτη μας περιλαμβάνει αποτελέσματα σχετικά με την
ύπαρξη και υπολογισιμότητα των συνόλων παρεμπόδισης, συνδυαστικά
φράγματα στο μέγεθος τους, καθώς και την αλληλεπίδρασή τους με την
Παραμετρική Πολυπλοκότητα και την Πυρηνοποίηση.





PREFACE

Having read the abstract of this thesis I am sure you must be eager
to find out what this story will involve. Unavoidably, we have to make
a short intermission. I would like to grab this opportunity to show my
appreciation and admiration to some people that guided me, or at least
accompanied me, in my journey since I first decided that studying Math-
ematics is what I am “destined” to do. (This probably happened when I
was in my early teens, but do not be afraid! I would not start thanking
people I met in the 90’s.)

When I finally had the opportunity to get in the amphitheaters and
classrooms of the Department of Mathematics of the National and Kapodis-
trian University of Athens (NKUA), I was completely amazed by the world
that unfolded right in front of my eyes. Mathematics have the ability to
fascinate or to intimidate a young person. I was lucky enough not to be
intimidated. I am very happy that I finally decided to give it a try, as it
was an experience that changed the way I think and the way I perceive the
world around me.

Many people continuously tried to persuade me to get back to my stud-
ies. My family and friends most certainly tried the most. When I finally



returned, my main motivation was Νίκη. She always supports me more
than I could ever ask for, and this is why I gladly dedicate this thesis, as
well as everything I ever accomplished, to her. I am more than blessed to
have her in my life.

I also wish to dedicate this work to my best buddy in the whole world,
little Χάρης, who made the last seven years of my life much more inter-
esting and fun. Deep inside my heart, I hope this will be an inspiration for
him to pursue a similar path. I feel I am very fortunate to have been given
this opportunity and hope the same for him.

Νίκη and Χάρης make every single second of my life worth it and I am
more than grateful to them for this. It would be great if I could express all
my love and the appreciation I have for them in words, but I know that this
cannot ever be possible (certainly not in the finite space I must operate).

I would like to sincerely thank my advisor Prof. Dimitrios M. Thilikos,
who has been instructing my studies almost since the beginning. I am
very glad to know him for almost ten years now and, most importantly,
to consider him my friend as well as my mentor. He always helped me
in any possible way, without ever waiting for something in return. This
goes to show that, not only is he a pronounced scientist and a charismatic
teacher, but also a great person.

Other than prof. Dimitrios M. Thilikos, the persons that were the clos-
est to me during my studies, and always showed the utmost interest in my
progress, are the other two members of my Three-Member committee:
Prof. Stavros G. Kolliopoulos and Prof. Evaggelos Raptis. I should not
neglect to mention at this point Prof. Lefteris M. Kirousis, member of my
Seven-Member committee, who also showed equal, if not more, interest
in my work. Their guidance was very important for me and, certainly, I
would not have made it this far without it.

I warmly thank the other three members of my Seven-Member com-
mittee, Prof. Michael C. Dracopoulos, Prof. Ioannis Mourtos, and Prof.



Leonidas Pitsoulis who took a substantial amount of time from their busy
schedules to assist me with their remarks and suggestions on this thesis.
Their comments were always instructive and, undoubtedly, made this the-
sis as good as it would possibly be.

I was very fortunate to be given the opportunity to participate in the
following research programs:

- From Graph Theory to Matroids: Algorithmic Issues and Applica-
tions1, whose scientific coordinator was Prof. Leonidas Pitsoulis.

- Inference on Markov Random Fields: Complexity and Algorithms2,
whose scientific coordinator was Prof. Lefteris M. Kirousis.

The benefits I received from this participation were extremely important
for my studies. Without trying to be melodramatic, were it not for the
financial support I received through these programs, it would be almost
impossible to continue my research. Therefore, I will always be indebted
to the two coordinators, Prof. Lefteris M. Kirousis and Prof. Leonidas
Pitsoulis.

In my research I was privileged to work with some very talented re-
searchers, who helped me broaden my horizons. Our collaboration culmi-
nated in the publication of some interesting piece of work. It would not
be an exaggeration if I were to say that I learned more from them than
any textbook I ever read. I would like to kindly thank each and every one
of them: Micah J Best, Dimitris Chatzidimitriou, Dr. Archontia C. Gi-
annopoulou, Prof. Arvind Gupta, Prof. Menelaos I. Karavelas, Spyridon
Maniatis, Clément Requilé, Iosif Salem, and Prof. Dimitrios M. Thilikos.

With some of the above we were really close and I feel I should addi-
tionally thank them for all the good times we had. A special “thank you”

1 Co-funded by the Greek Ministry of Education and the European Union “Thales”’.
2 Co-funded by the Greek Ministry of Education and the European Union “Academic

and Research Excellence”.

https://www.youtube.com/watch?v=JGUSbnMGycc
https://www.slang.gr/definition/12789-klain-main


must go to Dr. Archontia C. Giannopoulou, and Spyridon Maniatis, two
of my closest and dearest friends, for their kindness and tolerance in my –
rather extensive list of – flaws. I would also like to express my admiration
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Μὰ εὐτυχῶς ἠ ζωὴ δὲν ἀκούει ποτὲ τοὺς φρόνιμους νοικοκυραίους·

γι’ αὐτὸ καὶ πάει μπροστά. Γι’ αὐτὸ ξεφύγαμε ἀπὸ τὸ φυτὸ καὶ πηδήξαμε

στὸ ζῶο κι ἀπὸ τὸ ζῶο στὸν ἄνθρωπο· καὶ τώρα, άπὸ τὸν ἄνθρωπο τὸ

σκλάβο, στὸν ἐλεύτερο. Ἕνας κόσμος πάλι καινούριος γεννιέται μὲ ὅλους

τοὺς πόνους καὶ τὰ αἵματα τοῦ τοκετοῦ.

Νίκος Καζαντζάκης [195]

But fortunately life does not heed the sensible bourgeois mind, and

that is why it can forge ahead; that is why we have surged beyond the

plant to the animal, and from the animal to the human being. And now

from the enslaved human being, we are evolving into the free one. A new

world is being begotten again with all the blood of birth.

Nikos Kazantzakis [196]

https://www.youtube.com/watch?v=SrrXhof3q44
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CHAPTER 1

INTRODUCTION

1.1 Why Graphs?
A Graph1 is a combinatorial “structure” that can be used to represent any-
thing from networks to functions and from partial ordering relations to
Markov chains. There are simple graphs, directed graphs, multi-graphs,
hyper-graphs, finite or infinite graphs. In Graph Theory we can define
paths, circles, trees, forests, cliques, grids or hyper-grids, among many
other notions [10–15]. This diversity of concepts and “applications” has
made Graph Theory very popular in almost every field of research in the,

1By the term “graph” (formally defined in Section 2.2) we do not mean the graphical
representation of functions (which in fact can also be seen as representations of –infinite–
graphs). This double use of the term may be confusing. When Graph Theory and its
applications became popular in Greece, some computer scientists (mainly in the 80’s)
probably considered that an “hellenization” of the english word “graph” (which actually
originates from the greek word «γράφημα») would be more convenient for the (finite)
combinatorial use. Therefore for quite some time they called them «γράφος». Of course
this is very reminiscent of some (few) of the Greek immigrants to the U.S.A. who, af-
ter their repatriation, used to call a car «κάρο» (“horse cart” in english), spontaneously
applying the same principle.
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1.1. WHY GRAPHS?

so called, Positive Sciences, including Physics, Biology, Chemistry, even
Social and Information studies. But, undoubtedly, the most important
contribution of Graph Theory is in Combinatorics, Discrete Mathemat-
ics in general and in Theory of Algorithms and Complexity.

The theory of graphs is used in science for many years now, perhaps
since the 19th century, but it was in the 60’s when it finally got a place
under the spotlight. The first problem that can be directly related to Graph
Theory is the Seven Bridges of Königsberg Problem, solved by the great
Leonhard Euler [43] (see page 24). The second, and perhaps the most fa-
mous one, is known as the Four Color Theorem and was posed by Francis
Guthrie in 1852 (see page 32). In order to solve this problem, Mathe-
maticians not only had to use their mental capability but also reach for
the help of computer programs [25–29, 57]. Of course, back in the time
when these problems embroiled Mathematicians, Graph Theory was not
an autonomous field of Mathematics. The term Graph first appeared in
Literature in 1878 by James Joseph Sylvester, in order to describe the
way one can express invariants and co-variants in Algebra in a similar
way as molecular diagrams in Chemistry [198]. Fifty years later, in the
30’s, the first text book on Graph Theory was published, written by Dénes
Kőnig [17]. This must be consider as the formal consolidation of this field.

Graph Theory became very popular in the 60’s and 70’s, after the raise
of Computational Sciences. There may be a grain of irony in this, as the
leading researchers in this field were, and still are, mostly related to pure2

Mathematics (to name only a few Paul Erdős, Alfréd Rényi, WilliamTutte,
Frank Harary, Gabriel Andrew Dirac, László Lovász, Endre Szemerédi,
Béla Bollobás, Neil Robertson, Paul Seymour, Noga Alon). The reason
behind this is that many problems of Theoretical Computers Science heav-
ily involve graphs. Mathematicians found these problems appealing and,

2Here, we are forced to use the word “pure” as an adjective to Mathematics, although
we believe that pure concepts can only exist in impure minds.
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CHAPTER 1. INTRODUCTION

thus, decided first to “communicate” and then to collaborate with com-
puter scientists in order to tackle them.

Nowadays, scientists that do research in Graph Theory come from
many different disciplines of science. Some of the most common are
Mathematics, Computer Science, and Economics. This proved to be very
beneficial for the rapid development of Graph Theory, as techniques and
ideas from a variety of contexts can be put to the test in order to solve a
great deal of problems.

Of course, our point of view in this doctoral thesis will be the Mathe-
matical one. To make it a little more precise, we study Graph Theory from
the Combinatorial, Logical, and Algorithmic perspective.

This thesis studies a series of Graph-Width Parameters, defined using
Vertex or Edge Layouts (see Chapter 4). As a starting point we will re-
view one of the major breakthroughs in Graph Theory, namely the results
in the Graph Minors series of papers ( [65–87]) (see Section 2.6). One
of the most omnipresent concepts of this theory is the notion of an Ob-
struction (or a minimal forbidden graph, see Section 2.4). Our main focus
is the introduction and development of techniques for the characteriza-
tion and the computation of Obstruction Sets for these layout parameters.
This includes the study of Vertex Removal problems on width parameters
(see Section 4.2.1) and the the detection of obstruction sets for variants of
Graph SearchingGames (Chapters 8 and 9), which are prominent versions
of graph layout parameters.

To conclude, the two main scopes of this thesis are:

- Graph Parameters (With emphasis to graph layout parameters and
graph searching numbers.)

- Obstruction Sets (Their finiteness and their computation.)

Starting from the next Section, we will – progressively – get into the par-
ticulars.

3
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1.2 The Background

A graph G is a pair of sets (V,E), where the second set contains two-
subsets of the first. Therefore, the set E indicates the elements of V that
are “related” in some sense. This analogy immediately leads to a huge
variety of structures and notions that can be represented by graphs. In
the early years of Graph Theory this was the main motivation to consider
graphs. Researchers used them to capture the abstract essence behind a
certain structure or notion, and find its abstract properties.

From the Mathematician’s point of view, Graph Theory is not nec-
essarily “application driven”, meaning that we study the properties of
graphs, graph parameters and graph classes without considering the struc-
tures they may represent. Researchers in this field, no matter what their
background is, consider graphs as their main mathematical object and fo-
cus on methods and technics introduced in the scope of this theory or,
more generally, in the scope of other fields of Discrete Mathematics and
Algorithms.

In this thesis, we follow the above approach to Graph Theory. The
results we present may apply in a variety of contexts, but our motivation
is not their applications. We examine these results mainly due to their
theoretical interest (and “beauty”).

Let us briefly present the basic – connected – components of this the-
sis.

1.2.1 Graph parameters

From Chapter 4 and on, we study (mainly) graph parameters. A graph
parameter is a function p returning for each graph a nonnegative number
(see Definition 4.0.1). Graph parameters usually fall into two main cate-
gories: (A) parameters that can be defined using layouts on graphs, i.e.,
orderings of vertices or edges (Section 4.1, see also [22]), and (B) graph

4



CHAPTER 1. INTRODUCTION

modification parameters (Section 4.2).

(A) Layout parameters

The most famous layout parameter is undoubtedly treewidth (Section 4.1.1)
(and of course pathwidth, see Section 4.1.2). First defined in [33], and
having more than 7 equivalent definitions [20], treewidth is a central no-
tion of Modern Graph Theory (some – of the many – surveys on treewidth
are [16, 18–21, 23]). Treewidth belongs to the family of graph width pa-
rameters which serve as measures of resemblance (topological or geo-
metrical) of a graph to a particular graph family. For instance treewidth
(denoted by tw) measures the degree in which a graph can be seen as a
tree, i.e., it has the topological structure of a tree, and pathwidth (denoted
by pw) as a path. Treewidth and pathwidth can be thought of as measures
of the global connectivity of graphs. Another parameter in the same fam-
ily is carving-width or cutwidth, cw (see Section 4.1.3 and Chapter 5), that
measures the global, edge-connectivity of a graph.

The second type of layout parameters that we examine in the context of
this thesis is the Search Numbers of Search Game variations (Chapters 8,
9). Graph Searching involves a team of mobil agents (usually thought of
as searchers, pursuers or even cops), that aims at capturing a set of escap-
ing agents (usually thought of as fugitives or robbers) that hide in some
kind of network, represented by a graph. There are many different vari-
ations of this set-up, stemming from the different abilities or restrictions
the two parts may have (see [95–98] for instance). The basic versions of
graph searching (Fugitive search games to be more precise) we will focus
on are Edge search, Node search, and Mixed search.

Given a search game variation, its search number is equal to the mini-
mum number of “searchers” needed to guarantee the capture of the “fugi-
tive” via a deterministic search strategy.

Graph searching has gained much attention in the last 30 years or so,
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due to its enormous list of applications [95–98] . As many of the classic
width parameters (treewidth, pathwidth, and linearwidth for instance) can
also be defined through some variant of graph searching (Section 8.4), it
provides us with an alternative – game theoretical – way to approach the
properties of these parameters.

(B) Graph Modification parameters

This is a more general family of parameters. A graph modification param-
eter p measures the minimum number of times we have to apply an oper-
ation on a graph in order to obtain a new graph that has a certain property
(Definition 4.2.3). The most well studied such parameters are the mini-
mum vertex cover (page 67), the minimum feedback vertex set (page 67)
and the “planarity” parameter (page 67). All these parameters are vertex-
deletion parameters. We can use as modification operations edge dele-
tions, edge contractions (and all other operations defined in Section 2.3),
or even additions of vertices or edges. Basically, we can use any set of
operations that can modify the graph. A consequence of this variety of dif-
ferent possibilities is that many interesting graph problems (minimization
problems to be exact) emerge from these parameters.

In this thesis we focus on vertex deletion parameters because they en-
compass the following subcategory:

“Distance” to some bounded parameter

These parameters are defined using a “host” parameter. Let p be a param-
eter (it doesn’t matter if it is a layout or a modification parameter), and
r a nonnegative integer. We can define a parameter measuring the mini-
mum number of vertex deletions one have to make in a graph G, so as the
value of p in the new graph will become at most r (Section 4.2.1 ). These
parameters have the potential to mix the two aforementioned categories

6



CHAPTER 1. INTRODUCTION

together and create many interesting problems. Their study is one of the
“collateral” targets of this thesis.

1.2.2 Partial ordering relations on graphs

Graph modification can also be used to define partial ordering relations
on graphs. The most known are the subgraph relation, where a graph H
is a subgraph of G if it can be obtained after the removal of some edges
and/or vertices ofG, and the minor relation, whereH is a minor ofG, if it
can be obtained from a subgraph ofG after the contractions of some edges
(Section 2.3). Two equally interesting relations are the (weak) immersion
relation where H is obtained form a subgraph of G after some edge lifts,
and the contraction relation where H is obtained after the contraction of
some edges of G (Section 2.3).

For any given graph class C and partial ordering relation ⪯, there are
two very important questions emerging:

(A) Is C closed under ⪯ (or ⪯-closed), i.e., does it hold that for any
given graph G ∈ C, for every graph H ⪯ G, H ∈ C?

(B) (If C is a infinite class) is C well-quasi ordered with respect of ⪯,
i.e., for every infinite subset of C do there exist two graphs, say H
and G, such that H ⪯ G?

We are interested to know the answer to these questions for classes
containing graphs whose value of the parameter we examine is bounded
by some positive integer. Let G be the class of all graphs and G[p, k] the
class of all graphs G such that p(G) ≤ k.

The first question is typically easy to be answered. The second is
one of the most difficult questions in Graph Theory. For instance, the
proof that G is well-quasi ordered under the minor relation, known as the
Robertson–Seymour Theorem or the Graph Minors Theorem, took Neil

7
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Robertson and Paul Seymour almost 30 years to be written, and extends
to 23 papers ([65–87], see also [64] ).

From the Graph minors series we also know that G is well-quasi or-
dered under the (weak) immersion relation. Unfortunately, this is not true
for the other two relations, the subgraph and the contraction relations.

The importance of questions (A) and (B) above, is discussed in the
next Section.

1.2.3 Obstructions

Given a graph class C that is ⪯-closed, we denote by obs⪯(C) the set of
minimal graphs, with respect of ⪯, not belonging to C. This set is called
the obstruction set of C with respect of ⪯ (Section 2.4). Observe that for
any graphG for which there exists a graphO ∈ obs⪯(C), such thatO ⪯ G,
we can immediately conclude that G /∈ C, as, if G were in C, then also O
would be in C. This set, in a sense can characterize C by forbidding some
graphs.

As G is well-quasi ordered under the minor (≤m) and the (weak) im-
mersion (≤im) relation, this yields that the sets obs≤m(C) and obs≤im(C)
will be finite for every minor or immersion-closed graph class C. Thus,
we have a finite Forbidden graph characterization or Kuratowski char-
acterization3 for these classes. This characterization is completely “inde-
pendent” from every combinatorial, topological or geometrical properties
C may have, and therefore, can be (almost4) trivially used to device algo-
rithms that check whether a graph belongs to C or not. The only thing we
have to check is whether the graph contains some graph of the obstruction
set as minor (or immersion).

3Named after Kazimierz Kuratowski who gave the first such characterization, i.e., the
one characterizing planar graphs as those that do not contain K5 or K3,3 as topological-
minors [51].

4We also need a minor checking (Theorem 2.6.2) and an immersion checking algo-
rithm (Theorem 2.6.3).
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The bad news are that the proof of the Robertson–Seymour Theorem,
as well as its immersion counterpart, are not, and cannot be, constructive
[88]. This roughly means that we know the obstruction sets are finite
but there is no way, using the Graph Minors, to design an algorithm that
finds them. Unavoidable, we have to improvise for each and every graph
class, or to find massive classification technique in order to enlarge the
computability horizon of this theory. The “central” target in this thesis is
to contribute to this direction.

1.3 The Foreground

Here we study the existence of finite Kuratowski characterizations for
classes of graphs with bounded width parameters. As far as the minor or
the immersion relation is concerned, the question is not if such characteri-
zation exists, but whether it can be computed, and which are the necessary
requirements for this to happen.

We present the results in this thesis, starting with the minor ordering
relation. Then, we move on to the immersion and contraction relations.

1.3.1 Monotone kernels

Much work has been devoted to finding the necessary conditions for the
computability of obstruction sets for the minor relation in the last decades
[77,80,85–87,92,123,125]. In Chapter 7 we consider minor-closed graph
parameters that meet two additional conditions:

- they are Protrusion decomposable, and

- they have Finite Integer Index (FII).

(We formally define this properties in Sections 7.1 and 7.2.)

9
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One of the results presented in this thesis is that, when a minor-closed
parameter p has these properties and its value drops by a constant factor if
we do some local transformation to a graph, then the size of the graphs in
obs≤m(G[p, k]) is linearly bounded by k. Moreover, when p is computable
and the FII property is constructive (for more on this “delicate” issue see
Section 7.7), the set obs≤m(G[p, k]) becomes computable.

The central theorem of Chapter 7 can be stated as follows:

Theorem 7.3.1. For every graph parameter p that has FII, is computable,
protrusion decomposable, and minor-closed, there is a constant cp and a
polynomial algorithm that given a graph G, outputs a graph G′ such that

1. G′ ≤m G,

2. p(G′) = p(G), and

3. the size of G′ is at most cp · p(G).

Using this theorem we can draw some very interesting conclusions
about the existence of linear kernels for Graph optimization problems.
A kernelization algorithm for a parameterized graph problem5 – or, sim-
ply, a kernel – is a polynomial-time algorithm that transforms every in-
stance (G, k) of the problem to an equivalent one (G′, k′), where the size
of G′ and the integer k′ depend exclusively on the parameter k (Defini-
tion 3.3.1). Ideally this dependency is linear (and therefore we have a
linear kernel). Theorem 7.3.1 proves the existence of linear kernels for
optimization graph problems where p is the function returning the “size”
of the optimal solution of an instance (see Definition 7.4.1). Properties 1.
and 2. of Theorem 7.3.1 give two additional properties to these kernels:

5A parameterized problem can be seen as a subset of Σ∗×N where we have instances
of the form (x, k), i.e., a word (an instance in the “classic” sense) and an integer k, which
is the parameter of the problem. In parameterized graph problems x encodes a graph.
Section 3.2 contains all the details.

10
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- They are minor monotone, i.e., G′ ≤m G.

- They are parameter invariant, i.e., k′ = k.

Such kernels present independent interest as, apart from their impli-
cation to obstruction sets (Section 7.4.4), they can also accelerate known
approximation schemes (Section 7.4.5). We will not present the conse-
quences of the existence of such kernels here (we do so in Chapter 7), as
we do not want to overwhelm the reader with definitions right form the
introduction. Here we will only discuss the following result.

“Distance” to bounded parameter

Let as use as “host” the parameter p, and define the family of vertex re-
moval parameters (p, r)-dist, r ∈ N, where, for very graph G = (V,E):

(p, r)-dist(G) = min{k | ∃S ⊆ V such that |S| ≤ k and p(G \ S) ≤ r}

(Definiton 4.2.4)

Combining the fact that theF-Covering minimization problems (Sec-
tion 4.2.1 and SubSection 7.4.2) admit linear, minor monotone and param-
eter invariant kernels, with properties of these problems recently proved
[174,175], we can show that the obstructions of the set obs≤m(G[(p, r)-dist,
k]), r, k ∈ N, that are H-topological-minor free6 for some graph H , can
be computed, when p is a minor-closed, computable parameter, such that

- for a non-connected graph the value of p is equal to the maximum
value of its connected components (Definition 7.4.10), and

- its value in grids is not bounded (Definition 4.2.6).

6A graphG isH-topological-minor free ifH cannot be obtained fromG after a series
of vertex and/or edge deletion and vertex dissolution.
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(Theorem 7.4.3)

A large family of parameters having the properties needed for Theo-
rem 7.4.3 described above, is the graph searching numbers. For exam-
ple, let us examine the search numbers of the three aforementioned vari-
ations: es for the Edge search, ns for the Node search, and ms for the
Mixed search. We prove that, for every r, k ∈ N, we can compute the ob-
structions of the sets obs≤m(G[•, k)], where • ∈ {(ns, r)-dist, (es, r)-dist,
(ms, r)-dist}, that are H-topological minor-free, for some graph H (Sec-
tion 8.5.1).

1.3.2 Obstructions for unions of classes

As we said in the beginning of the previous section, obstructions for the
minor relation have been extensively studied. A quite interesting result
is the fact that if we are given the obstruction sets for two minor-closed
graph classes, say C1 and C2 then we can compute the obstruction set for
the class C1 ∪ C2 [123, 125]. This implies that the constructibility of the
Graph Minors Theory is “closed” with respect to the union operation.

In Chapter 6 we deal with the counterpart of this problem for the im-
mersion relation. We build on the machinery introduced by Isolde Adler,
Martin Grohe and Stephan Kreutzer in [123], for computing minor ob-
struction sets, and prove the existence of an algorithm computing the im-
mersion obstruction set of a graph class C with the following properties:

- C is immersion-closed (of course),

- it has an MSO-description7, and

- an upper bound on the treewidth of the subgraph-minimal graphs
containing obstructions of C is known.

7I.e., There exist a Monadic Second-Order logic formula ϕC such that G ∈ C if and
only if ϕC is true for G (Definition 2.7.5).
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(Corollary 6.2.2)

Taking this last property into consideration, we prove that there exists
a uniform upper bound on the treewidth of the subgraph-minimal graphs
that do not belong to the union of two immersion-closed graph classes,
whose immersion obstruction sets are known (Lemma 6.3.3). This result
makes use of an extension of the Unique Linkage Theorem of Kawara-
bayashi and Wollan [89].

Combining this bound with the aforementioned algorithm, we can show
that the immersion obstruction set of the union of two graph classes can
be computed, provided that the two immersion obstruction sets are known
(and given) to us.

1.3.3 d-cutwidth

Our motivation to look into cutwidth under the immersion relation prism,
is the fact that it is not a minor-closed parameter (e.g., [22]).

We noticed that cutwidth can be seen as the “unidimensional” version
of a “multidimensional” parameter, called d-cutwidth (we denote it by
cwd, where d stands for the dimension of the space we work on) (see Def-
initions 5.1.1 and 5.1.2 and Theorem 5.1.1). 1-cutwidth (i.e., cutwidth) is
defined as the minimum over all possible vertex layouts, of the maximum
cost a layout may have (Definition 4.1.6). The cost of a layout is defined
as the number of edges crossing a cutting point in this layout (we will refer
to this point as the “cut”). In d-cutwidth we extend the notion of vertex
layouts, which can be seen as embeddings in a straight line segment, to
embeddings in Rd (see Section 5.1). Moreover, we define the “cut” as the
interSection of hyperplanes of Rd with this embedding.

We have to postpone the formal definitions until Chapter 5, as they
probably are out of the scope of this introduction as well. In Chapter 5
we will prove some of the properties d-cutwith has (we gathered them in
Theorem 5.4.1), and discuss the difficulties posed by the fact that embed-
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dings in Rd contain points that may have some irrational coordinates (see
Section 5.3). Hence, the discretization of these embeddings is manda-
tory if we want to examine the Computational Complexity of finding the
d-cutwidth of a graph.

To conclude that, as we indeed proved, this parameter is immersion-
closed, therefore the classes G[cwd, k], for every d, k ∈ N, admit a finite
forbidden immersions characterization. Yet, we do not have any idea of
devising an algorithm producing these characterizations. Notice that if
we find such an algorithm, then there is no need to discretize embeddings
to compute the d-cutwidth of a graph. A consequence of our results is
that checking whether the d-cutwidth of a graph is at most k can be done
(non-constructively8) in linear time (Proposition 5.3.1).

1.3.4 Connected searching

The case where the question of the existence of finite Kuratowski charac-
terization is meaningful is when we consider the contraction relation. As
we already mentioned, G is not well-quasi ordered under the contraction
relation (an infinite anti-chain for this relation is depicted in Figure 2.5),
which means that a contraction-closed graph class C may not (and typi-
cally do not9) have a finite such characterization. Then...

Why should we ever bother trying to find obstruction sets of
contraction-closed classes?

Let us get back to graph searching numbers. We are particularly in-
terested in the Mixed search variant where the part of the graph that is

8As the computation of the immersion obstruction sets for cwd – in general – is not
constructive.

9Other than the contraction obstruction sets in [1,2] the only (non-trivial) example in
literature of finite such set is the set in [128], characterizing planar graphs. In [99, 132]
we can see examples of infinite contraction obstruction sets.
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restricted for the fugitive is connected (see Section 8.3). In this way,
searchers can communicate safely with each other through this area and
coordinate their efforts. This variant, known as Connected search, has
recently gained much attention [1, 2, 100, 107].

The search number of this game, is neither minor- nor immersion-
closed, because the deletion of edges may “disconnect” the graph. In this
case the connected search number of the new graph will be infinite. Inter-
estingly enough, it is contraction-closed. This motivated us to investigate
the possibility of finding forbidden contractions characterizations for the
classes of graphs of bounded connected search numbers.

In Chapter 9 we prove that the set of forbidden contractions, char-
acterizing the class C of graphs that can be searched using at most two
searchers10, using only connected search strategies, is finite and consists
of 177 graphs. Moreover, we managed to identify every graph in this set.
We will describe these graphs, alongside with the restrictions they impose
on C. One of these restrictions is the direction the searchers must use to
traverse the graph. We will show that this direction plays a very important
role for the success of their search strategy towards capturing the fugitive.
As a matter of fact, the majority of forbidden graphs in this set are there
to fix the course along an imaginary axis of the graph the searchers must
follow to achieve their goal.

1.4 Some Remarks on the Structure
In Chapter 2 we introduce the main notations that concern anything from
sets, function and logic formulas to graphs. After this, we present the
story behind the Robertson–Seymour Theorem. This story starts with the
first Kuratowski characterization, namely the chatarcterization of planar

10Two may be too little, but it seems really hard to extend our results for k ≥ 3. The
reason is that, even if we know that the obstruction set for some k ∈ N is indeed finite,
this set would contain more than 22

Ω(k)

graphs (see Section 9.3).

15



1.4. SOME REMARKS ON THE STRUCTURE

graphs as the graphs that are K5 and K3,3 topological-minor free, and ac-
companies Graph Theory ever since.

The problems we consider solving algorithmically in the context of
this thesis belong to the class NP. In Chapter 3 we will look deeper into
the structural properties of the instances that such problems may have.
This motivated the definition of multivariable measures of complexity.
To be more precise, we investigate these problems from the Parameter-
ized Complexity [139–143] point of view. In this complexity theory we
distinguish a structural measure of the input, other than its size. This mea-
sure is called the parameter of the problem and, accordingly, the problem
is a parameterized problem. The challenge is to design algorithms that
take into consideration that, in most practical cases, the parameter is small
(much smaller than the size of the input) and thus we may tolerate some
super-polynomial contribution of the parameter in the running time of the
algorithms. This parameterized viewpoint reveals a more accurate picture
on the complexity status of the problems.

In this chapter we also present the concept of Kernelization algorithms
and define graph optimization problems.

Chapter 4 consists of the definitions of the graph parameters we con-
sider. As the searching numbers have independent interest, we chose not
to give their definitions in this chapter, but present them in a separate
chapter instead (see Chapter 8).

We also choose to do the same with d-cutwidth. We moved its defini-
tion to Chapter 5, where we will have room to set the necessary notation,
as well as to discuss its properties in detail.

The first11 computability result for obstruction sets we present, con-
cerns the union of immersion-closed graph classes, where their respective

11To be precise, this will be the second such result. In Section 4.2.1, where we discuss
the “distance” to bounded parameters, we present some preliminary and already known
results.
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obstruction sets are known. It is presented in Chapter 6. Although in the
introduction we chose to look first at obstruction sets for the minor re-
lation, we feel it would be better to familiarize the reader of this thesis
with the question of computation of these sets, using the more instructive
proofs of Chapter 6, rather than the technical proofs of Chapter 7.

Chapter 7 may contain a wealth of notions and technics, but, on the
downside, it may be a little difficult to follow. We broke the proof of
Theorem 7.3.1 into small parts, and give some intuition whenever this
was possible. Here, we will further discuss optimization problems and
kernels.

The last two chapters of this thesis are devoted to Graph Searching.
Chapter 8 starts with a short historical retrospection of graph searching
games, more precisely Fugitive search games, and the definition of their
basic variations. Then we present two important notions: Monotonicity
and Connectivity, and discuss the connection between search numbers and
– the already defined in Chapter 4 – layout parameters.

In Chapter 9 we present our work on connected graph searching. Again,
the proofs presented here contain a lot of details and case analysis, but
much effort has been made to guide the reader through this proof.

We close this – introductory – chapter by presenting a list of publica-
tions that are (or are not) based on parts of this thesis. Then we get into
business!

17



1.5. THE PAPERS

1.5 The Papers
The part of our research presented in this thesis was published in the fol-
lowing papers (chronologically ordered):

[4] Archontia C. Giannopoulou, Iosif Salem, and Dimitris Zoros,
Effective Computation of Immersion Obstructions for Unions of
Graph Classes, Journal of Computer and System Sciences, Volume
80, Issue 1, pp. 207–216, 2014.

This publication is based on parts of Chapters 2, 4, and 6.

[5] Archontia C. Giannopoulou, Iosif Salem, and Dimitris Zoros,
Effective Computation of Immersion Obstructions for Unions of
Graph Classes, Scandinavian Workshop on Algorithm Theory
(SWAT 2012), pp. 165-176, 2012.

This paper is a preliminary version of [4].

[1] Micah J Best, Arvind Gupta, Dimitrios M. Thilikos, and
Dimitris Zoros, Contraction Obstructions for Connected Graph
Searching, Discrete Applied Mathematics, Volume 209, pp. 27–47,
2016.

This publication is based on parts of Chapters 2, 8, and 9.

[2] Micah J Best, Arvind Gupta, Dimitrios M. Thilikos, and
Dimitris Zoros, Contraction Obstructions for Connected Graph
Searching, 9th International Colloquium on Graph Theory and Com-
binatorics (ICGT 2014), 2014.

This paper is a preliminary version of [1].

[6] Menelaos I. Karavelas, Spyridon Maniatis, Dimitrios M.
Thilikos, and Dimitris Zoros, Geometric Extensions of Cutwidth
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in any Dimension, 9th International Colloquium on Graph Theory
and Combinatorics (ICGT 2014), 2014.

This paper is based on parts of Chapters 2, 3, 4, and 5.

[3] Dimitris Chatzidimitriou, Dimitrios M. Thilikos, and Dimitris
Zoros,Parameter Invariant, Minor-monotoneKernels, Unpublished
Manuscript, Submitted to: 12th International Symposium on Pa-
rameterized and Exact Computation (IPEC 2017), 2017.

This paper is based on parts of Chapters 2, 3, 4, and 7.

1.6 Not Included in This Thesis

As the scope of this thesis contains mainly two notions, Obstruction Sets
and Graph Layouts, the following paper seems to be out of scope. Never-
theless, we should not avoid mentioning it.

[7] Dimitris Chatzidimitriou, Archontia C. Giannopoulou,
Spyridon Maniatis, Clément Requilé, Dimitrios M. Thilikos,
and Dimitris Zoros, Fixed Parameter Algorithms for Completion
Problems on PlanarGraphs, 41st International Symposium on Math-
ematical Foundations of Computer Science (MFCS 2016), 2016.

There were two preliminary versions of this paper:
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CHAPTER 2

BASIC DEFINITIONS

In this Chapter we will give the basic definitions and fix the notation we
plan to use throughout this thesis. Although we are going to present the
basic notations in a casual way, we will not compromise the formality
needed for this occasion. Before we get into graphs, we have to talk about
sets and functions.

2.1 Sets And Functions
We use the logic symbols ∧,∨,¬,→,⇒,⇔,∈, \,∪ and ∩ in the standard
way1, and, occasionally, use N for the set of natural numbers (N+ for the
set of natural numbers), Z for the set of integers (Z+ for the set of positive
integers) and R for the set of real numbers (R+ for the set of positive real
numbers).

To keep the notation as short as possible we will write [n] instead of
{1, . . . , n}, n ∈ N.

1We may slightly deviate from the “standard” and write ∪{F1, . . . , Fn} and
∩{F1, . . . , Fn} instead of F1 ∪ · · · ∪ Fn and F1 ∩ · · · ∩ Fn.
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Given a set S, we denote by 2S the set of all subsets of S and by
(
S
2

)
the set of all subsets of S with cardinality 2.

Given a function f : A→ B and a set S, we define f |S = {(x, f(x)) |
x ∈ S ∩ A} and f \ S = {(x, f(x)) | x ∈ A \ S}. Moreover, we always
assume that a function σ : A→ B is also defined on 2A so that for S ⊆ A,
σ(S) = {σ(x) | x ∈ S}. We denote by ∅ the empty set {} and by ∅ the
empty function, i.e., ∅ : ∅ → ∅.

2.2 Graphs
A graph is a pair G = (V,E) of sets where E consists of two-subsets of
V . The set V is the vertex set and the set E the edge set of G. We will
refer to the elements of these two sets as vertices and edges respectively.
Throughout this thesis we will depict the vertices of a graph as black dots
(in some cases we will use additional shapes to distinguish some special
vertices) and the edges as line segment (usually straight) connecting their
endpoints, i.e., the two elements of V that constitute the edge. Later,
in Chapter 5, we will discuss about embeddings of graphs in Euclidean
spaces and somehow justify why we chose this way to depict graphs.

Given a graph G, when we do not explicitly state the names of its
vertex and edge set, we will denote them as V (G) and E(G) respectively.
The two basic “measures” of a graph is the number of vertices n(G) =

|V (G)| (we may sometimes use |G| instead, or just n when the context
makes clear that it represents n(G)) and the number of edges m(G) =

|E(G)|. In the following Chapters we will see numerous other measures
of a graph, measuring – loosely speaking – its “width”.

If S ⊆ V (G) we call graph G[S] = (S,
{
{u, v} ∈ E(G) | u, v ∈ S

}
)

the subgraph of G induced by S. Accordingly, given a set F ⊆ E(G) we
call graph G[F ] = (

∪
e∈F e, F ) the subgraph of G induced by F and we

denote by V (F ) the set of vertices inG[F ]. We denote byG\S the graph
G[V (G) \ S].

22



CHAPTER 2. BASIC DEFINITIONS

Let u ∈ V (G) be a vertex of a graph G. We adapt the standard no-
tations for the (open) neighbourhood and the degree of u, that is the set
of all vertices connected with u by an edge, denoted by NG(u), and the
cardinality of this set, denoted by degG(u). Moreover, for S ⊆ V (G) we
define NG(S) = ∪u∈SNG(u). The closed neighbourhood of S in G is
NG[S] = S ∪NG(S). We also define ∂G(S) to be the set of all vertices of
S that are incident to edges not in G[S].

A path of length k ≥ 1 is a graph P = (V,E) where V = {u0, u1, . . . ,
uk} and E = {{u0, u1}, {u1, u2}, . . . , {uk−1, uk}}. In this case we say
that u0 and uk are the ends of P or, in other words, that P connects u0
and uk (we may refer to P as a (u0, uk)-path). All other vertices of P are
internal vertices.Two paths are edge-disjoint if they do not share common
edges and vertex-disjoint if they do not share common vertices.

A closed path, i.e., the graph C = (V,E) with V = {u1, u2, . . . , uk}
and E = {{u1, u2}, {u2, u3}, . . . , {uk−1, uk}, {uk, u1}}, is also called a
cycle of length k ≥ 1.

A graph G is connected if for every two vertices u, v ∈ V (G), G
contains a path connecting them.

IfG is not connected and V1, . . . , Vk are the maximal, under the subset
relation, vertex sets that induce connected graphs, then we define G[Vi],
1 ≤ i ≤ k, to be the connected components of G.

Let G be a graph with at least three vertices. G is 2-connected if for
every two vertices u, v ∈ V (G),G contains two paths with u and v as ends
that meet only at their ends (i.e., apart from u, v they are vertex-disjoint).

If G is not 2-connected, then the maximal vertex sets that induce 2-
connected graphs are the 2-connected components, or blocks, of G.

A vertex of a graph is isolated if it has degree 0 and pendant if it has
degree at most 1. Accordingly, an edge e is pendant if one of its endpoints
is pendant. If both endpoints of e are pendant, then we say that e is an
isolated edge.

Let u and v be two vertices ofG. The distance of u to v is the minimum
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length of a path in G, having u and v as ends.
If a graph G does not contain a cycle, of any length, then it is called a

forest. In addition, if G is connected then it is called a tree.
Let T be a tree. The leaves of T are its vertices that have degree at

most 1. The set of leafs of T is denoted by Leaf(T ).
Given a tree T and two distinct vertices a, b of V (T ) we denote by aTb

the – unique – path in T connecting a and b.
A clique of k ≥ 1 vertices, or k-clique, is the graphKk =

(
{u1, . . . , uk},{

{ui, uj} | 1 ≤ i < j ≤ k
})

. For two disjoint sets A,B, of cardinality
k, l respectively, we define the graph Kk,l = (A ∪ B,

{
{u, v} | u ∈

A and v ∈ B
}
).

The line graph of a graphG, denoted byL(G), is the graph (E(G), X),
where X = {{e1, e2} ⊆ E(G) | e1 ∩ e2 ̸= ∅ ∧ e1 ̸= e2}.

Let F be a set of edges not sharing common endpoints with each other.
If ∪e∈F e = V (G), then F is a perfect matching of the vertices of G.

Given two graphs G1 = (V1, E1) and G2 = (V2, E2) we define their
union to be the graph G1 ∪ G2 = (V1 ∪ V2, E1 ∪ E2). When V1 and
V2 are disjoint, we refer to this union as the disjoint union of G1 and G2

(we denote this fact by G1 + G2). The lexicographic product G1 × G2

is the graph with V (G1 × G2) = V (G1) × V (G2) and E(G1 × G2) =

{{(x, y), (x′, y′)} | ({x, x′} ∈ E(G1)) ∨ (x = x′ ∧ {y, y′} ∈ E(G2))}.
Given a k ∈ N+, we define the (k× k)-grid as the graph Pk−1×Pk−1

and we denote it by ⊞k.
Two graphs, say G and G′ are isomorphic if there exists a bijection

ϕ : V (G) → V (G′) such that {u, v} ∈ E(G) ⇔ {ϕ(u), ϕ(v)} ∈ E(G′)

for every u, v in V (G). In this case, function ϕ is an isomorphism.

This concludes the basic definitions about graphs. We are now able to
define some interesting problems about them.

Historically the fist problem associated with Graph Theory is the Seven
Bridges of Königsberg Problem [199]:
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Figure 2.1: The seven bridges of Königsberg.

Can all seven bridges of Königsberg (Figure 2.1) be traversed
in a single trip without doubling back, with the additional re-
quirement that the trip ends in the same place it began?

In terms of Graph Theory the question is whether the underlying graph
(Figure 2.2), where bridges correspond to edges, has an Eulerian cycle. In
1736 Leonhard Euler gave an answer to this problem, hence, we have the
first Theorem of Graph Theory appearing in literature:

a

b

c

d

Figure 2.2: The graph formed from the seven bridges of Königsberg.

Theorem 2.2.1 (Euler, 1736 [43]). A connected graph has an eulerian
cycle if and only if every vertex has even degree.
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Königsberg has lost two of its seven bridges during World War II and
later, in 1945, was named Kaliningrad after Mikhail Kalinin (Михаил
Иванович Калинин)2. Sadly, World War II not only changed the name
of the problem, but also changed its solution, as – it may still not admit an
Eulerian cycle – it now admits an Eulerian path [194].

In the following Chapters we will discuss many more problems in the
field of Graph Theory, and see their solutions and the techniques involved
in them. Before we proceed in this endeavour we have to establish our
notation and get a glimpse of some central results.

2.3 Contractions, Minors and Immersions
There are many different operations locally transforming a graph to a new
graph, the most common of which are the following:

\u : The deletion of a vertex u ∈ V (G) tranforms G to graph G \ u =

(V (G) \ {u}, {e ∈ E(G) | u /∈ e}) (see Figure 2.3a).

\e : The deletion of an edge e ∈ E(G) transforms G to graph G \ e =

(V (G), E(G) \ {e}) (see Figure 2.3b).

/e : The edge contraction of e = {u, v} (or just the contraction of {u, v})
is the operation that deletes this edge, adds a new vertex xuv and

2But why Stalin named Königsberg, the birth place of the great Immanuel Kant, after
Kalinin, a man with no real power or influence? According to Milan Kundera’s book
The Festival of Insignificance [197] Kalinin had a bladder problem that forced him to
urinate at very frequent intervals. Stalin, being aware of this fact, would intentionally
slow down his story telling. Out of respect, poor Kalinin would remain sitting during the
whole story, thereby intensifying his bladder problem. It was only when Kalinin would
finally give up, shaming himself in front of the other Congress members, that Stalin
would bring his anecdotes to a close. This undoubtedly proves Kalinin’s devotion to his
leader, who later acknowledging this fact named Königsberg after him. This story may
not seem legit but, at least to me, is very amusing. What make things even more particular
is that Königsberg is still called Kaliningrad, but, for instance, Leningrad changed back
to Saint Petersburg in 1991 and Stalingrad was named Volgograd in 1962.
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x

(a) The deletion of x.

e

(b) The deletion of e.

u

v
xuv

(c) The contraction of {u, v} to xuv.

x

y

z
e

e1

e2x

y

z

(d) The lift of e1 and e2 to e.

connects this vertex to all the neighbours of u and v (if some mul-
tiple edges are created we delete them). G/e is the graph obtained
(see Figure 2.3c). Moreover, if an endpoint of e, say u, has degree
2 then the contraction of e is also called dissolution of vertex u. We
denote by G/u the graph obtained.

Lifts: The lift of two edges e1 = {x, y} and e2 = {x, z} to an edge e
is the operation of removing e1 and e2 from G and then adding the
edge e = {y, z} in the resulting graph. Notice that if {y, z}was
already present in G, then this operation creates a multiple edge
between y and z (this is the only exception throughout this thesis
where multiple edges are allowed, see Figure 2.3d for an example).

Based on these operations we can define various relations on graphs
(consequently, these relations can define partial orderings on graphs, some
of which we discuss in the next Section). In a nutshell, let H and G be
two graphs, then:

• H is a subgraph of G if it can be obtained after a series of vertex
and edge deletions on G. We denote it by H ≤ G.
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• H is a spanning subgraph of G if it can be obtained after a series of
edge deletions on G. We denote it by H ≤sp G.

• H is an induced subgraph of G if it can be obtained after a series of
vertex deletions on G. We denote it by H ≤in G.

• H is a contraction of G if it can be obtained after a series of edge
contractions on G. We denote it by H ≤c G.

• H is a topological-minor of G if it can be obtained after a series of
vertex deletions, edge deletions and vertex dissolutions on G. We
denote it by H ≤tp G.

• H is a minor of G if it can be obtained after a series of vertex dele-
tions, edge deletions and edge contractions on G. We denote it by
H ≤m G.

• H is an (weak) immersion if it can be obtained from a subgraph of
G by lifting some edges3. We denote it by H ≤im G.

Although these definitions of minors, contractions and immersions are
very intuitive and, perhaps, easier to grasp, sometimes it is much more
convenient to use the – more formal – definitions given in Section 6.2 of
Chapter 6.

Definition 2.3.1. We say that a graphG isH-minor-free (H-topological-
minor-free) if it does not contain H as a minor (topological-minor). We
also say that a graph class C is H-minor-free (H-topological-minor-free)
if all of its members are H-minor-free (H-topological-minor-free).

3In other words: If there is an injective mapping f : V (H) → V (G) such that, for
every edge {u, v} ∈ E(H) there is a path from f(u) to f(v) in G, and for any two
distinct edges of E(H) the corresponding paths in G are edge-disjoint. If, in addition,
these paths are internally disjoint from f(V (H)), then H is a strong immersion of G.
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· · ·
C3 C4 C5

Figure 2.4: The set {Ci | i ≥ 1} of all cycles is an infinite anti-chain for
≤, ≤in.

2.4 WellQuasiOrderings andObstruction Sets
In the previous Section we defined six relations between graphs. These re-
lations are quasi-orderings, in other words, reflexive and transitive. Some
of them are called well-quasi-orderings, not according to someone’s pref-
erences, but according to – loosely speaking – the extent in which they are
“partial”. The following definition will make this make sense:

Definition 2.4.1. A quasi-ordering⪯ is awell-quasi-ordering on a setX
(of graphs in our case) if and only if for every infinite sequence x0, x1, . . .
in X there exist two elements, say xi and xj , such that xi ⪯ xj .

One can prove that a ⪯ is well-quasi-ordering on X if and only if
X contains neither an infinite anti-chain, i.e., an infinite set of elements
not comparable under ⪯, nor an infinite sequence x0, x1, . . . such that
x0 ≻ x1 ≻ · · · (in other words an infinite strictly decreasing sequence).
Using this proposition one can show that the class of all graphs, denoted
by G, is not well-quasi-ordered under≤,≤in (Figure 2.4),≤c (Figure 2.5)
and ≤tp (Figure 2.6).

Definition 2.4.2. Let C ⊆ G be a class of graphs and⪯ a quasi-ordering
on graphs. C is ⪯-closed (or closed under taking of ⪯) if and only if for
every G ∈ C and H ∈ G, with H ⪯ G, it also holds that H ∈ C.

We will focus mainly on minor-closed, contraction-closed and im-
mersion-closed graph classes. An example of a graph class closed under
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· · ·
K2,1 K2,2 K2,3

Figure 2.5: The set {K2,i | i ≥ 1} is an infinite anti-chain for ≤c.

· · ·

Figure 2.6: An antichain for ≤tp.

all these relations is the class of planar graphs that will be defined shortly
(and redefined in Section 9.1.4 of Chapter 9).

Definition 2.4.3. Let C be a graph class closed under taking of ⪯. We
denote by obs⪯(C) the set of all graphs in G \ C that are minimal with
respect to ⪯, and we call this set obstruction set (or just obstructions) for
C under ⪯.

Some few words to make the name used for obs⪯(C) clear: Given a
graph G, as C is ⪯-closed, if we can find a graph O ∈ obs⪯(C) such
that O ⪯ G, this will verify that G /∈ C. Therefore, we can check if a
graph belongs to C using the graphs of obs⪯(C). This test by no means
constitutes an algorithm, as obs⪯(C) may be infinite (Example 2.4.1), so
we will have to make infinite many checks. Furthermore, even when this
set is finite, there may not exist a polynomial time algorithm checking if
two graphs are related under ⪯, thus, this test will not be efficient.

Let us see some examples of obstraction sets.

Example 2.4.1. Let T be the graph class of all trees. As we saw before,
a graph is a tree if and only if it does not contain a cycle as a subgraph
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(or induced subgraph). Therefore, the obstruction set of T under ≤ (≤in

respectively) is the set {Ci | i ≥ 1} of all cycles (see Figure 2.4), an
infinite set.

Example 2.4.2. The obstruction set of T under ≤m contains only the
graph C3. First observe that every graph in G \ T contains a cycle, say
C, as a minor. We can further contract the edges of C until we obtain C3.
This is the minor minimal graph in G \ T because if we delete a vertex or
an edge, or contract an edge, we will obtain a tree (a path of length 2 in
the first two cases and a path of length 1 in the last case).

2.5 Wagner’s (?) Conjecture

All the observations discussed in the previous Section would not be of
much use – in many respects – if it wasn’t for Graph Minors ( [65–87]),
a much celebrated series of papers written by Neil Robertson and Paul
Seymour. In this series, working towards proving Wagner’s Conjecture,
the authors introduced many useful tools that eventually, forever changed
Graph Theory and Combinatorics.

We start this Section by stating Wagner’s Conjecture:

Conjecture 2.5.1 (4Wagner, maybe in 1970 and perhaps in [93]). The
class G of all graphs is well-quasi-ordered under the minors relation.

Notice that if G does not contain an infinite anti-chain, with respect of
≤m, or an infinite strictly decreasing sequence, as this conjecture implies,
then for every subclass C ⊆ G closed under taking of minors, the class
G \ C would contain a finite number of minor-minimal graphs. Thus, the
following is a direct corollary of this conjecture:

4Now known as the the Robertson – Seymour Theorem (see Theorem 2.6.1).
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Corollary 2.5.1. For every minor-closed graph class C the obstruction
set obs≤m(C) is finite.

Actually, Claus Wagner insisted that he never made this conjecture! Of
course he was familiar with this problem and talk about it with his students
back in the 60’s [13]. The main reason why we attribute this conjecture to
him is because Robertson and Seymour do so (in [84] they cited [93]).

The story starts in the 30’s, with Wagner’s PhD thesis, where he was
trying to prove the Four Color Theorem:

Given a map (formally defined as a separation of the plane
into regions) we can color all countries (the regions) so that
every two adjacent countries have different colors, using at
most four colors.

To define this Theorem formally we need to introduce the notions of
planar graphs and graph coloring.

Definition 2.5.1. A plane graph is a pair Γ = (V,E) of sets where:

1. V ⊆ R2,

2. every e ∈ E is an arc between two points of V ,

3. different arcs of E have different endpoints, and

4. the interior of an arc e ∈ E, i.e., the set consisted of every point
belonging to e other than the two endpoints, does not contain a point
in V or a point of an other arc of E.

Notice that every plane graph Γ = (V,E) defines a (abstract) graph,
denoted by G(Γ), by ignoring the position of the points in V and identi-
fying the arcs of E by the set of their endpoints. For simplicity, we will
refer to the points of V as vertices and to the arcs of E as edges.
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K5 K3,3

Figure 2.7: The two obstructions for planar graphs.

Definition 2.5.2. For every plane graph Γ = (V,E) we call the regions
of R2 \V ∪ (

∪
e∈E e) faces of Γ and we denote this set by F (Γ). The only

unbounded face in F (Γ) is the outer face, hence the other faces are inner
faces.

Definition 2.5.3. An (abstract) graph G is planar if and only if there
exists a plane graph Γ such that G(Γ) is isomorphic to G.

Definition 2.5.4. A (proper) vertex coloring (or just coloring) of a graph
G that uses k colors is a function f : V (G)→ [k] such that for every edge
{u, v} ∈ E(G), f(u) ̸= f(v).

The formal definition of the Four Color Theorem is the following:

Theorem 2.5.1 (Four Color Theorem5). Every planar graph is 4-colorable.

Wagner’s approach was to try to completely bypass topology and give
a combinatorial proof. He tried to classify the K5-minor free graphs and
prove that they are 4-colorable. As the class ofK5-minor-free graphs con-
tains all planar graphs (a consequence of Theorem 2.5.2), this would im-
ply that all planar graphs are 4-colorable. Wagner’s efforts accumulated
to the following theorem that was proven in 1937 [94] and is – rightfully
– bearing his name.

5First proven in 1976 by Kenneth Appel and Wolfgang Haken with the use of a com-
puter [25–29].
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Theorem 2.5.2 (Wagner, 1937 [94]). A graph G is planar if and only if
neitherK5 ≤m G nor K3,3 ≤m G (Figure 2.7).

Unfortunately for Wagner, this theorem succeed in characterizingK5-
minor-free graphs but failed to take “planarity”, and Topology in general,
out of the picture. Wagner’s “failure” had great consequences in the devel-
opment of Graph Theory. First of all, it inspired Hardwiger’s Conjecture,
still “one of the deepest unsolved problems in graph theory” [38]:

Conjecture 2.5.2 (Hardwiger, 1943 [45]). If all colorings of a graphG
use at least k colors, then Kk ≤m G.

It also inspired the notion of Tree-decompositions (Definition 4.1.3) a
central notion in modern Graph Theory, and fundamental for the proof of
Robertson–Seymour Theorem (Theorem 2.6.1).

Last but not least, consider the class of all planar graphs, say P . It
is straightforward to see that P is closed under minors. What Wagner
proved was that the obstruction set obs≤m(P) is finite and contains only
two graphs.

Notice that this is an extremely elegant way to define planar graphs:
not only it is simple but also it is purely combinatoric. This definition
of a graph class through the set of its “forbidden graphs”, known as For-
bidden graph characterization or Kuratowski characterization after Kaz-
imierz Kuratowski6, can be considered as the first results in the field of
Graph Minors. It motivated researchers to find such characterizations for
other graph classes, using the quasi-orderings defined previously. We will
talk more about this in the following Section.

6Kuratowski proved in 1930 a lighter version of Theorem 2.5.2 for topological mi-
nors [51]. But, since this was the first forbidden graph characterization, such character-
ization often bears Kuratowski’s name. Interestingly, the same result had been already
proven independently by the Soviet Mathematician Lev Semyonovich Pontryagin (Лев
Семёнович Понтрягин) around 1927. However, the proof of Pontryagin has never been
published. This recommends that the – somewhat more politically correct – way to name
this theorem is “Kuratowski-Pontryagin Theorem”.
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2.6 Graph Minors
Robertson and Seymour published the proof of Wagner’s Conjecture in
2004. It is known as Robertson–Seymour Theorem or Graph Minors The-
orem.

Theorem 2.6.1 (Robertson–Seymour Theorem, 2004 [84]). The class G
of all graphs is well-quasi-ordered under the minor relation.

This theorem immediately guarantees that there exists a finite forbid-
den minors characterization for every graph class, closed under taking of
minors. But, given a minor closed graph class C is it possible to find this
characterization? In other words, assume that we are given a finite repre-
sentation of C, can we compute obs≤m(C)? In this Section we will discuss
some of the algorithmic implications of this theorem and try to give an
answer to this question. This will pave the way for the following chapter
on Parameterized Complexity.

Before getting any further, we have to stress that we assume the reader
is familiar with the notion of algorithm, the time complexity of algorithms
and the big O notation.

In this thesis we will heavily use “tools” from the Graph Minors “tool-
set”, more specifically, we will use some structures and parameters de-
fined in the Graph Minors series, alongside with some of their major re-
sults. The first algorithmic result we will need was published in 1995 [77].
Consider the following two problems:

H-Minor-Containment
Input: A graph G.
Question: Is H ≤m G?

C-Membership
Input: A graph G.
Question: Is G ∈ C?
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Theorem 2.6.2 (Robertson and Seymour, 1995 [77]). There exist an al-
gorithm –with running timeO(n3) – deciding theH-Minor-Containment,
where n = n(G).7

Combining Theorem 2.6.1 with Theorem 2.6.2 one can see that, if C
is a minor-closed graph class, the C-Membership problem has an O(n3)

algorithm, provided that obs≤m(C) is known (just run |obs≤m(C)|-times
the algorithm for H-Minor-Containment problem, one for each H ∈
obs≤m(C), and, if all answers are negative then G ∈ C, otherwise G /∈
C). The only thing missing to have an affirmative answer to the question
posed in the beginning of this Section is an algorithm that will produce
the obstruction set. Here is where things stop being so favourable for us:
Theorem 2.6.1 is not – and cannot be – constructive [88]. To formally
explain this, we have to dive deep into Logic and this – almost certainly –
will take us off our track. Therefore, we will only say that, as the Axiom
of Choice is used in the proof of the Graph Minors Theorem8 we cannot
draw an algorithm from it that, taking a minor closed graph class C as
input, will compute obs≤m(C). In [88] Friedman, Robertson and Seymour
showed that we cannot prove the Graph Minors Theorem without using
certain variants of the axiom of choice, hence we will never find such an
algorithm in general.

Although we do not know a – universally applicable – method to com-
pute the obstruction sets, our research is by no means hopeless, as for some
specific graph classes this may be possible by applying ad hoc methods.

In Section 2.4 we saw that a “Graph Minors” type of theorem is not
possible for ≤,≤in and ≤c, as G is not well-quasi-ordered under these
relations. But what about the immersion relation?

Conjecture 2.6.1 (Weak Immersions Conjecture, Nash-Williams, 1963
[91]). The class G of all graphs is well-quasi-ordered under the weak im-

7A reminder: We will occasionally use n instead of n(G) and m instead of m(G).
8Actually Kruskal’s Tree Theorem is used, which in turn uses the Axiom of Choice.

36



CHAPTER 2. BASIC DEFINITIONS

mersion relation.

Conjecture 2.6.2 (Strong Immersions Conjecture, Nash-Williams, 1965
[90]). The class G of all graphs is well-quasi-ordered under the strong
immersion relation.

Both these conjecture was made by Crispin St. John Alvah Nash-
Williams in the sixties. The first one was resolved after 45 years in the
last paper of the Graph Minors series [87]. It is indeed true. For the sec-
ond one, in [87] Robertson and Seymour remark that:

“It seemed to us at one time that we had a proof of the stronger
[conjecture], but even if it was correct it was very much more
complicated, and it is unlikely that we will write it down.”

Therefore, we reached the same conclusion as in the minor relation:

Corollary 2.6.1. For every immersion-closed graph class C the obstruc-
tion set obs≤im(C) is finite.

One year after the publication of the proof of this conjecture, a cubic
time algorithm was given by Grohe, Kawarabayashi, Marx, and Wollan
for the following problem:

H-Immersion-Containment
Input: A graph G.
Question: Is H ≤im G?

Theorem 2.6.3 (Grohe, Kawarabayashi, Marx, and Wollan, 2011 [179]).
There exist an algorithm – with running time O(|G|3) – deciding the H-
Immersion-Containment.

This theorem applies only for the weak immersions relation9 and is an
almost direct corollary of the following.

9The authors of [179] conjecture that there exists such an algorithm for the strong
immersion relation as well. Yet, it still eludes us.
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Theorem 2.6.4 (Grohe, Kawarabayashi, Marx, and Wollan, 2011 [179]).
For every fixed graph H , there exist an algorithm – with running time
O(|G|3) – that decides if H is a topological-minor of G.

Thus, for an immersion-closed10 graph class C there exist aO(n3) time
algorithm deciding the C-Membership problem, under the condition that
obs≤im(C) is known.

Much effort has been made to find the necessary conditions to make
the computation of the forbidden minors, or forbidden immersions, possi-
ble, for a variety of graph classes (a good start for those who want to learn
more about this are [52, 123, 125, 127, 192, 193]). In Chapter 6 we will
argue that when C is immersion-closed, MSO expressible and an explicit
bound on the treewidth of the≤-minimal graphs of G\C can be computed,
there exists an algorithm computing obs≤im(C). There are still some things
missing before we are able to formally express this result. In the following
couple of Chapters we plan to complete the definitions required to do it.

2.7 Logic

Let us recall some definitions from Monadic Second-Order Logic (MSO).
An extended introduction to Logic can be found in [186, 188]11. We will
take a shortcut and immediately present the syntax of MSO of graphs.

2.7.1 Monadic Second-Order logic

Definition 2.7.1. We call signature τ = {R1, . . . , Rn} any finite set of
relation symbols Ri of any (finite) arity denoted by ar(Ri).

10For now on, when we just say immersion we mean weak immersion.
11It is highly advised for the reader to revise the basic notions of logic before getting

any further in this Section.
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Definition 2.7.2. A τ -structureA = (A,RA
1 , . . . , R

A
n) consists of a finite

universeA, and the interpretation of the relation symbolsRi of τ inA, that
is, for every i, RA

i is a subset of Aar(Ri).

The syntax of Monadic Second-Order logic of graphs includes the log-
ical connectives ∨, ∧, ¬,↔,→, variables for vertices, edges, sets of ver-
tices, and sets of edges, the quantifiers ∀, ∃ that can be applied to these
variables, the signature τG = {V,E, I} where:

1. V has arity one and represents the set of vertices of a graph G,

2. E has arity one and represents the set of edges of G, and

3. I = {(v, e) | v ∈ e and e ∈ E(G)} the incidence relation,

and equality of variables. We denote the language of graphs by LG .

Definition 2.7.3. An MSO-formula is defined recursively from atomic
formulas (i.e., expressions of the form Ri(x1, x2, . . . , xar(Ri)) or of the
form x = y, where xj , j ≤ ar(Ri), x and y are variables) by using the
Boolean connectives ¬,∧,∨,→, and existential (∃) or universal (∀) quan-
tification over individual variables and sets of variables.

Notice that in LG the atomic formulas are of the form V (u), E(e),
X(u), Y (e), and I(u, e), where u and e are vertex and edge variables
respectively, X is a vertex-set variable, and Y is an edge-set variable.
Furthermore, quantification takes place over vertex or edge variables or
vertex-set or edge-set variables.

Definition 2.7.4. A graph structure G = (V (G) ∪ E(G), V G, EG, IG)

is a τG-structure, which represents the graph G = (V,E).

From now on, we will abuse the notation and treat G and G as if they
were the same structure.
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Definition 2.7.5. A graph class C is MSO-definable if there exists an
MSO-formula ϕC , in the language of graphs, such that

G ∈ C if and only if G |= ϕC,

i.e., ϕC is true in the graph structure G representing G (if this is the case
we will say that G is a model of ϕC).

To make this clear let us see an example (which we will later use in
the proofs of Lemma 6.2.2 and Observation 6.3.1):

Lemma 2.7.1. The class of graphs that contain a fixed graph H as an
immersion is MSO-definable.

Proof. Let V (H) = {v1, v2, . . . , vn} and E(H) = {e1, e2, . . . , em}. Let
also ϕH be the following formula.

ϕH = ∃E1, E2, . . . , Em ∃x1, x2, . . . , xn
[
(
∧
i∈[n]

V (xi))

∧(
∧
j∈[m]

Ei ⊆ E(H))

∧(
∧
i ̸=j

xi ̸= xj) ∧ (
∧
p ̸=q

Ep ∩ Eq = ∅)

∧(
∧

er={vk,vl}∈E(H)

path(xk, xl, Er))
]
,

where path(x, y, Z) is the MSO-formula stating that:

“The edges in Z form a path from x to y.”

This can be done by saying that every vertex v incident to an edge in Z is
either incident to exactly two edges of Z or to exactly one edge, with the
further condition that v = x or v = z (notice that these conditions also
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imply the connectivity of the graph induced by the edges of Z). Thus,
path(x, y, Z) can be expressed in MSO by the following formula:

path(x, y, Z) = [(x ̸= y) ∧ ∃p, q(Z(p) ∧ Z(q) ∧ I(x, p) ∧ I(y, q)

∧∀p′ ∈ Z(I(x, p′)→ p = p′)

∧∀q′ ∈ Z(I(y, q′)→ q = q′))

∧∀w(V (w) ∧ w ̸= x ∧ w ̸= y

∧∃q1(Z(q1) ∧ I(w, q1))

→ ∃q2, q3(Z(q2) ∧ Z(q3) ∧ q2 ̸= q3

∧I(w, q2) ∧ I(w, q3)))

∧∀p1, p2, p3(Z(p1) ∧ Z(p2) ∧ Z(p3)

∧∃m(V (m) ∧ I(u, p1) ∧ I(u, p2) ∧ I(u, p3))

→
∨
i̸=j

(pi = pj))]

It is easy to verify that ϕH is the desired formula.

2.7.2 Counting Monadic Second-Order logic

If, in addition to the features of Monadic Second-Order logic, we also
have atomic formula “testing” whether the cardinality of a set is equal to q
modulo r, where q and r are integers such that 0 ≤ q < r and r ≥ 2, then
we have an extension of MSO, called Counting Monadic Second-Order
logic (CMSO).

More precisely, CMSO is MSO enriched with the following atomic
formula for every set S:
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cardq,r(S) = true if and only if |S| = q mod r

As far as “expressibility” is concerned, CMSO is more powerful than
MSO, as there exist graph properties that can be defined in CMSO but not
in MSO [191].

Definition 2.7.6. A graph class C is CMSO-definable if there exists a
CMSO-formula ϕC , in the language of graphs, such that G ∈ C if and
only if G |= ϕC .

We will see some examples of CMSO formulas in the following Sec-
tion (Example 3.4.1 and 3.4.2). More information about CMSO (and MSO
in general) can be found in [31, 190, 191] and of course [184].
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PARAMETERIZED COMPLEXITY

The meta-algorithmic result of the existence of a cubic time algorithm
deciding the C-membership problem for a minor-closed graph class C,
broadened the perspectives towards the understanding of NP-hard prob-
lems. It was actually at that point when it became clear that, with the
introduction of more variables when measuring the complexity of a prob-
lem, there seems to be “different levels of hardness” between problems in
NP [138]. To set a working hypothesis let us define two more problems.

A vertex cover of a graph G is a set S ⊆ V (G) such that for very edge
{u, v} ∈ E(G) either u ∈ S or v ∈ S.

k-Vertex Cover
Input: A graph G.
Question: Does G contain a vertex cover of size k?

Recall the definition of coloring (Definition 2.5.4).
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k-Coloring
Input: A graph G.
Question: Can G be colored using k colors?

Notice that, for the k-Vertex Cover problem, the class of graphs
admitting a vertex cover of size at most k is closed under taking of mi-
nors. Therefore, for every fixed k there is a cubic time algorithm deciding
whether a graph has a vertex cover of size k (of course there exist way bet-
ter algorithms for this problem, the algorithms in [161,162] for instance).
However, no similar result can be expected for the k-Coloring problem,
as it is known to be NP-hard for every fixed k ≥ 3 [187]. Hence, al-
though both problems belong to NP, the k-Coloring problem seems to
be inherently more difficult than the k-Vertex Cover problem.

The observation of this gap in the time complexity of NP-hard prob-
lems facilitated the development of Parameterized Complexity Theory
[139–143] by Fellows and Downey [167, 168] , which has proven to be a
very powerful theory and has majorly advanced during the past decades
(see [24, 153, 154, 164, 165]).

Our starting point for this Chapter will be Classic Complexity Theory.

3.1 Classic Complexity Theory

Let Σ∗ be the set of all strings or words of a finite alphabet Σ. A classic
problem Π is a language over Σ, that is a set Π ⊆ Σ∗. The inputs or
instances of Π are the words of Σ∗. We call an input w ∈ Σ∗ Yes-instance
if w ∈ Π and No-instance if w /∈ Π.

As we are mainly interested in graph problems we will implicitly use
a representation of graphs and a function mapping this representation to
words of an alphabet. For instance, we can use a binary representation of
a graph. In this way we can think of graphs as being words in {0, 1}∗ and
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problems as being subsets of G.
To make the notation more intuitive, we will describe classic problems

less formally, following the way we have defined problems so far:

Π

Input: w ∈ Σ∗.
Question: Is w ∈ Π?

Whenever we say that there exists an algorithm solving a problem Π,
we mean that there exist a Turing machine that takes as input the input of
Π and returns a “Yes” or “No” answer to the question of the problem.

The time complexity of an algorithm is the number of steps needed for
the corresponding Turing machine to finish its computation and output an
answer. To establish a measure of time complexity we count this num-
ber of steps as a function of the size of the input word, i.e., the number
of its symbols. For a word w we will denote its size as |w|. In classic
Complexity Theory we are interested in the worst-case analysis of the
time complexity of an algorithm. Therefore, we only focus on the time
required for an algorithm to give us an answer in the worst possible input.

To express how well an algorithm performs, as far as time complexity
is concerned, we will use the Big O notation.

As already mentioned, in this thesis we examine only graph problems.
Therefore, it is more suited to measure the performance of an algorithm
as a function of the size of the graph that was given to us as input. If not
otherwise stated, the input size will be the number of vertices of the input
graph.1

The biggest open question in classical Complexity Theory is whether
1Of course one cannot ignore the fact that a graph may contain n vertices but in real-

ity needs approximately n2 symbols to be expressed in some data structure. Moreover,
each different data structure has its own advantages and disadvantages when it comes to
manipulating a graph. We will avoid getting that deep in data structures as we are only
interested in how algorithms perform in a higher level.
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P is equal to NP or not. P contains the problems that can be solved in
polynomial time, i.e., needing O(nc) time steps in order to be solved, for
some constant c. NP on the other hand, contains the problems that can
be “verified” in polynomial time, that is, if someone were to give us a
certificate of a solution we could then run a polynomial time algorithm
and compute the answer of the problem. Up to now, no-one knows the
answer, although the vast majority2 of computer scientists is convinced
that these sets are not equal and that there exist problems in NP that do
not admit polynomial time algorithms (obviously P ⊆ NP).

There exist some problems in NP that are – in a sense – the most dif-
ficult of all: If one of these problems were to admit a polynomial time
algorithm, then all problems in NP would also admit such an algorithm.
These problems are called NP-hard. The NP-hard problems that belong
to NP are called NP-complete problems.

Polynomial time algorithms are commonly fast and very useful for
the applications. Hence, when a problem is proven to be NP-complete
this means that its almost certainly hard – at least all the great minds of
Theoretical Computer Science believe so – and no-one can find a feasible
solution to it (see pages 2,3 of [187]). Researchers came to terms with
this fact and try hard to find other methods to tackle these problems. A
paradigm of a way to look the difficulty of an NP-complete problem in the
eyes and try to find algorithms that will perform good despite not being
polynomial, will be described in the following Section.

3.2 Fixed Parameter Tractable Algorithms
The framework of classical complexity theory has a drawback. In many
problems, when measuring their difficulty only in terms of the input size,

2We stress here that the “vast majority vote” does not imply “truth” in mathematics
(while this might be the case in other circumstances).
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we may overlook some structural properties of the input. Using these
structural properties we could be able to design feasible algorithms. This
becomes clearer if we consider graph problems, and the fact that the “size”
of a graph tells almost nothing about the properties of the graph. To back
this thought up, we are going to define a different way of measuring the
complexity of a problem. First, we will distinguish a secondary measure-
ment of the input that governs the computation complexity of the problem.
Then, we will define the time complexity of an algorithm in a multivariate
way, meaning that we will count the time steps needed for an algorithm to
output a result as a function, not only of the size of the input, but also as
a function of these measurements. The way these two variables are cor-
related in the time complexity of an algorithm yields different complexity
classes.

Let us introduce some notation.

Definition 3.2.1. Let Σ be a finite alphabet. A polynomial time com-
putable function3 κ : Σ∗ → N is a parameterization of Σ∗.

In this new theory we consider problems where we are given as input
a pair consisted of an input in the classic sense, a word, and the value
of the parameterization, an integer 4, and we are asked to decide whether
some property holds. These type of problems can be formally defined as
follows.

Definition 3.2.2. Let Σ be a finite alphabet. A parameterized problem
over Σ consists of a classic problem Π ⊆ Σ∗ and a parameterization κ
of Σ∗. We will denote this problem as p-Π to indicate that this is the
parameterized version of Π. The instances of p-Π are pairs of the form
(w, κ(w)) ∈ Σ∗ × N.

3By that we mean that there exists a (known) Turing Machine that can compute the
output of this function in polynomially-many steps (on the size of the input word).

4We will refer to this parametrization as the parameter of the problem.
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Let p-Π be a parameterized problem. The Yes-instance of p-Π are the
pairs (w, κ(w)) ∈ Σ∗ × N that belong to p-Π and the No-instance all
other pairs, as usual. In what follows, if there is no particular reason to
mention the function κ, we will denote an instance as (w, k), meaning that
k = κ(w).

We will measure the time complexity of a parameterized problem as
a function of the input size and the value of the parameter. Similarly to
the case of Classic Complexity, we are interested only in the worst-case
analysis of algorithms. To make the two parts of a parameterized problem
clear, we will use the following representation:

p-Π
Input: (w, κ(w)) ∈ Σ∗ × N.
Parameter: κ : Σ∗ → N.
Question: Is (w, κ(w)) ∈ p-Π?

The idea behind measuring the complexity of a problem as a func-
tion of the input size and the parameter, stems from the fact that in many
problems where the parameter is small – a lot smaller than the size of
the input – simple exponential algorithms (in the classic complexity set
up) can perform exceptionally well. For instance, let us parametrize the
k-Vertex Cover problem by the constant function k. The best known al-
gorithm solving this problem runs in O(1.2738k + k · n) steps [161,162].
For small values of k this is an extremely feasible algorithm.

If you are not still persuaded – and you mustn’t – think of the possible
ways the parameter and the input size can be combined when measuring
the complexity of a problem. For running times such as O(f(k) · nc) or
even O(nf(k)), where f is just a computable function and c a constant, for
every single value of k, the parameter, we have a polynomial algorithm on
n, the input size. The real “tough” problems in parametrized complexity
have running times such as O(kn), where even for constant k we get an
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exponential algorithm.

I think we had enough hand having so far (too much for my likings),
so let us go through the definitions.

Definition 3.2.3. Let p-Π be a parametrized problem over Σ and κ :

Σ∗ → N its parameterization. An algorithmA is fixed parameter tractable,
or an FPT-algorithm, if there exist a computable function f : N→ N and
a polynomial p such that for every w ∈ Σ∗ the running time ofA on input
w is:

O(f(κ(w)) · p(|w|))

That is potentially exponential on the parameter but polynomial on the
size of the input.

Definition 3.2.4. A parametrized problem p-Π is fixed parameter tractable
if it admits an FPT-algorithm deciding it.

For our convenience, we call such problems FPT-problems. To add
more to the overuse of FPT:

Definition 3.2.5. We define FPT to be the class of all FPT-problems.

To get a grasp on these definitions we need some examples. Let us
review Paragraph 2.6 and give parametrizations of the problems described
there. First of all, we have to stress that

Minor-Containment
Input: Two graphs H and G.
Question: Is H ≤m G?

and

Immersion-Containment
Input: Two graphs H and G.
Question: Is H ≤im G?
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are NP-complete problems5. We will give a parameterization of these
problems by defining κ : G → N to be the number of vertices of H:6

p-Minor-Containment
Input: Two graphs H and G.
Parameter: n(H).
Question: Is H ≤m G?

p-Immersion-Containment
Input: Two graphs H and G.
Parameter: n(H).
Question: Is H ≤im G?

We saw that if C is a minor-closed (immersion-closed) graph class then
obs≤m(C) (obs≤im(C) respectively) is a finite set of graphs, a set that char-
acterizes C. Let us focus first in the minor case and assume that the set
obs≤m(C) = {O1, . . . , O|obs≤m (C)|} is known. Moreover let us look deeper
in the algorithm of Theorem 2.6.2:

Theorem 3.2.1 (Robertson and Seymour, 1995 [77] ). There exist an
O(f(k) · n3) algorithm deciding the p-Minor-Containment problem,
where k = n(H).

The function f in the running time of this algorithm is a horrible, yet
computable function. Therefore, this algorithm is not feasible, but, as we
saw before, it yields a cubic algorithm for the C-Membership problem

5This can be proven in the following way: Take for instance H to be a cycle with
n(G) vertices. Then H ≤m G if and only if G contains a Hamiltonian cycle, thus the
Hamiltonian Cycle problem can be reduced to the Minor-Containment problem (for
more informations check [187]). To prove that Minor-Containment ∈ NP take as
certificate the function ψ of Definition 6.2.2.

6Also we have two graphs as input, in essence two words. To be consistent with our
framework, we have to code these two words as one. Then we decode it to take the first
word in order to compute the parameter.
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with O(|obs≤m(C)| · f(k) ·n3) running time, where k = max{n(O) | O ∈
obs≤m(C)}.

The same thing holds for the immersion case:

Theorem 3.2.2 (Grohe, Kawarabayashi, Marx, and Wollan, 2011 [179]).
There exist anO(f(k)·n3) algorithm deciding the p-Immersion-Contain-
ment problem.

Again, this algorithm was not meant to be used in real life applications,
as f is rather cumbersome, but it is of great significance from a theoretical
point of view.

For the purposes of this thesis we will only concider parameterized
graph problems:

Definition 3.2.6. A parameterized problem p-Π is a (parameterized)
Graph problem if in every instance (w, k) ∈ Σ∗ × N, w encodes a graph.
For simplicity we will denote the instances of such problems by (G, k) ∈
G × N, where G is the graph encoded by the word of the input.

Every so often we have to focus on problems defined on graphs that
have specific properties (planar graphs for instance). Therefore, we must
define the restriction of a problem to a ceratin graph class.

Definition 3.2.7. Let C ⊆ G be a class of graphs. The restriction of a
parameterized problem p-Π to C, is defined as

p-Π ⋒ C = {(G, k) ∈ G × N | (G, k) ∈ p-Π and G ∈ C}.

3.3 Kernelization
In this Section we will define the class FPT again, this time using kernels.
To give you an idea of what we are about to present, Kernelization is a type
of pre-processing in the input, after which we have a reduced “equivalent”
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instance, the kernel. This kernel, as the name suggests, is the hard part of
the input, i.e., the part that contains all the information needed to decide
if this instance is a Yes-instance or a No-instance. The fact that the size of
the kernel is reduced (usually it is bounded by a polynomial on the value
of the parameter) gives us the ability to solve the problem in FPT time.

Definition 3.3.1. Let p-Π be a parameterized problem over Σ and κ :

Σ∗ → N its parameterization. Let also g be a computable, increasing func-
tion. We say that Π admits a kernel of size g if there exists a computable
function (an algorithm if you prefer) K : Σ∗ → Σ∗, called kernelization
(algorithm) for p-Π, or, in short, a kernelization, that given w ∈ Σ∗ out-
puts, in time polynomial in |w|+ κ(w), a w′ ∈ Σ∗ such that

(a) w ∈ Π if and only if w′ ∈ Π , and

(b) max{|w′|, κ(w′)} ≤ g(κ(w)).

When g(k) = kO(1) or g(k) = O(k) then we say that p-Π admits a
polynomial or linear kernel respectively.

We often abuse the notation and call the output of a kernelization al-
gorithm, the “reduced” equivalent instance K(w), also a kernel.

The following Theorem shows that a decidable problem7 p-Π is FPT
if and only p-Π admits a kernelization.

Theorem 3.3.1 (Theorem 1.39 of [142]). For every parameterized prob-
lem p-Π, the following are equivalent:

1. p-Π ∈ FPT.

2. p-Π is decidable and admits a kernelization.
7Π is decidable if there exist a Turing machine that for every input w ∈ Σ∗ stops and

returns Yes if w ∈ Π and No if w /∈ Π
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Kernelization has evolved to a prominent area of parameterized com-
putation and initiated numerous techniques and methodologies, especially
for problems related to graphs [145, 147].

In Chapter 7 we will present a (meta-)theorem that proves the existence
of linear kernels for a large class of problems. In addition to being linear,
these kernels have the two properties defined in Definition 3.3.2 and 3.3.3.
These properties are important for our purposes as they make the computa-
tion of obstruction sets possible, for graph classes defined form problems
admitting such kernels. This is one of the extremely rare instances where
kernels yield obstruction sets (the only other examples are [169, 171]).

Definition 3.3.2. Let p-Π be a parameterized graph problem and ⪯ a
partial ordering relation on graphs. We say that a kernelization algorithm
for p-Π is ⪯-monotone if, given an instance (G, k) it outputs an instance
(G′, k′), where G′ ⪯ G.

When taking as ⪯ the minor relation (as we plan to do in Chapter 7),
we define minor-monotone kernelization algorithms.

Definition 3.3.3. Let p-Π be a parameterized problem. We say that a ker-
nelization algorithm for p-Π is parameter-invariant if, given an instance
(w, k) it outputs an instance (w′, k′), where k = k′.

Being consistent with the aforementioned abuse of notation, we call
the corresponding kernels ⪯-monotone and parameter-invariant respec-
tively.

3.4 Optimization Graph Problems and Their
Properties

The vast majority of problems we will consider in this thesis are Opti-
mization problems, where we want to minimize or maximize a quantity.
To formally define them we will need some definitions.
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Definition 3.4.1. An annotated graph is a pair (G,S)whereG is a graph
and S ⊆ V (G).

Definition 3.4.2. A vertex subset certifying function f (or certifying
function for short) is a computable function which takes as input an anno-
tated graph (G,S) and outputs true or false. We say that the function f is
CMSO-definable if there is a CMSO-formula on annotated graphs ϕ such
that f(G,S) = true if and only if (G,S) |= ϕ.

We can define in the same way edge subset certifying functions but
we will not. We will focus on vertex subset minimization or maximization
problems.

Definition 3.4.3. A (vertex subset) minimization/maximization problem
p-Π is a parameterized problem on graphs for which there exists a certi-
fying function f such that for every (G, k) ∈ G × N it holds that

(G, k) ∈ p-Π ⇐⇒ ∃S ⊆ V (G) : |S| ≶ k and f(G,S) = true

where ≶ is interpreted as≤ for minimization problems and as≥ for max-
imization problems. Such problems are also called optimization graph
problems (or just optimization problems, as we will only consider graph
problems).

When the certifying function f is CMSO-definable, we say that p-Π is
a min-CMSO problem or a max-CMSO problem, depending on whether
p-Π is a minimization or a maximization problem. For simplicity, we will
call such problems CMSO-definable optimization problems.

Example 3.4.1. The aforementioned – but not formally defined – param-
eterized version of k-Vertex Cover, where the parameter is k:
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p-Vertex Cover
Input: A graph G and a k ∈ N .
Parameter: k.
Question: Does G contain a vertex cover of size ≤ k?

is a min-CMSO problem
This holds because p-Vertex Cover is a minimization problem, and

the function f that, given an instance (G, k), certifies whether a set S ⊆
V (G) is a vertex cover of G of size at most k, can be defined in CMSO as
follows:

f(G,S) = [∀e∀u∀v(E(e) ∧ I(u, e) ∧ I(v, e)

→ S(u) ∨ S(v))]

∧ϕ≤k(S)

where

ϕ≤k(S) = card0,1(S) ∨ card0,2(S) ∨ · · · ∨ card0,k(S),

i.e., ϕ≤k(S) = true if and only if |S| ≤ k.

Example 3.4.2. An independent set of a graph G is a subset S ⊆ V (G)

where no two vertices u, v ∈ S are connected with an edge. Let us define
the following parameterized problem:

p-Independent Set
Input: A graph G and a k ∈ N .
Parameter: k.
Question: Does G contain an independent set of size ≥ k?

p-Independent Set is a max-CMSO problem, as in this problem we want
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to maximize the size of an independent set, and the function f which,
given an instance (G, k), certifies whether a set S ⊆ V (G) is an indepen-
dent set of G of size at least k, can be defined in CMSO as follows:

f(G,S)=[∀u∀v(V (u) ∧ V (v) ∧ S(u) ∧ S(v)

→ ¬∃e(E(e) ∧ I(u, e) ∧ I(v, e)))]

∧ϕ≥k(S)

where
ϕ≥k(S) = ¬ϕ≤k(S) ∨ card0,k(S),

i.e., ϕ≥k(S) = true if and only if |S| ≥ k.

We will discuss about optimization problems again in Section 7.4.1,
where we will define some of their properties.
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GRAPH PARAMETERS

All results presented in Chapters 5 to 9 are directly related to some graph
parameter and the classes containing the graphs where the value of this
parameter is bounded.

Definition 4.0.1. A graph parameter is a function p : G → N. The
dominion of p is the set of graphs where p is defined. We denote it by
dom(p). We say that p is computable if there exists an algorithm that
given a graph G, either outputs that G ̸∈ dom(p) or outputs the value of
p(G).

Definition 4.0.2. Given a graph parameter p and an integer k ∈ N
we define the graph class G[p, k] which contains all graphs G ∈ G that
p(G) ≤ k.

To keep the notation as simple as possible, instead of obs⪯(G[p, k]) we
will write obs⪯(p, k), where⪯ is a partial relation on graphs, p a parameter
and k ∈ N.

Example 4.0.1. Let ∆ : G → N be the function where ∆(G) = max
{degG(u) | u ∈ V (G)}. This parameter is equal to the maximum degree
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of the vertices of a graph. We can further define the graph class G[∆, k]
that contains all graphs with maximum degree at most k.

Definition 4.0.3. Given a graph parameter p and a quasi-ordering re-
lation ⪯ on graphs, we say that p is ⪯-closed if and only if G[p, k] is
⪯-closed for every k ∈ N. In other words, for two graphs H,G where
H ⪯ G, it holds that p(H) ≤ p(G).

Example 4.0.2. ∆ is ≤,≤in and ≤im closed but not ≤c and ≤m closed.

Some very well known – and extensively studied – graph parameters
are the minimum Vertex Cover, the maximum Independent Set, the Chro-
matic Number, the minimum Feedback Vertex Set etc.

The vast majority of graph parameters fall too two categories: Those
who can be defined using layouts and those that can be defined using mod-
ifications of the graph. In this thesis we will focus mainly on graph lay-
outs parameters, and a special case of graph modification parameters,
which has the potential to blend these two categories together (see Para-
graph 4.2.1).

4.1 Layout Parameters

In this Section we attempt to familiarize the reader with the most important
parameters of the first kind, i.e., those that can be defined using layouts
in graphs. A layout is an orderings of the vertices or the edges of the
graph. This type of parameters are also known as width parameters. As
the name suggests, they are used to measure the “width” of a graph. As
abstract graphs are combinatorial and not geometrical structures, the term
“width” is a little misleading. In Graph Theory the width of a graph usu-
ally indicates the degree this graph “resembles” a certain family of graphs,
trees or paths for instance.
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One very interesting fact is that these “width” parameters are related
to Graph Searching parameters, or Graph Search numbers. As a matter
of fact, using graph searching games we can give an alternative – game
theoretic – definition of these parameters. The main reason why there is
such a connection is that both, “width” parameters and search numbers,
are based on layouts.

Although our main focus is on layouts, for completion, we also give
the most commonly used definitions of these parameters. More often than
not, the mainstream definition is based on graph decompositions.

We start by making the term “layout” more precise.

Definition 4.1.1. A vertex (edge) layout of a graph G is a bijection σ :

V (G)→ [|V (G)|] (respectively σ : E(G)→ [|E(G)|]).

4.1.1 Treewidth

A central notion in modern Graph Theory is treewidth, a graph parame-
ter which measures in what extent a graph has the topological structure
of a tree ( [16, 18–21, 23]). The tree-structure is very useful to set-up dy-
namic programming [35], a.k.a., the “sledgehammer” of the algorithms
craft [185]. In many cases, we can use this tree-structure to design poly-
nomial algorithms for problems that are NP-complete in general graphs,
i.e., graphs with unbounded treewidth [19]. Therefore, small treewidth
may be a basic ingredient for many important algorithmic results in Graph
Theory.

There are several different definitions of this parameter, stemming
from a variety of graph-theoretical notions. For instance, in Theorem 1
of [20] we can see 7 equivalent ways to define treewidth. In this thesis we
will see two of the definition in [20], and an additionally definition through
vertex layouts, namely the Tree Vertex Separation number [18,105]. In or-
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der to define tree vertex separation number, we need to fix some notation.

We denote byLV(G) the set of all vertex layouts of a graphG. Given a
σ ∈ LV(G), σ(u) = i is the position of u ∈ V (G) in σ and σi = σ−1(i) =

u. For two vertices u, v ∈ V (G), we write u <σ v if σ(u) < σ(v). We
also define

σ<i = {u ∈ V (G) | σ(u) < i}

and, in a similar way, the sets σ≤i, σ>i and σ≥i.
For every i ∈ [|V (G)|] we define the tree-supporting set of position i

as follows:

Stσ(i) = {u ∈ V (G) | σ(u) < i and there exists a path with u, σi as
ends, whose internal vertices belong to σ>i}

Each layout σ is assigned with some cost. We define:

costt(G, σ) = max{|Stσ(i)| | i ∈ [|V (G)|]}

Definition 4.1.2 (Dendris, Kirousis, and Thilikos, 1997 [105]). The tree
vertex separation number of a graphG is tvs(G) = min{costt(G, σ) | σ ∈
LV(G)}.

The second definition of treewidth we will see is the “classic” defini-
tion, given by Robertson and Seymour [67].

Definition 4.1.3. A tree-decomposition of a graph G is a pair (T,B),
where T is a tree and B : V (T ) → 2V (G) is a function that maps every
vertex v ∈ V (T ) to a subset Bv of V (G) (we may refer to these sets as
bags and to the vertices of T as nodes) such that:

(i) for every edge e of G there exists a vertex t in T such that e ⊆ Bt,

(ii) for every v ∈ V (G), if r, s ∈ V (T ) and v ∈ Br∩Bs, then for every
vertex t on the unique path between r and s in T , v ∈ Bt and
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Figure 4.1: A tree-decomposition of a tree.

(iii) ∪v∈V (T )Bv = V (G).

The width of a tree-decomposition (T,B) is

width(T,B) = max{|Bv| − 1 | v ∈ V (T )}

and the treewidth of a graphG, denoted by tw(G), is the minimum width(T,
B), a tree-decomposition (T,B) of G can have.

Notice the−1 on the definition of width. As our intension for treewidth
is to measure the degree a graph resembles a tree, it makes sense for a tree
to have treewidth one. Given a tree T , see Figure 4.1 for instance, we
can define a tree-decompositions (T,B) of T (yes, we use T itself for the
decomposition) as shown in Figure 4.1. In order to satisfy property (i)
of the definition above, the edges of E(T ) must be contained in the sets
Bu, u ∈ V (T ), therefore some of them must have at least two elements.
Thus, we have to subtract one from the width of a decomposition in order
to achieve treewidth equal to one.

Example 4.1.1. An easy exercise is to prove that tw(⊞r) = r, for every
r ≥ 1.

Tree vertex separation number and treewidth measure the same thing,
as the following theorem suggests.
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Theorem 4.1.1 (Dendris, Kirousis, and Thilikos, 1997 [105]). Let G be
a graph. Then tvs(G) = tw(G).

The G[tw, k]-Membership problem is well known to be NP-complete
[30] but, if we parametrize it by k, as tw is closed under taking of minors,
the Graph Minors provide us with an FPT-algorithm. This algorithm has
running time O(f(k) · n3), for a computable function f , which can be
improved, using results of the Graph Minors, to O(f(k) · n2) [77]. The
problem is that, we know such an algorithm exists, as the obstruction set
for G[tw, k] is finite, but we do not know a way to compute this set.

Thankfully, we have a constructive, linear time FPT-algorithm [34,37]
for the parametrized problem of checking whether the treewidth of a graph
is at most the size of the parameter.

Theorem 4.1.2 (Bodlaender, 1996 [34]). Let G be a graph. There exist
an O(f(k) · n) algorithm for a computable function f , that decides if
tw(G) ≤ k and if so, outputs a tree-decomposition of width at most k.

Let us see how the minor-obstruction sets for treewidth look like, for
k ≤ 3. The first two are easy to see, the third is significantly more com-
plicated [124, 134].

Observation 4.1.1.

1. obs≤m(tw, 1) = {K3}

2. obs≤m(tw, 2) = {K4}

3. obs≤m(tw, 3) = {K5, K2,2,2,W8, K2 × C5} (see Figure 4.2)

We close this paragraph with a trivial observation, which we will use
later in this thesis.

Observation 4.1.2. IfG is a graph and S = {v ∈ V (G) | degG(v) = 0}
then tw(G) = tw(G \ S).
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K5 K2,2,2 W8 K2 × C5

Figure 4.2: The graphs of obs≤m(tw, 3).

4.1.2 Pathwidth

We can define pathwidth in a similar way as treewidth. We start with the
definition that uses layouts.

Given a vertex layout σ for a graphG, we define for each i ∈ [|V (G)|]
the path-supporting set Spσ(i) = NG(σ≥i), that is the set of vertices in σ<i
with neighbours in σ≥i 1, and

costp(G, σ) = max{|Stσ(i)| | i ∈ [|V (G)|]}.

Definition 4.1.4 (Lengauer, 1981 [114]). The (path) vertex separation
number of a graph G is pvs(G) = min{costp(G, σ) | σ ∈ LV(G)}.

As the name indicates pathwidth (which we later show that is equiv-
alent to the vertex separation number) measures the extend a graph re-
sembles a path. To make this more obvious, we need to give a second
definition of pathwidth: We will take Definition 4.1.3 and demand that T
is a path. In this way we can easily define path-decompositions and their
width.

Definition 4.1.5. The pathwidth of a graph G, pw(G), is the minimum
width(P,B), where (P,B) is a path-decomposition of G.

Theorem 4.1.3 ( [49, 112]). Let G be a graph. Then pvs(G) = pw(G).

1Notice that we count vertices.
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The definition of pathwidth was introduced in the Graph Minors se-
ries [65] and has several equivalent definitions (e.g., Theorem 2 of [20]).
In Chapter 8 we define a search game, namely node search, with search
number equivalent to pathwidth plus one.

The G[pw, k]-Membership problem is NP-complete [30, 48, 53, 56],
but when parametrized with k, it admits a linear FPT-algorithm [34, 37]
(basically it is the algorithm for treewidth).

We also must mention that pathwidth is a minor closed parameter. We
present the obstruction sets for obs≤m(pw, k), k ≤ 2, in Chapter 8 (see
Example 8.5.1, Theorem 8.5.4), using the node search number.

4.1.3 Cutwidth

Cutwidth, as treewidth and pathwidth, is a min-max parameter. It mea-
sures the minimum, over all vertex layouts, of the maximum number of
edges between any prefix of a layout and its complement suffix. It is also
closely related to the vertex separation number. Let us see why:

Definition 4.1.6. Given a vertex layout σ of a graph G, the cut at posi-
tion i, denoted by ∂G(σ, i), is the set of crossover edges of G having one
endpoint in σ≤i and one in σ>i2. The width of σ is equal to

costc(G, σ) = max{|∂G(σ, i)| | i ∈ [|V (G)|]}

and the cutwidth of G is cw(G) = min{costc(G, σ) | σ ∈ LV(G)}.

Example 4.1.2. See Figure 5.1. The vertex layout σ : {a, b, c, d} → [4]

with σ(a) = 1, σ(b) = 2, σ(c) = 3, and σ(d) = 4 of the graph G depicted
here has costc(G, σ) = 3.

The next observation follows immediately from the definitions.
2Now, we count edges.
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Observation 4.1.3. If G is a graph then cw(G) ≥ pw(G).

The G[cw, k]-Membership is an NP-complete problem known in liter-
ature as the Minimum Cut Linear Arrangement problem [187]. From
the parameterized complexity point of view, the same problem is fixed
parameter tractable, as an algorithm that checks whether cw(G) ≤ k in
f(k) · n steps was given in [59]. Cutwidth has been extensively studied
both from its combinatorial (see [39, 50, 126]) as well as its algorithmic
point of view [40, 55, 58, 62].

Notice that a vertex layout is – in essence – a mono-dimensional linear
arrangement of the vertices of a graph G. In Chapter 5 we will see how
we can arrange the vertices of G in Euclidean spaces of any dimension,
and the way to define the “cut” in these spaces. This will lead to a natural
definition of a multi-dimensional geometric extension of cutwidth, the d-
cutwidth. In Theorem 5.2.3 we will prove that this extension, and, as a
consequence, cutwidth as well, is an immersion-closed parameter.

4.1.4 Linearwidth

The last layout parameter we define in this Chapter is linearwidth. We
define some more in Chapter 8, namely the search numbers of search
games and, then, one more in Chapter 9, which measures the minimum
cost of an expansion (see Definitions 9.1.8 and 9.1.11).

Linearwidth uses edge layouts, therefore, before we give the defini-
tion, we need to review our notation and rewrite it using edges instead of
vertices.

We denote by LE(G) the set of all edge layouts of a graph G. Given a
σ ∈ LE(G), σ(e) = i is the position of e ∈ E(G) in σ and σi = σ−1(i) =

e. For e1, e2 ∈ E(G) we will write e1 <σ e2 if σ(e1) < σ(e2). Finally,
we define

σ<i = ∪{e∈E(G)|σ(e)<i}e
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and accordingly the sets σ≤i, σ>i, σ≥i. Notice that these are vertex sets.

Definition 4.1.7. LetG be a graph and σ an edge layout of it. We define
for every i ∈ [|E(G)|] the line-supporting set Slσ(i) = σ≤i ∩ σ i, and

costl(G, σ) = max{|Slσ(i)| | i ∈ [|E(G)|]}.

The linearwidth of a graph G is lw(G) = min{costp(G, σ) | σ ∈ LE(G)}
(if |E(G)| = 1, then lw(G) = 0).

Linearwidth was introduced by Thomas in 1996 [61] and is closely re-
lated to the notion of crusades, a way to describe mixed search, introduced
by Bienstock and Seymour in [102,120]. The G[lw, k]-Membership prob-
lem was proven to be NP-complete [120] and, in the Parameterized Com-
plexity point of view, when parametrized by k, this problem admits a lin-
ear time FPTalgorithm. This algorithm appeared in [103] and is construc-
tive: For any k it can construct an optimal edge arrangement with cost at
most k, if one exists.

Linearwidth is also a minor closed parameter [120]. The only obstruc-
tion sets known for the graph class G[lw, k] are for k = 1, 2. For k = 1 it
consists of K3 and the tree of Figure 8.1. For k = 2, its size is 52 and is
given in the following theorem.

Theorem 4.1.4 (Thilikos, 2000 [120]). The obstruction set obs≤m (lw, 2)
consists of the 52 graphs shown in Figure A.1 (i.e., the first figure of the
appendix).

4.2 Graph Modification Parameters

We start with two definitions.

Definition 4.2.1. A graph property P is a subset P of G.
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Definition 4.2.2. A graph modification operation is any operation that
modifies a graph G to a graph G′.

These definitions are as general as a definition may possible be. Def-
inition 4.2.2 for instance, includes not only the local transformations we
saw in Section 2.3, but also includes the operations of adding edges or
vertices to a graph: The subdivision of a graph G, where we exchange
some edges of G with paths, is a graph modification operation.

Definition 4.2.3. A parameter p is a graph modification parameter (or
simply a modification parameter) if there exists a property P ⊆ G and a
set of modification operations M , such that, for every graph G, p(G) is
equal to the minimum number of times we have to apply an operation of
M to G, in order to obtain a graph in P .

Example 4.2.1. Let P be the property of “not having any edge”, i.e.,
P = {G = (V,E) | E = ∅}, and let M contain only the vertex deletion.
Then, we can define the parameter vc which is equal to the minimum size
a vertex cover of a graph may have.

Example 4.2.2. Let P be the property of “not having any cycles”, i.e.,
P = {G | G is a forest}, and let M contain only the vertex deletion.
Then, we can define the parameter fv which is equal to the minimum size
a feedback vertex set3 of a graph may have.

Example 4.2.3. Let P be the property of “being planar”, i.e., P = {G |
G is planar}, and let M contain only the edge deletion. Then, we can de-
fine the “planarity” parameter pl which is equal to the minimum number
of edges we have to delete from a graph in order to make it planar.

The first two parameters we saw in these examples, belong to a subcat-
egory of modification parameters, the vertex-deletion parameters. More
examples of this category are presented in the following Section.

3A feedback vertex set of a graph is a set of vertices whose removal leaves a graph
without cycles.
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The modification parameters lead naturally to minimazation problems,
known in literature as Graph Modification problems (see [144, 146, 148]
for some surveys). Let p be a modification parameter we can define the
following problem:

k-p-Modification
Input: A graph G .
Question: Is p(G) ≤ k ?

and its parameterized version:

p-p-Modification
Input: A graph G and a k ∈ N .
Parameter: k.
Question: Is p(G) ≤ k ?

An example is the p-Vertex Cover:

p-Vertex Cover
Input: A graph G and a k ∈ N .
Parameter: k.
Question: Is vc(G) ≤ k?

4.2.1 Parameters defined from parameters

We will now define graph modification parameters – vertex deletion pa-
rameters to be precise – that are defined using a “host” parameter. This
host parameter may well be a layout parameter (as in the case of Chap-
ter 8).

Definition 4.2.4. Let p be a graph parameter and r ∈ N. We define the
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function (p, r)-dist : G → N, such that

(p, r)-dist(G) = min{k | ∃S ⊆ V (G) such that |S| ≤ k and p(G\S) ≤ r}.

Notice that this function is also a graph parameter. It measures the
number of vertices we have to delete from a graph in order for the value
of p to drop down to r or less. Therefore, if we consider the property
Pr = {G | p(G) ≤ r}, we can see that (p, r)-dist is a modification
parameter. Later in this thesis we will refer to these parameters as distance
to p parameters.

Example 4.2.4. Every cycle C has (tw, 1)-dist(C) = 1.

Definition 4.2.5. Given a graph parameter p and two integers r, k ∈ N.
We define the graph class G[(p, r)-dist, k] that contains all graphs G ∈ G
for which there exists a set S ⊆ V (G) of at most k vertices, such that
p(G \ S) ≤ r.

We also define the following parameterized problem:

(p, r)-Distance
Input: A graph G and a k ∈ N .
Parameter: k.
Question: Is (p, r)-dist(G) ≤ k?

The following is an immediate consequence of the definitions.

Observation 4.2.1. Let p be a minor closed parameter. Then for every
r ∈ N, (p, r)-dist is also a minor closed parameter.

According to this observation we can include the (p, r)-Distance prob-
lem in the following more general category of problems:
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F-Covering 4

Input: A graph G and a k ∈ N .
Parameter: k.
Question: Does there exist S ⊆ V (G) such that |S| ≤ k and G \S

contains no graph from F as a minor?

where F is a finite set of graphs.

Notice first that, given a minor closed parameter p and a positive inte-
ger r, the set obs≤m(p, r) is finite (this of course, is due to Theorem 2.6.1).
Take asF in theF-Covering problem the set obs≤m(p, r) and observe that
the (p, r)-Distance problem is, in this case, equivalent to the obs≤m(p, r)-
Covering problem. Therefore the following holds.

Observation 4.2.2. If p is minor closed parameter, then for every r ∈ N
the (p, r)-Distance problem is the obs≤m(p, r)-Covering problem.

Definition 4.2.6. Let p be a parameter. We say that p is big in grids if
p(⊞r)→∞, when r →∞.

Lemma 4.2.1. Let p be a minor closed parameter that is big in grids. Then
for every r ∈ N, obs≤m(p, r) contains a planar graph.

Proof. Notice that, as p is big in grids, there exists a c ∈ N such that
p(⊞c) > r. Thus, there exist an obstruction O ∈ obs≤m(p, r) such that
O ≤m ⊞c, and, consequently, O is planar.

Definition 4.2.7. For a finite set of graphs F , we denote by GF ,k the
class of graphs containing all graphs G for which there exists a subset
S ⊆ V (G), of size at most k, such that G \ S contains no graph from F
as a minor.

The following proposition bounds the size of the graphs in the obstruc-
tion set for GF ,k.

4These problems are also known as F-Deletion.
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Proposition 4.2.1 (Theorem 3 in [171, 172]). Let k ∈ N. For every
finite set F ⊆ G, such that F contains at least one planar graph, every
graph in obs≤m(GF ,k) has size polynomial in k.

Using Proposition 4.2.1 we can bound the size of the graphs in obs≤m

((p, r)-dist, k).

Theorem 4.2.1. Let r, k ∈ N and let p be a minor closed parameter
that is big in grids. Then every graph in obs≤m((p, r)-dist, k) has size
polynomial in k.

Proof. We will prove that for every r ∈ N, obs≤m(p, r) satisfies the prop-
erties of Proposition 4.2.1. As p is minor closed, from Theorem 2.6.1, we
know that obs≤m(p, r) is finite. From Lemma 4.2.1 it holds that obs≤m(p, r)
contains a planar graph. From Proposition 4.2.1, taking F = obs≤m(p, r),
we conclude that every graph in obs≤m(GF ,k) has polynomial size in k.
The claim holds as obs≤m(GF ,k) = obs≤m((p, r)-dist, k).

Observation 4.2.3. Notice that Theorem 4.2.1 would also be true if, in-
stead of asking that p is big in grids, we demand that for every r ∈ N,
obs≤m(p, r) contains at least one planar graph.

Proposition 4.2.2. Letp be a computable parameter as in Theorem 4.2.1.
If additionally this polynomial bound on the size of the graphs in obs≤m

((p, r)-dist, k), for some k ∈ N, is known, then obs≤m((p, r)-dist, k) can
be computed.

Indeed, let g be that polynomial. We can check for every graph G
of size at most g(k) whether (p, r)-dist(G) > k (notice that since p is
computable, (p, r)-dist is also computable) and whether for every proper
minor G′ of G, (p, r)-dist(G′) ≤ k. In this way we can compute obs≤m

((p, r)-dist, k).
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CHAPTER 5

D-DIMENSIONAL CUTWIDTH

Let us reconsider the definition of cutwidth and give a rough picture of
what we are going to see in this Chapter. We can imagine that vertex
layouts are “embeddings” of a graph in a straight line, in the following
way: We assign to each vertex a unique point and each edge is given a line
segment with ends the points assign to its endpoints (these line segments
may contain more points assigned to vertices than their two ends)1. If we
“cut” this line in some point not assigned to vertices, for instance point 1
in Figure 5.1, and count the line segments assigned to edges that contain
this point, we can simulate the cut at a position of Definition 4.1.6. To
make this clear, let us look closer at Figure 5.1. The embedding depicted
corresponds to the vertex layout σ : {a, b, c, d} → [4] with σ(a) = 1,
σ(b) = 2, σ(c) = 3, and σ(d) = 4 and the “cut” at the point 1 of the line
corresponds to the cut at position 2.

This observation give us the motivation to consider embeddings in
spaces of higher dimensions, generalizing in this way the notion of cutwidth.

1We will postpone the details for a while, because we need to set the framework first.
However, we feel that it will be helpful for the reader to follow this train of thought.
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−1 0 1, 5 3

a b c d

a

b

c

d

1

Figure 5.1: A graph and its “embedding” in a straight line (for display
purposes we replace the line segments of edges with arcs).

In this Chapter we will introduce a multi-dimensional geometric ex-
tension of cutwidth, namely the d-dimensional cutwidth (or, simply, d-
cutwidth) that – roughly – instead of mono-dimensional linear arrange-
ments of a graph G, considers embeddings of G in the d-dimensional Eu-
clidean space Rd. We will define the d-cutwidth of such an embedding
to be the maximum number of edges that can be intersected by a hyper-
plane of Rd. Then, the d-cutwidth of G, denoted by cwd(G), will be the
minimum d-cutwidth over all such embeddings.

5.1 Graph Embeddings

We start with some definitions. To keep it short, we assume that the reader
is familiar with the basic notions of Real Analysis and Analytic Geometry.

Definition 5.1.1. Every (d− 1)-dimensional subspace Π of a d-dimen-
sional space X is a hyperplane of X .

Here, we are interested in hyperplanes of Rd (subspaces isomorphic to
Rd−1). Let Π be a hyperplane in Rd, then there are a0, a1, . . . , ad ∈ R such
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CHAPTER 5. D-DIMENSIONAL CUTWIDTH

that Π = {(x1, . . . , xd) ∈ Rd | a1x1 + · · · + adxd + a0 = 0}. We denote
by H(d) the set of all hyperplanes of Rd.

Definition 5.1.2. A hypersphere, S(c, r), with center c and radius r in
Rd is the set {(x1, . . . , xd) ∈ Rd |

∑d
i=1(xi − ci)2 = r2}.

We denote by S(d) the set of all hyperspheres of Rd.

Definition 5.1.3. A continuous function C : [0, 1] → Rd is a curve of
Rd with ends C(0) and C(1). The other points of C constitute its interior.

Definition 5.1.4. LetG = (V,E) be a graph. An embedding ofG in the
euclidean space Rd, denoted by Ed(G), is a tuple (f, C), where f : V → Rd

is an injection, mapping the vertices of G to Rd and C = {Ce | e ∈ E} is
a set of curves of Rd with the following properties:

1. for every e = {u, v} ∈ E, the ends of Ce are f(u) and f(v)

2. for all x ∈ (0, 1) and for all v ∈ V it holds that Ce(x) ̸= f(v).

For simplicity, we may sometimes refer to the elements of f(V ) and
C as the vertices and edges of Ed(G) respectively.

Definition 5.1.5. LetG be a graph. An embedding Ed(G) = (f, C), ofG
in Rd, is an essential-embedding if for every positive integer i ≤ d and for
every subset S of V with |S| ≥ i, the dimension of the subspace defined
by {f(u) | u ∈ S} is i− 1.

We denote by Ed(G) the set of all essential-embeddings of G in Rd.

For instance, an embedding of a path in R2 where all vertices lay on
the same line is not an essential embedding. In an essential embedding
of a path, every three vertices must not belong to the same line. We have
to get to all this fuss about essential embeddings, because when we cut
non-essential embeddings with hyperplanes we may miss some edges: If
we embed the whole path in a line then every hyperplane will cross at
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most one edge. This happens as, according to Definition 5.1.6, we are
not allowed to cut the embedding with hyperplanes that intersect vertices.
Therefore, we have to exclude non-essential embeddings from the defini-
tion of d-cutwidth.

Definition 5.1.6. Let Ed(G) be an essential-embedding of G in Rd. If Π
is a hyperplane of Rd (resp. Σ is a hypersphere of Rd) that does not intersect
any f(v), v ∈ V , we denote by ∂G(Ed(G),Π) (resp. ∂G(Ed(G),Σ)) the
set of curves of Ed(G) that are intersected by Π (resp. Σ).

Now we are ready to define our parameter.

Definition 5.1.1. Let G = (V,E) be a graph and k, d be positive inte-
gers, where d ≥ 2. Then, we define the d-dimensional cutwidth of G, or
simply d-cutwidth, to be

cwd(G) = min
Ed(G)∈Ed(G)

max{|∂G(Ed(G),Π)| | Π ∈ H(d)}

We say that an embedding Ed(G) ∈ Ed(G) realizes d-cutwidth of G if
for every hyperplane Π of Rd, |∂G(Ed(G),Π)| ≤ cwd(G) and the equation
holds for at least one hyperplane. Observe that any hyperplane Π of Rd

that meets a curve Ce ∈ C once (if it meets a curve more than once it is
easy to see that this particular embedding does not realize the d-cutwidth
of G), also meets the unique straight line segment of Rd with parametric
equation σe(t) = t · Ce(0) + (1 − t) · Ce(1), t ∈ R, i.e., the straight line
segment of Rd that is defined by the “images” of the endpoints of edge e.
Therefore, without loss of generality, we can consider only straight-line
embeddings (see Figure 5.2).

Definition 5.1.7. Let G = (V,E) be a graph. An embedding Ed(G) =
(f, C), of G in Rd, is a straight-line embedding if C = {σe | e ∈ E},
where σe(t) = t · Ce(0) + (1− t) · Ce(1), t ∈ R for every Ce ∈ C.
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a

b

c d

R2

Figure 5.2: A graph with 2-cutwidth 3.

Notice that every straight line embeding Ed(G) = (f, C) is fully de-
fined by the function f , i.e., the points assigned to the vertices, therefore,
for simplicity, from now on we will omit C.

As we described in the beginning of this Chapter, we will use the no-
tation of Definition 5.1.1 and give an equivalent definition of cutwidth.

Definition 5.1.8. Let G = (V,E) be a graph. An embedding of G in
R, denoted E1(G), is a tuple (f, I), where f : V → R is an injection,
mapping the vertices ofG to R and I = {(f(u), f(v)) ⊂ R | {u, v} ∈ E}
is a set of open intervals of R. Given an embedding E1(G) = (f, I), we
denote by ∂G(E1(G), x) the set of intervals of I in which x belongs.

Definition 5.1.2. Let G = (V,E) be a graph and k a positive integer.
We define the 1-cutwidth of G to be

cw1(G) = min
E1(G)

max{|∂G(E1(G), x)| | x ∈ R}.

It is straightforward to see that the above definition of cutwidth is
equivalent to the definition given in Chapter 4.

Theorem 5.1.1. For every graph G, cw1(G) = cw(G).
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Observe that, in the case of cw1, hyperplanes degenerate to subspaces
of R of dimension 1 – that is points of course – and our demand of essential
embeddings is expressed by our demand of injective functions. Therefore,
d-cutwidth is the intuitive generalization of the notion of cutwidth in any
dimension d ≥ 2.

In the rest of this Chapter we will present some properties of d-cutwidth
and discuss some algorithmic remarks.

5.2 Properties of d-cutwidth

First we have to give the following definition, as it will be used in some
of the proofs of this Section.

Definition 5.2.1. Given a point x = (x1, . . . , xd) in Rd and a hyperplane
Π = {(x1, . . . , xd) ∈ Rd | a1x1 + · · · + adxd + a0 = 0}, the vertical
projection of x on Π is the point y = {y1, . . . , yd} ∈ Rd where

yi = xi − ai
a1x1 + · · ·+ adxd + a0

a12 + · · ·+ ad2
, i ∈ {1, . . . , d}.

The first two properties we will prove, show us that for every d ∈ N,
d-cutwidth is a non-trivial graph parameter.

Proposition 5.2.1. For every graph G and every d ≥ 1,

cwd(G) ≤ cwd+1(G).

Proof. Let G = (V,E) be a graph, and let Ed+1(G) = f be an embedding
of G in Rd+1 that realizes cwd+1(G). Let Π0 be a hyperplane of Rd+1

such that, for every e ∈ E, Π0 is not vertical to σe. We vertically project
Ed+1(G) on Π0, which gives us an embedding Ed(G) of G in Rd, as the
restriction of f in Rd satisfies the conditions of a graph embedding.

78



CHAPTER 5. D-DIMENSIONAL CUTWIDTH

Assume that there exists a hyperplane Π in Rd that intersects Ed(G)
more than cwd+1(G) times. Then we can construct a new hyperplane Π′

in Rd+1 that intersects Ed+1(G) more than cwd+1(G) times. This hyper-
plane Π′ is the hyperplane vertical to Π that passes through Π. But this
fact leads to a contradiction, since any hyperplane in Rd+1 can intersect
Ed+1(G) at most cwd+1(G) times. Hence, our assumption that Π′ exists
is false, i.e., every hyperplane in Rd intersects Ed(G) at most cwd+1(G)

times. Therefore, cwd(G) ≤ cwd+1(G).

Proposition 5.2.2. For every d ≥ 1, cwd(Pd) = d, where by Pn we
denote the path of length n.

Proof. Let Ed(Pd) be an essential straight line-embedding of Pd = (V,E)

in Rd, where V = {v1, . . . , vd+1} and E = {{vi, vi+1} | i ∈ {1, . . . , d −
1}}. Consider the midpoints mi of σ{i,i+1}, for every i ∈ {1, . . . , d− 1}.
These d points of Rd define a hyperplane of Rd that intersects all edges of
Ed(Pd). Thus cwd(Pd) ≥ d and as |E(Pd)| = d we derive that cwd(Pd) =

d.

Let us now compare d-cutwidth with cutwidth and see some inequal-
ities that hold for them.

Theorem 5.2.1. For every graph G and every d ≥ 2 we have:

cwd(G) ≤ d · cw(G).

Proof. Consider the d-dimensional curve C with parametric equation

C(t) := (t, t2, t3, . . . , td), t ∈ R.

Consider an ordering of the nodes of G that realizes the cutwidth of G.
Embed a node vi of G to the point pi = C(ti), for an appropriate value
ti. By “appropriate” we mean that, if a node vi is after a node vj in
the cutwidth ordering, then the parametric value ti corresponding to vi
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is strictly greater than the parameter value tj corresponding to node vj .
Now embed an edge eij = (vi, vj) of G by connecting the points pi and
pj on C with the minimum length arc of C connecting these points.

Consider a generic hyperplane Π with equation a1x1 + a2x2 + . . . +

adxd + a0 = 0, where, for all i, ai ∈ R. Π can cut C at at most d points.
To see that, we need to solve the system of equations:

a1x1 + a2x2 + . . .+ adxd + a0 = 0,

xi = ti, i = 1, . . . , d

for t.
This gives the polynomial equation q(t) := a0 + a1t + a2t

2 + . . . +

adt
d = 0, in t of maximum degree d. Since q(t) = 0 has at most d

real roots, we deduce that Π intersects C at at most d points. At each
point of intersection at most cw(G) edges of the embedding of G pass
through that point. Hence, Π intersects at most d · cw(G) edges of G, i.e.,
cwd(G) ≤ d cw(G).

Notice that, from Proposition 5.2.2 it holds that for every d ≥ 1,
cwd(Pd) = d, thus cwd(Pd) = d·cw1(Pd).  This proves that the inequality
of Theorem 5.2.1 can be tight.

Corollary 5.2.1. ForG = Pd the inequality of Theorem 5.2.1 becomes
an equation.

We will now define a variant of d-cutwidth, which, instead of hyper-
planes, implement hyperspheres to create the “cuts”.

Definition 5.2.1. Let G = (V,E) be a graph and k, d be positive inte-
gers, where d ≥ 2. Then we define the spherical d-dimensional cutwidth
of G, or simply spherical d-cutwidth, to be

scwd(G) = min
Ed(G)∈Ed(G)

max{|∂G(Ed(G),Σ)| | Σ ∈ S(d)}
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Let see the connection between these two parameters.

Proposition 5.2.3. For every graph G and any d ≥ 2 we have:

cwd(G) ≤ scwd(G) ≤ (d+ 1) cw(G).

Proof. The left-most inequality is obvious. For every embedding Ed(G)
of G in Rd, the number of intersections of Ed(G) with a generalized hy-
persphere (of an appropriate center and radius) in Rd is greater or equal
to the number of intersections of Ed(G) with a hyperplane in Rd. Hence,
cwd(G) ≤ scwd(G).

Now consider the curve C(t) = (t, t2, . . . , td), with t ∈ Rd, and con-
sider the ordering of the nodes of G that realizes cw(G). We embed the
i-th node vi of G, in this ordering, to the point pi = C(i). We embed an
edge eij = (vi, vj) of G by connecting the points pi and pj on C with the
minimum length arc of C connecting these points.
We claim that this curve has at most d+1 intersections with a generalized
hypersphere S in Rd. If S is actually a plane then we can simply apply the
argumentation presented in the proof of Theorem 5.2.1. Suppose now that
S is a true hypersphere, and let

∑d
i=1(xi − ai)2 + a0 = 0 be the equation

of S, where, for all i, ai ∈ R. Consider the following system of equations:

d∑
i=1

(xi − ai)2 + a0 = 0,

xi = ti, i = 1, . . . , d.

The intersections of S with the aforementioned embedding of G in C is
bounded by the number of real solutions of the system above, for which t
is positive. Solving this system for t we get a polynomial equation for t,
namely:

d∑
i=1

(ti − ai)2 + a0 = 0.
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Expanding the above equation we get:

d∑
i=1

a2i − 2
d∑
i=1

ait
i +

d∑
i=1

a2i + a0 = 0,

which can be rewritten as:

d∑
i=1

t2i − 2

⌊ d
2
⌋∑

i=1

a2it
2i − 2

⌈ d
2
⌉∑

i=1

a2i−1t
2i−1 +

d∑
i=1

a2i + a0 = 0.

It is fairly easy to verify that the above equation can actually be rewritten
as:

d∑
i=⌊ d

2
⌋+1

t2i +
d∑
i=1

(
1 + (−1)i

2
− 2ai

)
ti +

d∑
i=1

a2i + a0 = 0.

By Descartes’ rule of signs, the number of positive real roots of this poly-
nomial is bounded above by the number of sign variations in the sequence
of its (non-zero) coefficients. Taking a close look at this polynomial, we
observe that its first d−⌊d

2
⌋ non-zero coefficients are equal to 1, which im-

plies that the number of sign variations in the sequence of its coefficients
is fully determined by the last d + 2 coefficients. A sequence of d + 2

real numbers can have at most d+ 1 sign variations, hence the number of
positive real roots of this polynomial is at most d+ 1.

To finalize the proof, since any hypersphere in Rd intersects with C
at most d + 1 times, we conclude that the maximum number of intersec-
tions of the embedding of G in C is at most (d + 1) cw(G). Therefore,
scwd(G) ≤ (d+ 1) cw(G).

Proposition 5.2.4. For every graph G and every d ≥ 1 we have:

cwd+1(G) ≤ scwd(G).
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Proof. Consider a graph G and an embedding Ed(G) in Rd for which
scwd(G) is attained. Let us identify Rd with the hyperplane xd+1 = 0

in Rd+1 and consider the unit hypersphere Sd in Rd+1 centered at the ori-
gin. Let Σ : Rd → Sd be the stereographic projection from Rd to the
unit hypersphere Sd in Rd+1, and define Ed+1(G) to be the image of Ed(G)
through the stereographic projection Σ, i.e., Ed+1(G) = Σ(Ed(G)).

Assume that there exists a hyperplane Π in Rd+1 that cuts Ed+1(G)

more than scwd(G) times. Let S be the intersection of Π with Sd and
let S ′ be the inverse image of S with respect to the stereographic pro-
jection, i.e., S ′ = Σ−1(S). Since S is a hypersphere laying on Sd, S ′ is
either a hyperplane or hypersphere in Rd. Since the stereographic projec-
tion preserves intersections, we deduce that S ′ intersects Ed(G) more than
scwd(G) times. But this contradicts the definition of Ed(G), which implies
that our assumption that Π cuts Ed+1(G) more than scwd(G) times is false.
Hence, we found an embedding of G in Rd+1, for which the maximum
number of intersections with any hyperplane in Rd+1 is at most scwd(G).
Therefore, cwd+1(G) ≤ scwd(G).

Let us now push the inequality of Theorem 5.2.1 a little further.

Theorem 5.2.2. For any graph G,

cw3(G) ≤ 2 cw2(G).

Proof. Let G be a graph and consider an ordering of the nodes of G that
realizes cw(G).

Consider an axis-aligned ellipse E centered at the origin with its x-
axis being greater than its y-axis (e.g., the ellipse 4x2 + y2 − 4 = 0).
Embed the nodes of G on the positive half of E, denoted as E1/2, that is
on the half-ellipse that lies on the positive halfplane with respect to the
x-axis, in such a way so that their x-coordinates preserve the ordering. In
other words, given two nodes vi and vj of G, such that vi precedes vj in
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the node ordering, then xi < xj . Let us call E2(G) the above-mentioned
embedding.

Given a generalized circle C on the plane, C can cut the half-ellipse
E1/2 at most two times. Hence we found an embedding of G in R2 such
that any generalized circle C in R2 intersects this embedding at most 2 ·
cw(G) times. In other words, scw2(G) ≤ 2 cw(G). Using the results
from Propositions 5.2.1 and 5.2.4 we conclude that:

cw3(G) ≤ scw2(G) ≤ 2 cw(G) ≤ 2 cw2(G),

which is what we wanted to prove.

Cutwidth is not a minor closed parameter but it is immersion closed [22].
We will prove that the same holds for d-cutwidth.

Theorem 5.2.3. Let G = (V,E) be a graph and H be an immersion
(strong immersion) of G. For every d ≥ 1, cwd(H) ≤ cwd(G).

Proof. Let Ed(G) be an an embedding of G in Rd that realizes cwd(G).
Let H ′ be a subgraph of G. Then, given Ed(G) = (f, C), we define an
embedding Ed(H ′) = (fH′ , CH′) of H ′ in Rd, where fH′ is the restriction
of f to V (H ′) and CH′ = {ce ∈ C | e ∈ E(H ′)}. Observe that every
hyperplane of Rd that intersected l ≤ cwd(G) edges of Ed(G) intersects at
most l edges of Ed(H ′), therefore cwd(H) ≤ cwd(G).

We will next prove that ifH is the result of one lift of edges e1 = {u, v}
and e2 = {v, w} of E, then cwd(H) ≤ cwd(G). Clearly, for any hyper-
plane R of Rd its corresponding numbers |∂H(Ed(H), R)| and |∂G(Ed(G),
R)| can differentiate only due to the intersections of R with edges e, e1
and e2. Let E(H) ∋ e = {u,w} be the resulting edge of the lift. Let
Π ∈ H(d) be a hyperplane that does not intersect f(v), ∀v ∈ V . If Π
intersects e (more accurately, the straight line segment that represents e
in the embedding in Ed(G)), then Π separates Rd into two halfspaces (i.e.,
subspaces of dimension d), namely A and B. Assume, without loss of
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generality, that u ∈ A and w ∈ B. Then, as Π does not intersect f(v),
either v ∈ A or v ∈ B, which means that either Π intersects e1 or Π in-
tersects e2 in Ed(G). Therefore, |∂H(Ed(H),Π)| ≤ |∂G(Ed(G),Π)|. The
same holds trivially for the case that Π does not intersect e. Therefore,
cwd(H) ≤ cwd(G). Summing up the above we get that, for every graph
H that is the result of some (or maybe none) vertex deletions, edge dele-
tions and edge lifts of G, cwd(H) ≤ cwd(G), which is what we stated.
Notice that the above proof implies the same relation between a graph G
and a strong immersion H of G.

5.3 Algorithmic Remarks About d-cutwidth
As a consequence of the Nash-Williams Conjecture’s proof in [87], for ev-
ery positive integer k, the class of weak immersion minimal graphs with
d-cutwidth bigger than k contains a finite set of graphs. Notice that this
class is exactly obs≤im(cwd, k), i.e., the immersion obstruction set for d-
cutwidth at most k. This fact, combined with Theorem 5.2.3, implies that
cwd(G) ≤ k if and only if none of the graphs in obs≤im(cwd, k) is con-
tained in G as an immersion, thus, the graphs of obs≤im(cwd, k) character-
ize graphs with d-cutwidth at most k.

Moreover, according to Theorem 3.2.2, checking whether an n-vertex
graph contains as an immersion some k-vertex graph H , can be done in
f(k)·n3 steps, for some computable function f . As a consequence, check-
ing whether cwd(G) ≤ k can be done in |obs≤im(cwd, k)| ·f(k) ·n3 steps2.
This running time can become linear (on n) using the inequality of Theo-
rem 5.2.1.

Proposition 5.3.1. For every k and d, there exists a linear (on n) time
algorithm that, given a graph G, decides whether cwd(G) ≤ k or not.

2To be precise, the f(k) factor in the running time of this algorithm is in fact f(n(O))
where O is the graph in obs≤im(cwd, k) having the most vertices.
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Indeed, the algorithm first checks whether cw(G) ≤ k, using the linear
time algorithm in [59]. If the answer is negative, then from Lemma 5.2.1
we can safely report that cwd(G) > k. If not, then, as it holds that
pw(G) ≤ cw(G) (see e.g. [59]), G has a path decomposition with width
at most k and , according to [37] such a decomposition can be found in
linear time. Therefore, we can then check whether some of the graphs in
obs≤im(cwd, k) is contained in G as an immersion in f(k) · n steps, using
dynamic programming for instance.

Unfortunately, the algorithm above is non-constructive as we have no
other knowledge about the set obs≤im(cwd, k), except from the fact that it
is finite. Whether we can obtain a constructive f(k) · n steps algorithm
for d-cutwidth remains an open problem.

Another way to prove Proposition 5.3.1 is to express d-cutwidth in
MSO, observe that for every graph G it holds that

tw(G) ≤ pw(G) ≤ cw(G) ≤ cwd(G)

(this follows from the definition of treewidth and pathwidth, Observa-
tion 4.1.3, and Proposition 5.2.1), and use Courcelle’s Theorem:

Theorem 5.3.1 (Courcelle, 1990 [189]). Every graph property definable
in MSO of graphs can be decided in linear time on graphs of bounded
treewidth.

This algorithm goes as follows:

Step 1: Use the algorithm of Theorem 4.1.2 and check whether the input
graph G has tw(G) > k. If so, return No and stop.

Step 2: (As tw(G) ≤ k we can implement Theorem 5.3.1.) Run the
algorithm of Theorem 5.3.1 and check if cwd(G) ≤ k.

The problem with this approach is that in order to express d-cutwidth
in MSO we have to define embeddings in MSO, which in term involves
discretizing Rd.
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5.4 Conclusion
What we did in this Chapter was to define d-cutwidth, a multi-dimensional
geometric extension of cutwidth and then proved some of its properties.
Theorem 5.4.1 states the most important of them.

Theorem 5.4.1. The following hold:
i. d-cutwidth is immersion closed.
ii. For every graph G and every d ≥ 1, cwd(G) ≤ cwd+1(G).

iii. For every graph G and every d ≥ 1, cwd(G) ≤ d · cw(G).
iv. For every graph G, cw3(G) ≤ 2 · cw2(G).
v. For every k and d, there exists a linear (on n) time algorithm that,
given a graph G, decides whether cwd(G) ≤ k or not.

Some interesting open problems and suggestions for future work about
this parameter are the following:

• Is the problem of checking for a graph G whether cwd(G) ≤ k NP-
complete? This seems to be very difficult as – in a sense – we have
to find the right way to discretize Rd in order to define equivalent
classes of embeddings and make their number finite. If we do not
accomplish that, there is no hope of finding certificates of polyno-
mial size.

• Finding a constructive algorithm for checking whether cwd(G) ≤ k,
for d ≥ 2, as we discussed in the previous Section, is an insisting
open problem.

• It would be very interesting if we extended Theorem 5.4.1 (iv) and
proved that cwd+1(G) ≤ f(d) · cwd(G), for some function f .

• We used hyperplanes and hyperspheres to “cut” embeddings of
graphs. We are very curious to find out what happens when we
use other geometrical objects for this purpose.
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CHAPTER 6

OBSTRUCTIONS FOR UNIONS OF CLASSES

Let us take a moment to briefly recapitulate what we have discussed so
far. In Chapter 2 we presented the Graph Minors Theory. We argued that
it constitutes a vital part of modern Combinatorics, as many theorems that
were proven – and techniques that were introduced – in its context, are
of great significance, not only in Algorithmics and the theory of Param-
eterized Complexity, but in Structural Graph Theory as well. The most
prominent results in Graph Minors Theory, supporting this point, are the
Excluded Grid Theorem [92], the Structural Theorems in [77, 80] and the
Irrelevant Vertex Technique in [86]. Some further examples of algorithmic
applications, can be found in [165, 179].

While the minor partial ordering has been extensively studied through-
out the last decades [77, 80, 85–87, 92, 123, 125], the immersion ordering
has only recently gained more attention [42, 137, 179]. In Chapter 2 we
saw one of the fundamental results concerning this relation, the proof of
Nash-Williams’ Conjecture (the weak version). As Corollary 2.6.1 indi-
cates, a graph class C that is closed under taking of immersions, can be
characterized by a finite family obs≤im(C) of forbidden immersions.
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Some examples of graph classes for which such characterizations are
possible, are the class Et of graphs that admit a (proper) edge-coloring
that uses at most t ∈ N colors such that for every two edges of the same
color every path between them contains an edge of greater color (for more
information, see [36]) and the classWk of graphs whose carving-width is
at most k, k ∈ N, (for more information see [151]). Another example –
we plan to study extensively – is the classes G[cwd, k] for d ≥ 2 and k ≥ 0

(see Chapter 5).

Furthermore, in Theorem 2.6.3, we saw that there exists an algorithm
– with running time O(|V (G)|3) – that decides whether a graph H is an
immersion of a graph G (where the hidden constants depend only on H).
Combining this algorithm with the forbidden immersions characterization
one can prove that it can be decided – in cubic time – whether a graph
belongs to C or not.

This – meta-algorithmic – result for an immersion-closed graph class
C assumes that the family obs≤im(C) is known. Of course, the finiteness of
obs≤im(C) directly implies that this family of graphs is computable. How-
ever, an algorithm for the computation of obs≤im(C) would also require a
description of the family. Therefore, while the existence of an algorithm
computing the immersion obstruction set of an immersion-closed graph
class C is affirmed, the construction of such an algorithm is, in general,
elusive.

To make matters even worse, recall that the proofs of Theorem 2.6.1
and Conjecture 2.6.1 are non-constructive (see [88]). This means that
this proofs do not provide us with a generic algorithm that would allows
us to identify the obstruction sets for every minor or immersion-closed
graph class. Even when we work with fixed graph classes, this task can
be extremely challenging, as such a set may contain a huge number of
graphs [129] and no general upper bound on its cardinality is known other
than its finiteness.
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6.1 Computation of Obstruction Sets

The issue of the computability of obstruction sets for minors and im-
mersions was raised by Fellows and Langston [192, 193] and the chal-
lenges against computing obstruction sets soon became clear. In particu-
lar, in [193] Fellows and Langston showed that the problem of determining
obstruction sets from machine descriptions of minor-closed graph classes
is recursively unsolvable1 (which directly holds for the immersion order-
ing as well). Moreover, in [127] Courcelle, Downey and Fellows proved
that the obstruction set of a minor-closed graph class cannot be computed
when only a description of the minor-closed graph class in MSO is known.
Thus, the following is a natural open problem:

Identify the information needed in order to make it possible to
compute the obstruction set obs≤im(C) of an immersion-closed
graph class C.

In other words, our goal is to look for theorems able to delimit the
computability horizon of obstruction sets for the immersion relation.

Several methods have been proposed towards tackling the non-con-
structiveness of these sets (see, for example, [125, 192]) and the problem
of algorithmically identifying minor obstruction sets has been extensively
studied [52, 123, 125, 127, 192, 193]. In [125], it was proven that the ob-
struction set of a minor-closed graph class C which is the union of two
minor-closed graph classes C1 and C2 whose obstruction sets are given
can be computed under the assumption that there is at least one tree that
does not belong to C1 ∩ C2, and in [123] it was shown that the aforemen-
tioned assumption is not really necessary. This also lead to an interesting
question:

1I.e., there does not exist a Turing Machine that takes as input the descriptions of a
minor-closed graph class C and outputs obs≤m(C).
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What kind of Set Theory operations2 on two immersion closed
graph classes C1 and C2, for which the sets obs≤im(C1) and
obs≤im(C2) are known, make the computation of obs≤im(C12 C2)
possible2?

In this Chapter we deal with the problem of computing obs≤im(C) for
families of graph classes C that are constructed by finite unions of im-
mersion-closed graph classes. Observe that the union and the intersection
of two immersion-closed graph classes are also immersion-closed, hence
their obstruction sets are of finite size. It is also easy to see that, given the
obstruction sets of two immersion-closed graph classes, the obstruction
set of their intersection can be computed in a trivial way (it is just the
union of the two immersion obstruction sets).

However, in general, while the combination of a machine description
of an immersion-closed graph class C, that is, an algorithm deciding the
membership of a graph in C, combined with an upper bound on the size
of the obstructions makes the computation of obs≤im(C) possible, neither
the machine description of the class nor the upper bound alone are suffi-
cient information. Moreover, as mentioned before, no generic procedure
is known for computing such an upper bound. Thus, the problem of com-
puting the obstruction set of the union of two immersion-closed graph
classes is not trivial at all.

Our final goal for this Chapter is to prove that there exist an algorithm
that, given the obstruction sets of two immersion-closed graph classes,
outputs the obstruction set of their union. Our approach is based on the
derivation of a uniform upper bound on the tree-width of the subgraph-
minimal graphs that do not belong to an immersion-closed graph class C.
We will build on the machinery introduced by Isolde Adler, Martin Grohe
and Stephan Kreutzer in [123] for computing minor obstruction sets. To

2Provided, of course, that C12 C2 is also immersion-closed.
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be more precise, the algorithm we are going to present needs an MSO-
description of an immersion-closed graph class C (instead of a machine de-
scription) and an upper bound on the tree-width of the subgraph-minimal
graphs that contain an obstruction of C (instead of an upper bound on the
size of the obstructions of C).

To fulfil this goal, we will adapt the results on [123] so as to per-
mit the computation of the obstruction set of any immersion-closed graph
class C, under the aforementioned conditions. We present this algorithm
in Lemma 6.2.2, with which we conclude the computability part of this
Chapter.

The next step is to give a combinatorial result proving a uniform upper
bound on the tree-width of the subgraph-minimal graphs that do not be-
long to the union of two immersion-closed graph classes, whose obstruc-
tion sets are known. These combinatorial proofs make use of a suitable
extension of theUnique Linkage Theorem ofKen-ichi Kawarabayashi and
Paul Wollan [89], which, in turn, is an improvement of the Vital Linkage
Theorem of Robertson and Seymour in [85, 86]. In particular, notice that
a subgraph-minimal graphG not belonging to an immersion-closed graph
class C contains an immersion obstruction for C, that is, there is a set of
terminals that are joined by edge-disjoint paths3 which make use of all
the vertices and edges of G. As G is subgraph-minimal, this implies that
these edge-disjoint paths of G correspond to vertex-disjoint paths in its
line graph which also form a unique linkage (both the definition of Link-
ages and the Unique Linkage Theorem will be presented in Section 6.3 ).
Then, the Unique Linkage Theorem, allows us to prove a bound on the
tree-width of the line graph ofG and consequently, to the tree-width ofG.

The reader is advised to have this proof sketch in mind when go into
the details.

3Remember that we are always referring to weak immersions.
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6.2 Computing Immersion Obstruction Sets

As we mentioned before, to make everything work we need the following
combinatorial lemma.

Lemma 6.2.1. There exists a computable function f : N → N such that
the following holds. Let H and G be graphs such that H ≤im G. If G′ is
a minimal subgraph of G with H ≤im G′ then tw(G′) ≤ f(|E(H)|).

We are not going into the details of the the proof of Lemma 6.2.1,
as we will later prove a stronger statement of it (Lemma 6.3.3). Instead
we will continue by giving the necessary definitions in order to prove the
analogue of Lemma 3.1 in [123] for the immersion ordering. We first give
more formal definitions of the contraction, minor, and immersion relation.

Definition 6.2.1. Let H and G be two graphs. H is a contraction of G
if there exists a surjection ϕ : V (G)→ V (H) such that:

(1) for every vertex v ∈ V (H), G[ϕ−1(v)] is connected, and

(2) for every two distinct vertices u, v ∈ V (G), it holds that {v, u} ∈
E(G) if and only if the graph H[ϕ−1(v) ∪ ϕ−1(u)] is connected.

If furthermore H is not isomorphic to G, we say that H is a proper
contraction of G.

Observe that function ϕ indicates the edges of E(G) we will contract
in order to obtain H . There are the edges of G[ϕ−1(v)], for v ∈ V (H).

Definition 6.2.2. LetH andG be two graphs. H is a minor ofG if there
is a function ψ : V (H)→ 2V (G) such that:

(1) for every v ∈ V (H), Bv = G[ψ(v)] is connected, and
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(2) for any two distinct vertices v, w ofH ,Bv andBw share no common
vertex, and for every edge {u, v} ∈ E(H), there is an edge inGwith
one endpoint in Bv and one in Bu.

The graph obtained by the union of all Bv, v ∈ V (H), and the edges
betweenBv andBu in G, where {v, u} ∈ E(H), is called aminor model of
H inG. This graph is obtained from G after the deletion of some vertices
and edges. We can further contract the edges of G[Bv], v ∈ V (H), to
obtain H as a minor of G. A model with minimal number of vertices and
edges is called minimal minor model.4

In Section 7.5.4 we will give another – more general – definition of
the minor relation.

Definition 6.2.3. Let H and G be two graphs. H is an immersion of G
if there exists an injective function ψ : V (H)→ V (G), such that:

(1) for every edge {u, v} ∈ E(H), there is a path from ψ(u) to ψ(v) in
G, and

(2) for any two distinct edges of H the corresponding paths in G are
edge-disjoint.

Moreover, if these paths are vertex disjoint from ψ(V (H)), then we
say that H is a strong immersion of G. The function ψ indicates the ends
of the paths we will lift in order to obtain H as an immersion of G. It is
called an immersion model of H in G and a model with minimal number
of vertices and edges is called minimal immersion model.

To facilitate the proofs in this Chapter we have to establish an ordering
between finite sets of graphs.

4Notice that we could define the minor relation for the two graphs by removing in the
second property of Definition 6.2.1 the demand that if {u, v} /∈ E(H) then G[ϕ−1(v)∪
ϕ−1(u)] is not connected, but we chose not to.
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6.2. COMPUTING IMMERSION OBSTRUCTION SETS

Definition 6.2.4. For two finite sets of graphs, say F1 and F2, we will
write F1 ≤ F2 if and only if:

1.
∑
G∈F1

|V (G)| <
∑
H∈F2

|V (H)| or

2.
∑
G∈F1

|V (G)| =
∑
H∈F2

|V (H)| and
∑
G∈F1

|E(G)| ≤
∑
H∈F2

|E(H)|.

We now state a theorem which plays a crucial role in the proof of
the algorithm for the computation of immersion obstructions for general
immersion-closed graph classes.

Theorem 6.2.1 (Arnborg, Lagergren, and Seese, 1991 [31]). For every
positive integer k, it is decidable given an MSO-formula whether it is sat-
isfied by a graph G whose tree-width is upper bounded by k.

In [123], Adler, Grohe and Kreutzer provide the tools that will allow
us to use Theorem 6.2.1 to compute the obstruction sets of minor-closed
graph classes, when an upper bound on the tree-width of the subgraph-
minimal graphs not belonging to a minor-closed graph class is known and
an MSO-description of the graph class can be computed.

In this Chapter we will adapt the machinery of [123] to the immersion
ordering and provide a generic technique to compute immersion obstruc-
tion sets when an explicit value of such upper bound on the tree-width is
known.

Moreover, in Section 6.3 we will obtain such a – computable – up-
per bound on the tree-width for the case where C = C1 ∪ C2 and C1, C2
are immersion-closed graph classes whose obstruction sets are given, and
therefore show that obs≤im(C) can be computed.

6.2.1 An extension of MSO

For convenience, we consider the extension of the signature τG to a signa-
ture τex that pairs the representation of a graph G with the representation

96



CHAPTER 6. OBSTRUCTIONS FOR UNIONS OF CLASSES

of one of its tree-decompositions.

Definition 6.2.5. IfG is a graph and T = (T,B) is a tree-decomposition
of G, τex is the signature that consists of the relation symbols V,E, I of
τG , and four more relation symbols VT , ET , IT and B.
A tree-dec-expansion of G and T , is a τex-structure

Gex = (V (G) ∪ E(G) ∪ V (T ) ∪ E(T ),
V Gex , EGex , IGex , V Gex

T , EGex
T , IGex

T , BGex)

where V Gex
T = V (T ) represents the node set of T , EGex

T = E(T ) the edge
set of T , IGex

T = {(v, e) | v ∈ e∩V (T ) ∧ e ∈ E(T )} the incidence relation
in T and BGex = {(t, v) | t ∈ V (T ) ∧ v ∈ Bt ∩ V (G)}.

Let Tk be the class of graphs of tree-width at most k. We denote by CTk
the class of tree-dec expansions consisting of a graph G with tw(G) ≤ k,
and a tree decomposition (T,B) of G of width(T,B) ≤ k.

Proposition 6.2.1 (Adler, Grohe, and Kreutzer, 2008 [123]).

1. Let G be a graph and (T,B) a tree decomposition of it with width
(T,B) ≤ k. Then the tree-width of the tree-dec expansion of G is
at most k + 2.

2. There is an MSO-sentence ϕCTk such that for every τex-structureG,
G |= ϕCTk if and only if G ∈ CTk .

Notice that by Theorem 6.2.1, for every k ≥ 0, it is possible to decide
if an MSO-formula is satisfied in a graphG of tw(G) ≤ k. An immediate
corollary of this result and Proposition 6.2.1 is the following.

Corollary 6.2.1. It can be decided, for every k, if an MSO-formula ϕ
is satisfied in some G ∈ CTk .
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Theorem 6.2.2 (Adler, Grohe, and Kreutzer, 2008 [123]). For every k ≥
0, there is an MSO-sentence ϕTk such that for every tree-dec expansion
G ∈ CTl of G, for some l ≥ k, it holds that G |= ϕTk if and only if
tw(G) = k.

The algorithm of Lemma 6.2.2 can be applied not only to MSO defin-
able graph classes, but also to Layer-wise MSO definable classes:

Definition 6.2.6. A graph class C is layer-wise MSO-definable, if for
every k ∈ N we can compute an MSO-formula ϕk such that G ∈ C and
tw(G) ≤ k if and only if G |= ϕk, where G ∈ CTk is a tree-dec expansion
of G.

Definition 6.2.7. Let C be an immersion-closed graph class. The width
of C, denoted by width(C), is the minimum positive integer k such that for
every graph G /∈ C there is a graph G′ ≤ G with G′ /∈ C and tw(G′) ≤ k.

We have to stress here that Lemma 6.2.1 ensures that the width of an
immersion-closed graph class is well-defined.

Observation 6.2.1. If C1 is an immersion-closed graph class then the
following holds. For every graph G /∈ C1, there exists a graph G′ ≤ G

such that G′ /∈ C1 and tw(G′) ≤ max{f(|E(H)|) | H ∈ obs≤im(C1)},
where f is the function of Lemma 6.2.1.

We are now able to present an algorithm analogue to that of Lemma
3.1 in [123], but in our case for the immersion ordering.

Lemma 6.2.2. There exists an algorithm that, given an upper bound l ≥ 0

on the width of a layer-wise MSO-definable class C, and a computable
function f : N→ MSO such that for every positive integer k, f(k) = ϕk,
where ϕk is the MSO-formula defining C ∩ Tk, it computes obs≤im(C).

Proof. In order to prove the Lemma it is enough to prove the following.
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Claim 1. For any finite family of graphsF = {F1, . . . , Fn}, it is decidable
whether the following two conditions are unsatisfiable for any graph G.

G ∈ C and there exists an F ∈ F such that F ≤im G (6.1)
G /∈ C and for every F ∈ F , F ≰im G (6.2)

To see that the above claim is enough, first notice that if F is a finite
family of graphs for which the conditions (6.1) and (6.2) are unsatisfiable
then F is a forbidden immersion characterization of C, that is, a graph
G belongs to C if and only if it does not contain any of the graphs in F
as an immersion. By definition, obs≤im(C) is the minimum such family
according to the ≤-relation (Definition 6.2.4).

Thus, if Claim 1 holds, we can find the set obs≤im(C) by enumerating,
according to ≤ (see Definition 6.2.4), all the finite families of graphs F
and deciding, for each one of them, if the conditions (6.1) and (6.2) are
unsatisfiable.

Proof of Claim 1. Let G be a graph in C such that F ≤im G, for some
F ∈ F . Lemma 6.2.1 implies that there exists a graph G′ ≤ G such
that tw(G′) ≤ f(|E(F )|) and F ≤im G′, where f is the function of
Lemma 6.2.1. Observe thatG′ ∈ C. Thus, (6.1) is satisfiable if and only if
there exists a graph in C, whose tree-width is bounded from max{f(|E(F )|)
| F ∈ F}, that satisfies it, where f is the computable function of Lemma
6.2.1. Let ϕC be the formula defining C ∩ Tk in CTk , and ϕF =

∨
F∈F ϕF ,

where ϕF is the formula from Lemma 2.7.1 and k = max{f(|E(F )|) |
F ∈ F}. Notice that there exists some graph G ∈ C that models ϕF if
and only if ϕC∧ϕF is satisfiable for someG′ ∈ CTk . From Corollary 6.2.1,
this is decidable.

LetG /∈ C be a graph such thatF ≰im G, for everyF ∈ F . Recall that
the width of a graph class C is the minimum positive integer k such that for
every graph G /∈ C there is a G′ ≤ G with G′ /∈ C and tw(G′) ≤ k. Thus,
G contains a subgraph G′ with tree-width at most w such that G′ /∈ C,
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where w is computable by Lemma 6.2.1. Observe that F ≰im G′, for
every F ∈ F . If ϕ′

C is the MSO-sentence defining C ∩ Tw (given by
the hypothesis), then there exists a graph G /∈ C such that F ≰im G,
for every F ∈ F if and only if ¬ϕ′

C ∧ ¬ϕF is satisfiable in CTw . The
decidability of whether ¬ϕ′

C ∧ ¬ϕF is satisfiable in CTw follows, again,
from Corollary 6.2.1.

As Claim 1 holds, the lemma follows.

Corollary 6.2.2. There is an algorithm that given an MSO formula ϕ
and k ∈ N, so that ϕ defines an immersion closed-graph class C of width
at most k, computes the obstruction set of C.

Notice that a direct proof of Corollary 6.2.2 would be enough for our
goal for this Chapter, which is to prove Theorem 6.3.2 . However, as
Lemma 6.2.2 provides a more general framework regarding the construc-
tiveness of immersion obstruction sets, it is worth to be mentioned.

Although Lemma 6.2.2 provides an algorithm for computing the ob-
struction set of any immersion-closed graph class C, given that the con-
ditions stated are satisfied, this result is generic and there is no uniform
way for computing either an upper bound on the width of C or an MSO-
description of C.

In the next Section, we will prove some combinatorial lemmata and
then conclude that if C1 and C2 are two immersion-closed graph classes
whose obstruction sets are known then the width of C1 ∪ C2 can be com-
puted and hence, the set obs≤im(C1 ∪ C2) is computable.

6.3 WidthBounds for Immersion-closedGraph
Classes

Our goal for this Section is to give an upper bound on the width of the
graph class C1 ∪ C2, where C1 and C2 are immersion-closed graph classes
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and their obstruction sets are known. This will directly imply the proof of
Lemma 6.2.1. To do this, we will first prove a generalization of the Unique
Linkage Theorem, appeared in the Graph Minors series [85]. Then we
will introduce the notion of an r-approximate edge-linkage and work on
the subgraph-minimal graphs not belonging to C1 ∪ C2.

Finally, as it is trivial to compute an MSO-description of C1∪C2 when
we are given the sets obs≤im(C1) and obs≤im(C2), we will show that the
obstruction set of C1 ∪ C2 is computable.

6.3.1 Linkages

We start with a series of definitions.

Definition 6.3.1. Let r be a positive integer. An r-approximate linkage
in a graph G is a family L of paths with distinct endpoints in G such
that for every r + 1 distinct paths P1, P2, . . . , Pr+1 in L, it holds that∩
i∈[r+1] V (Pi) = ∅. These paths are the components of the linkage.

Definition 6.3.2. Let (α1, α2, . . . , αk) and (β1, β2, . . . , βk) be elements
of V (G)k, that is k-tuples of vertices of V (G). An r-approximate link-
age L, consisting of the paths P1, P2, . . . , Pk, links (α1, α2, . . . , αk) and
(β1, β2, . . . , βk) if Pi is a path with endpoints αi and βi, for every i ∈ [k].

Definition 6.3.3. Given a r-approximate linkage L for a graph G, we
define the order of L to be equal to the number of its paths. We call an
r-approximate linkage of order k, r-approximate k-linkage. When r = 1,
such a family of paths is simply called linkage.

Definition 6.3.4. Two r-approximate k-linkagesL andL′ are equivalent
if for every component P of L there exists a component P ′ of L′ with the
same endpoints. An r-approximate linkageL of a graphG is called unique
if for every linkage L′ that is equivalent to L, V (L) = V (L′).
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Definition 6.3.5. A linkage L in a graph G is called vital if there is no
other linkage in G joining the same pairs of vertices.

In [85], Robertson and Seymour proved a theorem which is known as
The Vital Linkage Theorem. This theorem provides an upper bound for
the tree-width of a graph G that contains a vital k-linkage L such that
V (L) = V (G), where the bound depends only on k. A stronger statement
of the Vital Linkage Theorem was recently proved by Kawarabayashi and
Wollan [89], where instead of asking for the linkage to be vital, it asks
for it to be unique. Notice here that a vital linkage is also unique. As in
some of the proofs in this Chapter (for instance, the proof of Lemma 6.3.1)
we deal with unique but not necessarily vital linkages we make use of the
Vital Linkage Theorem in its latter form stated below.

Theorem 6.3.1 (Unique Linkage Theorem, 2010 [89]). There exists a
computable function w : N → N such that the following holds: Let L be
a (1-approximate) k-linkage inG with V (L) = V (G). If L is unique then
tw(G) ≤ w(k).

Lemma 6.3.1. There exists a computable function f : N → N such that
the following holds. Let G be a graph that contains a 2-approximate k-
linkage L̃ such that V (L̃) = V (G). If L̃ is unique, then tw(G) ≤ f(k).

Proof. LetG be a graph that contains a unique 2-approximate k-linkage L̃
with V (L̃) = V (G) that linksA = (α1, α2, . . . , αk) andB = (β1, β2, . . . ,

βk) in G. Denote by T the set A ∪B and consider the graph Gb with

V (Gb) = V ((G \ T )×K2) ∪ T
E(Gb) = E((G \ T )×K2) ∪ {{t, t′} | t, t′ ∈ T ∧ {t, t′} ∈ E(G)}

∪{{t, (v, x)} | t ∈ T ∧ x ∈ V (K2) ∧ v ∈ V (G)

∧{t, v} ∈ E(G)},

where V (K2) = {1, 2}. It is easy to see that Gb contains a k-linkage that
links A and B. Let G′ be a minimal induced subgraph of Gb that contains
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a k-linkage L′ that links A and B. From Theorem 6.3.1, it follows that

tw(G′) ≤ w(k). (6.3)

From now on we work towards proving thatG ≤m G′. In order to achieve
this, we prove the following two claims for G′.

Claim 2. IfL′ is a k-linkage inG′ that linksA andB then for every vertex
v ∈ V (G) \ T no path of L′ contains both (v, 1) and (v, 2).

Proof of Claim2. Towards a contradiction, assume that for some vertex
v ∈ V (G)\T , there exists a (t, t′)-pathP ofL′ that contains both (v, 1) and
(v, 2). Without loss of generality, assume also that (v, 1) appears before
(v, 2) in P . Let y be the successor of (v, 2) in P and notice that y ̸= (v, 1).
From the definition of Gb and the fact that G′ is an induced subgraph of
Gb, {y, (v, 1)} ∈ E(G′) \ E(L′). By replacing the subpath of P from
(v, 1) to y with the edge {(v, 1), y}, we obtain a linkage in G′ \ (v, 2) that
links A and B. This contradicts to the minimality of G′.

Claim 3. IfL′ is a k-linkage inG′ that linksA andB then for every vertex
v ∈ V (G) \ T , V (L′) ∩ {(v, 1), (v, 2)} ̸= ∅.

Proof of Claim3. Assume, in contrary, that there exists a linkage L′ in G′

and a vertex x ∈ V (G) \ T such that L′ links A and B and V (L′) ∩
{(x, 1), (x, 2)} = ∅. Claim 2 ensures that, after contracting the edges
{(v, 1), (v, 2)}, v ∈ V (G) \ T (whenever they exist), the corresponding
paths compose a 2-approximate k-linkage L̃′ of G \ {x} that links A and
B. This is a contradiction to the assumption that L̃ is unique. Thus, the
claim holds.

Recall that T ⊆ V (G′) and that G′ is an induced subgraph of Gb.
Claim 3 implies that we may obtain G from G′ by contracting the edges
{(v, 1), (v, 2)} for every v ∈ V (G) \ T (whenever they exist). As G ≤m

G′, from (6.3), it follows that, tw(G) ≤ w(k).
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We remark that, the previous lemma holds for any graph G that con-
tains an r-approximate k-linkage. This can be seen by substituting (G \
T )×K2 with (G \ T )×Kr in its proof.

The following lemma provides an upper bound on the tree-width of a
graph G, given an upper bound on the tree-width of its line graph L(G).

Lemma 6.3.2. IfG is a graph and k is a positive integer with tw(L(G)) ≤
k then tw(G) ≤ 2k + 1.

Proof. Notice that, from Observation 4.1.2, we may assume that G does
not contain isolated vertices. Suppose that G is graph such that L(G) ad-
mits a tree decomposition of width at most k and recall that every vertex
of L(G) corresponds to an edge of G. We construct a tree decomposition
T = (T,B) of G from a tree decomposition TL of L(G) by replacing in
each bag of TL every vertex of L(G) by the endpoints of the correspond-
ing edge in G. It is easy to verify that this is a tree decomposition of G.
Therefore, tw(G) ≤ 2k + 1.

Before we proceed to the next lemma, we need to introduce the notion
of an r-approximate k-edge-linkage in a graph.

Definition 6.3.6. An r-approximate edge-linkage in a graphG is a fam-
ily of pathsE inG such that for every r+1 distinct paths P1, P2, . . . , Pr+1

in E, it holds that ∩i∈[r+1]E(Pi) = ∅. We call these paths the components
of the edge-linkage.

Definition 6.3.7. Let (α1, α2, . . . , αk) and (β1, β2, . . . , βk) be elements
of V (G)k. We say that an r-approximate edge-linkage E, consisting of
the paths P1, P2, . . . , Pk, links (α1, α2, . . . , αk) and (β1, β2, . . . , βk) if Pi
is a path with endpoints αi and βi, for every i ∈ [k].

Definition 6.3.8. Given a r-approximate edge-linkage E for a graph G,
we define the order of E to be equal to the number of its paths. We call
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an r-approximate edge-linkage of order k, r-approximate k-edge-linkage.
When r = 1, we call such a family of paths, an edge-linkage.

Lemma 6.3.3. There exists a computable function r such that the follow-
ing holds. Let G1, G2 and G be graphs such that Gi ≤im G, i = 1, 2. If G′

is a minimal subgraph of G where Gi ≤im G′, i = 1, 2, then

tw(G′) ≤ r(|E(G1)|, |E(G2)|).

Proof. Let G′ be a minimal subgraph of G such that Gi ≤im G′, i = 1, 2.
Recall that the edges of Gi compose a ki-edge-linkage Ei in G, where
ki = |E(Gi)|, i = 1, 2. Furthermore, observe that the paths of E1 and E2

constitute a 2-approximate k-edge-linkage E of G, where k = k1 + k2.
Indeed, notice that in contrary to linkages, we do not require the paths that
are forming edge-linkages to have different endpoints. The minimality of
G′ implies that

∪
{P | P ∈ E} = G′. Denote by A = (vi1 , vi2 , . . . , vik)

and B = (vj1 , vj2 , . . . , vjk) the vertex sets that are edge-linked by E in G′

and let Ĝ be the graph with

V (Ĝ) = V (G′) ∪ {uiq | q ∈ [k]} ∪ {ujq | q ∈ [k]},
E(Ĝ) = E(G′) ∪ {tiq | q ∈ [k]} ∪ {tjq | q ∈ [k]},

where the vertices uiq and ujq , q ∈ [k] are new, tiq = {uiq , viq}, q ∈ [k]

and tjq = {ujq , vjq}, q ∈ [k].
Consider the line graph of Ĝ, L(Ĝ), and notice that E corresponds

to a 2-approximate k-linkage L from AL to BL in L(Ĝ), where AL =

(ti1 , ti2 , . . . , tik) and BL = (tj1 , tj2 , . . . , tjk). This is true as, from the
construction of Ĝ, all the vertices in AL and BL are distinct. The mini-
mality of G′ yields that V (L) = V (L(Ĝ)) and implies that L is unique.
From Lemma 6.3.1, we obtain that tw(L(Ĝ)) ≤ f(k). Therefore, from
Lemma 6.3.2, we get that tw(Ĝ) ≤ p(f(k)), where p is the function of
Lemma 6.3.2. Finally, as G′ ≤ Ĝ, tw(G′) ≤ r(k1, k2), where r(k1, k2) =
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p(f(k1 + k2)).

Notice that Lemma 6.2.1 follows from Lemma 6.3.3 when we set G2

to be the empty graph.
To conclude with the necessary conditions for Lemma 6.2.2 we have

to show that given two immersion-closed graph classes C1 and C2 the
immersion-closed graph class C1 ∪ C2 is layer-wise MSO-definable.

Observation 6.3.1. Let C1 and C2 be immersion-closed graph classes,
then C = C1 ∪ C2 is a layer-wise MSO-definable class defined, for every
k ≥ 0, by the formula

ϕk =

 ∧
G∈obs≤im (C1)

¬ϕG

 ∨
 ∧
H∈obs≤im (C2)

¬ϕH

 ∧ ϕCTk

where ϕG and ϕH is the formula described in the proof of Lemma 2.7.1,
and ϕCTk the formula of Proposition 6.2.1.

We are now able to prove the main result of this Section.

Theorem 6.3.2. Let C1 and C2 be two immersion-closed graph classes. If
the sets obs≤im(C1) and obs≤im(C2) are given, then the set obs≤im(C1 ∪ C2)
is computable.

Proof. Observation 6.3.1, provides us with an MSO-description of the
immersion-closed graph class C1∪C2, and Lemma 6.3.3 gives us an upper
bound on the width of C1∪C2. Therefore, Lemma 6.2.2 is applicable.

6.4 Conclusion
In Chapter 2 we mentioned the fact that Robertson and Seymour claimed
that the class of graphs is also well-quasi-ordered under the strong immer-
sion ordering [87]. However, a full proof of this result has not appeared
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so far. The combinatorial results we discussed in this chapter, namely,
the upper bounds on the width of a graph class, also hold for the strong
immersion ordering. Thus, if the claim of Robertson and Seymour is true
and eventually proven, the obstruction set of the union of two strongly
immersion-closed graph classes, whose obstruction sets are given, can
also be computed.

Finally, it was proven by Courcelle, Downey and Fellows [127] that
the obstruction set of a minor-closed graph class C cannot be computed by
an algorithm whose input is a description of C as an MSO-formula. When
we consider the immersion relation, the computability of the obstruction
set of an immersion-closed graph class C, given solely an MSO description
of C, remains an open problem.
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CHAPTER 7

MONOTONE KERNELS

In this Chapter we introduce the concepts of parameter-invariant andmin-
or-monotone kernels for optimization problems. Our approach (being
consistent with our main focus in this thesis) will be “parameter-centered”,
meaning that our central Theorem (Theorem 7.3.1) is stated using param-
eters instead of problems. In order for it to be applied to an optimization
problem p-Π, and prove the existence of a linear kernel, we use the pa-
rameter pp-Π that measures the size of the optimal solution for p-Π (see
Subsection 7.4.1). Theorem 7.3.1 demands that the parameter – in ad-
dition to being computable and minor-closed – satisfies the condition of
being Protrusion decomposable and of having Finite Integer Index. These
extra conditions, if met from the parameter pp-Π, imply the existence of
linear kernels (for p-Π) that have the desirable kernel properties we plan
to introduce in this Chapter.

The first concerns the monotonicty of a kernel for a graph problem,
with respect to some ordering relation on graphs (see Definition 3.3.2).
A typical example of an ≤in-monotone (or induced subgraph-monotone)
kernel is the size 2k kernel for the p-Vertex Cover problem in [157].
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Also, induced subgraph-monotone kernels have been defined and studied
in [150]. For our purposes here, ⪯ in Definition 3.3.2 will be the minor
relation, and, thus, in addition to Conditions (a) and (b) in Definition 3.3.1,
we demand that the following condition is satisfied:

(c) G′ ≤m G.

I.e., we demand that the graph in the returned instance is a minor of the
graph of the input instance and we restrict our attention to minor-closed
problems on graphs. We should mention that the notion ofminor-monotoni-
city of kernels appeared also in [183], but for kernels of exponential size.

The second kernel property is the parameter invariance property of
Definition 3.3.3:

(d) k′ = k.

Here we demand that the parameter of the input instance remains in-
variant. This condition applies to the general definition of kernelization
and does not require that the parameterized problem in question is a graph
problem.

Parameter-invariant kernels should not be confused with proper ker-
nels, defined in [150], where it is demanded that k′ ≤ k, i.e., the parame-
ter only decreases in the new equivalent instance. This property is much
weaker than parameter invariance 1. A slightly more general version of
kernelization is strict kernelization, defined in [170] which demands that
k′ ≤ k + c for some constant c. Actually it is mentioned in [150]/ [170]
that a parameterized problem admits an FPT algorithm if and only if it
admits a proper/strict kernelization. However, as we will see, enforcing
parameter-invariance needs much more effort.

1It follows from the results in [155] that all linear kernels emerging from the appli-
cation of Proposition 7.4.1 in page 119 – “a master Theorem for linear kernels” – are
proper.
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A similar notion to parameter invariant-kernels, and – in a sense –
more general concept, is the one of α-approximate kernels where, for ev-
ery c ≥ 1, a c-approximate solution to the preprocessed instance can be
turned, in polynomial time, into a cα-approximate solution to the origi-
nal instance. α-approximate kernels have been recently introduced in the
soon-to-be-seminal work of [181] and established an important link be-
tween kernelization and approximation algorithms. Under this vewpoint,
parameter-invariant kernels can be seen as α-approximate kernels where
α = 1.

In this chapter we will present some of the consequences kernels sat-
isfying (c) and (d) have. The first (presented in Section 7.4.4) is of com-
binatorial nature: These kernels make the computation of obstruction sets
possible, for minor closed parameters, whose value drops in a constant
factor when we do a local transformation to a graph, such as a vertex/edge
deletion or an edge contraction (we can say informally that they “behave”
in the normal – intuitive – way, see Definition 7.4.9 for more details).

The second is algorithmic. The existence of such kernels accelerates
the running time of known EPTAS for several graph optimization prob-
lems from f(1/ϵ) · nO(1) to nO(1) + f(1/ϵ) · OPTO(1) (see Section 7.4.5
for more details).

Because of the “size” of this Chapter, and the fact that it contains many
and diverse notions, we will divide it into small steps that eventually lead
to the proof of Theorem 7.3.1 – our final goal.

The first milestone is to define protrusion decompositions and the FII
property, in order to have the notation set and be able to state this theorem.

7.1 Protrusions
Definition 7.1.1. LetG be a graph and letR ⊆ V (G).We say thatR is a
β-protrusion ofG if max{|∂G(R)|, tw(G[R])} ≤ β.An (α, β)-protrusion
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X0

X1

X2

Xl−1

Xl

...

Rl

∂G(Rl)

NG(X1)

Figure 7.1: Notice that for every i ∈ [l] the set ∂G(Ri) contains the vertices
of Ri that are incident to vertices of X0 and that ∂G(Ri) ⊆ NG(Xi).

decomposition of a graphG is a partition P = {X0, X1, . . . , Xℓ} of V (G)

such that

(1) max{ℓ, |X0|} ≤ α,

(2) for every i ∈ [ℓ], the set Ri = NG[Xi] is a β-protrusion of G and

(3) for every i ∈ {1, . . . , ℓ}, NG(Xi) ⊆ X0.

We call the sets Ri, i ∈ [ℓ], the protrusions of P and the set X0 the core
of P (see Figure 7.1).

Definition 7.1.2. We say that a parameter p is protrusion decomposable,
if there exists some c > 0 such that:

∀G ∈ dom(p), G has a (c · p(G), c)-protrusion decomposition (7.1)
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We denote by dec(p) the minimum c for which (7.1) is true and we call it
protrusion decomposability constant of p.

7.2 Boundaried Gaphs and FII
Definition 7.2.1. A labeling of a graph G is any injective function λ :

V (G)→ N.

Definition 7.2.2. Let t ∈ N. A t-boundaried graph is a triple G =

(G,X, λ) where G is a graph, X ⊆ V (G), |X| = t, and λ is a labelling
of G. We call X the boundary of G and we call the vertices of X the
boundary vertices of G. We also callG the underlying graph of G and the
integer t = |X| the boundary size of G.

Definition 7.2.3. We say that G is a boundaried graph if there exists a
positive integer t such that G is a t-boundaried graph.

We denote V (G) = V (G), E(G) = E(G), and |G| = |G|.

Definition 7.2.4. We define B(t) as the set of all t-boundaried graphs
and we set B(≤t) =

∪
t′∈{0}∪[t] B(t′).

We also define T (≤t) to be the set of all boundaried graphs in B(≤t)

whose underlying graph has treewidth at most t− 1.

Definition 7.2.5. Given a t-boundaried graph G = (G,X, λ), we define
the label normalising function of G, ψG : X → [t] such that for each
v ∈ X ,

ψG(v) = |{u ∈ X | λ(u) ≤ λ(v)}|.

Note that, as λ is an injective function, ψG is a bijection. Given a boundary
vertex v of G, we call ψG(v) the index of v.

Definition 7.2.6. We define the frontier graph HG of G as follows:

HG = ([t], ({ψGq(x), ψG(y)} | {x, y} ∈ E(G[X])).
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We say that two t-boundaried graphs G1 and G2 are compatible if HG1 =

HG2 (not just isomorphic).

Definition 7.2.7. Let G1 = (G1, X1, λ1) and G2 = (G2, X2, λ2) be two
t-boundaried graphs. We define the gluing operation ⊕ such that

(G1, X1, λ1)⊕ (G2, X2, λ2)

is the graph G obtained by taking the disjoint union of G1 and G2 and
then, for each i ∈ [t], identifying the vertex ψ−1

G1
(i) and the vertex ψ−1

G2
(i)

(i.e., we identify boundary vertices of the same index).

Keep in mind that G1 ⊕ G2 is a graph and not a boundaried graph.
Moreover, the operation⊕ requires both boundaried graphs to have bound-
aries of the same size.

Definition 7.2.8. Let p be a graph parameter and t ∈ N. Let Gi =

(Gi, Xi, λi) ∈ B(≤t), i ∈ [2]. We say that G1 ≡p,t G2 if G1 and G2 are
both t′-boundaried graphs for some t′ ∈ {0} ∪ [t], they are compatible,
and

∃cG1,G2 ∈ Z ∀F ∈ B(t′), p(G1 ⊕ F) = p(G2 ⊕ F) + cG1,G2 (7.2)

If in the above definition for some i ∈ [2] the graph Gi⊕F ̸∈ dom(p),
we assume that p(Gi ⊕ F) =∞.

It is easy to observe that≡p,t is an equivalence relation on the setB(≤t).

Moreover, one of the equivalence classes of this relation is the set, denoted
null(p), of all boundaried graphs whose underlying graph does not belong
in dom(p).

Definition 7.2.9. We say that a graph class R is a t-representative col-
lection for≡p,t if it contains one member of each of its equivalence classes,
except from null(p). Given a G ∈ B(≤t) we define repp(G) to be the
(unique) boundaried graph G′ inR such that G′ ≡p,t G.
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Definition 7.2.10. We say that p has Finite Integer Index (FII) if ≡p,t

has a finite set of equivalence classes for every t, i.e., the number of its
equivalence classes of ≡p,t, depends on p and t only.

Definition 7.2.11. Given that p has FII, we define cardp(t) to be the
number of equivalence classes of ≡p,t for each t ∈ N.

7.3 Main Theorem
To specify the dependencies of the constants hidden inside the Big O we
introduce the following notation.

Definition 7.3.1. Let p, q ∈ N with p ≥ 2 and 0 < q < p, let f : Np →
N, and let g : Nq → N. We say that

f(x1, . . . , xp) = Oxq ,...,xp(g(x1, . . . , xq))

if there is a function h : Np−q → N such that

f(x1, . . . , xp) = O(h(xq, . . . , xp) · g(x1, . . . , xp−1)).

We can now state our main goal for this Chapter (this is our second
milestone). We plan to prove the following:

Theorem 7.3.1. For every graph parameter p that has FII, is computable,
protrusion decomposable, and minor-closed, there is a constant cp and a
polynomial algorithm that given a graph G ∈ dom(p), outputs a graph
G′ such that

1. G′ ≤m G,

2. p(G′) = p(G), and

3. |G′| ≤ cp · p(G).
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Moreover, this algorithm runs in Ocp(|G|2c+2) steps where c = dec(p) is
the protrusion decomposability constant of p.

The constant cp is defined in Section 7.5.5, and is a combination of
many functions.

Theorem 7.3.1 proves the existence of such an algorithm, but is not
constructive, i.e., it cannot provide us with an algorithm that takes as in-
put a parameter p, satisfying its specification, and outputs an algorithm
computing the constant cp and the graph G′. The problem is that the al-
gorithm Theorem 7.3.1 provide us with, needs to know a representative
collection for ≡p,t, or at least cardp must be a computable function (see
Lemma 7.7.1).

The importance of Theorem 7.3.1 is suggested from its applications
presented in the next Section.

7.4 Consequences of Theorem 7.3.1

In order to reach our third milestone for this Chapter, which is to present
some of the consequences of Theorem 7.3.1, we have to get a little deeper
into optimization problems.

7.4.1 More on optimization problems

Let us define some more properties an optimization problem may have.
We already mentioned the function pp-Π which give us the value of the
parameter in the optimal solution.

Definition 7.4.1. Given an optimization problem p-Πwe define the (par-
tial) function pp-Π that given a graph G, outputs

pp-Π(G) = •{k | (G, k) ∈ p-Π}
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where • is interpreted as min or max depending whether p-Π is a mini-
mization or a maximization problem.

Notice that pp-Π is not defined when {k | (G, k) ∈ p-Π} is an empty
set.

Definition 7.4.2. We define solp-Π to be a (partial) function that, given
as an input a graph G, returns a set S of size pp-Π(G) such that f(G,S) =
true, and is not defined if no such set S exists.

The functions pΠ and solΠ have the same domain.

Definition 7.4.3. Let p-Π be an optimization probem. We say that p-Π
is minor-closed if pp-Π is minor-closed. Moreover, we say that p-Π is
minor-bidimensional if the following conditions hold:

1. p-Π is minor closed.

2. ∃δ ∈ R+ ∃k0 ∈ N ∀k ≥ k0,
pp-Π(⊞k)

k2
≥ δ.

Definition 7.4.4. Let p be a parameter. We say that p is treewidth modu-
lable if there are constants c1 and c2 such that for every graphG ∈ dom(p)
there is a S ⊆ V (G) such that |S| ≤ c1 · p(G) and tw(G \ S) ≤ c2.

Definition 7.4.5. Let p-Π be an optimization problem. We say that p-Π
is treewidth modulable if pp-Π is treewidth modulable.

Definition 7.4.6. Let f : Z+ → Z+ be a function. We say that an
optimization problem p-Π is f -separable if for any graph G and subset
L ⊆ V (G) such that |∂G(L)| ≤ t, it holds that

|solp-Π(G) ∩ L| − f(t) ≤ pp-Π(G[L]) ≤ |solp-Π(G) ∩ L|+ f(t).

p-Π is called separable if there exists a function f such that p-Π is f -
separable. Moreover, p-Π is called linearly separable if there exists a
constant c such that p-Π is c · t-separable.
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Definition 7.4.7. We say that an optimization problem p-Π is protrusion
decomposable if pp-Π is protrusion decomposable.

Definition 7.4.8. We say that an optimization problem p-Π has FII if
pp-Π has FII.

7.4.2 Background: a master theorem for linear kernels

A “couple” of testbed problem

Let us make some remarks on kernelization. Unfortunately, not all prob-
lems that admit FPT-algorithms also admit polynomial –or, ideally, linear–
kernels. In many cases, it is unavoidable to restrict the graph classes where
problems are defined in order to permit the design of such kernels.

We will use as a testbed the family ofF-Covering problems (see Sec-
tion 4.2.1), where F contains connected graphs and at least one of them
is planar. Notice that this problems is a minimization graph problem. In-
deed, the corresponding subset certifying function is f where f(G,S) is
true if and only if some graph in F is a minor of G \ S.
F-Covering belongs in the more general class of p-p-Modification

porblem, where p is a modification parameter (see Section 4.2). Also it
can generate several known problems, depending on the choice of the set
of F . For instance, we can obtain p-Vertex Cover (for F = {K2}),
p-Feedback Vertex Set (when F = {K3}), and p-Vertex Outerpla-
narization (when F = {K4, K2,3}). In [171, 172], it was proven that
F-Covering admits a polynomial kernel of size kcF where cF is a pa-
rameter depending on the defining class2 F . An interesting question that
emerged is whether a kernel of size cF · kO(1) exists, that is uniformly
polynomial with respect to the contribution of F . This question has been
answered negatively in [177] (based on standard complexity assumptions)
for certain, but not all, instantiations of F .

2Here F can also contain graphs that are not connected.
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Problem properties for linear kernels

The results in [177] indicate that, if we insist on the derivation of lin-
ear kernels for F-Covering, we should restrict instances to certain graph
classes. In this direction, a series of meta-algorithmic results have been
developed in [155, 174–176, 180], for a wide family of graph problems,
when restricted either to H-minor free graphs or to H-topological minor
free graphs.

Notice that F-Covering is minor-closed. It is also well known that
F-Covering is treewidth-modulable (e.g., [155, 180]).

The meta-algorothmic results in [155, 174, 175, 180] are based on the
following master theorem.

Proposition 7.4.1 ( [155]). Let p-Π ⊆ G×N be an optimization problem.
If p-Π is protrusion-decomposable and has FII, then p-Π admits a linear
kernel.

The property of having FII was defined in [152] (see also [149, 155,
156,191]) and has been extensively used in several meta-algorirthmic re-
sults in parameterized complexity and kernelization [155, 174, 175, 180].
The family of graph problems that have FII is quite extended. Conditions
that yield the FII property have been proposed in [155] and more recently
in [175] where it was proven that FII can be implied by other (more easy
to be checked) problem properties, such as the separability and the ex-
pressibility in CMSO. The proof of Proposition 7.4.1 is based on the fact
that the FII property enables the existence of protrusion replacers that are
algorithmic procedures permitting the replacement of parts of the input
graph, of an instance (G, k), by smaller ones [155]. Each replacement
is done in a way that the new instance created after this replacement is
equivalent to the initial one. The protrusion decomposability guarantees
that when these replacements are not any more possible, the equivalent
instance consists of a graph of size O(k) and a parameter k′ ≤ k.
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It has been noticed that very few problems are protrusion decompos-
able in general, therefore Proposition 7.4.1 is typically applied to prob-
lems restricted to special classes of graphs. In [174, 175] a series of addi-
tional combinatorial requirements where given for p-Π in order to guaran-
tee protrusion-decomposablility for H-minor free graphs (and thus make
Proposition 7.4.1 applicable to more problems). These conditions were
related to the separability property and to the Bidimensionality Theory
(Proposition 7.4.2, see [174, 175, 182] for more details). Also, in [180]
it was proven that when restricted to H-topological minor free graphs,
treewidth-modulable problems became also protrusion-decomposable (Pro-
position 7.4.3). Therefore, if C is a class of H-topological minor free
graphs, for someH , then the fact that p-Π is treewidth-modulable and has
FII, implies that p-Π⋒C admits a linear kernel. This statement applies for a
wide variety of problems. For instance, it is known that F-Covering has
FII (see [155,180]). This fact, together with the treewidth-modulability of
F-Covering, implies that the restriction ofF-Covering toH-topological
minor-free graphs admits a linear kernel.

Another example of the applicability of Proposition 7.4.1 is the fol-
lowing:

F-Packing
Input: A graph G and a k ∈ N .
Parameter: k.
Question: Does G contain k disjoint graphs, each containing a

graph in F as a minor?

Again, we consider this problem for sets F that contain connected
graphs where at least one of them is planar. F-Packing is a maximization
graph problem: The subset certifying function is f , where f(G,S) is true
if and inly if G contains a collection of disjoint graphs, each containing
some of the graphs inF as a minor and each containing at most one of the
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vertices in S. In a sense, F-Packing is dual to F-Covering.

Similarly to the case of F-Covering, this problem, restricted to H-
minor-free graphs, has FII and is treewidth-modulable [155]. Therefore,
using Proposition 7.4.1, this restriction admits a linear kernel [155, 174,
175].

We could add more examples of the applicability of Proposition 7.4.1
here, however we restrict our attention toF-Covering andF-Packing as
they are already able to produce many known graph problems and, also,
they are minor-closed, which is a requirement of Theorem 7.3.1.

Having presented the necessary background, and hinted what the mo-
tivation behind the results in this Chapter is, we can finally put Theo-
rem 7.3.1 in the picture. Theorem 7.3.1 yields the following – more pow-
erful – version of Proposition 7.4.1, for minor-closed graph problems.

Theorem 7.4.1. Let p-Π be an optimization problem that is minor-closed,
has FII, and is protrusion decomposable. Then p-Π admits a linear kernel
that is parameter-invariant and minor-monotone.

Notice that the only additional demand in order to make the kernels
of Proposition 7.4.1 minor-monotone and parameter-invariant is minor-
closedness. Interestingly, in the proof of Theroem 7.3.1, minor-closedness
is necessary for proving, not only the minor-monotonicity (as someone
would probably expect), but also the parameter-invariance.

The proof of Theorem 7.4.1, as well as some other consequences on
kernels, is discussed in the following Section.

7.4.3 Consequences on kernels.

As mentioned above, Theorem 7.4.1 is an easy corollary of Theorem 7.3.1.
Let us see why.
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Proof of Theorem 7.4.1. The definition of optimization problems implies
that pp-Π is computable. Notice that the conditions of Theorem 7.3.1 are
satisfied, therefore there exists an algorithm that given a n-vertex graph
G, outputs – in polynomial on n number of steps – a graph G′ where
pp-Π(G) = pp-Π(G

′), G′ ≤m G, and |G′| = O(pp-Π(G)). This means
that for every instance (G, k) ∈ G × N, (G, k) ∈ p-Π if and only if
(G′, k) ∈ p-Π, therefore this algorithm is a parameter-invariant kerneliza-
tion. Moreover as G′ ≤m G it is also minor monotone.

In the previous Section, we mentioned some of the following results.

Proposition 7.4.2 (Lemma 3.2 of [174] and Lemma 3.6 of [175]). Let
p-Π be an optimization problem and let C be a graph class that is H-
minor-free for some graph H . If p-Π is

1. minor-bidimensional,

2. CMSO-definable, and

3. linearly separable,

then p-Π ⋒ C is treewidth modulable.

Proposition 7.4.3 ( [180]). Let p-Π be an optimization problem and let
C be a graph class that isH-topological minor-free for some graphH . If
p-Π is treewidth modulable then p-Π ⋒ C is protrusion decomposable.

Proposition 7.4.4 (Theorem 4.4 of [175]). If an optimization problem
p-Π is CMSO-definable and separable, then it has FII.

We are now able to investigate the prerequisites for the existence of
minor-monotone and parameter invariant kernels. Theorem 7.4.1 has the
following corollaries.

Corollary 7.4.1. Let p-Π be an optimization problem and let C be a
graph class that is H-minor-free for some graph H . If p-Π is
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1. minor-bidimensional,

2. CMSO-definable, and

3. linearly separable,

then p-Π ⋒ C admits a linear, minor-monotone, and parameter-invariant
kernel.

Proof. Let p-Π′ = p-Π⋒ C. The fact that C is CMSO-definable and Con-
dition 2, implies that Condition 2 holds for p-Π′ as well. Notice also that
conditions 1 and 3 hold for p-Π′ as well. CMSO-definability and sepa-
rability of p-Π′ together with Proposition 7.4.4 imply that p-Π′ has FII.
As p-Π′ is minor-bidimensional, p-Π′ is also minor-closed. Moreover,
the minor-bidimensionality of p-Π′ and the linear-separability of p-Π′ im-
ply that p-Π′ is treewidth modulable, because of Proposition 7.4.2. From
Proposition 7.4.3 on p-Π′ we derive that p-Π′ is protrusion decomposable.
Finally, the result follows from Theorem 7.4.1.

Using a subset of the arguments of the above proof we also derive the
following – slightly more general – corollary.

Corollary 7.4.2. Let p-Π be an optimization problem and let C be a
graph class that is H-topological minor-free for some graph H . If p-Π is

1. minor-closed,

2. treewidth modulable,

3. CMSO-definable, and

4. separable,

then p-Π ⋒ C admits a linear, minor-monotone, and parameter-invariant
kernel.
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7.4.4 Consequences on obstructions

c-normal parameters

In order to exploit Theorem 7.4.1 for computing obstruction sets, it is nec-
essary that the parameters we use Theorem 7.4.1 on, behave in a “normal”
way. “Normal” in this set-up is defined as follows.

Definition 7.4.9. Let p be a graph parameter and c ≥ 1 a constant. We
say that p is c-normal for

- vertex deletions if for every graph G ∈ dom(p) and every x ∈
V (G), p(G \ x) ≥ p(G)− c,

- edge deletions if for every graph G ∈ dom(p) and every e ∈ E(G),
p(G \ e) ≥ p(G)− c, and

- edge contractions if for every graph G ∈ dom(p) and every e ∈
E(G), p(G/e) ≥ p(G)− c.

Furthermore, we say that p is normal if there exists a constant c ≥ 1 such
that p is c-normal for some of the above operations3.

All parameters defined so far are (trivially) normal. Let us see an ex-
ample.

Example 7.4.1. Treewidth and pathwidth are 1-normal for vertex dele-
tions. We will prove the treewidth case. Let x be a vertex of a graph G,
and assume that tw(G\x) < tw(G)−1. This means that there exist a tree-
decomposition (T,B) ofG\xwith width(T,B) ≤ tw(G)−2. Notice that
the tree-decomposition (T,B′), where, for every t ∈ V (T ),B′

t = B∪{x},
is a tree-decomposition of G with width(T,B′) ≤ tw(G) − 1, a contra-
diction.

3We may also say that p is c-normal, without explicitly stating the local transforma-
tion, as – in all known cases – it does not matter what this transformation is.
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In this Section we will prove that a minor-monotone and parameter-
invariant kernel for a minor-closed problem p-Π, can make the computa-
tion of the set obs≤m(pp-Π, k) possible, as long as pp-Π is a normal param-
eter. The rationale supporting this stems from the following lemma.

Lemma 7.4.1. Let p-Π be an minor-closed optimization problem that ad-
mits a kernel of size g that is minor-monotone and parameter-invariant.
For every graphG there is a graphG′ such thatG′ ≤m G, |G′| ≤ g(pp-Π(G)),
and pp-Π(G

′) = pp-Π(G).

Proof. Let G be a graph and let pp-Π(G) = ℓ. Notice that (G, ℓ) ∈ p-Π.
We distinguish two cases.

Case 1: p-Π is a minimization problem. We observe that (G, ℓ−1) ̸∈ p-Π.
As p-Π admits a minor-monotone and parameter-invariant kernel of size
g, if we run the kernelization algorithm with input (G, ℓ − 1) the output
is a pair (G′, ℓ′) where ℓ′ = ℓ − 1, G′ ≤m G, and |G′| ≤ g(ℓ − 1). As
(G, ℓ− 1) ̸∈ p-Π we also have that (G′, ℓ− 1) ̸∈ p-Π. The latter implies
that pp-Π(G

′) ≥ ℓ because p-Π is a minimization problem. Moreover, as
pp-Π is minor-closed, then pp-Π(G

′) ≤ ℓ, therefore pp-Π(G
′) = ℓ.

Case 2: p-Π is a maximization problem. We observe that (G, ℓ) ∈ p-Π.
As p-Π admits a minor-monotone and parameter-invariant kernel of size
g, if we run the kernelization algorithm with input (G, ℓ) the output is a
pair (G′, ℓ′) where ℓ′ = ℓ, G′ ≤m G, and |G′| ≤ g(ℓ). As (G, ℓ) ∈ p-Π we
also have that (G′, ℓ) ∈ p-Π. The latter implies that pp-Π(G

′) ≥ ℓ, because
p-Π is a maximization problem. Moreover, as pp-Π is minor-closed, then
pp-Π(G

′) ≤ ℓ, therefore pp-Π(G
′) = ℓ.

Theorem 7.4.2. Let p-Π be an minor-closed optimization problem that
admits a kernel of size g that is minor-monotone and parameter-invariant.
If pp-Π is c-normal then obs≤m(pp-Π, k) is computable and, for every k ∈ N,
each graph in obs≤m(pp-Π, k) has at most g(k − c) vertices
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Proof. We will prove that for every G ∈ obs≤m(pp-Π, k), |G| ≤ g(k − c).
Since p-Π is an optimization problem it follows that pp-Π is computable.
Thus, we can check for every graph G of size at most g(k − c) whether
pp-Π(G) > k and whether for every proper minor G′ of G, pp-Π(G

′) ≤ k,
and, in this way, compute G ∈ obs≤m(pp-Π, k).

Let G′ be a graph obtain from G according to Lemma 7.4.4. Since
G ∈ obs≤m(pp-Π, k) andG′ is a minor ofGwith pp-Π(G

′) = pp-Π(G) > k,
it follows that G = G′. Therefore |G| ≤ g(pp-Π(G)).

We assume that pp-Π is c-normal for vertex deletions (the same argu-
ment holds for edge deletions or edge contractions), and let u ∈ V (G).
Then, it holds that

pp-Π(G)− c ≤ pp-Π(G \ u)

and, asG is a minor minimal graph with pp-Π greater than k andG\u ≤m

G, we conclude that
pp-Π(G \ u) ≤ k.

This implies that pp-Π(G) ≤ k − c. Hence |G| ≤ g(pp-Π(G)) ≤ g(k −
c).

Theorem 7.4.1 can help us specify the properties an optimization prob-
lem p-Π must have to make the computation of obs≤m(pp-Π, k) possible.

Corollary 7.4.3. Let p-Π be an optimization problem that is minor-
closed, has FII, and is protrusion decomposable. Then, if pp-Π is normal,
then obs≤m(pp-Π, k) is computable and each graph in obs≤m(pp-Π, k) has at
most O(k) vertices.

This corollary also provides some knowledge on the graphs of the set
obs≤m (pp-Π, k) when p-Π is the F-Covering problem. As it is proved
in [171,172], each graph in obs≤m(pp-Π, k) has at most kcF vertices where
cF is a constant depending only on the class F . An interesting open prob-
lem – that is somehow parallel to the problem of the size of the best kernel
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for p-Π (examined in [177]) – is whether this upper bound can be reduced
to cF · kO(1). Theorem 7.4.1, combined with the results in [180], implies
that for every H , each of the H-topological minor-free obstructions in
obs≤m(pp-Π, k) has at most cF · k vertices, for some computable constant
cF . Similar conclusions can be derived when p-Π is the F-Packing prob-
lem, but now for H-minor free graphs (using results in [44, 155]).

Distance to p parameters

Recall the modification parameter (p, r)-dist, which is defined using the
“host” parameterp (see Definition 4.2.4). We will implement Theorem 7.4.1
to compute the subset of obs≤m((p, r)-dist, k) containing H-topological
minors-free graphs, for some graph H .

Definition 7.4.10. Let p be a parameter, and let CG be the set containing
the connected-components of a graph G.

- p is a max-parameter if p(G) = max{p(C) | C ∈ CG}.

- p is a sum-parameter if p(G) =
∑

C∈CG p(C).

Example 7.4.2. A characteristic max-parameter is tw and a characteristic
sum-patrameter is vc.

We have to mention that – typically – layout parameters are max-
parameters and vertex removal parameters are sum-parameters.

Definition 7.4.11. A setF of graphs is connected if and only if all graphs
in F are connected.

Proposition 7.4.5 (Lemma 8.4 in [155]). Let F be a connected set of
graphs, that contains at least one planar graph. Then the F-Covering
problem has FII.

We now present two theorems similar to Theorem 4.2.1.
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Theorem 7.4.3. Let r, k ∈ N and let p be a minor closed, computable,
max-parameter that is big in grids. And let C be a graph class that is
H-topological minor-free, for some graph H . Then the set

obs≤m((p, r)-dist, k) ∩ C

can be computed.

Proof. Let r ∈ N and let p-Π be the (p, r)-Distance problem. First we
prove that p-Π ⋒ C satisfies the properties of Theorem 7.4.1.

p-Π is trivially minor closed. Notice that, from Observation 4.2.2, p-Π
is the obs≤m(p, r)-Covering problem. Therefore, it suffices to show that
obs≤m(p, r)-Covering has FII and for this, according to Proposition 7.4.5,
it suffices to show that obs≤m(p, r) is connected and contains a planar
graph. obs≤m(p, r) is connected because p is a max-parameter, therefore
every minor-minimal graphG with p(G) > r must be connected. Since p
is also big in grids, from Lemma 4.2.1, it follows that obs≤m(p, r) contains
a planar graph.

We will now prove that p-Π is treewidth modulable. Given a graph
G, from the definitions of (p, r)-dist and pp-Π, we know that there exist a
set S ⊆ V (G), of size at most pp-Π(G), such that p(G \ S) ≤ r. From
Lemma 4.2.1 it holds that obs≤m(p, r) contains a planar graph, say O. As
p(G\S) ≤ r,G\S does not containO as a minor, therefore, from [69,92]
there exist a constant N such that tw(G \ S) ≤ N .

Since p-Π ⋒ C is also treewidth modulable, using Proposition 7.4.3,
we can show that p-Π ⋒ C is protrusion decomposable. Therefore, from
Theorem 7.4.1 p-Π ⋒ C admits a linear kernel that is parameter-invariant
and minor-monotone.

Given a graph G and a vertex x ∈ V (G), notice that pp-Π(G \ x) =

pp-Π(G)− 1. Therefore, pp-Π is 1-normal for vertex deletions. Therefore,
we can implement Theorem 7.4.2 for p-Π ⋒ C and conclude that obs≤m

((p, r)-dist, k) ∩ C can be computed.
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7.4.5 Consequences for EPTAS
Parameterized complexity and Approximation algorithms have recently
came together, producing very interesting results [158–160, 166, 173].

Definition 7.4.12 (Cesati and Trevisan, 1997 [159]). An Efficient Poly-
nomial Time Approximation Scheme (EPTAS in short) for a parameter-
ized graph problem p-Π is a collection of algorithms (varying for differ-
ent values of ϵ) that, for every ϵ > 0, return an (1 + ϵ)-approximation (or
(1− ϵ)-approximation, depending on whether p-Π is a minimization or a
maximization problem) of pp-Π(G) in f(1/ϵ) · |G|O(1) steps, where f is
some computable function.

A direct consequence of Theorem 7.4.1 is the following.

Theorem 7.4.4. Let p-Π ⊆ G × N be an optimization graph problem. If
p-Π is minor-closed, protrusion-decomposable, and has FII, and an EP-
TAS running in f(1/ϵ)·|G|O(1) steps, then p-Π has also anEPTAS running
in |G|O(1) + f(1/ϵ) ·OPTO(1) steps, where OPT = pp-Π(G).

Notice that for the derivation of the theorem above, the parameter-
invariance property is only required. In [173], a powerful meta-algorithmic
result yielded the existence of EPTAS for a wide family of minor-closed
problems on H-minor free graphs. In fact, the results in [173] already
proved that the corresponding graph problems are protrusion decompos-
able. This way, Theorem 7.4.4 provides some acceleration of the running
times of the meta-algorithmic framework of [173], for minor-closed prob-
lems, including all problems that can be expressed by F-Covering and
F-Packing.

7.5 Setting up the Proof
The main idea of the proof of Theorem 7.3.1 is to find parts of the graph
that can be “compressed” without changing the value of p, and that are
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large enough so that eventually the size of the graph will decrease signifi-
cantly. To do this, we have to define new types of graph decompositions,
as well as boundaried graph decompositions. Then, we have to distinguish
pairs of vertices in these decompositions that make the aforementioned
compression possible.

To set-up the proof (milestone number four) we need to introduce
many different combinatorial notions.

7.5.1 Graph decompositions

Definition 7.5.1. Let (T, χ) be a tree-decomposition of a graph G. We
say that (T, χ) is lean if for every t ∈ N, every pair u1, u2 ∈ V (T ), and
every Zi ⊆ χ(ui), i ∈ [2], where |Z1| = |Z2|, it holds that

- either there exists an edge e = {w1, w2} ∈ E(iT j) such thatχ(w1)∩
χ(w2) < t,

- or there exists a collection of t internally vertex-disjoint paths in G
between Z1 and Z2.

Proposition 7.5.1 ( [32, 60]). Every graph G has a lean tree-decompo-
sition of width tw(G).

Definition 7.5.2. Let (T, χ) be a tree-decomposition of a graph G. We
say that (T, χ) is small if ∀{i, j} ∈ E(T ), χ(i) \ χ(j) ̸= ∅ and χ(j) \
χ(i) ̸= ∅.

We need a series of lemmata on tree-decompositions. For the proof of
the following, we copy [142, Lemma 11.9].

Lemma 7.5.1. There exists an algorithm that, given a graph G and a
(lean) tree-decomposition (T, χ) of G of width at most tw(G), returns
– in O(|G|) steps – a small (and lean) tree-decomposition (T ′, χ′) of G of
width at most tw(G), where |T ′| ≤ |G|.
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Proof. In order to make D small we apply the following transformation:
If for some edge e = {a, b} of T , it holds that χ(a) ⊆ χ(b), then let
D = (T ′, χ′), where T ′ = T \ e and χ′ = χ \ {(a, χ(a))}. It is easy
to verify that if D is lean, this transformation creates again a lean tree-
decomposition. Moreover, when this transformation cannot be applied
any more, the resulting decomposition is small. The fact that a small
tree-decomposition of G does not have more than |G| nodes follows by
induction on the number of vertices ofG and using the fact that the bag of
every leaf in a small tree-decomposition contains an element not contained
in any other bag.

Definition 7.5.3. An (α, β)-protrusion decompositionP = {X0, X1, . . . ,

Xℓ} of a graph G is tight if for all i ∈ [ℓ], ∂G(Ri) = NG(Xi).

Lemma 7.5.2. If a graph G has an (α, β)-protrusion decomposition P =

{X0, X1, . . . , Xℓ}, then it also have a tight (α, β)-protrusion decomposi-
tion.

Proof. LetP = {X0, X1, . . . , Xℓ} be an (α, β)-protrusion decomposition
of G. Recall that Ri = NG[Xi], i ∈ [ℓ]. For every i ∈ [ℓ], we set Zi =
NG(Xi)\∂G(Ri) and observe that the setsZ1, . . . , Zℓ are pairwise disjoint.
Indeed, this follows from the fact that, for each i ∈ [ℓ], each vertex in Zi
is incident only with edges in G[Ri]. For the same reason, none of these
vertices can be a vertex of some ∂G(Rj), j ∈ [ℓ]. We conclude that∪

i∈[ℓ]

(Zi ∩ ∂G(Ri)) = ∅. (7.3)

We define X ′
i = Xi ∪ Zi, i ∈ [ℓ], and observe that

NG[X
′
i] = NG[Xi] and (7.4)

NG(X
′
i) = ∂G(Ri) (7.5)
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We also define

X ′
0 = X0 \

∪
i∈[ℓ]

Zi. (7.6)

We claim thatP ′ = {X ′
0, X

′
1, . . . , X

′
ℓ} is also an (α, β)-protrusion decom-

position of G. As the sets in the collection {Z1, . . . , Zℓ, X1, . . . , Xℓ} are
mutually disjoint we obtain that P ′ is a partition of V (G). As X ′

0 ⊆ X0,
Condition 1 holds. (7.4) and the fact that Ri = NG(Xi) is a β-protrusion
decomposition ofG, imply Condition 2. To prove Condition 3, recall first
that ∂G(Ri) ⊆ NG(Xi) ⊆ X0. Combining this fact with (7.3) and (7.6),
we obtain that ∂G(Ri) ⊆ X ′

0. From (7.5), we deduce that NG(X
′
i) ⊆ X ′

0

and, therefore, the claim holds.
From (7.4) and (7.5) we get the additional property that ∀i ∈ [ℓ],

NG(X
′
i) = ∂G(NG[X

′
i]), therefore P ′ is tight.

7.5.2 Rooted trees

We will work towards proving Theorem 7.3.1 on rooted trees defined from
a graph decomposition. Let us set the necessary notation.

Definition 7.5.4. A rooted tree is a pair (T, r) where T is a tree and
r ∈ V (T )

We denote by Leaf(T, r) the set of all leaves of T that are different
than r.

Definition 7.5.5. Let (T, r) be a rooted tree. Given two vertices a, b of
T , we write a ≤T,r b to denote that a ∈ V (rTb) and, in this case, we say
that b is a descendant of a in (T, r). We also write a ̸=T,r b to denote that
neither a ≤T,r b nor b ≤T,r a is true and, in this case, we say that a and
b are uncomparable in (T, r). Moreover, we write a <T,r b to denote that
a ̸=T,r b and a ≤T,r b.
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Definition 7.5.6. Let (T, r) be a rooted tree. Given some q ∈ V (T ), we
denote the set of descendants of q in (T, r) as descT,r(q). The children of
a vertex q ∈ T , in (T, r) are the vertices in descT,r(q) that are adjacent to
q and are denoted as childT,r(q).

Definition 7.5.7. A rooted tree (T, r) is binary if every vertex of T has
at most two children.

Definition 7.5.8. Let (T, r) be a rooted tree, and let v ∈ V (T ). The
depth of v in (T, r) is |V (rTv)| and is denoted by depthT,r(v). Also the
height of v in (T, r) is defined as heightT,r(v) = max{|V (vT l)| | l ∈
Leaf(T, r)}.

7.5.3 Pair collections

The first type of pairs in a rooted tree we consider is – the rather simple –
vertical pairs.

Definition 7.5.9. Let (T, r) be a rooted tree. We say that a pair (a, b) of
V (T )× V (T ) is a vertical pair of (T, r) if a <T,r b

4. We call a (resp. b)
the upper (resp. the lower) vertex of (a, b). If {a, b} is an edge of T , then
(a, b) is an edge-pair.

Definition 7.5.10. The inner part of a vertical pair (a, b) of (T, r) is

innerT,r(a, b) = {b} ∪ (descT,r(a)) \ descT,r(b)

The outer part of (a, b) is defined as

outerT,r(a, b) = {a, b} ∪ (V (T ) \ innerT,r(a, b)).

The capacity of (a, b) is defined as capacityT,r(a, b) = |innerT,r(a, b)|.
4Notice that in a vertical pair (a, b), a and b should be different vertices.
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Notice that in the tree T [innerT,r(a, b)] the vertex b is a leave, and that
outerT,r(a, b) ∩ innerT,r(a, b) = {a, b} (see Figure 7.2).

Definition 7.5.11. Two vertical pairs (a, b) and (a′, b′) of (T, r) are non-
interfering if a ̸=T,r a

′ or b <T,r a
′, or b′ <T,r a (see Figure 7.2).

Definition 7.5.12. A pair collection of (T, r) is a set C of pairwise non-
interfering vertical pairs of T. The minimum (resp. maximum) capacity of
C is the minimum (resp. maximum) capacity of a vertical pair in C.

Definition 7.5.13. If (a, b) is a vertical pair of (T, r), the (a, b)-com-
pression of (T, r) is the rooted tree (T ′, r) where T ′ is obtained from T if
we remove all vertices in innerT,r(a, b) \ {a, b}, identify a and b, and call
this vertex a again. We denote this new rooted tree by (T, r) \ (a, b).

Observation 7.5.1. If (T, r) is a binary rooted tree, then (T, r) \ (a, b)
is also a binary rooted tree.

Definition 7.5.14. Let (a, b) be a vertical pair of (T, r) andx, y ∈ innerT,r
(a, b) (x and y are not necessarily distinct). We say that x and y are (a, b)-
aligned if either V (xTy) ⊆ V (aTb) or V (xTy) ∩ V (aTb) ⊆ {x, y} (see
Figure 7.2).

Notice that in every vertical pair (a, b), a and b are (a, b)-aligned.

The following lemma shows us the size of the capacity a pair (a, b)
must have in order to be sure that it contains an (a, b)-aligned pair.

Lemma 7.5.3. Let (T, r) be a rooted binary tree and let (a, b) be a vertical
pair of (T, r). For every d ≥ 2, if (a, b) has capacity

(d− 2) · 2d−2 + 1,

then there are x, y ∈ innerT,r(a, b) such that x and y are (a, b)-aligned and
|xTy| ≥ d.
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b

innerT,r(a, b)

outerT,r(a, b)

x4
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y2

T

y3

x2
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Figure 7.2: The vertical pairs (x2, y2), (x3, y3) and (x4, b) are non-
inerfering. Notice that a and y1 are not (a, b)-aligned.

Proof. We set Y = T [innerT,r(a, b)].Observe that (Y, a) is a rooted graph
where b ∈ Leaf(Y, a).

If |aY b| ≥ d then a and b are the required vertices of innerT,r(a, b).
Suppose then that |aY b| ≤ d − 1. Let Y1, . . . , Yz be the connected

components of Y \ E(aY b). Each Yi is a binary tree whose root is some
vertex of aY b that has only one child. Clearly, as b ∈ Leaf(Y, a) and
|aY b| ≤ d − 1, it holds that z ≤ d − 2. Also the vertices of Y1, . . . , Yz
form a partition of V (Y ). This means that one, say Yi, of Y1, . . . , Yz has
at least 1+2d−2 vertices. As Yi is binary and its root has only one child, it
follows thatYi contains a pathP on d vertices. Let x and y be its endpoints.
We obtain that |xY y| ≥ d. The lemma follows as the endpoints x and y
are (a, b)-aligned.

7.5.4 Boundaried graphs cont.

Recall the definitions of Section 7.2. Here, we focus on the relation ≡p,t

and present an algorithm which will later allow us to calculate the “cost”
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of an (a, b)-compression (Lemma 7.5.4). By cost we mean the change in
the value of the parameter p. As we want to keep this value unchanged,
we will have to look for pairs that have zero cost.

Definition 7.5.15. We define the transposition function transpp that re-
ceives as inputs pairs (G1,G2) of boundaried graphs, where, G1 ≡p,t G2

and Gi ̸∈ null(p), i ∈ [2], and outputs the constant cG1,G2 in the equa-
tion (7.2).

Notice that, demanding Gi ̸∈ null(p), i ∈ [2], guaranties that transpp
(G1,G2) is an integer.

Observation 7.5.2. Let p be a graph parameter and t ∈ N.The following
hold:

1. ∀G1,G2 ∈ B(t), transpp(G1,G2) = transpp(G2,G1)

2. ∀G1,G2,G3 ∈ B(t), transpp(G1,G3) = transpp(G1,G2) + transpp
(G2,G3)

Lemma 7.5.4. Let p be a computable graph parameter that has FII. For
every t ∈ N, there exists an algorithm that, given a G ∈ B(≤t), outputs
H = repp(G) and transpp(H,G).

Proof. Let R be a t-representative collection for ≡p,t.We prove first that
there is an algorithm that, with inputH,G ∈ B(≤t), checks whetherH ≡p,t

G in Ot(1) steps. For this, we claim first that (7.2) is equivalent to the
following:

∃cG,H ∈ Z ∀B ∈ R ∩ B(t′), p(G⊕ B)− p(H⊕ B) = cG,H (7.7)

Given that (7.2) ⇔ (7.7), we check H ≡p,t G as follows: Check first
whether the underlying graphs of H and G both belong in the domain

136



CHAPTER 7. MONOTONE KERNELS

of p (this is possible as p is computable), second, check whether H are
compatible t′-boundaried graphs, for some t′ ∈ {0} ∪ [t], and, finally,
check whether (7.7) is correct (instead of (7.2)). Notice that (7.7) can be
checked in Ocardp(t),|H|,|G|(1) steps.

The “(7.2)⇒ (7.7)” direction is a direct consequence of the definition
of ≡p,t and the fact that R ∩ B(t) ⊆ B(t). To prove the “(7.2) ⇐ (7.7)”
direction, observe first that for every F ∈ B(t′), there exists some BF ∈
R ∩ B(t′) such that F ≡p,t BF. This, together with the definition of ≡p,t

means that:

∀F ∈ B(t′) ∃BF ∈ R ∩ B(t′) ∃cF,BF ∈ Z ∀B ∈ B(t′) :

p(F⊕ B)− p(BF ⊕ B) = cF,BF (7.8)

By applying (7.8) for B = G and B = H, we have that:

∀F ∈ B(t′) ∃BF ∈ R ∩ B(t′) ∃cF,BF ∈∈ Z :

p(F⊕G)− p(BF ⊕G) = cF,BF (7.9)
∀F ∈ B(t′) ∃BF ∈ R ∩ B(t′) ∃cF,BF ∈ Z :

p(F⊕H)− p(BF ⊕H) = cF,BF (7.10)

From (7.9) and (7.10), we deduce the folowing:

∀F ∈ B(t′) ∃BF ∈ R ∩ B(t′) :

p(F⊕G)− p(BF ⊕G) = p(F⊕H)

− p(BF ⊕H) (7.11)

We now apply (7.7) for B = BF:

∃cG,H ∈ Z, p(G⊕ BF)− p(H⊕ BF) = cG,H (7.12)
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Combining (7.11) and (7.12) we have:

∃cG,H ∈ Z ∀F ∈ B(t′) ∃BF ∈ R,
p(F⊕G)− p(F⊕H) = cG,H (7.13)

By simplyfying (7.13), we obtain:

∃cG,H ∈ Z ∀F ∈ B(t′), p(F⊕G)− p(F⊕H) = cG,H (7.14)

which is equivalent to (7.2).

Observe now that as p is computable, there exists an algorithm that
checks whether (7.7) is correct for some H ∈ R that is compatible with
G. The algorithm then returns such a boundaried graph H, along with the
value transpp(H,G) = cG,H.

This lemma is the reason why Theorem 7.3.1 is not constructive. In the
first line of the proof we assume thatR is given to us. Unfortunately, there
is no known general way to compute a t-representative collection given
only the parameter p and a t ∈ N. However, if cardp is a computable
function we can compute for every t ∈ N a t-representative collection, as
Lemma 7.7.1 shows us.

We close this Section with a couple more definitions.

Definition 7.5.16. Let G = (G,X, λ) be a boundaried graph and S ⊆
V (G). We define the boundaried graph G′ = G \ S such that G′ =

(G′, X ′, λ′), G′ = G \ S, X ′ = X \ S, and λ′ = λ|X′ .

Definition 7.5.17. Let G1 = (G1, X1, λ1) and G2 = (G2, X2, λ2) be
two t-boundaried graphs. We say that G1 is a minor of G2, denoted by
G1 ≤m G2, if there is a function σ : V (G1)→ 2V (G2) where

(1) ∀x, y ∈ V (G1), x ̸= y ⇒ σ(x) ∩ σ(y) = ∅,
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(2) ∀x ∈ V (G1), G2[σ(x)] is connected,

(3) ∀{x, y} ∈ E(G1), G2[σ(x) ∪ σ(y)] is connected, and

(4) ∀i ∈ [t], ψ−1
G2
(i) ∈ σ(ψ−1

G1
(i)).

Notice that if G1 ≤m G2, then HG2 is a spanning subgraph of HG1 .
Also notice that the graph H is a minor of G if (H, ∅,∅) ≤m (G, ∅,∅).

7.5.5 The functions used in the proof

The constant cp of Theorem 7.3.1 is defined from the following functions.

Definition 7.5.18. Given a graph parameter p that has FII, we define the
functions τp, θp, µp, δp, ξp : N→ N such that:

τp(x) = max{p(G) | G is a graph in dom(p) where |G| ≤ x},
θp(x) = (cardp(x) · x! + 1)x+1,

µp(x) = (θp(x)− 2) · 2θp(x)−2 + 1,

δp(x) = x((4x · µp(x)− 1)2 + 4x · µp(x)), and
ξp(x) = τp(x · (24x·µp(x)−1 − 1)).

Definition 7.5.19. Given a graph parameter p that has FII, we define the
constant cp to be

cp = (δp(2 · dec(p)) · (2 · dec(p) · ξp(2 · dec(p)) + 1) + dec(p)).

Notice that the function cardp is involved in the definition of cp. This
is the reason why cp cannot be constructively computed in Theorem 7.3.1.

Unfortunately, from now on, the reader will have to come back to this
Section many time.
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7.5.6 Tree-decompositions of boundaried graphs

In this Section we extend the definitions of treewidth and lean tree-decom-
positions to boundaried graphs. Also, we introduce a couple of new tree-
decompositions for boundaried graphs, namely binary and rooted tree-
decompositions. Then we prove some basic properties of these decompo-
sitions.

Definition 7.5.20. Let G = (G,X, λ) be a boundaried graph. A tree-
decomposition of G is a triple D = (T, χ, r) where (T, χ) is a tree-
decomposition of G and r is a vertex of T such that χ(r) = X. The
width of a tree-decomposition D = (T, χ, r) is the width of the tree-
decomposition (T, χ). The treewidth of a boundaried graph G is the min-
imum width over all its tree-decompositions and is denoted by tw(G).

To make the proofs shorter we will use some “abbreviations”. Let
D = (T, χ, r) be a tree-decomposition of a boundaried graph G:

• For each q ∈ V (T ), we set tq = |χ(q)| and we denote the corre-
sponding frontier graph by Hq = HGq .

• We set Tq = T [descT,r(q)] and we denote by Gq the tq-boundaried
graph (Gq, χ(q), λq) where

Gq = G[
∪

q′∈V (Tq)

χ(q′)] and λq = λ|V (Gq).

Notice that if a, b ∈ V (T ) and a ≤T,r b, then Gb is a subgraph of Ga.

We also set:

• Vq = V (Gq),

• Ṽq = Vq \ χ(q),

• Gq = G \ Ṽq,
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X

X G

r

q

Gq

Gq

χ(q)

χ(q)

Dq = (Tq, χq, q)

Ṽq

Figure 7.3: A boundaried graph G = (G,X, λ) and a tree-decomposition
D = (T, χ, r) of it. Notice that Ṽq contains the vertices of the three bags
inside the dotted curve.

and we define the tq-boundaried graph Gq = (Gq, χ(q), λq), where λq =
λ|V (Gq)

, for q ∈ V (T ). Notice that Gq and Gq are compatible and that
Gq ⊕Gq = G.

Finally, for every q ∈ V (T ), we use the notation V q = V (Gq), χq =
χ|Vq , and Dq = (Tq, χq, q) and observe that Dq is a tree-decomposition of
Gq (see Figure 7.3).

Definition 7.5.21. We say that a tree-decomposition D = (T, χ, r) of a
boundaried graph G is lean if (T, χ) is lean. D = (T, χ, r) is a binary
tree-decomposition if (T, r) is a binary tree and for every edge-pair (i, j),
if |χ(i)| = |χ(j)|, then Gj is a proper subgraph of Gi, i.e., |Gj| < |Gi|.

Lemma 7.5.5. Let G be a boundaried graph and let D = (T, χ, r) be a
tree-decomposition of G of width ≤ t− 1. Then |G| ≤ t · |T |.

Proof. Notice that a set of n = |G| vertices is covered by |T | sets, the bags
of D, each of size at most t. As each bag of D covers at most t vertices, it
follows that n ≤ t · |T | as required.
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Lemma 7.5.6. Let G be a boundaried graph and let D = (T, χ, r) be a
binary tree-decomposition of G. Then |T | ≤ 4 · |G|.

Proof. The proof is based on the fact that a binary tree-decomposition
D = (T, χ, r) ofG can be transformed to a decompositionD′ = (T ′, χ′, r)

with the following properties:

A. T ′ is a binary tree.

B. If some vertex t of T has two children t1 and t2, then χ′(t) =

χ′(t1) = χ′(t2).

C. If some vertex t of T has one child t′, then either |χ′(t)\χ′(t′)| = 1

or |χ′(t′) \ χ′(t)| = 1.

A tree-decomposition as above is called nice and it is known that
|T ′| ≤ 4 · |G| (e.g., [16]). It now remains to provide a way to transform
(T, χ, r) to a nice tree-decomposition of G – of the same width – where
|T | ≤ |T ′|. For this, we apply the following transformations as long as
this is possible.

1. If t ∈ V (T ), t has two children and for one of them, say t′, it holds
that χ(t′) ̸= χ(t), then subdivide the edge {t, t′} and, if tnew is the
subdivision vertex, set χ(vnew) = χ(t).

2. If for some edge-pair (t, t′) of T it holds that |χ(t) ∩ χ(t′)| < min
{|χ(t)|, |χ(t′)|}, then subdivide the edge {t, t′} and, if tnew is the
subdivision vertex, set χ(vnew) = χ(t) ∩ χ(t′).

3. If for some edge {t, t′} of T there are at least two vertices, a and
a′, in χ(t) \ χ(t′), then subdivide the edge {t, t′} and, if tnew is the
subdivision vertex, set χ(vnew) = χ(t′) ∪ {a}.

Let (T ′, χ′, r) be the resulting tree-decomposition of G. Clearly T ′ is
binary, therefore property A holds. Property B follows by the fact that
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Transformation 1 cannot be applied any more and Property C follows be-
cause transformations 2 and 3 cannot be applied any more. Therefore
(T ′, χ′, r) is a nice tree-decomposition, as required.

Lemma 7.5.7. There exists an algorithm that, given a boundaried graph
G and a (lean) tree-decomposition D = (T, χ, r) of G with width at most
k ∈ N, outputs, in O(|G|) steps, a (lean) binary tree-decomposition of G
– of width at most k – that has at most 2 · |G| − 1 nodes.

Proof. Because of Lemma 7.5.1 we can assume that (T, χ) is small, and
that T has at most |G| nodes. Clearly it holds that:

∀{x, y} ∈ E(T ), χ(x) \ χ(y) ̸= ∅ and χ(y) \ χ(x) ̸= ∅ (7.15)

Let B be the set of vertices of T that have more than 2 children in
T. For each b ∈ B we apply the following transformation on D. Let
{b1, . . . , bs} be the children of b in (T, r). We set D′ = (T ′, χ′, r) where:

- T ′ is obtained by T after removing the edges {b, bi}, i ∈ {2, . . . , s},
adding the new vertices {b′2, . . . , b′s−1}, the edge {b, b′2}, the edges
{b′i, b′i+1}, i ∈ {2, . . . , s− 2}, the edges {bi, b′i}, i ∈ {2, . . . , s− 1}
and the edge {b′s−1, bs} (see Figure 7.4), and

- χ′ = χ ∪ {(b′i, χ(b)) | i ∈ {2, . . . , s− 1}}.

We call D′ = (T ′, χ′, r) the tree-decomposition of G that is obtained
after applying the above transformation for every b ∈ B. Notice that
T is a binary tree and that the width of D′ is equal to the width of D.
Also, it is easy to observe that the number of new nodes is upper bounded
by the number of leaves of T , therefore the number of nodes of the new
decomposition cannot increase more than double. Moreover, it can be
easily verified that if D is lean, then D′ is lean as well.

Notice that D satisfied Condition (7.15) before the application of the
above transformation. Moreover, for every vertical pair (a, b) where Con-
dition (7.15) is still true after the transformation, it holds that |Gb| < |Ga|.
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b

b1 b2 bs

b

bsbs−1

b′s−1

b′2
b1

b2

Figure 7.4: The transformation of Lemma 7.5.7.

If Condition (7.15) is not any more true for some vertical pair (x, y),
created after the application of the above transformation, then (x, y) ∈
{(b′i, b′i+1) | i ∈ {2, . . . , s− 2}} for some b ∈ B (here we denote b′2 = b).
In this case, χ(b′i) = χ(b), i ∈ {2, . . . , s − 1}. But then b′i has another
child, that is bi, where both χ(bi) \ χ(b′i) and χ(b′i) \ χ(bi) are non-empty,
because both χ(bi)\χ(b) and χ(b)\χ(bi) where initially non-empty. This
implies that if χ(b′i) = χ(b′i+1), Vb′i+1

⊊ Vb′i then |Gb′i+1
| < |Gb′i

| as re-
quired. Therefore D′ is a binary tree-decomposition.

Notice now that the number of new nodes of D′ is equal to∑
v∈V≥3

(degT (v)− 2),

where V≥3 is the number of vertices in T with more than 2 children. It is
easy to observe that∑

v∈V≥3

(degT (v)− 2) ≤ Leaf(T, r) ≤ |T | − 1.

Therefore, |T ′| ≤ 2 · |T | − 1 ≤ 2 · |G| − 1.

Lemma 7.5.8. Let G = (G,X, λ) be a boundaried graph where G[X] is
a clique and tw(G) ≤ t− 1. Then G has a lean binary tree-decomposition

144



CHAPTER 7. MONOTONE KERNELS

D = (T, χ, r) – with width at most t − 1 – where χ(r) = X and |T | ≤
2 · |G|.

Proof. From Proposition 7.5.1, G has a lean tree-decomposition (T, χ)

of width tw(G). As G[X] is a clique, all vertices of X will go in the
same “bag” of (T, χ). Let q ∈ V (T ) such that X ⊆ χ(q) and set G′ =

(G,χ(q), λ). Notice that (T, χ, q) is a lean tree-decomposition of G′ of
width tw(G). From Lemma 7.5.7, (T, χ, q) can be transformed to a lean
binary tree-decomposition D = (T ′, χ′, q) of width tw(G), such that T ′

has at most 2 · |G′| − 1 = 2 · |G| − 1 nodes. Recall that χ′(q) = χ(q).

In the case where χ(q) = X , D is the required lean binary tree de-
composition of G and we are done.

In the case where X ⊊ χ(q), rename q to qold, add in T a new vertex
qnew along with the edge {q, qnew}, set χ = χ∪ (qnew, X) and rename qnew

to q. Notice that, as X ⊊ χ(q), after this modification D remains a lean
binary tree-decomposition of G of width tw(G).

Lemma 7.5.9. There exists an algorithm that, given a boundaried graph
G = (G,X, λ) and a tree-decomposition D = (T ′, χ′) of G′ = G \X , of
width tw(G′), constructs, in O(|G|) steps a binary tree-decomposition of
G – of width at most tw(G′)+|X| – with at most 2·(|G|−|X|)+tw(G′)+1

nodes.

Proof. Pick any vertex r of T ′ and let S = χ′(r). Clearly D′ = (T ′, χ′, r)

is a rooted tree-decomposition ofG′ = (G′, S, λ\X). From Lemma 7.5.7,
there is an algorithm that transforms D′ to a binary tree-decomposition
D′′ = (T ′′, χ′′, r) ofG′ of width tw(G′) and 2·|G′| = 2·(|G|−|X|) nodes,
in O(|G′|) steps. We update χ′′ so that for every q ∈ V (T ′′), χ′′(q) =

χ′′(q) ∪ {X}. Clearly, the new D′′ is a binary rooted tree-decomposition
of G, where χ′′(r) = S ∪X.

Let s = |S| and pick a colection A1, . . . , As of subsets of S ∪X such
that X = As ⊊ As−1 ⊊ · · · ⊊ A1 ⊊ S ∪X. We use D′′ = (T ′′, χ′′, r) in
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order to construct a binary tree-decomposition D+ = (T+, χ+, r+) of G
of width tw(G′) as follows.

Let T+ be the disjoint union of T ′′ and a path on s vertices q1, . . . , qs.
The construction of T+ is completed by adding the edge {r, q1}. We also
set r+ = qs. Finally we set χ+ = χ′′ ∪ {(qi, Ai) | i ∈ [s]} and notice
thatD+ = (T+, χ+, r+) is a binary tree-decomposition of G – of width at
most tw(G′)+ |X| – and with at most 2 · (|G|− |X|)+ tw(G′)+1 nodes,
as |S| ≤ tw(G′) + 1

Lemma 7.5.10. Let G = (G,X, λ) ∈ B(≤t). There exists an algorithm
that checks whether tw(G) ≤ t − 1, and if so, outputs a binary tree-
decomposition of G – of width at most t− 1 – in Ot(|G|) steps.

Proof. LetG′ be the graph obtained fromG after adding all edges missing
from G[X], i.e, G′[X] is a clique of |X| vertices. We use the algorithm of
Theorem 4.1.2 to check whether G′ has treewidth at most t− 1.

If the answer is affirmative, then this algorithm computes a tree-decom-
position (T ′, χ′) of G′, with width at most t− 1, in linear time. As G′[X]

is a clique there exists a r′ ∈ V (T ′) such that χ′(r′) ⊇ X . Let r′′ be a
vertex not in V (T ′). We define the tree T ′′ = (V (T ′) ∪ {r′′}, E(T ′) ∪
{{r′′, r′}}) and the tree-decomposition D′′ = (T ′′, χ′′, r′′) of G, where
χ′′ = χ′ ∪ {(r′′, X)}. Notice that D′′ was width at most t− 1.

On the other hand, if the answer of the algorithm is negative, that
means there is no tree-decomposition of G′ with width t − 1, and, there-
fore, there is no tree-decomposition of G with width at most t− 1 either.

UsingD′′ and the algorithm of Lemma 7.5.7 we can compute a binary
tree-decomposition of G, say D = (T, χ, r), with width at most t− 1, in
Ot(|G|) steps.

Definition 7.5.22. Let G = (G,X, λ) be a boundaried graph and let
D = (T, χ, r) be a tree-decomposition of G. Given α, β ∈ N, we say that
D is an (α, β)-tree-decomposition of G if the following conditions hold
(see Figure 7.5):
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χ(r) = X

r

r(1)

r(2)

r(s)
D(s)

D(2)

D(1)

∂G(V (Gr(1)))

Figure 7.5: An (α, β)-tree-decomposition of a boundaried graph G.

(1) |χ(r)| ≤ α,

(2) if {r(1), . . . , r(s)} is the set of children of r in (T, r), then s ≤ α,

(3) ∀h ∈ [s], D(h) = (Tr(h) , χr(h) , r
(h)) is a binary tree-decom-position

of Gr(h) of width at most β,

(4) ∀h ∈ [s], χ(r(h)) = ∂G(V (Gr(h))), and

(5) for each {i, j} ∈
(
[s]
2

)
, χ(r(i)) ̸= χ(r(j)).

We also define tq, Hq, Tq, Gq, Vq, Ṽq, Gq and Dq, for every q ∈ V (T ),
as we did in the case of tree-decompositions.

(α, β)-tree-decompositions can be related to (α, β)-protrusion decom-
positions in the following way.
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Lemma 7.5.11. Let G be a graph that has an (α, β)-protrusion decom-
position. Then there exists some boundaried graph G, whose underly-
ing graph is G, such that G has a (α, 2β)-tree-decomposition of at most
1 + 2 · |G|+ α · β + α nodes.

Proof. LetP = {X0, X1, . . . , Xℓ} be an (α, β)-protrusion decomposition
of G. From Lemma 7.5.2, we may assume that P is tight, i.e.,

∀i ∈ [ℓ], NG(Xi) = ∂G(NG[Xi]). (7.16)

Recall that Ri = NG[Xi], |∂G(Ri)| ≤ β and tw(G[Ri]) ≤ β, i ∈ [ℓ].

We set Gi = G[Xi], i ∈ [ℓ] and, as Xi ⊆ Ri, we obtain that tw(Gi) ≤
tw(G[Ri]), i ∈ [ℓ]. Notice that the vertex sets of the graphs in G1, . . . , Gℓ

are pairwise disjoint, therefore:

∀I ⊆ [ℓ], tw(
∪
i∈I Gi) ≤ β (7.17)

We say that Gi ∼ Gj if and only if ∂G(Ri) = ∂G(Rj). Clearly, ∼ defines
an equivalence relation. Let {G1, . . . ,Gs} be the partition of {G1, . . . , Gℓ}
into the equivalence classes of ∼ .

For h ∈ [s], we set G(h) = ∪ Gh and observe that, because of 7.17,
tw(G(h)) ≤ β. Also, we set

G
(h)

= G[V (G(h)) ∪ Z(h)],

where Z(h) is the common open neighbourhood, in G, of all the vertex
sets of the graphs in G(h), h ∈ [s]. From (7.16), Z(h) = ∂G(V (G

(h)
)).

As each Z(h) is some of the sets in {∂G(R1), . . . , ∂G(Rℓ)}, taking into
account (7.16), we have that |Z(h)| ≤ β, h ∈ [s].

Let λ be some labelling of G. We set, for every h ∈ [s],

G(h) = (G
(h)
, Z(h), λ|

V (G
(h)

)
)
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and t(h) = |Z(h)|. Recall that t(h) ≤ β, h ∈ [s]. From Lemma 7.5.9, each
G(h) has a binary tree-decomposition D(h) = (T (h), χ(h), r(h)) of width at
most tw(G(h)) + t(h) ≤ 2 · β and at most

2 · (|G(h)| − |Z(h)|) + tw(G(h)) + 1 ≤ 2 · (|G(h)| − |Z(h)|) + β + 1

nodes.

We now construct a tree-decompositionD = (T, χ, r) ofG as follows.
To construct the tree T we take the disjoint union of T (1), . . . , T (s), then
we add a new vertex r and we make r adjacent with r(1), . . . , r(s). We
then define χ = {(r,X0)} ∪ χ(1) ∪ · · · ∪ χ(s). Notice that D is a tree-
decomposition of G. We claim that D is an (α, 2 · β)-decomposition.

Taking into account that T (h) = Tr(h) and G(h) = Gr(h) , h ∈ [ℓ], it is
easy to verify that D is an (α, β)-decomposition of G of at most

1 +
∑
h∈[s]

(2 · (|G(h)| − |Z(h)|) + β + 1) = 1 + 2 ·
∑
h∈[s]

(|G(h)| − |Z(h)|)

+
∑
h∈[s]

(β + 1)

≤ 1 + 2 · |G|+ α · (β + 1)

nodes. Moreover, Condition 1 follows as |χ(r)| = |X0| ≤ α. Condition
2 follows from the fact that s is the number of equivalence classes of ∼,
which is at most ℓ ≤ α. Condition 3 follows directly by the construction
of D. For Condition 4 it is enough to observe that for every h ∈ [s],
χ(r(h)) = Z(h) = ∂G(V (G

(h)
)) = ∂G(V (Gr(h))). As χ(r(h)) = Z(h),

and, by their definition, all sets in {Z(1), . . . , Z(s)} are pairwise distinct,
Condition 5 is satisfied.
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7.5.7 A lemma on the compression of admissible pairs

We move on and define the type of pairs satisfying the properties that
allow us to compress “parts” of a boundaried graph. But first we have to
define what such a “part” is and then, how can we compress it.

Definition 7.5.23. Let Gi = (Gi, Xi, λi), i ∈ [2] be two boundaried
graphs. We say that G2 is a part of G1 if G2 is a subgraph of G1 such that
V (G2) is the union of some of the connected components of G1 \X2 that
do not contain vertices of X1 and λ1|V (G2) = λ2.

Definition 7.5.24. Let G2 = (G2, X2, λ2) and G′
2 = (G′

2, X
′
2, λ

′
2) be

boundaried graphs. We say that G′
2 and G2 are strongly compatible if they

are compatible, and λ′2(V (G2)) ⊆ λ2(V (G2)).

Definition 7.5.25. Let Gi = (Gi, Xi, λi), i ∈ [2] and G′
2 = (G′

2, X
′
2, λ

′
2)

be boundaried graphs. If G2 is a part of G1 and G2 and G′
2 are strongly

compatible, we define the replacement of G2 by G′
2 in G1 as the bound-

aried graph G′
1 = (G′

1, X
′
1, λ

′
1) where

- G′
1 = (G1 \ (V (G2) \X2), X2, λ \ (V (G2) \X2))⊕G′

2,

- X ′
1 = X1, and

- λ′1 = (λ1 \ (λ2 \ (V (G2) \X2))) ∪ λ′2.

Definition 7.5.26. Let G = (G,X, λ) be a boundaried graph and let
D = (T, χ, r) be a binary tree-decomposition ofG of width at most t− 1.

We say that a vertical pair (a, b) of (T, r) is compressible for (G, D) if Ga

and Gb are compatible.

Definition 7.5.27. Given a vertical pair (a, b) that is compressible for
(G, D), we define the (a, b)-compression of the pair (G, D) as the pair
(G′, D′) where G′ = (G′, X, λ′) is the replacement of Ga by Gb in G,
D = (T ′, χ′, r), T ′ = T \ (a, b), and χ′ = χ|V (T ′).
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X1

X2 X ′
2

G′
2

G2

G1

X1

X ′
2

G′
2

G′
1

Figure 7.6: The replacement of G2 by G′
2 in G1.

Notice that if D is a binary tree-decomposition of G, then D′ is again
a binary tree-decomposition of G.

Definition 7.5.28. Let G = (G,X, λ) be a boundaried graph and let
D = (T, χ, r) be a binary tree-decomposition of G of width at most t− 1.

Let t ∈ N and p be a graph parameter that has FII. We say that a vertical
pair (a, b) of (T, r) is ≡p,t-admissible for (G, D) if (a, b) is compressible
for (G, D) and Ga ≡p,t Gb.

The following Lemma is crucial for the proofs in this Chapter, as it
shows some useful properties of the replacement on admissible pairs.

Lemma 7.5.12. Let p be a graph parameter that has FII and let t ∈ N. Let
G = (G,X, λ) be a boundaried graph and let D = (T, χ, r) be a rooted
tree-decomposition of G of width at most t − 1. Let (i1, i2) be an ≡p,t-
admissible pair for (G, D) where Gi1 ≡p,ti1 Gi2 and let i3 ∈ V (T ) such
that i2 ≤T,r i3. Let also Gnew = (Gnew, Xnew, λnew) be a boundaried graph
that is strongly compatible with Gi3 and Gi3 ≡p,ti3 Gnew and let G′

ii
be the

replacement of Gi3 by Gnew in Gii , for i ∈ [2]. Then the following hold:

1. G′
i1
≡p,ti1 G

′
i2

,
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X
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BCD

CD
D

C

B

A A

Figure 7.7: The boundaried graphs in Lemma 7.5.12.

2. transpp(G′
i1
,G′

i2
) = transpp(Gi1 ,Gi2),

3. Gi2 ≡p,t G′
i2

, and

4. transpp(Gi2 ,G′
i2
) = transpp(Gi3 ,Gnew).

Proof. We define (see Figure 7.7):

B = Gi1 ∩Gi2 C = Gi2 ∩Gi3 D = Gi3

BCE = G′
i1

CE = G′
i2

BCD = Gi1

CD = Gi2 D = Gi3 E = Gnew.

If A = (A, Y, λ) is some ti1-boundaried graph, we denote ABC =

(A∪B ∪C, χ(i3), λ′), where we insist that V (A)∩V (Gi1) = Y = χ(i1)

and we pick λ′ as some vertex labelling ofA∪B∪C such that λ|χ(i3) ⊆ λ′.

Similarly, if A = (A, Y, λ) is some ti1-boundaried graph, we denote
AC = (A∪C, χ(i3), λ′),where we insist thatV (A)∩V (Gi2) = Y = χ(i2)

and we pick λ′ as some vertex labelling ofA∪B∪C such that λ|χ(i3) ⊆ λ′.
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We also set ABCD = A ⊕ BCD, ACD = A ⊕ CD, ABCE =

A⊕ BCE, and ACE = AC⊕ E. Clearly:

ABCD = ABC⊕ D (7.18)
ACD = AC⊕ D (7.19)

ABCE = ABC⊕ E (7.20)
ACE = AC⊕ E (7.21)

Finally we set t = ti1 = ti2 , t′ = ti3 = |Xnew|, c1,2 = transpp(Gi1 ,Gi2),
and c3,4 = transpp(Gi3 ,Gnew).

The proof is based on the following observations:

Gi1 ≡p,t Gi2 means that

∀A ∈ B(t), p(A⊕Gi1) = p(A⊕Gi2) + c1,2 ⇐⇒
∀A ∈ B(t), p(ABCD) = p(ACD) + c1,2 (7.22)

Gi3 ≡p,t′ Gnew means that

∀S ∈ B(t′), p(S⊕Gi3) = p(S⊕Gnew) + c3,4 ⇐⇒
∀S ∈ B(t′), p(S⊕ D) = p(S⊕ E) + c3,4 (7.23)

We apply (7.23) for all S ∈ {ABC | A ∈ B(t′)},

∀A ∈ B(t), p(ABC⊕ D) = p(ABC⊕ E) + c3,4
(7.18),(7.20)⇐⇒

∀A ∈ B(t), p(ABCD) = p(ABCE) + c3,4 (7.24)

From (7.22) and (7.24), we obtain that

∀A ∈ B(t), p(ABCE) = p(ACD) + c1,2 − c3,4 (7.25)

153



7.6. THE ALGORITHM

We apply (7.23) for all S ∈ {(AC | A ∈ B(t′)},

∀A ∈ B(t), p(AC⊕ D) = p(AC⊕ E) + c3,4
(7.19),(7.21)⇐⇒

∀A ∈ B(t), p(ACD) = p(ACE) + c3,4 (7.26)

From (7.25) and (7.26) we conclude that

∀A ∈ B(t), p(ABCE) = p(ACE) + c1,2
(7.20),(7.21)⇐⇒

∀A ∈ B(t), p(A⊕ BCE) = p(A⊕ CE) + c1,2

which implies that BCE ≡p,t′ CE and transpp(BCE,CE) = c1,2, as re-
quired.

Notice now that (7.26) can be rewritten as:

∀A ∈ B(t), p(A⊕ CD) = p(A⊕ CE) + c3,4 (7.27)

From (7.27) we obtain that CD ≡p,t CE and transpp(CD,CE) = c3,4.

Also, (7.23) implies that transpp(D,E) = c3,4.Therefore transpp(CD,CE)
= transpp(D,E), thus Gi2 ≡p,t G′

i2
and transpp(Gi2 ,G′

i2
) = transpp(Gi3 ,

Gnew).

7.6 The Algorithm
We reached are penultimate milestone. Here, we present the bits and parts
of the algorithm in the proof of Theorem 7.3.1.

This algorithm uses two main subroutines: The algorithm of Lemma
7.6.9 and the algorithm of Lemma 7.6.15. The former detects a (β, f)-
rich protrusion of G for some β and f that depend on p. This detection
requires O(n2β) guesses for the root Y . For each such guess, we group
together to a single set R all connected components with boundary Y and
treewidth at most β and then we check whether |R| > p(G[R])·f(β). The
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computation of p(G[R]) can be done in O(n) steps using the FII property
(Lemma 7.6.6). Therefore we can detect such a rich protrusion, if one
exists, in O(n2β+1) steps.

7.6.1 Finding a transition pair

The type of pairs we want to compress are null transition pairs. We will
postpone the definition of null transition pairs until Section 7.6.4, as we
must first present some general technics.

Definition 7.6.1. Let p be a graph parameter that has FII. Let also G
be a boundaried graph and let D = (T, χ, r) be a (α, β)-rooted tree-
decomposition of G. We say that a vertical pair (a, b) of (T, r) is a transi-
tion pair of (G, D) if (a, b) is ≡p,t-admissible and Gb ≤m Ga.

As an important step towards the proof of Theorem 7.3.1, we show that
if a vertical pair (a, b) has “big enough” capacity, then we can rearrange
the part of D that corresponds to the “inner territory” of (a, b) so that it
now contains some transition pair (a′, b′) (Lemma 7.6.4). The proof of
this result makes extensive use of some suitable variants of the concepts
of lean and linked tree decompositions introduced in [32, 60].

Lemma 7.6.1. Let p be a graph parameter that has FII and let t ∈ N. Let
alsoG be a boundaried graph,D = (T, χ, r) be a binary tree-decomposition
of G – of width at most t − 1 – and (a, b) be a transition pair of (G, D).

If (G′, D′) is the (a, b)-compression of the pair (G, D) then G′ ≤m G,
|G′| < |G|, G′ ≡p,t G and transpp(G,G′) = transpp(Ga,Gb).

Proof. The fact that G′ ≤m G follows from the fact that Ga and Gb are
compatible, thus, the corresponding frontier graphs Ha and Hb are equal,
and the fact that Gb ≤m Ga.

Moreover, |G′| < |G| follows from the definition of a binary tree-
decomposition.
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To prove that G′ ≡p,t G and that transpp(G,G′) = transpp(Ga,Gb), it
is enough to apply Lemma 7.5.12 for G and D, by setting i1 = r, i2 = r,
i3 = a, and Gnew = Gb.

We declared in Theorem 7.3.1 that the graph obtained after the com-
pression will be a minor of the input graph. To achieve this, we need to
make sure that the part of the graph to be compressed will contain some
vertex disjoint paths that can be contracted and yield a minor. We intro-
duce the notions ofWeak leanness and Linkedness of a tree-decomposition,
that make a tree-decomposition locally lean, and, therefore, provide us
with these disjoint paths.

Definition 7.6.2. LetD = (T, χ, r) be a tree-decomposition of a bound-
aried graph G = (G,X, λ). Given a vertical pair (a, b) of T , we say that
D is weakly (a, b)-lean forG if for every x, y ∈ innerT,r(a, b), such that x
and y are (a, b)-aligned, and every s ∈ N, it holds that

- either there are s vertex disjoint paths between χ(x) and χ(y) in G,

- or there is an edge {q, q′} ∈ E(xTy) such that |χ(q) ∩ χ(q′)| < s.

Definition 7.6.3. LetD = (T, χ, r) be a tree-decomposition of a bound-
aried graphG = (G,X, λ) and (a, b) a vertical pair of T . D is (a, b)-linked
if for every x, y ∈ innerT,r(a, b), such that x and y are (a, b)-aligned, and
every s ∈ N, it holds that

- either there are s vertex disjoint paths between χ(x) and χ(y) in G,

- or there is an vertex w ∈ V (xTy) such that |χ(w)| < s.

Lemma 7.6.2. Let G = (G,A, λ) be a boundaried graph where G[A] is
a clique, let B ⊆ V (G) where G[B] is a clique, and let D = (T, χ, r)

be a lean binary tree-decomposition of G such that T has a leaf l where
χ(l) = B. Let also G′ be a graph obtained by removing from G edges
that belong in E(G[A]) or in E(G[B]). Then D is weakly (r, l)-lean for
G′ = (G′, A, λ).
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Proof. Let P = rT l and let T1, . . . , Tz be the connected components of
T \E(P ). Recall that if x and y are (r, l)-aligned, then they both belong to
one of P, T1, . . . , Tz. In any case, we have to prove that, if χ(x) and χ(y)
are joined by a collection Q = {Q1, . . . , Qz} of pairwise vertex disjoint
paths of G, then they are also joined by the same collection of paths in
G′. We chooseQ, so that V (∪Q) is minimized. This minimization forces
each internal vertex of a path inQ to belong in χ(h) for some h ∈ V (xTy)

but not in χ(x) ∪ χ(y).
Suppose that some edge e = {i, j} of some path Q ∈ {Q1, . . . , Qz}

does not exist in G′. Clearly, the endpoints of e belong in one, say A,
of A and B. Also, w.l.o.g., we assume that i is the vertex of {i, j} that
is closer to r in T and, again w.l.o.g., that i is an endpoint of {i, j} that
does not belong in χ(x) (by the choice of Q it is not possible that both i
and j belong in χ(x) or to χ(y)). We now claim that i ∈ χ(h) for some
h ∈ V (xTy) \ {x}. Indeed, as we already mentioned, this holds when i
is an internal vertex of Q while if i is not an internal vertex, then i should
belong in χ(y). We conclude that i belongs both in χ(r) and χ(y) and as
x ∈ V (rTy), i ∈ χ(x), a contradiction to the choice of i. Therefore all
edges of the paths in Q are also edges of G′.

The algorithm in the next lemma can make the subtree of a tree-decom-
position between the vertices of a vertical pair linked.

Lemma 7.6.3. For every t ∈ N, there is an algorithm with the following
specifications:

Pair Linking Algorithm
Input: A quadruple (G, D, a, b) where:

1. G is a boundaried graph,
2. D = (T, χ, r) is a binary tree-decomposition ofG of width
at most t− 1, and
3. (a, b) is a vertical pair of (T, r).
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Output: A binary tree-decomposition D′ = (T ′, χ′, r) where:
1. (a, b) is a vertical pair of (T ′, r),
2. outerT ′,r(a, b) = outer(T,r)(a, b),
3. χ|outerT ′,r(a,b)

= χ|outer(T,r)(a,b),
4. D′ is (a, b)-linked, and
5. capacity(T ′,r)(a, b) ≥ 1

4t
· capacityT,r(a, b).

Moreover, this algorithm runs inOt,c(1) steps where c = capacityT,r(a, b).

Proof. Let I = innerT,r(a, b) and keep in mind that capacityT,r(a, b) =

|I|. Let A = χ(a) and B = χ(b). Let J = G[
∪
x∈I χ(x)] and let J be

the graph obtained from J if we make all pairs of vertices in A adjacent
and all pairs of vertices in B adjacent, i.e., both A and B induce cliques
in J. Let J = (J,A, λ|I). Let also D∗ = (T ∗, χ∗, a), where T ∗ = T [I]

and χ∗ = χ|I . Observe that D∗ is a binary tree-decomposition of J of
width ≤ t − 1. From Lemma 7.5.5, |J | = |J | ≤ t · |I| ≤ t · c, where
c = capacityT,r(a, b).

From Lemma 7.5.8 there exists a lean binary tree-decompositionsD• =

(T •, χ•, a) of J, with width at most t − 1, such that χ•(a) = A and
|T •| ≤ 2 · |J| ≤ 2 · t · c. Notice that D• can be found in O|J|(1) = Ot,c(1)

steps.
We name b the vertex of T • that has the biggest possible depth and

B ⊆ χ(b). Our target is to modify D• so that b will be a leaf of T • and
χ•(b) = B. To this aim, we assume that b is not a leaf of T • and apply
modifications according to the following case analysis:

Case 1: B ⊊ χ(b) and b has at most one child in T •, rename b to bold in
D• and add in T • a new vertex bnew along with the edge {bold, bnew} (see
Figure 7.8, Case 1). Finally, set χ• = χ• ∪ (bnew, B) and rename bnew to b.
Notice that, as B ⊊ χ•(bold), this modification creates again a lean binary
tree-decomposition of J.
Case 2: If B = χ(b) and b has one child d in T •, we copy the transfor-
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Case 1
b bold bnew

Case 2
b bold bnew

d d

Case 3
b bold

bnew

d′

d

d′
b′new

d

Figure 7.8: The transformations of Lemma 7.6.3.

mation of Case 1 (see Figure 7.8, Case 2). Notice that as χ(d) cannot be a
subset of χ(b), the new decomposition D• is again a lean binary decom-
position of J.
Case 3: b has two children d and d′ in T •.We remove the edges {b, d} and
{b, d′} rename b to bold in D• and add two new vertices bnew and b′new, and
the edges {bold, bnew}, {b′new, d

′}, {bold, b
′
new}, and {b′new, d} (see Figure 7.8,

Case 3). We set χ• = χ• ∪ {(bnew, B), (b′new, χ
•(b))}and then we rename

bnew to b. Observe that the fact that χ(d) is not a subset of χ(b) and χ(d′)
is not a subset of χ(b) in the original D•, the “new” D• is again a lean
binary decomposition of J.

After the above modifications, we have that b is indeed a leaf of T •.

Also, these modifications may add at most 2 more nodes in D•. Now we
are in position to apply Lemma 7.6.2 on J, B, D•, b, and J and obtain
that D• is a binary tree-decomposition that is weakly (a, b)-lean for J =

(J,A, λ|I).
We now construct D′ = (T ′, χ′, r) by setting T ′ = (T \ I) ∪ T •, and

χ′ = χ|V (G)\I ∪χ•. As b is a leaf of T •, D′ is a binary tree-decomposition
of G with width at most the width of D. Moreover, D′ is a binary tree-
decomposition that is weakly (a, b)-lean for G.
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We will transform D′ to a tree-decomposition that is (a, b)-linked for
G by applying the following transformation for every edge-pair (x, y) of
(T •, a):

If |χ′(x) ∩ χ′(y)| < min{|χ′(x)|, |χ′(y)|}, then remove {x, y} from T ′,
add a new vertex vx,y and the edges {x, vx,y} and {vx,y, y} and set χ′ =

χ′ ∪ {(vx,y, χ′(x)∩ χ′(y))}.

This transformation makesD′ (a, b)-linked while it does not harm the sta-
tus of D′ of being a binary tree-decomposition.

To prove the last property, first observe that capacityT,r(a, b) = |T ∗|.
AsD∗ = (T ∗, χ∗, a) is a binary tree-decomposition of J, from Lemma 7.5.6
it holds that:

|T ∗| ≤ 4 · |J| ⇒ |J| ≥ |T ∗|/4 (7.28)

Now notice that capacity(T ′,r)(a, b) ≥ |T •|, as we may add some vertices
to T ′ when transforming T • to an (a, b)-linked tree-decomposition. From
Lemma 7.5.5, it holds that |T •| ≥ |J|/t. Combining this with (7.28) we
conclude that |T •| ≥ |T ∗|/(4 · t).

Proposition 7.6.1 ( [130,131]). Let t, y be positive integers, and letw ∈
Σ∗, where Σ is an alphabet whose symbols are the numbers in [t]. If |w| ≥
yt, then there is a number t′ ∈ [t] and a subword u ofw such that all letters
in u are at least t′ and u contains the number t′ at least y times.

The following Lemma give us an algorithm that finds a transition pair
in a “locally linked” tree-decomposition of sufficient capacity.

Lemma 7.6.4. Let p be a graph parameter that is computable and has FII.
For every t ∈ N, there is an algorithm that receives as input a boundaried
graph G, a binary tree-decomposition D = (T, χ, r) of G, and a vertical
pair (a, b) of (T, r) such that

1. D has width at most t− 1,
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2. capacityT,r(a, b) ≥ µp(t), and

3. D is (a, b)-linked,

and outputs a transition pair (a′, b′) for (G, D)where a′, b′ ∈ innerT,r(a, b).
Moreover, this algorithm runs in Ot,c(1) steps, where c = heightT,r(a).

Proof. We set θ = θp(t). From Lemma 7.5.3 and the definition of µp,
there are x, y ∈ innerT,r(a, b) such that x and y are (a, b)-aligned and
|xTy| ≥ θ = (cardp(t) · t! + 1)t+1. Let P = xTy and keep in mind that
all vertices of P belong in innerT,r(a, b).

Let ⟨q1, . . . , qθ⟩ be the vertices of P ordered in the way they appear in
P , starting from q1 = x. We see the sequence w = ⟨|χ(q1)|, |χ(q1)|, . . . ,
|χ(qθ)|⟩ as a word on the alphabet Σ = {0} ∪ [t]. As θ = (cardp(t) · t! +
1)t+1, from Proposition 7.6.1, there is some t′ ∈ {0}∪ [t], a pair i′, j′ ∈ [θ]

and a set I ⊆ {i′, i′ + 1, . . . , j′} such that

A. |χ(qi′)|, |χ(qi′+1)|, . . . , |χ(qj′)| ≥ t′,

B. |I| ≥ cardp(t) · t! + 1, and

C. for all f ∈ I, |χ(qf )| = t′.

Let σ : {Gqh | h ∈ I} → R such that σ(Gqh) = repp(Gqh). As |I| ≥
cardp(t) · t! + 1 and t ≥ t′, there is a set I ′ ⊆ I where |I ′| = t′! + 1

and such that all graphs in {Gqh | h ∈ I ′} are equivalent with respect to
≡p,t. LetW = ⟨p1, . . . , p|I′|⟩ be the vertices of I ′ ordered in the way they
appear in P.

AsD is (a, b)-linked, and because ofA andC, for every i, j ∈ [t′!+1],
the vertices of χ(pi) and the vertices of χ(pj) are connected in Gpi by
a collection Qi,j of t′ internally vertex-disjoint paths. For every i, j ∈
[t′! + 1], i ≤ j, we define the bijection κi,j : [t′] → [t′] such that for
each m ∈ [t], it holds that the vertices ψ−1

Gpi
(m) and ψ−1

Gpj
(m) are the two

endpoints of some path in Qi,j (recall that ψGpi
and ψGpj

are the label

161



7.6. THE ALGORITHM

normalising functions of Gpi and Gpj respectively). Notice that if qi, qj ,
and qh are vertices inW where i ≤ j ≤ h, then, κi,h = κi,j ◦ κj,h. As [t′]
has t′! different permutations, there exist i, j ∈ [t!+1], i < j such that κi,j
is the identity mapping. This means that Qi,j contains t′ vertex-disjoint
paths P1, . . . , Pt′ in Gpi , from χ(pi) to χ(pj), such that the endpoints of
each path are equally indexed. Let a′ = pi and b′ = pj . We assume that for
m ∈ [t′], Pm is the path with endpoints ψ−1

Ga′
(m) and ψ−1

Gb′
(m). It remains

to show that Gb′ ≤m Ga′ .
To prove this, we define the injective function µ : V (Gb′)→ V (Ga′),

where:

µ(v) =

{
V (PψGb′

(v)) if v ∈ χ(b′)
v if v ∈ Ṽb′ = Vb′ \ χ(b′)

Intuitively, Gb′ can be obtained from Ga′ if we remove all vertices in Va′ \
Vb′ that do not belong in some of the paths in Qi,j = {P1, . . . , Pt′} and
then, for each h ∈ [t′] contract the path Ph to its endpoint in χ(w), i.e., the
vertex of χ(w) that has index h.

Notice that the pair (pi, pj) can be found algorithmically insideGa and
Da, given that the function σ is computable and this is possible because
of Lemma 7.5.4.

The algorithm of Lemma 7.6.5 takes the transition pair the algorithm
of Lemma 7.6.4 outputs and compresses it.

Lemma 7.6.5. Let p be a graph parameter that is computable and has FII.
For every t ∈ N, there is an algorithm with the following specifications:

Pair Compression Algorithm
Input: A quadruple (G, D, a, b) where:

1.G is a boundaried graph,
2. D = (T, χ, r) is a binary tree-decomposition ofG of width
at most t− 1, and
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3. (a, b) is a vertical pair of (T, r) where 4t · µp(t) ≤
capacityT,r(a, b).

Output: A triple (G′, D′, ℓ) where:
1. G ≡p,t G′,
2. |G′| < |G|,
3. G′ ≤m G,
4. D′ = (T ′, χ′, r) is a binary tree-decomposition of G′ of
width at most t− 1, and
5. the value ℓ = transpp(G,G′).

Moreover, if (x, y) is a transition pair where (x, y) ∈ outerT,r(a, b), then
(x, y) is also a transition pair of (G′, D′) and transpp(Gx,Gy) = transpp
(G′

x,G′
y). This algorithm runs in Ot,c(1) steps, where c = heightT,r(a).

Proof. The algorithm applies first the algorithm of Lemma 7.6.3 on (G, D,
a, b) and constructs a binary tree-decompositionD∗ = (T ∗, χ∗, r)with the
specifications of Lemma 7.6.3. Notice that

capacity(T ∗,r)(a, b) ≥
1

4t
· capacityT,r(a, b) ≥ µp(t).

Next applies the algorithm of Lemma 7.6.4 in order to find a transition
pair (a′, b′) of (G, D∗), where a′, b′ ∈ inner(T ∗,r)(a, b). Let (G′, D′) be
the (a′, b′)-compression of the pair (G, D∗). By Lemma 7.6.1, G′ ≤m G,
|G′| < |G|, G′ ≡p,t G, and transpp(G,G′) = transpp(Ga′ ,Gb′). Notice
that

transpp(G,G′) = transpp(Ga′ ,G′
b′) = transpp(Ga′ ,H)+transpp(H,Gb′),

where H = repp(Ga′) = repp(G′
b′). We now use Lemma 7.5.4 to com-

pute H, transpp(Ga′ ,H) and transpp(H,Gb′) in Ot,c(1) steps. Therefore,
transpp(G,G′) can be computed in Ot,c(1) steps.

The last statement of the lemma is straightforward in the case where
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Depth: 0
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gohigherT,r(v, 4)

gohigherT,r(v, 15)

Figure 7.9: An example of gohigherT,r(v, µ).

a ̸∈ desc(T,t)(y) as, in this case, Gx = G′
x. Suppose now that a ∈ desc(T,t)

(y). We apply Lemma 7.5.12 on G and D′ for i1 = x, i2 = y, i3 = a′

and Gnew = Gb′ and we obtain that transpp(Gx,Gy) = transpp(G′
x,G′

y)

as required.

7.6.2 A boundaried graph compression algorithm

Definition 7.6.4. Let (T, r) be a rooted tree. If v ∈ (T ) and µ ∈ N, we
denote by gohigherT,r(v, µ) the unique vertex u of T where

- v ∈ descT,r(u) and

- min{µ, depthT,r(v)− depthT,r(u)} is maximized.

(See Figure 7.9 for an example.)

The next algorithm is a big step towards proving Theorem 7.3.1. It
can compress a boundaried graph to a size depending on the width of the
decomposition we are given as input, and the number of the equivalence
classes of≡p,t. This algorithm runs in time proportional to the size of our
graph.
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Lemma 7.6.6. Let p be graph parameter that is computable and has FII.
For every t ∈ N, there is an algorithm with the following specifications:

Boundaried Graph Compression Algorithm
Input: A pair (G, D) where:

1.G = (G,X, λ) is a boundaried graph, and
2. D = (T, χ, r) is a binary tree-decomposition of G of
width at most t− 1.

Output: A pair (G′, z) where:
1. G ≡p,t G′,
2. G′ ≤m G, and
3. |G′| ≤ t · (24t·µp(t)−1 − 1),
4. tw(G′) ≤ t− 1, and
5. the value z = transpp(G,G′).

Moreover, the running time of this algorithm is Ot(|G|).

Proof. The algorithm is the following:

Step 1: First we set some variables:

- Ĝ = G,

- D̂ = D, and

- z = 0 (at the end this variable will be equal to transpp(G,G′)).

Let D̂ = (T̂ , χ̂, r), and Ĝ = (Ĝ,X, λ̂). Let also µ = 4t · µp(t).

Step 2: Let y be a leaf of T̂ with maximum height and letw = gohigher(T̂ ,r)
(y, µ).

Step 3: If height(T̂ ,r)(w) ≤ µ − 1, i.e., the height of T̂ is at most µ − 1,
then output G′ = Ĝ and z and stop. As T̂ is a binary tree, we have that
|T̂ | ≤ 2(µ−1) − 1, therefore, from Lemma 7.5.5, |G′| ≤ t · (2(µ−1) − 1).
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Step 4: If height(T̂ ,r)(w) = µ, then notice that |T̂w| ≤ 2µ − 1, where
T̂w = T̂ [descT̂ ,r(w)]. Thus, from Lemma 7.5.5, |Ĝw| ≤ t · (2µ − 1).

Let l be a leaf of T̂w that is in distance µ − 1 from w in T̂w and notice
that the vertical pair (w, l) has capacity at least µ and at most 2µ − 1. Let
(Ĝ′, D̂′, ℓ) be the output of the algorithm of Lemma 7.6.5 when it runs
with input (Ĝ, D̂, w, l). As the part of D̂ that has changed in D̂′ concerns
only vertices of Ĝw, the computation of (Ĝ′, D̂′, ℓ) can be done in Ot(1)

steps. Keep also in mind that Ĝ′ ≤m Ĝ, |Ĝ′| < |Ĝ|, Ĝ ≡p,t Ĝ′ and
ℓ = transpp(Ĝ, Ĝ′).

Step 5: Set Ĝ = Ĝ′, D̂ = D̂′, and z = z + ℓ, and go to Step 2.

Notice that each of the steps of the algorithm above is repeated less than
|G| times and that it returns a pair (G′, z) where G′ ≤ G,G ≡p,t G′,
|G′| ≤ t · (2µ− 1), tw(G′) ≤ t− 1, and z = transpp(G,G′). As each step
takes Ot(1) steps, the algorithm runs in Ot(|G|) steps.

We can use the Boundaried Graph Compression Algorithm to device
a linear algorithm computing the value of a (computable) parameter p
that has FII, for boundaried graphs. The hidden constants depend on the
treewidth and the number of the equivalence classes of ≡p,t.

Lemma 7.6.7. Let p be a graph parameter that has FII and let t ∈ N. Let
G,G′ ∈ T (≤t), where G ≡p,t G′. Then p(G) = p(G′) + transpp(G,G′)

where G and G′ are the underlying graphs of G and G′.

Proof. Let t′ be the boundary size ofG andG′.We denoteG = (G,X, λ).
The fact that G ≡p,t G′ implies that:

∀F ∈ B(t′), p(G⊕ F)− p(G′ ⊕ F) = transpp(G,G′) (7.29)

We apply (7.29) for F = B = (G[X], X, λX). Notice that G⊕B = G and
G′ ⊕ B = G′. Therefore p(G) = p(G′) + transpp(G,G′).
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Lemma 7.6.8. Let t ∈ N, p be a graph parameter that is computable and
has FII. There is an algorithm that, given a G = (G,X, λ) ∈ T (≤t),
outputs p(G) in Ot(|G|) steps.

Proof. First we compute a binary tree-decomposition D = (T, χ, r) of
G, with width at most t − 1, in Ot(|G|) steps using the algorithm of
Lemma 7.5.10. Then, by running the algorithm of Lemma 7.6.6, with in-
putG andD, we obtain – inOt(|G|) steps – someG′ ∈ T (t), whereG ≡p,t

G′, |G′| ≤ t · (24t·µp(t)−1 − 1), together with the value of transpp(G,G′).

From Lemma 7.6.7, p(G) = p(G′) + transpp(G,G′). As

|G′| ≤ t · (24t·µp(t)−1 − 1) = Ot(1),

p(G′), and therefore p(G), can be computed in Ot(1) steps.

7.6.3 An algorithm for finding a rich protrusion

Let us formally define what a rich protrusion is.

Definition 7.6.5. Let p be a graph parameter and f : N → N be some
computable function. Let also β ∈ N, a graph G along with a labeling
λ : V (G)→ N of G, and R ⊆ V (G). We denote Y = ∂G(R) and we say
that R is a (β, f)-rich protrusion of G for p if:

(1) |Y | ≤ β and the boundaried graph (G[R], Y, λ|R) has treewidth at
most β,

(2) Y = NG(R \ Y ),

(3) the set R is maximal with respect to (1) and (2),

(4) |R| > p(G[R]) · f(β).

Notice that, in the above definition, R is a β-protrusion of G.

167



7.6. THE ALGORITHM

A

Y C

G

Figure 7.10: A is an augmented connected component for (G, Y ).

Definition 7.6.6. Let G be a graph and Y ⊆ V (G). We say that a graph
A is an augmented connected component for (G, Y ) if there is some con-
nected component C of G \ Y such that A = G[Y ∪ V (C)] (see Fig-
ure 7.10). We denote by A(G, Y ) the set containing the vertex set of the
augmented connected components for (G, Y ).

The use of the algorithm of Lemma 7.6.9 is self-explanatory.

Lemma 7.6.9. Let p be a graph parameter that is computable and has FII.
Let also f : N→ N be a computable function. There is an algorithm with
the following specifications:

Rich Protrusion Finding Algorithm
Input: A graph G and a β ∈ N.

Output: Either a (β, f)-rich protrusion ofG for p, or reports that such
a (β, f)-rich protrusion does not exist.

This algorithm runs in Oβ(|G|β+1) steps.

Proof. Let λ be a labelling of G. The algorithm considers the set Y of
all possible subsets of V (G) of at most β vertices. For every Y ∈ Y , let

168



CHAPTER 7. MONOTONE KERNELS

AY be the set containing every R ∈ A(G, Y ) where NG(R \ Y ) = Y

and tw(G[R], Y, λ|R) ≤ β (to check whether the treewidth is at most β,
we can use the algorithm of Lemma 7.5.10). Also, let RY = ∪AY for
Y ∈ Y .The collectionR = {RY , Y ∈ Y} can be constructed inOβ(|G|β)
steps. Also, every (β, f)-rich protrusion ofG for p should belong inR− =

{RY \ Y, Y ∈ Y}. The only thing remaining for the algorithm to check is
whether for some R ∈ R, |R| > p(G[R]) · f(β). This can be done using
Lemma 7.6.8. If such an R is found, it is a (β, f)-rich protrusion for p,
otherwise report that G has no (β, f)-rich protrusion for p.

Our next step is to prove that if G does not have rich protrusions, then
|G| = O(p(G)). For this, we already know that G has a (O(p(G)), 2β)-
rooted tree-decomposition (Lemma 7.5.11) and we prove that∑

i∈[s]

p(Gr(i)) ≤ p(G) +O(1),

where childrenT,r(r) = {r(1), . . . , r(s)} (Lemma 7.6.10). Notice that as
G does not contain any rich protrusion and, as each Gr(i) can be seen as
such a protrusion, we have that |Gr(i) | = O(p(Gr(i))). This, together with
the previous inequality and the fact that |G| =

∑
i∈[s] |Gr(i)| + O(p(G))

imply that |G| = O(p(G)) (see Lemma 7.6.11). We conclude that if G
does not have rich protrusions, its size is already linear on the value of the
parameter p on G.

Lemma 7.6.10. Let p be a graph parameter that has FII. Let also G =

(G,X, λ) be boundaried graph and let D = (T, χ, r) be an (α, β)-tree-
decomposition of G. If childrenT,r(r) = {r(1), . . . , r(ℓ)}, then∑

i∈[ℓ]

p(Gr(i)) ≤ p(G) + α · ξp(β).

Proof. From Lemma 7.6.6, for every i ∈ [ℓ], there is a graph G′
r(i)

where
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Gr(i) ≡p,β G′
r(i)

, G′
r(i)
≤m Gr(i) , and |G′

r(i)
| ≤ m, where m = β ·

(24β·µp(β)−1 − 1). We also set li = transpp(Gr(i) ,G′
r(i)), i ∈ [ℓ]. From

Lemma 7.6.7

p(Gr(i)) = li + p(G′
r(i)) ≤ li + τp(|G′

r(i)|) ≤ li + τp(m),

therefore:

∑
i∈[ℓ]

p(Gr(i)) ≤
∑
i∈[ℓ]

(li + τp(m))

= (
∑
i∈[ℓ]

li) + ℓ · τp(m)

≤ (
∑
i∈[ℓ]

li) + α · τp(m)

= (
∑
i∈[ℓ]

li) + α · ξp(β) (7.30)

It holds that for every i ∈ [ℓ]:

∀F ∈ B(t
r(i)

), p(Gr(i) ⊕ F)− p(G′
r(i) ⊕ F) = li (7.31)

Let G(0) = G. We set:

F0 = (G(0), χ(r0)), λ|G(0)) \ Ṽr(0) , G(1) = F0 ⊕G′
r(0)

F1 = (G(1), χ(r(1)), λ|G(1)) \ Ṽr(1) , G(2) = F1 ⊕G′
r(1)

. . .

Fℓ−1 = (G(ℓ−1), χ(r(ℓ−1)), λ|G(ℓ−1)) \ Ṽr(ℓ−1) , G(ℓ) = Fℓ−1 ⊕G′
r(ℓ−1)

If we repetitively apply (7.31) for i ∈ [ℓ] and F = Fi, we have that
p(G(i)) = p(G(i−1)) − li. Combining these equalities altogether we con-
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clude that
p(G)−

∑
i∈[ℓ]

li = p(G(ℓ)) ≥ 0.

Therefore,
∑

i∈[ℓ] li ≤ p(G).
This, together with (7.30), completes the proof of the lemma.

Lemma 7.6.11. Let p be a graph parameter that has FII and is protrusion
decomposable. Let also c = dec(p) and f : N→ N be a computable func-
tion. For every graph G, if G does not contain any (2c, f)-rich protrusion
W for p, then |G| ≤ d · p(G), where d = (f(2c) · (c · ξp(2c) + 1) + c).

Proof. According to the definition of protrusion decomposability in (7.1),
G has a (c · p(G), c)-protrusion decomposition. Let λ be a labeling of G.
From Lemma 7.5.11 G is the underlying graph of some boundaried graph
G = (G,X, λ) that has a (c ·p(G), 2c)-tree-decompositionD = (T, χ, r).

We consider such a (c · p(G), 2c)-tree-decomposition D so that χ(r)
is minimized. Let {r(1), . . . , r(ℓ)} be the set of children of r in (T, r).

A consequence of the minimality of χ(r) and Conditions (4) and (5) of
the definition of an (a, b)-tree-decomposition, is that property (3) in the
definition of a (2c, f)-rich protrusion is satisfied for all Vr(i) , i ∈ [ℓ].

As none of Vr(i) can be a (2c, f)-rich protrusion of G for p, we deduce
that:

∀i ∈ [ℓ], |Gr(i) | ≤ p(Gr(i)) · f(tr(i)) (7.32)

From Lemma 7.6.10 it holds that:∑
i∈[ℓ]

p(Gr(i)) ≤ p(G) + c · p(G) · ξp(2c)

= p(G) · (1 + c · ξp(2c)) (7.33)

Using (7.32) and (7.33) we deduce
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|G| ≤ |X|+
∑
i∈[ℓ]

|Gr(i) |

≤ c · p(G) + f(2c) ·
∑
i∈[ℓ]

p(Gr(i))

≤ c · p(G) + f(2c) · p(G) · (1 + c · ξp(2c))

≤ (f(2c) · (c · ξp(2c) + 1) + c) · p(G)

which gives the claimed upper bound.

7.6.4 Finding and compressing a null-transition pair

What remains now is to deal with the case where a rich protrusion R

is detected. Notice that R is the vertex set of some boundaried graph
H = (H, Y, λ) that has a binary rooted tree decomposition D = (T, χ, r)

of width O(1). Following the methodology of [155], one could replace
in G the boundaried graph H by a smaller “protrusion” H′. This indeed
gives a smaller equivalent instance (G′, k′), however, we do not have any
guaranty that G′ will be a minor of G and that k′ = k, as it is required for
Theorem 7.3.1. In order to enforce these additional properties, we follow
another approach, the algorithm of Lemma 7.6.15, that intuitively con-
sists of “compressing” the protrusion than “replacing” it with something
smaller.

Let us define the aforementioned null transition pair.

Definition 7.6.7. Let G be a boundaried graph and D = (T, χ, r) a
(α, β)-tree-decomposition of it. The potential of a transition pair (a, b) of
(G, D) is defined to be

potential(G,D)(a, b) = transpp(Ga,Gb).
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If the potential of a transition pair (a, b) is 0, the we say that (a, b) is a null
transition pair.

Definition 7.6.8. A transition collection of (G, D) is a pair collection
P of (T, r) consisting of transition pairs of (G, D). The potential of P ,
denoted by potential(G,D)(P), is the sum of the potentials of the pairs of
P .

Bounding potentials

Let H be a rich protrusion, the tree T in its tree decomposition is big
enough to guarantee the existence of a pair collection C of more than
p(G) transition pairs. For each such pair the value transpp(Ha,Hb) ex-
presses how much the parameter k should be reduced while producing an
equivalent instance because of an (a, b)-compression. Using the fact that
p is a minor-closed parameter, we prove that this value is never negative
(Lemma 7.6.13). Therefore the potential of C is also non-negative. Notice
that this is the only point in the proof that we use the minor-closedness of
p.

We next prove that if we apply all (a, b)-compressions in C (in any
order) the total reduction of the parameter in the produced equivalent in-
stance will be at least the potential of C (the proof is strongly based on the
fact that the pairs in C are mutually non-interfering). As this total reduc-
tion cannot be bigger than p(G) we conclude that at least one of the pair
in C is a null-transition pair.

Lemma 7.6.12. Let p be a graph parameter that has FII and let t ∈ N. Let
alsoG be a boundaried graph andD = (T, χ, r) a binary tree-decomposition
of G of width at most t. For every transition collection P of (G, D), it
holds that potential(G,D)(P) ≤ p(G).

Proof. Notice that the lemma is obvious when potential(G,D)(P) = 0.
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Assume now that the lemma holds for every choice of (G, D) and P
with potential(G,D)(P) < k, where k ∈ N+. Let P be a transition col-
lection of (G, D) where potential(G,D)(P) = k > 0. Clearly, P contains
some non-null-transition pair (a, b). We set t = ta = tb. Assume that
ℓ = potential(G,D)(a, b) = transpp(Ga,Gb) and keep in mind that ℓ > 0.

We set P ′ = P \ {(a, b)}.
Let (G′, D′) be the (a, b)-compression of (G, D).

Claim 4. potential(G′,D′)(P ′) = k − ℓ.

Proof of Claim 4. We partition P in three sets. Let Pdown contain all the
pairs (i, j) ∈ P such that i ∈ childrenT,r(b), let Pside contains all the pairs
(i, j) ∈ P such that i ̸̸=T,r a and let Pup contains all the pairs (i, j) ∈ P
such that i ≥T,r a. The fact that all pairs P are pairwise non-interfearing
pairs of (T, r), implies that {Pdown,Pup,Pside} is a partition of P ′.

Notice that if (x, y) ∈ Pdown∪Pside, thenG′
x = Gx,G′

y = Gy, therefore
potential(G′,D′)(x, y) = potential(G,D)(x, y).

Suppose now that (x, y) ∈ Pup. We apply Lemma 7.5.12 on G by
setting i1 = x, i2 = y, i3 = a, and Gnew = Gb and deduce that G′

x ≡p,t G′
y

and transpp(G′
x,G′

y) = transpp(Gx,Gy). This implies that

potential(G′,D′)(x, y) = potential(G,D)(x, y).

Thus, as the potentials of the pairs in P ′ do not change, we conclude that:

potential(G′,D′)(P ′) = potential(G,D)(P)− potential(G,D)(a, b)

= k − ℓ

The induction hypothesis, along with the claim above, shows that:
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p(G′) ≥ k − ℓ (7.34)

Recall now that Ga ≡p,t Gb and G′
a = Gb. This implies that Ga ≡p,t G′

a

and that transpp(Ga,G′
a) = ℓ. We have:

∀F ∈ B(t), p(Ga ⊕ F)− p(G′
a ⊕ F) = ℓ (7.35)

By applying (7.35) for F = Ga and taking into account that Ga⊕Ga = G

and G′
a ⊕ Ga = G′, we conclude that p(G′) = p(G) − ℓ. This, together

with (7.34), implies that k ≤ p(G) as required.

Lemma 7.6.13. Let p be a graph parameter that has FII and is minor-
closed and let t ∈ N. If G is a boundaried graph, D is a binary rooted
tree-decomposition of G, and (a, b) is a transition pair of (G, D), then
potential(G,D)(a, b) ≥ 0.

Proof. Let Q = repp(Ga) = repp(Gb). Recall that potential(G,D)(a, b) =

transpp (Ga,Gb). It remains to prove that transpp(Ga,Gb) ≥ 0.

Let t′ = ta = tb and H = (Ha, χ(a), λa). Notice that Ga ⊕ H = Ga

and Gb ⊕H = Gb. Recall that Ga ≡p,t Gb implies that:

∀F ∈ B(t′), p(Ga ⊕ F)− p(Gb ⊕ F) = transpp(Ga,Gb) (7.36)

By applying (7.36) for F = H, we have that

transpp(Ga,Gb) = p(Ga)− p(Gb).

Recall that Gb ≤m Ga. As p is minor closed, it holds that p(Gb) ≤ p(Ga)

and the lemma follows.

We now prove a combinatorial lemma asserting that, if T is the tree in a
binary tree decomposition ofG such that |T | > c·p(G), for some constant
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Vu

T

r

rL rR

u

uL uR

Figure 7.11: The set Vu, the sub-trees and the vertices defined in the proof
of Lemma 7.6.14, where u = f(T, r).

c ≥ 1, then T contains a pair collection of size bigger than p(G) and
capacity “big enough” so as to guarantee the existence of a pair collection
of more than p(G) transition pairs. As we prove, such a collection C can
be constructed in O(n) steps.

Lemma 7.6.14. There exists an algorithm that, takes as input a rooted
binary tree (T, r) and an integer z ≥ 2, and outputs – in Oz(|T |) steps
– a pair collection that has minimum capacity at least z and maximum
capacity at most 2z − 1, and numbers more than

|T |+ 1

(z − 1)2 + z

elements.

Proof. In our proof we “arrange” T so that for every two leafs of T the
one in the left is the one of the bigest depth.
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Let f be a function that takes as input a rooted binary tree (T, r) and
finds a vertex u such that:

- capacity(T,r)(r, u) ≥ z,

- rTu is the leftmost such path in T , and

- |V (rTu)| is the minimum possible,

or outputs null when there is no such vertex in T . Notice that if f(T, r) =
null then |T | ≤ z − 1. As we only need to check the leftmost part of the
tree and the vertices that have distance at most z from r, f runs in Oz(1)

steps.
We denote the left child of a vertex u by uL and the right by uR. We

also define the set

Vu =
∪

v∈V (rTu)

childrenT,r(v) \ (V (rTu) ∪ childrenT,r(u))

(see Figure 7.11). Notice that, if u is the output of f , then |Vu| ≤ z − 1.
We define a pair collection C(T, r) using the following recursive for-

mula:

C(T, r) =



C(Tf(T,r)L , f(T, r)
L)∪ , if |T | > z and

C(Tf(T,r)R , f(T, r)
R)∪

∧
v∈Vf(T,r)

|Tv| ≤ z − 1

{(r, f(T, r))}

C(TrL , r
L) ∪ C(TrR , rR) , if |T | > z and∨

v∈Vf(T,r)
|Tv| ≥ z

{(r, f(T, r))} , if |T | = z

∅ , if |T | < z
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It is straightforward to show that the pairs inC(T, r) are non-interfering
and have capacity at least z. Let a(T, r) be the number of elements of
C(T, r). This number can be computed from the following recurrence
relation:

a(T, r) =



a(Tf(T,r)L , f(T, r)
L)+ , if |T | > z and

a(Tf(T,r)R , f(T, r)
R)+

∧
v∈Vf(T,r)

|Tv| ≤ z − 1

1

a(TrL , r
L) + a(TrR , r

R) , if |T | > z and∨
v∈Vf(T,r)

|Tv| ≥ z

1 , if |T | = z

0 , if |T | < z

Claim 5. We claim that:

a(T, r) ≥ |T |+ 1

(z − 1)2 + z

Proof of Claim 5. The proof of this claim is by induction:
Clearly, if |T | = z,C(T, r) contains only one pair, namely (r, f(T, r)),

thus a(T, r) = 1. As z+1/((z− 1)2+ z) for z ≥ 2 is at most 1 the claim
holds.

Let |T | > z and let u = f(T, r). We assume that the claim holds for
every tree with at most |T | − 1 vertices. We distinguish two cases:

Case 1: If
∧
v∈Vu

|Tv| ≤ z − 1, then:
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a(T, r) = a(TuL , u
L) + a(TuR , u

R) + 1

≥ |TuL |+ 1

(z − 1)2 + z
+
|TuR |+ 1

(z − 1)2 + z
+ 1

≥ |TuL|+ |TuR |+ 2

(z − 1)2 + z
+ 1

Notice that |TuL |+ |TuR | ≥ |T | − (|Vu| · (z − 1) + |rTu|) ≥ |T | − ((z −
1) · (z − 1) + z) (see Figure 7.11). Therefore:

a(T, r) ≥ |T | − (z − 1)2 − z + 2

(z − 1)2 + z
+ 1

=
|T |+ 2

(z − 1)2 + z

>
|T |+ 1

(z − 1)2 + z

Case 2: If
∨
v∈Vf(T,r)

|Tv| ≥ z then:

a(T, r) = a(TrL , r
L) + a(TrR , r

R)

≥ |TrL |+ 1

(z − 1)2 + z
+
|TrR |+ 1

(z − 1)2 + z

=
|T | − 1 + 2

(z − 1)2 + z

=
|T |+ 1

(z − 1)2 + z
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Hence, the claim holds for every case.

Notice that, for every pair (x, y) ∈ C(T, r), as we always pick y such
that xTxy is the leftmost and |(xTxy)| the minimum possible, it follows
that (x, y) has capacity at most 2z − 1. Also notice that the definition of
C(T, r) provides a dynamic programming algorithm that computes this
collection in Oz(|T |) steps.

The second main component of the algorithm of Theorem 7.3.1 is the
procedure in the following lemma. We have to stress that to keep the run-
ning time of this algorithm linear we have to repetitively apply a bottom-
up “compression” on a rich protrusion, that simultaneously “scans”, “re-
vises”, and “compresses” it, alongside with its tree decomposition. To do
so, it uses theBoundaried Graph Compression Algorithm of Lemma 7.6.6.
This enforces that we are only processing parts of the graph of constant
size. This procedure takes time proportional to the size of the rich protru-
tion, i.e., O(n) steps.

Lemma 7.6.15. Let p be a graph parameter that is computable, has FII, and
is minor-closed. For every t ∈ N, there is an algorithm with the following
specifications:

Protrusion Compression Algorithm
Input: A graph G∗ and a (t, δp)-rich protrusion R of G∗ for p.

Output: A graph G∗∗ where:
1. |G∗∗| < |G∗|,
2. G∗∗ ≤m G∗, and
3. p(G∗∗) = p(G∗).

This algorithm runs in Ot(|G∗|) steps.
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G∗

G

r

Z
Step 1 Step 2

T

Z

Figure 7.12: The first step of pre-processing of the algorithm of Lemma
7.6.15.

Proof. Recall that δp(x) = x((4x ·µp(x)− 1)2+4x ·µp(x)). We set Z =

∂G∗(R), G = G∗[R], and G = (G,Z, λ|R) where λ is a some labelling of
G. As R is a (t, δp)-rich protrusion of G∗ for p, |R| ≥ δp(t) · p(G), thus
p(G) = O(|R|) = O(|G|). We will do some pre-processing in G that
consists of 3 steps.

First the algorithm constructs a binary tree-decomposition of G – of
width t− 1 – using the algorithm of Lemma 7.5.10 (see Figure 7.12, Step
1). This pre-processing takes Ot(|G|) steps. Let D = (T, χ, r) be this
binary tree-decomposition of G.

Notice that |T | ≥ |R|/t, because of Lemma 7.5.5. We use the algo-
rithm of Lemma 7.6.14, in order to find in T a pair collection Q of (T, r)
of mininum capacity z = 4t · µp(t) and maximum capacity α = 2z − 1

(see Figure 7.13, Step 2), where:
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r

T

Z

a1

b1

a2

b2

a3

b3

r

T ′

Z

a1

b1

a2

b2

a3

b3

Step 3

(a1, b1)-linked

(a2, b2)-linked

(a3, b3)-linked

Step 2

Figure 7.13: The last two steps of pre-processing of the algorithm of
Lemma
7.6.15.

|Q| ≥ |T |+ 1

(z − 1)2 + z
>

|T |
(z − 1)2 + z

≥ |R|
t((z − 1)2 + z)

=
|R|

t((4t · µp(t)− 1)2 + 4t · µp(t))

=
|R|
δp(t)

≥ p(G)

We assume that Q = {(a1, b1), . . . , (as, bs)} where we know that s ≥
p(G) + 1.

For every i ∈ [s], we run first the algorithm of Lemma 7.6.3 for every
(ai, bi) ∈ Q and obtain a binary tree-decomposition D′ = (T ′, χ′, r) of G
– of width at most t− 1 – such that, for every i ∈ [s], D′ is (ai, bi)-linked
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T̂b

r

T̂

a

b

Tnew

r

T̂ ′

a

b

Ĝ′
a

Figure 7.14: The main transformation of the algorithm of Lemma 7.6.15.

and capacity(T ′,r)(ai, bi) ≥ 1
4t
· z ≥ µp(t)(see Figure 7.13, Step 3). As

α = Ot(1), D′ can be constructed in Ot(|G|) steps.
From Lemma 7.6.4, we know that each innerT ′,r(ai, bi), i ∈ [s] con-

tains a vertical pair (a′i, b′i) that is a transition pair for (G, D′). Let Q′ =

{(a′1, b′1), . . ., (a′s, b′s)} be such a collection of transition pairs for (G, D′)

(here, we use Lemma 7.6.4 in order to prove the existence ofQ′ but we do
not construct it). From Lemma 7.6.12, |Q′| = s > p(G) ≥ potential(G,D′)

(Q′), therefore |Q′| > potential(G,D′)(Q′). From Lemma 7.6.13, all tran-
sition pairs in Q′ are of non-negative potential, therefore Q′ contains at
least one null-transition pair, say (a, b). Clearly (a, b) is a vertical pair of
T ′ where a, b belong in the same innerT ′,r (ai, bi) for some i ∈ [s]. What
remains is to find such a null-transition pair (a, b) in Ot(|G|) steps. We
do this by applying on (G, D′) the following procedure, that makes use of
the algorithm of Lemma 7.6.6:

Step 1: Set µ = µp(t), Ĝ = G, D̂ = D′, and Q̂ = Q. We denote
D̂ = (T̂ , χ̂, r).

Step 2: Let (a, b) ∈ Q̂ such that b has maximum height in (T̂ , r). Run
the algorithm of Lemma 7.6.6 with input Gb and Db and let Gnew be the
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output. Notice that Gnew and Gb are strongly compatible, as in the algo-
rithm of Lemma 7.6.6 the vertices ofGnew originate from (equally labeled)
vertices of Gb. The algorithm considers the graph Ĝ′ that is constructed
by replacing Gb by Gnew in Ĝ and as tw(Gnew) ≤ t− 1 it builds a binary
tree-decomposition Dnew = (Tnew, χnew, b) and combines it with D̂− =

(T̂ \ descT̂ ,r(b), χ̂ \ descT̂ ,r(b), b) to create a binary tree-decomposition
D̂′ = (T̂ ′, χ̂′, r) of Ĝ′ (see Figure 7.14). Notice that Q̂ is a pair collection
of Ĝ′ as well. Moreover, if for some j ∈ [s], (aj, bj) is a null-transition
pair in Ĝ, then it is also a null-transition pair in Ĝ′ as well. This follows if
we apply Lemma 7.5.12 by setting G = Ĝ, i1 = aj , i2 = bj , i3 = b, and
Gnew = Gnew.We now consider all pairs (x, y) where x, y ∈ innerT̂ ′,r(a, b)

and check, with the help of Lemma 7.5.4 whether one, say (x, y), of them
is a null-transition pair (see Figure 7.14). If this is the case, return (x, y)

and stop. Clearly, as the capacity of (a, b) is Ot(1) and as |Gnew| = Ot(1)

and using Lemma 7.5.5, we conclude that |Ĝ′
a| = Ot(1). Therefore the

algorithm checks whether there is a null-transition pair in innerT̂ ′,r(a, b)

in Ot(1) steps.

Step 3: If the previous step does not output a null-transition pair, then set
Ĝ = Ĝ′, D̂ = D̂′, and Q̂ = Q̂ \ {(a, b)}, and go to Step 2.

The algorithm above applies a bottom-up “compression” on G and D′

and whenever it detects some pair inQ it checks – inOt(1) steps – whether
its inner set contains some null-transition pair. As we have a guarantee that
such a pair exists in (G, D′) the algorithm will finally find it. The total
number of compressions is proportional to the part of T ′ that does not
belong in the inner set of some pair inQ. Therefore, the above procedure
runs in Ot(|G|) steps, as required.

Let now (x, y) be a null-transition pair for (G, D′) and let (G′, D′′)

be the (x, y)-compression of (G, D′). From Lemma 7.6.1 we deduce that
G′ ≤m G, |G′| < |G|,G′ ≡p,t G and transpp(G,G′) = transpp(Gx,Gy) =

0.
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Let F = G∗ \ Ṽr, i.e., F contains all vertices of G∗ except from the
non-boundary vertices of G. We set F = (G∗[F ], χ′(r), λ|F ) and observe
that G∗ = F⊕G. Let G∗∗ = F⊕G′. From |G′| < |G| and G′ ≤m G, we
obtain |G∗∗| < |G∗|, G∗∗ ≤m G∗. Moreover, G′ ≡p,t G implies that:

∀B ∈ B(tr), p(G⊕ B)− p(G′ ⊕ B) = transpp(G,G′) (7.37)

By setting B = F in (7.37), we obtain that p(G∗) − p(G∗∗) = 0 and the
lemma follows.

The proof of Theorem 7.3.1

We conclude that after detecting a rich protrusion in G, we can detect
in O(n) steps a null transition pair (a, b) and after applying a (a, b)-com-
pression to it we can “compress”G to a new graphG′ that is a proper minor
of G and has p(G′) = p(G). As this compression cannot be applied for
more than n steps, we finally construct an equivalent instance inO(n2c+2)

steps.

Proof of Theorem 7.3.1. The algorithm is the following:

Step 1: Apply the algorithm of Lemma 7.6.9 with inputG, β = 2 ·dec(p)
and f = δp. If this algorithm outputs that G does not contain any (β, f)-
pair for p, then set G′ = G, output G′, and stop. In this case, from
Lemma 7.6.11, |G| ≤ cp · p(G) (recall that cp = (δp(2 · dec(p)) · (2 ·
dec(p) · ξp(2 · dec(p)) + 1) + dec(p))).

Step 2: If the algorithm of the previous step outputs a (β, f)-rich protru-
sion W of G for p, then apply the algorithm of Lemma 7.6.15 for G and
W and output a graphG′ whereG′ ≤m G, |G′| < |G|, and p(G′) = p(G).

Step 3: Set G = G′ and go to Step 1.
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Notice that the algorithm above outputs a graph G′ that is a minor of
the initial graph G.

Also p(G′) = p(G) and |G′| ≤ cp · (p(G′)) ≤ cp · (p(G)), as p is
minor-closed. As steps 1 and 2 cannot be applied more than |G| times,
step 1 takesOcp(|G|2·dec(p)+1) steps (using Lemma 7.6.9), and step 2 takes
Oβ(|G|) steps (Lemma 7.6.15), the total running time isOcp(|G|2·dec(p)+2).

7.7 Constructibility

We wish to make some short comments on the constructibility of the re-
sults presented in this Chapter. In general, the FII property does not im-
ply that the algorithms in Proposition 7.4.1, as well as in 7.3.1 and Theo-
rems 7.4.1, can be constructed. The same also holds for the constants of
Theorem 7.4.2.

To construct the algorithm one needs to be able to construct a set of rep-
resentatives for the equivalence classes of the relation≡p,t or – at least – of
some refinement of it. This is typically possible when the problem in ques-
tion can be expressed in CMSO logic or when some dynamic program-
ming algorithm can solve the problem in graphs of bounded treewidth.
For instance, this is possible for several families of problems including
F-Covering and F-Packing.

7.7.1 An exercise on Computability

Before we wrap this Chapter up, we will show that it is not necessary to
be given a representative collection for the algorithm of Theorem 7.3.1 to
work. We can instead compute such a collection, provided that cardp is a
computable function.
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Lemma 7.7.1. Let p be a graph parameter. If p is computable, has FII,
and cardp is computable, then there exists an algorithm that given a t ∈ N,
outputs a t-representative collection for ≡p,t .

Proof. Let k ≥ t. We define the class of boundaried graphs

G(t)k = {(G,X, λ) ∈ B(t) | |G| ≤ k and λ : V (G)→ [k]}.

We also define the equivalence relation ≡kp,t, where G1 ≡kp,t G2 if and
only if G1,G2 ∈ G(t)k , are compatible, and

∃c ∈ Z ∀F ∈ G(t)k , p(G1 ⊕ F) = p(G2 ⊕ F) + c

We will prove that for G1,G2 ∈ G(t)k , if G1 ̸≡kp,t G2, then G1 ̸≡p,t G2.
From the fact that G1 ̸≡kp,t G2 and the definition of ≡kp,t we conclude that
for every c ∈ Z there exists F ∈ G(t)k such that p(G1⊕F) ̸= p(G2⊕F)+c.
As G(t)k ⊆ B(t), it holds that

∀c ∈ Z ∃F ∈ B(t), p(G1 ⊕ F) ̸= p(G2 ⊕ F) + c

Therefore G1 ̸≡p,t G2.

Also notice that, for two boundaried graphs G1,G2 ∈ G(t)k , if there
exist F,F′ ∈ G(t)k such that:

p(G1 ⊕ F)− p(G2 ⊕ F) ̸= p(G1 ⊕ F′)− p(G2 ⊕ F′)

then G1 ̸≡kp,t G2. To prove this, assume that G1 ≡kp,t G2. From the
definitions of ≡kp,t there exists a c ∈ Z such that

p(G1 ⊕ F) = p(G2 ⊕ F) + c, and
p(G1 ⊕ F′) = p(G2 ⊕ F′) + c.
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Therefore

p(G1 ⊕ F)− p(G2 ⊕ F) = p(G1 ⊕ F′)− p(G2 ⊕ F′) = c,

a contradiction.

The algorithm that computes a representative collectionR for ≡p,t, is
the following:

Step 1: Compute cardp(t). Let ℓ = cardp(t) and set k = t.

Step 2: Check for every S ⊆ G(t)k with |S| = ℓ whether for every two
boundaried graphs Gi,Gj ∈ S there exist F,F′ ∈ G(t)k such that

p(Gi ⊕ F)− p(Gj ⊕ F) ̸= p(Gi ⊕ F′)− p(Gj ⊕ F′).

If such a set, sayR, exists, return it and stop, otherwise set k = k+1 and
go to Step 2.

Assume that this algorithm stops and that R is its output. Then R
contains cardp(t) boundaried graphs that are not equivalent with respect of
≡kp,t, hence not equivalent with respect of≡p,t. ThusR is a representative
collection for ≡p,t.

The last thing missing is to prove that this algorithm will eventually
stop. Since p has FII it holds that cardp(t) ∈ N, therefore, for a represen-
tative collectionR for ≡p,t there exists a k ≥ t such thatR ⊆ G(t)k . Thus,
the algorithm will stop after it examines the set G(t)k′ , where k′ ≥ k is such
that for every two boundaried graphs Gi,Gj ∈ R there exist F,F′ ∈ G(t)k′
such that

p(Gi ⊕ F)− p(Gj ⊕ F) ̸= p(Gi ⊕ F′)− p(Gj ⊕ F′).

Therefore,R will be computed in a finite number of steps.
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7.8 Conclusion
In this chapter we introduced the concept of parameter-invariant and minor-
monotone kernels and saw how can these kernels be used to compute ob-
struction sets for a variety of parameters.

An interesting question is whether the above framework can be ex-
tended so as to yield approximation kernels (as they were recently defined
in [181]) for more general problems.

Notice that the running time of our kernels (Theorem 7.4.1 and The-
orem 7.3.1) is O(|G|2c+2) steps where c = dec(p). We believe that with
the use of the randomized contraction technique (introduced in [163]), it
is possible to implement a faster guess of rich protrusions and drop this
running time to f(c)·nO(1) (similar ideas have recently been used in [178]).

An issue related to minor-monotone kernels is at which point poly-
nomial kernelization for minor-closed problems implies – or is implied
from – polynomial bounds to the corresponding obstructions. An im-
portant problem in this direction is to optimally bound the size of the
graphs in obs≤m(pp-Π, k), when p-Π is the F-Covering problem. Ac-
cording to [171, 172], each graph in this set has size O(kc), where c is a
constant depending (non-constructively) to the classF (actually the result
of [171, 172] does not even demand the graphs in F to be connected). A
consequence of Theorem 7.4.1 is that allH-topological minor free graphs
in obs≤m(pp-Π, k) are of size at most c · k, where c depends (construc-
tively) to the choice of F . This motivates us to conjecture that the general
bound can be dropped to c · kO(1). This would come in contrast to the fact
(proved in [171, 172]) that there are no (polynomial) kernels of this size
for the F-Covering problem, for certain instantiations of F .
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CHAPTER 8

GRAPH SEARCHING

Graph Searching is considered to be a flourishing branch of Graph The-
ory that has a wealth of applications. On top of this, it provides us with
a descriptive way to define many combinatorial notions and problems. In
a nutshell, “classic” Graph Searching or Guaranteed Search can be de-
scribed as follows:

We find ourselves in a network of corridors, or tunnels, cross-
ing one another (these crossings correspond to vertices of a
graph and tunnels to its edges). This network is the “board”
of a two player game. The first player controls an evading
entity1 hiding somewhere in this network. The second player
has at his disposal a set of mobile agents or pursuers2. In
each round of the game the two players move their ”pieces”
through this network. The goal of the first player is to evade
capture. On the opposite side, the second player tries to guar-

1You may think of this entity as an evader, a fugitive, an explorer or even a robber.
2Usually called searchers or – in the robber paradigm – cops.
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antee this capture, deterministically, without any probabilis-
tic assumptions.

The first formulation of Graph Searching was given by Parsons back
in 1976 [116], based on an idea of R. Breisch published in a speleology
magazine in 1967 [104]. The “speleotopological” problem described by
Breisch in that paper had to do with an unfortunate explorer, lost in a net-
work of caves, and a team of rescuers that were trying to locate him. The
question asked was “Is it possible to find the minimum number of rescuers
needed to guarantee that the explorer will be found, deterministically and
independently of his moves (even if he mistakenly make the worst possible
move in every given time of the search)?”.

Nikolai Petrov (Николaй Петрoв) came across this problem (and some
of Parsons’ results) in 1982, doing research in a completely different field3.
He gave a second definition of this problem based on his formalism and
framework [117]. In 1989 Petr Golovach (Пётр Головач) proved that
these two definitions are equivalent and proposed a third, which later be-
came the standard [108, 109].

Graph searching has an enormous number of variations, most of whom
are motivated by problems in practice, and can be defined by slightly
changing the capabilities of the evading entity or its pursuers. These appli-
cations grabbed the attention from researchers following many different
disciplines such as Discrete Mathematics, Computer Science and – even
– Artificial Intelligence. It also provided us with a formal, mathematical
way to describe the notions of persecution, escape, threatening, and – as
we will see in Chapter 9 – sense of direction.

In the following Section we give the definition of Golovach, and then
present some of the most important variations.

3Petrov studied graph searching as a natural restriction of differential games in Eu-
clidian spaces like the cossacks and the robber game [118] and the princess and the
monster problem [110].
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8.1 Edge, Node and Mixed Search
We are given a graph G, without multiple edges and loops, where the
game will be played. When the game begins (i.e., there are no searchers
in the graph) player number one choses an edge and places the fugitive4.
Then player number two places a number of his searchers on the vertices
of G. In the classic scenario, both the fugitive and the searchers can only
move to neighbour edges and vertices, that is, along a path connected their
current position to their new position.

According to the capabilities of the fugitive and the way an edge is
considered “searched” or “cleaned” we can define many different search
games. To get a rough idea, we present some of the characteristics a fugi-
tive may have:

- He may be lazy or inert: He is forced to move only when a searcher
threatens him, that is, a searcher approaches his position. Contrarily,
he may be agile: He moves on each and every round of the game.

- He may be visible by the searchers, or invisible to them.

- He may have bounded speed: He can traverse a bounded number
of edges in each round. Or, he may have unbounded speed: He can
move to every edge of the graph, provided of course that this edge
is connected with his current position.

The fugitive is captured if at some point he resides on an edge e and
one of the following capturing cases occurs.

A: Both endpoints of e are occupied by a searcher.

B: A searcher slides along e, i.e., a searcher is moved from one end-
point of the edge to the other endpoint.

4Unless otherwise stated, we adopt the fugitive vs. searchers scenario.
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A search strategy on a graphG is a finite sequenceS containing moves
of the following types.

p(v): placing a new searcher on a vertex v,

r(v): deleting a searcher from a vertex v,

s(v, u): sliding a searcher lactated on vertex v along the edge {v, u}
and placing it on u.

We will start with a fugitive who is agile and omniscient, i.e., he moves
at any time in the most favourable – for him – position and is invisible,
thus, the searchers strategy can be given “in advance”, as it does not de-
pend on the moves of the fugitive during it, but only on the graph.

Given a search S, we denote by E(S, i) the set of edges that are clean
after applying the first i steps of S , where by “clean” we mean that the
search strategy can guarantee that none of its edges will be occupied by
the fugitive after the i-th step. More formally:

- we set E(S, 0) = ∅ and

- in step i > 0 we define E(S, i) as follows: First consider the set
Qi containing all the edges in E(S, i − 1) plus the edges of E(i)

the set of edges that are cleaned after the i-th move because of the
application of cases A, B or both (this will give us three variations,
which will be defined shortly). Notice that E(i) may be empty. In
particular, it may be non-empty in case the i-move is a placement
move, will always be empty in case the i-th move is a removal move
and will surely be non-empty in case the i-th move is a sliding move.
In the third case, the edge along which the sliding occurs is called
the sliding edge ofE(i). Then, the setE(S, i) is defined as the set of
all edges in Qi minus those for which there is a path starting from
them and finishing in an edge not in Qi. This expresses the fact
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that the agile and omniscient fugitive could use any of these paths
in order to occupy again some of the edges in Qi.

Definition 8.1.1. In case E(S, i) ⊂ Qi, we say that the i-th move is a
recontamination-move.

Notice that in such a case we have thatE(S, i−1) ̸⊆ E(S, i). We will
discuss recontamination extensively in the following Section. The object
of a search game is to clear all edges.

Definition 8.1.2. We call a search S complete if at some step all edges
of G are clean, i.e., E(S, i) = E(G) for some i.

Now we can define the three major variations of, the so called, Fugitive
search games.

Definition 8.1.3 (Golovach, 1989 [108, 109]). When an edge can by
cleaned only after the application of case A, then he have Edge search or
Graph sweeping.

Definition 8.1.4 (Kirousis and Papadimitriou, 1985 [111, 112]). When
an edge can by cleaned only after the application of case B and searchers
cannot slide along an edge, then he have Node search.

Definition 8.1.5 (Bienstock and Robertson, 1991 [102]). When an edge
can by cleaned after the application of both cases, then he have Mixed
search5.

According to the search game we are playing we call a search strategy
S edge search strategy, node search strategy or mixed search strategy.

In Fugitive search games we are interesting to guarantee the capture
of the fugitive, i.e., define a complete search strategy, using the smaller
possible number of searchers. Therefore, we define the cost of a search
strategy S on a graph G, denoted by costG(S), as the maximum number
of searchers occupying vertices of G at the same time during S .

5We should stress that in this variation searchers can slide along edges.
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T

Figure 8.1: A graph with es(T ) = ms(T ) = 2 and ns(T ) = 3.

Definition 8.1.6. Let G be a graph. The edge search number of G is

es(G) = min{costG(S) | S is a complete edge search strategy for G}.

The node search number of G is

ns(G) = min{costG(S) | S is a complete node search strategy for G}.

The mixed search number of G is

ms(G) = min{costG(S) |S is a complete mixed search strategy for G}.

If E(G) = ∅ then es(G) = ns(G) = ms(G) = 0.

Example 8.1.1. The tree T of Figure 8.1 has es(T ) = ms(T ) = 2 but
ns(T ) = 3.

It is straight forward – from the definitions – that there exists some
connection between these three search numbers. For instance, notice that
mixed search unifies edge search and node search, as an edge search, or
node search strategy S is also a mixed search strategy. Thus, for every
graph G it holds that ms(G) ≤ ns(G) and ms(G) ≤ es(G). Moreover,
one can use an extra searcher to simulate the sliding move along an edge
to transform node search strategies to edge strategies and vice versa. All
these facts are put together in the following observation.

Observation 8.1.1. For every graph G, the following are true:
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(i) ns(G)− 1 ≤ es(G) ≤ ns(G) + 1

(ii) ms(G) ≤ es(G) ≤ ms(G) + 1

(iii) ms(G) ≤ ns(G) ≤ ms(G) + 1

8.2 Monotonicity

Let us get back to the issue of recontamination in a search strategy. As the
fugitive is agile and invisible, he can be everywhere in the graph. Let us
think of him as a poisonous gas that has filled the whole graph. Then the
purpose of the mobile agents is to clean this graph. They clean each edge,
according to A or B, and when they occupy some vertex, they block the
gas from entering in an edge having for endpoint this vertex. Of course,
when they leave a vertex that is adjacent to uncleaned edges, they are not
guarding it any more and – inevitably – a part of the graph that used to be
clean now is recontaminated with the gas.

With what we have seen so far, as a search strategy that has some
recontamination moves in it is still a search strategy, it must be clear that
recontamination seems to be helpful for the searchers6! In this Section we
plan to disprove it, but first we need to fix some notation and define three
additional search numbers.

Definition 8.2.1. A search strategy S (edge, node or mixed) is called
monotone if it does not contain any recontamination-moves.

Definition 8.2.2. Let G be a graph. The monotone edge search number

6We may be forced to clear multiple times the same edges but, by putting constrains in
a search strategy we immediately get an upper bound in the search number. Remember,
we are only interested in the number of searchers used and not in the time a search may
take.
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of G is

mes(G) = min{costG(S) | S is a complete monotone edge search
strategy for G}.

The monotone node search number of G is

mns(G) = min{costG(S) | S is a complete monotone node search
strategy for G}.

The monotone mixed search number of G is

mms(G) = min{costG(S) | S is a complete monotone mixed search
strategy for G}.

If E(G) = ∅ then mes(G) = mns(G) = mms(G) = 0.

The first proof of the monotonicity of a search game, i.e., a proof that
for every non-monotone strategy S – with costG(S) = k – there exists a
monotone strategy S ′ with costG(S ′) ≤ k, was given in 1983 by Andrea
LaPaugh, but was publish ten years later.

Theorem 8.2.1 (Lapaugh, 1993 [113]). For every graph G, es(G) =

mes(G).

The second was given by Lefteris Kirousis (Λευτέρης Κυρούσης) and
Christos Papadimitriou (Χρήστος Παπαδημητρίου) in 1986.

Theorem 8.2.2 (Kirousis and Papadimitriou, 1986 [112]). For every
graph G, ns(G) = mns(G).

The third one, which concerned the monotonicity of mixed search, was
given by Daniel Bienstock and Paul Seymour in 1991, in the same paper
they defined this game.
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Theorem 8.2.3 (Bienstock and Seymour, 1991 [102]). For every graph
G,ms(G) = mms(G).

To sum up, monotonicity holds for the three basic games we defined.
In 2003, Fedor V. Fomin (фёдор фомин) and Dimitrios M. Thilikos (Δη-
μήτριος Θηλυκός) gave a min–max theorem that unified – and extend –
all these monotonicity results [106]. Nevertheless, monotonicity does not
hold in general. We will see an example in the next Section.

8.3 Connected Graph Searching
In many applications, searchers need to communicate with each other
through a safe channel. Imagine for instance a network of computers in-
fected by a virus. Sending messages to not infected computers will help
a lot towards eliminating this virus, as you can coordinate your efforts. It
is mandatory that the information exchanged will never reach an infected
computer. In this example the “safe channel” is the part of the network
that has already been cleaned.

Let us get back to graphs and the fugitive vs. searchers paradigm.
Searchers need to communicate through the clean part of the graph and,
in order for this communication to be safe – or, in other words, for the
fugitive not being able to intersect it – the clean part of the graph must
be connected. This concept of connectivity in graph searching was intro-
duced in [100]. Let us make it more precise.

Definition 8.3.1. Let G be a graph and S a search strategy (edge, node
or mixed). S is connected if and only if for every step i of S , E(S, i)
induces a connected subgraph of G.

We can – once more – revise the definitions of the three basic search
games and allow only connected search strategies. In this way, we can de-
fine connected edge search, connected node search, and connected mixed
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search, as well as their corresponding search numbers (denoted by ces, cns
and cms). We have to stress that these numbers are also defined in dis-
connected graphs, but in this case their value is infinite.

We can even take it one step further and allow only connected and
monotone strategies. We can then define connected and monotone search
games and their search numbers (denoted by cmes, cmns and cmms). But,
as was the case in the previous Section, if the connected variations of
search games are monotone, by doing this we will not introduce some
new parameters. Hence, a very interesting question emerges:

Does monotonicity hold for connected graph searching?

Other than the case of edge search we do not know the answer.

Theorem 8.3.1 (Yang, Dyer, and Alspach, [122]). LetW be the graph of
Figure 8.2, where every circle with the number i on the center, represents
the clique of i vertices Ki, and the double lines between two cliques Ki

and Kj represent a perfect matching between their vertices, if i = j, or
between Ki and a subgraph of Kj , if i < j. It holds that ces(W ) = 281

but cmes(W ) = 290.

This counter-example shows that, as far as connected edge search is
concerned, searching a graph in a non-monotone way may be favourable
for the searchers part. On the other hand, there are some graph classes
where connected edge search is a monotone search game, trees for in-
stance.

Theorem 8.3.2 (Barière, Flocchini, Fomin, Fraigniaud, Nisse, Santoro,
and Thilikos [100]). For every tree T , ces(T ) = cmes(T ).

Connected graph searching poses another difficulty. ces, cns, cms as
well as ces, cns, cmms are not minor-closed parameters. This follows
from the fact that deleting an edge form a graph may disconnect it and,
thus, the graph obtained may have infinite connected search number.
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Figure 8.2: The graph W .

8.4 Width Parameters and Search Numbers
As we mentioned in Chapter 4, search numbers and width parameters are
closely related. As a matter of fact, in most cases for each width parameter
there exists an equivalent search number. To give you a rough idea why,
think of a search strategy as an ordering of the edges being cleaned or the
vertices visited by searchers. This can define an edge or vertex layout.
Our goal is to minimize the number of searchers in the worst possible
scenario, this leads to a min-max parameter, like the width parameter we
defined.

Let us see some examples.

Theorem 8.4.1. For every graph G, ns(G) = pw(G) + 1.

The above follows by combining two results about interval-thickness,
the first by Kirousis and Papadimitriou [111] and the second by Rolf H.
Möhring [54].
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Theorem 8.4.2 (Thilikos, 2000 [120]). For every graph G, lw(G) ≤
ms(G) ≤ lw(G) + 1.

The node search game variation where the fugitive is visible but lazy
was first studied by Nick Dendris (Νικόλαος Δενδρής), Lefteris Kirousis,
and Dimitrios Thilikos [105]. We denote by ilns(G) the minimum number
of searchers that can guarantee the capture of a fugitive in this game, on
the graphG. This search number can characterize the treewidth of a graph,
providing us with a third definition of this parameter.

Theorem 8.4.3 (Dendris, Kirousis, and Thilikos, 1997 [105]). For every
graph G, ilns(G) = tw(G) + 1.

8.5 Obstructions Sets
Before moving any further, it would be useful to pointing out that:

Theorem 8.5.1. For every integer k ≥ 1, the graph classes G[es, k],
G[ns, k], and G[ms, k] are closed under ≤,≤in,≤c and ≤m.

This can be proven independently or by using the associated width
parameters of these search numbers (and Observation 8.1.1). For con-
nected search, the classes with bounded search number are only closed
under takings of contractions, as the deletion of a vertex or an edge may
“disconnect” the graph.

Finding obstruction sets for classes with bounded graph search number
is a difficult endeavour. For small search numbers – really small, 1 and 2
for instance – some of these sets may be trivial. Bur then, thinks get very
complicated.

Example 8.5.1.

1. obs≤m(ns, 1) contains only the graph ({u, v}, {{u, v}}).
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2. obs≤m(ns, 2) = {K3, T}, where T is shown in Figure 8.1.

3. obs≤m(ns, k), obs≤m(cns, k), and obs≤m(cmns, k), for k = 1, 2 are
equal.

4. obs≤m(es, 1) = obs≤m(ces, 1) = obs≤m(cmes, 1) = obs≤m(ms, 1) =
obs≤m(cms, 1) = obs≤m(cmms, 1) = {K3, K1,3}.

Theorem 8.5.2 (Megiddo, Hakimi, Garey, Johnson, and Papadimitriou,
[115]). The obstruction set obs≤m(es, 2) consists of the 3 graphs shown in
Figure 8.3.

Figure 8.3: The set obs≤m(es, 2).

Theorem 8.5.3 (Takahashi, Ueno, and Kajitani, [136]). The obstruction
set obs≤m (ms, 2) consists of the 36 graphs shown in Figure A.2.

Theorem 8.5.4 (Kinnersley and Langston, [133]). The obstruction set
obs≤m (ns, 3) consists of the 110 graphs shown in Figures A.3, A.4, A.5
and A.6.

This is as far as our knowledge goes about obstruction sets for graph
classes with bounded search numbers. In Chapter 9 we will make a small
step forward and prove that obs≤c(cms, 2) and obs≤c(cmms, 2) are finite
and that both consist of the same 177 graphs [1]7.

7We have to stress that these are contraction obstructions, thus there is no general
proof that the obstruction sets would be finite
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8.5.1 “Distance” to bounded search number

In this Section we will discuss the obstructions sets for the distance to
search number parameters, i.e., (ns, r)-dist, (es, r)-dist and (ms, r)-dist,
for some r ∈ N.

Observation 8.5.1. ns, es and ms are all big in grids.

Proof. Notice that, for every graph G, it holds that

tw(G) ≤ pw(G) ≤ ns(G)

(this follows from the definition of tw and pw, and Theorem 8.4.1),
and that

ns(G) ≤ es(G) ≤ ms(G) + 1

(this follows from Observation 8.1.1).
Therefore, as tw(⊞r) = r (Example 4.1.1), it holds that ns(⊞r) ≥ r,

es(⊞r) ≥ r and ms(⊞r) ≥ r − 1.

The following is an immediate corollary of Theorem 4.2.1 (using The-
orem 8.5.1 and Observation 8.5.1).

Corollary 8.5.1. For every k, r ∈ N, the graphs in obs≤m(•, r), where
• ∈ {(ns, r)-dist, (es, r)-dist, (ms, r)-dist}, have size bounded by k.

Since ns, es and ms are computable and – by definition – max param-
eters, the following is a direct corollary of Theorem 7.4.3 (again, using
Theorem 8.5.1 and Observation 8.5.1).

Corollary 8.5.2. Let r, k ∈ N and let C be a graph class that is H-
topological minor-free, for some graph H . Then the set obs≤m (•, k) ∩ C,
where • ∈ {(ns, r)-dist, (es, r)-dist, (ms, r)-dist}, can be computed.
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CONNECTED GRAPH SEARCHING

In this chapter we are interested in obstruction characterizations for graphs
with bounded connected (monotone) mixed search number. While we saw
that ms is closed under taking of minors, this is not the case for cms and
cmms, where the connectivity requirement applies. From Robertson –
Seymour Theorem [84], the ≤m-obstruction set for the class of graphs
with ms at most k is always finite. Recall that this set for k = 1 consists
of 2 graphs, and for k = 2 of 36 graphs [119]. However, no such forbidden
graph characterizations of the classes with bounded connected (monotone)
mixed search number exists.

As we will see, cms and cmms are closed under takings of contrac-
tions, but, unfortunately, graphs are not well-quasi-ordered with respect
to the contraction relation (see Figure 2.5), therefore, there is no guar-
antee that the contraction obstruction set for cms or cmms is finite for
every positive integer k ≥ 2 (the finiteness of this set is straightforward if
k = 1 as obs≤c(cmms, 1) = {K3, K1,3}). In this Chapter we completely
resolve the case where k = 2. We will show that obs≤c(cmms, 2) =

obs≤c(cms, 2) and prove that this set is finite by providing all 177 graphs
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it contains. The proof is based on a series of lemmata that confine the
structure of graphs with connected and monotone mixed search number at
most 2.

We should stress that, in contrary to the case of ms, the direction of
searching is crucial for cms and cmms. This makes the detection of the
corresponding obstruction sets more elaborated, as special kind of obstruc-
tions are required in order to enforce a certain sense of direction in the
search strategy. For this reason, the proof makes use of a more general
variant of the mixed search strategy that forces the searchers to start from,
and finish to, specific sets of vertices. Obstructions for this more general
type of searching are combined in order to form the required obstructions
for cmms.

At the end of this chapter we will present a double exponential lower
bound on the size of the contraction obstruction set for the classes with
bounded connected and monotone search number. Of course, this lower
bound is only meaningful for the classes where this obstruction set is finite.
If this is the case for some k > 2, this lower bound shows us that the size
of obs≤c(cmms, k) will be huge.

9.1 Preliminary Definitions and Results
Instead of describing search strategies by explicitly stating each move of
the searchers in any given round, it is much easier to describe it using an
equivalent graph parameter. More often than not, this parameter can be
defined using graph layouts. This is what we are going to do for connected
(monotone) mixed search.

The following definition will be very useful.

Definition 9.1.1. Let A be a set and letA = ⟨a1, . . . , ar⟩ be an ordering
ofA. We denote by prefsec(A) the ordering ⟨A0, . . . , Ar⟩ of subsets ofA,
where A0 = ∅ and for i = 1, . . . , r, Ai = {a1, . . . , ai}.
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Definition 9.1.2. Let A1 and A2 be two disjoint orderings of A, we de-
note by A1 ◦ A2 the concatenation of these two orderings.

In order to define an extension of the connected search game we have
to define some new structures and fix some more notation.

Definition 9.1.3. A rooted graph triple, or, for simplicity, a rooted graph,
is an ordered triple (G,S in, Sout) whereG is a connected graph and S in and
Sout are subsets of V (G) 1. If G = (G,S in, Sout) then we also say that G
is the graph G in-rooted at S in and out-rooted at Sout.

Definition 9.1.4. Given a rooted graph G = (G,S in, Sout), we define
rev(G) = (G,Sout, S in).

Definition 9.1.5. Given a rooted graph G = (G,S in, Sout), where

S in = {vin
1 , . . . , v

in
|Sin|} and Sout = {vout

1 , . . . , vout
|Sout|},

we define its enhancement as the graph enh(G,S in, Sout) obtained fromG

after adding two vertices uin and uout and the edges in the sets

E in = {{vin
1 , u

in}, . . . , {vin
|Sin|, u

in}}

and
Eout = {{vout

1 , uout}, . . . , {vout
|Sout|, u

out}}

(See Figure 9.1).

From now on, we will refer to the vertices uin, uout as the vertex ex-
tensions of enh(G,S in, Sout) and the edge sets E in and Eout as the edge
extensions of enh(G,S in, Sout).

1 We stress that Sin and Sout are not necessarily disjoint sets.
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Sin Sout

uin
uout

u1

u2

u3

u4

u5

G

Figure 9.1: The enhancement of the rooted graph triple (G, {u1, u2, u3},
{u3, u4, u5}).

9.1.1 Connected search for rooted graphs

We have to stress that in fugitive search games we assume that searchers
cannot make their first move in the graph before the fugitive makes his
first move.

We define an extension of the connected search game.

Definition 9.1.6. LetG be a graph and letS in, Sout ⊆ V (G). A (S in, Sout)-
complete strategy for G is a search strategy S on enh(G,S in, Sout) such
that

(i) E(S, i) = E in, for some i,

(ii) E(S, i) ∩ Eout = ∅, for every i, and

(iii) E(S, i) = E(G) \ Eout, for some i,

where E in, Eout are the edge extensions of enh(G,S in, Sout).

Based on the above definitions, we define ms(G,S in, Sout) as the min-
imum mixed search number over all possible (S in, Sout)-complete search
strategies for G.
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Similarly, we definemms(G,S in, Sout) and cmms(G,S in, Sout)where,
in the case of connected searching, we additionally demand that S in in-
duces a connected subgraph of G. Notice that ms(G) = ms(G, ∅, ∅) and
that this equality also holds for mms and cmms.

9.1.2 Expansions

Now we introduce a graph parameter equivalent to the search game de-
fined in the previous paragraph. This parameter is defined using layouts
of edge sets.

Definition 9.1.7. Given a graph G and a set F ⊆ E(G), we define the
boundary of F as follows:

∂G(F ) = (
∪
e∈F

e) ∩ (
∪

e∈E(G)\F

e)

Definition 9.1.8. LetG be a graph and letE1 andE2 be subsets ofE(G).
An (E1, E2)-expansion of G is an ordering E = ⟨A1, . . . , Ar⟩ where:

(1) For i ∈ {1, . . . , r − 1}, E1 ⊆ Ai ⊆ E(G) \ E2.

(2) For i ∈ {1, . . . , r − 1}, |Ai+1 \ Ai| ≤ 1.

(3) A1 = E1.

(4) Ar = E(G) \ E2.

Definition 9.1.9. LetG be a graph and letE1 andE2 be subsets ofE(G).
An (E1, E2)-expansion of G is connected if, in addition to conditions (1)
to (4), the following condition also holds:

(5) For i ∈ {1, . . . , r}, G[Ai] is connected.
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Definition 9.1.10. Let G be a graph and let E1 and E2 be subsets of
E(G). An (E1, E2)-expansion of G is monotone if, in addition to condi-
tions (1) to (4), the following condition also holds:

(6) A1 ⊆ · · · ⊆ Ar.

Definition 9.1.11. Let i ∈ {1, . . . , r − 1}. The cost of an expansion E
at position i is defined as costG(E , i) = |∂G(Ai)|+ qi where qi is equal to
1 if one of the following holds:

- |Ai| ≥ 2 and Ai \ Ai−1 contains a pendant edge of G

- Ai consists of only one edge that is an isolated edge of G.

If none of the above two conditions hold then qi is equal to 0. The cost
of the expansion E , denoted as costG(E), is the maximum cost of E among
all positions i ∈ {1, . . . , r − 1}.

Our parameter, denoted by p(G,S in, Sout) 2, is defined to be the min-
imum cost that an (E in, Eout)-expansion of enh(G,S in, Sout) may have,
where E in, Eout are the edge extensions of enh(G, S in, Sout).

We also define mp(G,S in, Sout) (if we consider only monotone (E in,

Eout)-expansions) and cmp(G,S in, Sout) (if we consider connected mono-
tone (E in, Eout)-expansions). We finally define cmp(G) = cmp(G, ∅, ∅).

Lemma 9.1.1. Let (G,S in, Sout) be a rooted graph and let S in
1 ⊆ S in and

Sout
1 ⊆ Sout, whereG[Sin] is a connected subgraph of G. Then cmp(G,S in

1 ,

Sout
1 ) ≤ cmp(G,S in, Sout).

Proof. Let E in, Eout and E in
1 , E

out
1 be the edge extensions of enh(G,S in,

Sout) and enh(G,S in
1 , S

out
1 ) respectively. Notice that, as S in

1 ⊆ S in and
Sout
1 ⊆ Sout, E in

1 ⊆ E in and Eout
1 ⊆ Eout.

2Due to lack of inspiration we do not give a distinct name to this parameter...
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Let E = ⟨A1, . . . , Ar⟩ be an monotone and connected (E in, Eout)-
expansion of enh(G,S in, Sout), with cost at most k.

As G[S in] is a connected subgraph of G, for every vertex of S in \ S in
1

there exists a path connecting it with a vertex of S in
1 that only uses vertices

of S in. We define the following edge sets:

• E1
1 contains all edges that have a vertex ofS in

1 and a vertex ofS in\S in
1

as endpoints. Let V1 = (
∪
e∈E1

1
e) \ S in

1 , then E2
1 contains all edges

that have both endpoints in V1.

• E1
j contains all edges that have a vertex of Vj−1 and a vertex of S =

S in \ (S in
1 ∪ (

∪
l=1...,j−1 Vl)) as endpoints. Let Vj = (

∪
e∈E1

j
e) \ S,

then E2
j contains all edges that have both endpoints in Vj .

For each edge set Ei
j , 1 ≤ j ≤ d and i ∈ {1, 2}, where d is the

maximum distance between a vertex of S in \S in
1 to some vertex in S in

1 , we
define arbitrarily an edge ordering Lij . We then define an ordering E1 of
edge sets as follows:

• A′
1 = (A1 \ E in) ∪ E in

1

• A′

1+l = A
′

1+l−1 ∪ Âl for l = 1, . . . , |E1
1 |, where ⟨Â1, . . . , Â|E1

1 |⟩ =

prefsec(L1
1)

• A′

1+|E1
1 |+l

= A
′

1+|E1
1 |+l−1

∪Âl, for l = 1, . . . , |E2
1 |, where ⟨Â1, . . . , Â|E2

1 |⟩
= prefsec(L2

1)

• A′

1+|E1
1 |+|E2

1 |+···+|E1
j−1|+|E2

j−1|+l
= A

′

1+|E1
1 |+|E2

1 |+···+|E1
j−1|+|E2

j−1|+l−1
∪ Âl,

for l = 1, . . . , |E1
j |, where ⟨Â1, . . . , Â|E1

j |⟩ = prefsec(L1
j)

• A′

1+|E1
1 |+|E2

1 |+···+|E1
j−1|+|E2

j−1|+|E1
j |+l

=A
′

1+|E1
1 |+|E2

1 |+···+|E1
j−1|+|E2

j−1|+|E1
j |+l−1

∪ Âl, for l = 1, . . . , |E2
j |, where ⟨Â1, . . . , Â|E2

j |⟩ = prefsec(L2
j)
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Sin
1

Sin
2

Sin
3

Sin
4

Sin
5

Sout
1

Sout
2 Sout

3

Sout
4

Sout
5

G1 G2 G3 G4 G5

Figure 9.2: glue(G1,G2,G3,G4,G5).

Let s = |E1
1 | + |E2

1 | + · · · + |E1
d | + |E2

d |. Notice that there exist a
l0 ∈ {2, . . . , r} such that A′

1+s = (Al0 \ E in) ∪ E in
1 . We define a second

ordering E2 of edge sets as follows: A′

1+s+l = (Al0+l \ E in) ∪ E in
1 for

l = 1, . . . , r − l0.
Clearly, E ′ = E1 ◦ E2 satisfies conditions (1) to (4) and therefore is an

(E in
1 , E

out
1 )-expansion of enh(G,S in

1 , S
out
1 ). Moreover, the monotonicity

and connectivity of E ′ follows from the monotonicity and connectivity of
E .

Notice that, for every i ∈ {1, . . . , r}, ∂G(Ai) = ∂G((Ai \ E in) ∪ E in
1 )

therefore costG(E ′, i) ≤ costG(E , i). From this we conclude that E ′ has
cost at most k.

We need an operation that will “glue together” rooted graphs by iden-
tifying their “in” and “out” roots.

Definition 9.1.12. Let G1, . . . ,Gr be rooted graphs such that Gi =

(Gi, S
in
i , S

out
i ) where V (Gi)∩V (Gi+1) = Sout

i = S in
i+1, i ∈ {1, . . . , r−1}.

We define, glue(G1, . . . ,Gr) = (G1∪· · ·∪Gr, S
in
1 , S

out
r ) (see Figure 9.2).

Lemma 9.1.2. Let G1, . . . ,Gr be rooted graphs such that Gi = (Gi, S
in
i

,Sout
i ) where V (Gi) ∩ V (Gi+1) = Sout

i = S in
i+1, i ∈ {1, . . . , r − 1}. Then

cmp(glue(G1, . . . ,Gr)) ≤ max{cmp(Gi) | i ∈ {1, . . . , r}}.
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Proof. Let E in
i , E

out
i be the edge extensions and Ei = ⟨Ai1, . . . , Aili⟩ be an

monotone and connected (E in
i , E

out
i )-expansion of enh(Gi, S

in
i , S

out
i ), for

every i ∈ {1, . . . , r}. Clearly E = ⟨A1
1, . . . , A

1
l1
, A1

l1
∪ A2

2, . . . , A
1
l1
∪

A2
l2
, . . . , (∪1≤i<rA

i
li
) ∪ Ar2, . . . , (∪1≤i<rA

i
li
) ∪Arlr⟩ is an (E in

1 , E
out
r )-ex-

pansion of glue(G1, . . . ,Gr) and, as expansions Ei, i ∈ {1, . . . , r} are
monotone and connected, conditions (5) and (6) hold.

We observe that costG1∪···∪Gr(E) ≤ max{costG1(E1), . . . , costGr(Er)},
therefore cmp (glue(G1, . . . ,Gr)) ≤ max{cmp(Gi) | i ∈ {1, . . . , r}}.

Now we show the equivalence of our search game number to the pa-
rameter defined above.

Lemma 9.1.3. For every graphG, cmms(G,S in, Sout) = cmp(G,S in, Sout).

Proof. Assume that G∗ = enh(G,S in, Sout) has a complete search strat-
egy S satisfying conditions (i) – (iii) with cost at most k. We construct an
edge ordering of E(G) as follows.

Observe that, because of the monotonicity of S, E(i) = E(S, i) \
E(S, i−1). For every i ∈ {1, . . . , |S|}, we define Li by taking any order-
ing of the setE(i) and insisting that, ifE(i) contains some sliding edge, this
edge will be the first edge of Li. Let E = ⟨A0, . . . , Ar⟩ be the sequence of
prefixes of L1 ◦ . . .◦L|S|, including the empty set (that isA0 = ∅). Notice
that, because of Condition (i), As = E in for some s ∈ {1, . . . , |S|}, and,
because of Condition (iii), At = E(G) \ Eout, for some t ∈ {1, . . . , |S|}.
We now claim that E ′ = ⟨As, . . . , At⟩ is an (E in, Eout)-expansion of G∗.
Indeed, Condition (1) holds because of Condition (ii) and Conditions (2)
– (4) hold because of the construction of E ′. Moreover, the connectivity
and the monotonicity of E ′ follow directly from the connectivity and the
monotonicity of S.

It remains to prove that the cost of E ′ is at most k. For each j ∈
{0, . . . , |E ′|} we define ij such that the unique edge in Aj \ Aj−1 is an
edge in E(ij) and we define hj such that Ahj \ Ahj−1 contains the fist
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edge of Lij . Notice now that the cost of E ′ at positions hj to j is upper
bounded by the cost of E ′ at position hj . Therefore, it is enough to prove
that the cost of E ′ at position hj is at most k. Recall that this cost is equal
to |∂G(Ahj)|+ qhj . We distinguish two cases:

Case 1. If qhj = 0, then the cost of E ′ at position hj is equal to |∂G(Ahj)|.
As S is monotone, all vertices in ∂G(Ahj) should be occupied by searchers
after the ij-th move of S and therefore the cost of E ′ at position hj is at
most k.

Case 2. If qhj = 1, then the ij-th move of S is either the placement of a
searcher on a pendant vertex x or the sliding of a searcher along a pendant
edge {y, x} towards its pendant vertex x. In both cases, x ̸∈ ∂G(Ahj)

and all vertices in ∂G(Ahj) should be occupied by searchers after the ij-th
move. In the first case, there are in total at least |∂G(Ahj)| + 1 searchers
on the graph and we are done. In the second case, we observe that, due
to monotonicity, ∂G(Ahj) = ∂G(Ahj−1) \ {y}. As after the (hj − 1)-th
move all vertices of ∂G(Ahj−1) were occupied by searchers, we obtain that
|∂G(Ahj)| ≤ k − 1 and thus the cost of E ′ at position hj is at most k.

Now assume that there exist a monotone and connected (E in, Eout)-
expansion of G∗, say E = ⟨A1, . . . , Ar⟩, with cost at most k. We can
additionally assume that E is properly monotone; this can be done by dis-
carding additional repetitions of a set in E .

Moreover, starting from E , we can construct a monotone and con-
nected (E in,Eout)-expansion ofG∗, with cost at most k, say E ′ = ⟨A′

1, . . . ,

A′
r⟩, with the following additional property:

Expansion property: For every i ∈ {1, . . . , r − 1} for which V (A′
i) ⊂

V (A′
i+1), A′

i contains all edges of G∗ with both endpoints in V (A′
i).

This can be accomplished by a series of appliances of the following
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rule:

Rule: Let V (Ai) ⊂ V (Ai+1) for some i and let L = ⟨e1, . . . , en⟩ be
an ordering of the edges E(G∗) \ Ai with both endpoints in V (Ai). For
every j ≤ i define A′

j = Aj . Then, define A′
i+1 = Ai ∪ {e1}, A′

i+2 =

Ai∪{e1, e2} and so on, untilA′
i+n = Ai∪{e1, . . . , en}. Finally, for every

j ≥ i+ n, define A′
j = Aj ∪ {e1, . . . , en}.

One can easily check that, after every application of this rule, the con-
structed sequence of edge sets is indeed an (E in, Eout)-expansion of G∗

and, furthermore, it is monotone and connected. Notice that, for j =

1, . . . , n, ∂G∗(A′
i+j) ⊆ ∂G∗(Ai) and for j ≥ i+n, |∂G∗(A′

j)| ≤ |∂G∗(Aj)|.
Moreover, if |Ai| ≥ 2 and Ai \ Ai−1 contains a pendant edge of G∗ then
for every j ∈ {1, . . . , n}, |A′

i+j| ≥ 2 and A′
i+j \A′

i+j−1 contains the same
pendant edge of G∗, hence the cost of E ′ is at most k (notice that if Ai
consists of only one edge that is an isolated edge ofG∗ then there does not
exist an edge in E(G∗) \ Ai with both endpoints in V (Ai), therefore we
do not need to apply this rule).

For the rest of the proof, we consider that the Expansion property holds
for the given (E in, Eout)-expansion of G∗.

Our target is to define a (S in, Sout)-complete monotone search strategy
S of G∗ with cost at most k.

The first |S in| moves of S will be p(uin) and the next |S in| will be
s(uin, vin

i ). We denote this sequence of moves by S0. Notice that E(S ,
2|S in|) = A1.

For every vertex u in the set V ∗ = V (G∗) \ S in \ {uout}, we define lu
to be the first integer in {1, . . . , r} such that u ∈ V (Alu).

Let L = ⟨u1, . . . , u|V ∗|⟩ be an ordering of V ∗ such that i ≤ j when
lui ≤ luj . Notice that, for each i ∈ {1, . . . , |V ∗|}, the vertex ui is an
endpoint of the unique edge ei in Alui−1 \ Alui and let vi be the other
endpoint of ei. Notice that, due to the connectivity and the monotonicity
of E , vi ∈ ∂G∗(Alui−1). We also observe that ui is pendant if and only
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if ui ̸∈ ∂G∗(Alui ). We define E ′ = {e1, . . . , e|V ∗|} and we call a set Aj ,
j ∈ {1, . . . , r}, crucial if and only if |Aj−1 ∩ E ′| < |Aj ∩ E ′|.

For each i ∈ {1, . . . , |V ∗|}, we define a sequence Si of moves as fol-
lows: If vi ∈ ∂G∗(Alui ) then the first move of Si is p(ui), otherwise it
is s(vi, ui). The rest of the moves in Si are the removals – one by one
– of the searchers in ∂G∗(Alui−1) \ ∂G∗(Alui ). Then, we define S =

S0 ◦ S1 ◦ · · · ◦ S|V ∗|.
Notice that, according to the expansion property, all edges of the sets

Aj , for j = 1, . . . , lu1 have both endpoints in S in. Moreover, for every i ∈
{1, . . . , |V ∗| − 1} all edges of the sets Aj , for j = lui , . . . , lui+1− 1, have
both endpoints inV (Alui ) and all edges of the setsAj , for j = lu|V ∗| , . . . , r,
have both endpoints in V (Alu|V ∗|

).

First we show that the following claim is true:

Claim 6. For everyAj , j ∈ {1, . . . , r}, the vertices of ∂G∗(Aj) are exactly
the vertices occupied by searchers after the last move of Smj

, where mj

is the index of the edge in (A ∩ E ′) \ (Aj−1 ∩ E ′), where A is the first
crucial set of E such that Aj ⊆ A.

Proof of Claim 6. Clearly, this is true for A1 = E in. Assume that it holds
for Aj′ .

We will show that the vertices in ∂G∗(Aj′+1) are exactly the vertices
occupied by searchers after the last move of Smj′+1

.
If Aj′+1 is not crucial then ∂G∗(Aj′+1) ⊆ ∂G∗(Aj′) and mj′+1 = mj′ ,

therefore Claim 6 holds.
Now, if Aj′+1 is crucial and {emj′+1

} = (Aj′+1 ∩ E ′) \ (Aj′ ∩ E ′),
then vmj′+1

∈ ∂G∗(Aj′) and, therefore, must be occupied by a searcher.
We distinguish three cases:

Case 1. If vmj′+1
∈ ∂G∗(Aj′+1) and umj′+1

∈ ∂G∗(Aj′+1), then ∂G∗(Aj′+1)

= ∂G∗(Aj′) ∪ {umj′+1
} and the first move in Smj′+1

will be p(umj′+1
).
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Case 2. If vmj′+1
∈ ∂G∗(Aj′+1) and umj′+1

̸∈ ∂G∗(Aj′+1) then ∂G∗(Aj′+1)

= ∂G∗(Aj′).

Case 3. If vmj′+1
̸∈ ∂G∗(Aj′+1), then ∂G∗(Aj′+1) = (∂G∗(Aj′)\{vmj′+1

})∪
{umj′+1

}, and the first move in Smj′+1
will be s(vmj′+1

, umj′+1
).

Observe that in all three cases the Claim 6 holds.

Let VS(i) be the set of vertices already visited by searchers after the i-
th move of S, and let VS = ⟨VS(1), . . . , VS(r)⟩. Notice that this sequence
is monotone and that if the i-th move belong to the subsequence Sj , then
VS(i) = V (Aluj ). We must next prove the following:

Claim 7. For every i ∈ {1, . . . , |S|}, all edges of G∗[VS(i)] are clean.

Proof of Claim 7. Clearly, the claim is true for i ∈ {1, . . . , 2 · |S in|}. As-
sume that it holds for some i ∈ 2 · |S in|+ 1, . . . , r, we will show that all
edges of G∗[VS(i + 1)] are clean. We must distinguish three cases about
the (i+ 1)-th move:

Case 1. It is a removal, say r(u). Notice that G∗[VS(i+ 1)] = G∗[VS(i)],
therefore the Claim will not be true if r(u) is a recontamination move. In
this case, there exist an edge connecting u with a vertex not in VS(i), say
v. As u ∈ ∂G∗(Aluj−1) \ ∂G∗(Aluj ), for some j ∈ {1, . . . , |V ∗|}, all edges
with u as endpoint must belong to Aluj , therefore {u, v} ∈ Aluj . But
VS(i) = V (Aluj ), a contradiction.

Case 2. It is a placement of searcher say p(u). By the definition of S, there
exist an edge {u, v}, where v is a vertex in VS(i). Notice that, according
to our search game, all such edges are clean after p(u), thus all edges of
G∗[VS(i+ 1)] are clean.

217



9.1. PRELIMINARY DEFINITIONS AND RESULTS

Case 3. It is a slide, say s(vj, uj), for some j ∈ {1, . . . , |V ∗|}. As in the
previous case,G∗[VS(i+1)] contains all edges ofG∗[VS(i)] and additional
all edges with uj as the first endpoint and a vertex v ∈ VS(i) as the other.
According to our search game, after the i-th move there must be searcher
in vj , therefore due to Claim 6, vj ∈ ∂G∗(Aluj ). Notice that, the Claim
will not be true if s(vj, uj) is a recontamination move, i.e., there exist an
edge connecting vj with a vertex, say u, not in VS(i) = V (Aluj ). As
vj ̸∈ ∂G∗(Aluj ), all edges with u as endpoint must belong to Aluj , there-
fore {vj, u} ∈ Aluj , a contradiction.

In all three cases we saw that after the (i + 1)-th move of S all edges
of G∗[VS(i+ 1)] are clean, therefore Claim 7 is true.

We will now prove that S is a (S1, S2)-complete strategy for G∗.
Clearly, Condition (i) holds for every strategy starting with S0. More-

over, Condition (ii) holds as vout is not a vertex of V ∗ and therefore, no
placement on uout or sliding towards uout appears inS . Notice that, accord-
ing to Claim 7, for every i ∈ {1, . . . , |V ∗|−1},E(S, |S0◦· · ·◦Si−1|+1) =

· · · = E(S, |S0 ◦ · · · ◦ Si−1| + |Si|) = Alui+1−1, and that for i = |V ∗|,
E(S, |S0 ◦ · · · ◦ S|V ∗||) = Ar, therefore Condition (iii) holds.

By the definition of S , it is clear that S is a connected search strategy,
moreover, according to Claim 7, S is monotone.

It remains to prove that S has cost at most k. For the first 2|S in|
moves, we use |S in| = costG∗(E , 1) ≤ k searchers. Assume that af-
ter j moves exactly k searchers are occupying vertices of G∗ and that
the (j + 1)-th move is p(ui), for some i ∈ {i, . . . , |V ∗|}. Then the ver-
tices in ∂G∗(Alui−1) are exactly the vertices occupied by the k searchers,
therefore |∂G∗(Alui−1)| = k. Observe that, if ui is not pendant, then
∂G∗(Alui ) = ∂G∗(Alui−1)∪ {ui}, therefore |∂G∗(Alui )| = k + 1, a contra-
diction and if ui is pendant then ∂G∗(Alui ) = ∂G∗(Alui−1) and the cost of
E at position lui is |∂G∗(Alui )| + 1 = k + 1, again a contradiction. Thus,
for every move of S at most k searchers are occupying vertices ofG∗.

218



CHAPTER 9. CONNECTED GRAPH SEARCHING

9.1.3 Contractions

As we consider rooted graphs instead of regular graphs, we need to give
new definitions for the contraction and minor relations, that will still be
consistent with the definitions we gave in Chapter 6. We may define them
for rooted graphs at first, but then, by taking S in

1 = Sout
1 = ∅, we will

restrict them to graphs.

Definition 9.1.13. Let (G1, S
in
1 , S

out
1 ) and (G2, S

in
2 , S

out
2 ) be rooted graphs.

We say that (G1, S
in
1 , S

out
1 ) is a (rooted) contraction of (G2, S

in
2 , S

out
2 ) and

we denote this fact by (G1, S
in
1 , S

out
1 ) ≤c (G2, S

in
2 , S

out
2 ) if there exists a

surjection ϕ : V (G2)→ V (G1) such that:

(1) for every vertex v ∈ V (G1), G2[ϕ
−1(v)] is connected,

(2) for every two distinct vertices u, v ∈ V (G1), it holds that {v, u} ∈
E(G1) if and only if the graph G2[ϕ

−1(v) ∪ ϕ−1(u)] is connected,

(3) ϕ(S in
2 ) = S in

1 , and

(4) ϕ(Sout
2 ) = Sout

1 .

We will often write (G1, S
in
1 , S

out
1 ) ≤ϕc (G2, S

in
2 , S

out
2 ) to make clear

that the function certifying the contraction relation is ϕ. Notice that G1 is
a contraction of G2 if (G1, ∅, ∅) ≤c (G2, ∅, ∅).

We can define the (rooted) minor relation for two rooted graphs by
removing in the second property the demand that if {u, v} /∈ E(G1)

then G2[ϕ
−1(v) ∪ ϕ−1(u)] is not connected. We denote the minor rela-

tion by (G1, S
in
1 , S

out
1 ) ≤m (G2, S

in
2 , S

out
2 ). Notice that G1 is a minor of G2

if (G1, ∅, ∅) ≤m (G2, ∅, ∅).

Lemma 9.1.4. If (G1, S
in
1 , S

out
1 ) and (G2, S

in
2 , S

out
2 ) are rooted graphs and

(G1, S
in
1 , S

out
1 ) ≤c (G2, S

in
2 , S

out
2 ), then cmp(G1, S

in
1 , S

out
1 )) ≤ cmp(G2, S

in
2 ,

Sout
2 )).
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Proof. Suppose that E = ⟨A1, . . . , Ar⟩ is a monotone (E in
2 , E

out
2 )-expan-

sion of G∗
2 = enh(G2, S

in
2 , S

out
2 ) with cost at most k. Our target is to

construct a monotone (E in
1 , E

out
1 )-expansion of G∗

1 = enh(G1, S
in
1 , S

out
1 )

with cost at most k.
Let ϕ be a function where (G1, S

in
1 , S

out
1 ) ≤ϕc (G2, S

in
2 , S

out
2 ). We con-

sider an extension ψ of ϕ that additionally maps uin
2 to uin

1 and uout
2 to uout

1 .
Notice that the construction of ψ yields the following:

(G∗
1, S

in
1 ∪ {uin

1 }, Sout
1 ∪ {uout

1 }) ≤ϕc (G∗
2, S

in
2 ∪ {uin

2 }, Sout
2 ∪ {uout

2 })

Given an edge f = {x, y} ∈ E(G1) we consider the setEf containing
all edges of G2 with one endpoint in ψ−1(x) and one endpoint in ψ−1(y).
We now pick – arbitrarily – an edge in Ef and we denote it by ef . We
also set E ′ = {ef | f ∈ E(G1)}. Then it is easy to observe that E ′ =
⟨A1 ∩ E ′, . . . , Ar ∩ E ′⟩ is a connected expansion of G∗

1 and that the cost
of E ′ at step i is no bigger than the cost of E at the same step, where
i ∈ {1, . . . , r − 1}.

Lemma 9.1.5. If G1 and G2 are two graphs and G1 ≤c G2, then cms(G1)

≤ cms(G2).

Proof. First observe that, if this is the case, any contraction of G2 can be
derived by applying a finite number of edge-contractions of some edges
in E(G2).

It suffices to prove that the lemma holds if G1 is obtained by the con-
traction of edge e = {u, v} ∈ E(G1) to vertex xuv. Let S be a connected
search strategy for G2 that – in any step – uses at most k searchers. Based
on S we will construct a search strategy S ′ for G1. Let i be an integer in
{1, . . . , |S|}. We distinguish eight cases:

Case 1: If the i-th move of S is p(x) for some vertex x /∈ {u, v}, then the
next move of S ′ will be p(x).
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Case 2: If the i-th move of S is r(x) for some vertex x /∈ {u, v}, then the
next move of S ′ will be r(x).

Case 3: If the i-th move of S is s(x, y) for some vertices x, y /∈ {u, v},
then the next move of S ′ will be s(x, y).

Case 4: If the i-th move of S is p(u) or p(v), then the next move of S ′

will be p(xuv).

Case 5: If the i-th move of S is r(u) or r(v), then the next move of S ′ will
be r(xuv).

Case 6: If the i-th move of S is s(z, u) or p(z, v) for some vertex z, then
the next move of S ′ will be s(z, xuv).

Case 7: If the i-th move of S is s(u, z) or p(v, z) for some vertex z, then
the next move of S ′ will be s(xuv, z).

Case 8: If the i-th move of S is s(u, v) or p(v, u), then the next move of
S ′ will be defined according the lateral cases from the (i+1)-th move ofS .

Observe that S ′ is a complete search strategy for G1. Furthermore, as
S is connected, S ′ must also be connected. Finally, it is clear that S ′ – at
any step – uses at most k searchers, thus cms(G1) ≤ k.

9.1.4 Cut-vertices and blocks

Let us fix some more notation. Recall that the blocks of a graph G are
its 2-connected components. If the removal of an edge in G increases the
number of its connected components, then it is called a bridge. In what
follows we will consider the subgraphs of G induced by the endpoints of
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bridges as blocks and we call them trivial blocks of G.

Definition 9.1.14. Let G be a graph and B a block of G. A cut-vertex
of G is a vertex such that G \ x has more connected components than G.
A cut-vertex of B is a cut-vertex of G belonging to V (B).

The following two definitions may be highly technical but are very
helpful for the proofs of Section 9.2.

Definition 9.1.15. Let G bet a graph and let x ∈ V (G). We define

CG(x) = {(x,G[V (C) ∪ {x}]) | C is a connected component of G \ x}.

Definition 9.1.16. Let B be a block of G and let x be a cut-vertex of B.
We denote by CG(x,B) the (unique) graph in CG(x) that contains B as a
subgraph and by CG(x,B) the graphs in CG(x) that do not contain B.

Recall the definition of graph embeddings in Rd (Definition 5.1.4). A
plane embedding E2(G) = (f, C) of a graph G is an embeddings in R2

such that the interior of each curve in C contains neither a point f(u), for
some u ∈ V (G), nor a point of another curve in C. Notice that, given a
plane embedding of G the set R2 \ E2(G) defined when we subtract from
R2 the points {f(u) | u ∈ V (G)} corresponding to the vertices of G, and
the points

∪
c∈C C of the curves corresponding to the edges of G, is open.

The regions of R2 \E2(G) are the faces of E2(G). We define the outer face
and the inner faces of E2(G) in the same way we did in Definition 2.5.2.

Definition 9.1.17. A graph G is outerplanar if there is a plane embed-
ding of G such that all its vertices are incident to the outer face.

This embedding, when it exists, is unique up to homeomorphism.

From now on, each outerplanar graph G is accompanied with such an
embedding, say E2(G) = (f, C). We will refer to the elements of f(V )
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Essential Block

i
i

Cycle blocks

h

h
h

h

h

h
A chord

An outer edge Hair Blocks

Essential Block

Bridge Block

1

Figure 9.3: An outerplanar graph and its blocks. The cut-vertices are
hexagonal and the outer vertices are squares. Inner and haploid faces are
denoted by “i” and “h” respectively. There are, in total, four inner vertices
(all belonging to the essential block on the right) and, among them only
the triangular one is not an haploid vertex. The white hexagonal vertices
are the light cut-vertices while the rest of the hexagonal vertices are the
heavy ones.

and C as the vertices and edges of E2(G) respectively and, to keep thinks
simple, we will identify them with the “real” vertices and edges of G.

An edge e ∈ E(G) is called outer edge of G, if it is incident to the
outer face of G, otherwise it is called a chord of G.

A face F of an outerplanar graph that is different than the outer face,
is called haploid if and only if at most one edge incident to F is a chord,
otherwise F is a inner face. A vertex u ∈ V (G) is haploid if it is incident
to an haploid face and inner if it is incident to an inner face (notice that
some vertices can be both inner and haploid). A vertex of G that is not
inner or haploid is called outer. We call a chord haploid if it is incident to
an haploid face. Non-haploid chords are called internal chords.

Observation 9.1.1. A block of a connected outerplanar graph with more
than one edge can be one of the following.
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K4K2,3 K
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2,3
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Figure 9.4: The set O1.

- A hair block: It is a trivial block containing exactly one vertex of
degree 1 in G.

- A bridge block: It is a trivial block that is not a hair-block.

- A cycle block: If it is a chordless non-trivial block.

- An essential block: If it is a non-trivial block with at least one chord.

Let G be a connected outerplanar graph with more than one edge.
Given a cut-vertex c of G, we say that c is light if it is the (unique) cut-
vertex of exactly one hair block. If a cut-vertex of G is not light then it is
heavy (see Figure 9.10 for an example).

It is known that the class of outerplanar graphs is closed under the rela-
tions≤m,≤c and, without much effort, one can derive from Theorem 2.5.2
the following.

Theorem 9.1.1. A graph is outerplanar if and only if K4 ≰m G and
K2,3 ≰m G.

Let K+
2,3 be the graph obtained by K2,3 after connecting the two ver-

tices of degree 3 (Figure 9.4).

Lemma 9.1.6. IfH is the class of all outerplanar graphs, then obs≤c(H) =
O1, where O1 is shown in Figure 9.4.
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Proof. Observe that the graphs in O1 cannot be embedded in the plane
in such a way that all of its vertices are incident to a single face, and,
therefore, neither the graphs in O1, neither the graphs that contain as a
contraction a graph in O1, can be outerplannar.

To complete the proof, one must show that every non-outerplannar
graph can be contracted to a graph inO1. LetG be non-outerplannar, then
K4 ≤m G or K2,3 ≤m G. Clearly, as K4 is a clique, K4 ≤m G implies
that K4 ≤c G. Suppose now that K2,3 ≤m G. Let Vx, Vy, V1, V2, V3 be the
vertex sets of the connected subgraphs of G that are contracted towards
creating the vertices ofK2,3 (Vx and Vy are contracted to vertices of degree
3). If there is no edge in G between two vertices in Va and Vb for some
(a, b) ∈ {(x, y), (1, 2), (2, 3), (1, 3)} then K2,3 ≤c G. If the only such
edge is between Vx and Vy then K+

2,3 ≤c G and in any other case, K4 ≤c

G.

9.2 Obstructions for Graphs With cms/cmms
at Most 2

In this Section we define a “candidate” contraction obstruction set for
graphs with connected monotone mixed search number at most 2, namely
the setD1 defined below. This set consists of 177 graphs. Then, we prove
a series of lemmata, each providing some information about the structure
of the graphs that can be searched with at most two searchers, using a con-
nected and monotone mixed search strategy. Combining all these lemmata
we will prove that D1 is the correct obstruction set.

Definition 9.2.1. Let D1 = O1 ∪ · · · ∪ O12 where O1 is depicted in
Figure 9.4, O2, . . . ,O9 are depicted in Figure 9.5 and O10 and O11 and
O12 are constructed as follows.

O10 : Contains every graph that can be constructed by taking three dis-
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Figure 9.5: Some of the sets of graphs in Definition 9.2.1.

joint copies of some graphs in Figure 9.10 and then, identify the
vertices denoted by v in each of them to a single vertex. There are
– in total – 35 graphs generated in this way.

O11 : Contains every graph that can be constructed by taking two disjoint
copies of some graphs in Figure 9.14 and then, identify the vertices
denoted by v in each of them to a single vertex. There are – in total
– 78 graphs generated in this way.

O12 : Contains every graph that can be constructed by taking two disjoint
copies of some graphs in Figure 9.15 and then, identify the vertices
denoted by v in each of them to a single vertex. There are – in total
– 21 graphs generated in this way.

Notice that, D1 indeed contains 177 graphs.
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9.2.1 Proof strategy

We will prove that D1 is the obstruction set we are looking for, in two
steps. One easy (Lemma 9.2.1) and one much more involved (Lemma 9.2.2).
A very important part for the proof of the second step is to distinguish “im-
portant blocks” from non “important ones”, namely central and extremal
blocks from fans, and then define directional obstructions.

Lemma 9.2.1. D1 ⊆ obs≤c(cmp, 2).

Proof. From Lemma 9.1.4, it is enough to check that for every G ∈ D1,
the following two conditions are satisfied

(i) cmp(G) ≥ 3, and

(ii) for every edge e of G it holds that cmp(G/e) ≤ 2.

One can verify that this is correct by inspection, as this concerns only a
finite amount of graphs and, for each of them, there exists a finite number
of edges to contract.

Lemma 9.2.2. D1 ⊇ obs≤c(cmp, 2).

The rest of this Section is devoted to the proof of Lemma 9.2.2. For
this, our strategy is to consider the set

Q = obs≤c(cmp, 2) \ D1

and prove that Q = ∅ (Lemma 9.2.15). To achieve this, as mentioned
before, we have to prove a series of structural results. Their proofs use the
following three fundamental properties of the set Q.

Lemma 9.2.3. Let G ∈ Q. Then the following hold.

(i) cmp(G) ≥ 3.
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(ii) If H is a proper contraction of G, then cmp(G) ≤ 2.

(iii) G does not contain any of the graphs in D1 as a contraction.

Proof. Properties (i) and (ii) hold because G ∈ obs≤c(cmp, 2). For prop-
erty (iii) suppose, to the contrary, that G contains some graph in H ∈ D1

as a contraction. From Lemma 9.2.1, H ∈ obs≤c(cmp, 2). Clearly, H
is different than G as Q does not contain members of D1. Therefore, H
is a proper contraction of G and, from property (ii), cmp(H) ≤ 2. This
contradicts to the fact thatH ∈ obs≤c(cmp, 2) and thus cmp(H) ≥ 3.

9.2.2 Basic structural properties

Lemma 9.2.4. Let G ∈ Q. The following hold:

1. G is outerplanar.

2. Every light cut-vertex of G has degree at least 3.

3. Every essential block B of G, has exactly two haploid faces.

4. Every block of G, has at most 3 cut-vertices

5. Every cut-vertex of a non-trivial block of G is an haploid vertex.

6. Every block of G contains at most 2 heavy cut-vertices.

7. If a block of G has 3 cut-vertices, then there are two, say x and y,
of these vertices that are not both heavy and are connected by an
haploid edge.

8. If an essential block of G with haploid faces F1 and F2 has two
heavy cut-vertices, then we can choose one, say c1, of these two
heavy cut-vertices so that it is incident to F1 and one say c2 that is
incident toF2. Moreover, this assignment can be done in such a way
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that if there is a third light cut-vertex c3, adjacent to one, say c1, of
c1, c2, then c3 is incident to F1 as well.

Proof. 1. By the third property of Lemma 9.2.3, G cannot be contracted
to a graph inO1 and therefore, from Lemma 9.1.6,Gmust be outerplannar.

2. Let c be a light cut-vertex of a block B in G, with degree 2 (notice
that, as c is a cut-vertex, c cannot have degree 1 or 0). That means that
c belongs to a path with at least two edges, the hair block B and an edge
say e. Observe that cmp(G/B) = cmp(G), contradicting to the second
property of Lemma 9.2.3.

3. LetB be an essential block ofG. As it is essential, it has at least one
chord, therefore it has at least 2 haploid faces. Assume, thatB has at least
3 haploid faces. Choose 3 of them, say F1, F2 and F3 (see Figure 9.6).
Let S ⊆ E(B) be the set of all chords incident to B. Contract in G all
edges inE(G)\S not belonging to those faces. Then, for each of the three
faces, contract all but two edges not in S that are incident to F1, F2 and
F3 and notice that the obtained graph is the graph in O2, a contradiction
to the third property of Lemma 9.2.3.

F1

F2

F3

Figure 9.6: An example for the proof of Lemma 9.2.4.3.

4. Let B be a block of G containing more than 3 cut-vertices. Choose
four of them, say c1, c2, c3 and c4. Let S ⊆ E(B) be the set of all chords
incident to B (see Figure 9.7). Contract all edges in E(G) \ S not having
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an endpoint in {c1, c2, c3, c4}. Then, contract all edges e ∈ E(B)\S such
that e ⊈ {c1, c2, c3, c4} and all edges not in E(B), except from one for
each of the cut-vertices. Notice that the obtained graph belongs to O3, a
contradiction to the third property of Lemma 9.2.3.

c1

c4

c2

c3

Figure 9.7: An example for the proof of Lemma 9.2.4.4.

5. Let B be a block of G containing a cut-vertex c that is not haploid
and let S ⊆ E(B) be the set of all chords incident to B (see Figure 9.8).
Contract all edges in E(G) \E(B) not having c as endpoint and all edges
in E(B) \ S not having c as endpoint, except from two edges for each of
the haploid faces. Then contract all edges not inE(B) with c as endpoint,
except for one. Notice that the obtained graph belongs toO4, a contradic-
tion to the third property of Lemma 9.2.3.

6. LetB be a block ofG containing three heavy cut-vertices, say c1, c2
and c3 (see Figure 9.9). We contract all edges in B except from 3 so that
B is reduced to a triangle T with vertices c1, c2 and c3. Then, in the result-
ing graph H , for each ci, i ∈ {1, 2, 3}, in CH(ci) \ {T} contains either a
non trivial block or at least two hair blocks. In any case, H can be further
contracted to one of the graphs in O5 a contradiction to the third property
of Lemma 9.2.3.
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c

Figure 9.8: An example for the proof of Lemma 9.2.4.5.

c1

c2

c3

Figure 9.9: An example for the proof of Lemma 9.2.4.6.

7. Let {x, y, z} be three cut-vertices of a (not-trivial) block B. If no
two of them are connected by an outer edge, then contract all blocks ofG,
except B, to single edges, then contract all outer edges of B that do not
have an endpoint in {x, y, z} and continue contracting hair blocks with a
vertex of degree≥ 4, as long as this is possible. This creates either a graph
in O6 or a graph that after the contraction of a hair block makes a graph
in O7 or a graph that after the contraction of two hair blocks is a graph
makes a graph inO4 and, in any case, we have a contradiction to the third
property of Lemma 9.2.3. We contract G to a graph H as follows:

• If for some w ∈ {x, y, z} the set CG(w,B) contains at least two
elements, then contract the two of them to a pendant edge (that will
have w as an endpoint) and the rest of them to w.

• If for some w ∈ {x, y, z} the set CG(w,B) contains only one ele-
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ment that is not a hair, then contact it to a triangle (notice that this
is always possible because of 2).

Case 1. |V (B)| ∈ {3, 4}. Then because of 6, one, say x of {x, y, z} is
non-heavy and there is an outer edge connecting x with one, say y, vertex
in {x, y, z}. Then x, y is the required pair of vertices.

Case 2. |V (B)| > 4 and there is at most one outer edge e with endpoints
from {x, y, z} in H . W.l.o.g., we assume that e = {x, y}. Notice e is a
haploid edge, otherwiseH can be contracted to the 5th graph inO6. More-
over at least one of x, y is non-heavy, otherwiseH can be contracted to one
of the graphs inO8∪O9 (recall thatB may have one or two haploid faces).

Case 3. There are two outer edges with endpoints from {x, y, z}. W.l.o.g.,
we assume that these edges are {x, y} and {y, z}. One, say {x, y}, of
{x, y}, {y, z} is haploid, otherwise H can be contracted to some graph in
O4. If {x, y} has a light endpoint, then we are done, otherwise, from 6,
z is light. In this remaining case, if if {z, y} is haploid, then it is also the
required edge, otherwise H can be contracted to a graph in O9.

8. Let x and y be two heavy cut-vertices vertices of B. From 5, x, y
are among the vertices that are incident to the faces F1 and F2. Suppose,
in contrary, that for some face, say F ∈ {F1, F2}, there is no cut vertex
in {x, y} that is incident to F . Then G can be contracted to one of the
graphs in O9. This is enough to prove the first statement except from the
case where x and y are both lying in both haploid faces and there is a
third light cut-vertex z incident to some, say x, of x, y. In this case, x is
assigned the face where z belongs and y is assigned to the other.

Let G ∈ Q and let B be a block of G. Let also S be the set of cut
vertices of G that belong to B. According to Lemma 9.2.4, we can define
a rooted graph GB = (B,X, Y ) such that:
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- {X, Y } is a partition of S, where X and Y are possibly empty.

- If B has a chord, then all vertices in X and Y are haploid.

- |X| ≤ 1 and |Y | ≤ 2.

- If |Y | = 2, then its vertices are connected with an edge e and one of
them is light and. Moreover, in the case where B has a chord then
e is haploid.

- IfB has a chord, we name the haploid faces ofB by F1 and F2 such
that all vertices in X are incident to F1 and all vertices od Y are
incident to F2.

Lemma 9.2.5. LetG ∈ Q and letB be a block ofG. Then cmp(GB) ≤ 2.

Proof. We examine the – non-trivial – case whereB is a non-trivial block
and contains two haploid faces F1 and F2. AsB is 2-connected and outer-
planar, all vertices of V (B) belong to the unique hamiltonian cycle of B,
say C. Our proof is based on the fact that there are exactly two haploid
faces and this gives a sense of direction on how the search should be per-
formed. To make this formal, we create an ordering A of the edges of
E(B) using the following procedure.

1. if X ̸= ∅, then
2. Q← X ,
3. else
4. Q← {x} where x is an arbitrarily chosen vertex

in the boundary of F1.
5. R← Q

6. i← 1

7. while there is a vertex v in V (B) \R that is connected with some ver-
tex, say u, in Q \ Y whose unique neighbor in V (B) \R is v,

8. R← R ∪ {v}
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v vvvv

4

Figure 9.10: The set A contains five r-graphs, each of the form (G,
{v}, {v}).

9. Q← (Q \ {u}) ∪ {v}
10. ei = {u, v}
11. i← i+ 1

12. if Q ∈ E(B), then
13. ei ← Q,
14. i← i+ 1

15. if Y ∈ E(B), then
16. ei ← Y

LetE in, Eout be the edge extensions of enh(GB), and let prefsec(A) =
⟨A0, . . . , Ar⟩. It is easy to verify that E = ⟨E in, A0∪E in, . . . , Ar∪E in⟩ is
a monotone and connected (E in, Eout)-expansion of enh(GB), with cost
at most 2.

9.2.3 Fans

LetG be a graph and v be a vertex in V (G). We denote by G(v) the rooted
graph (G, {v}, {v}) and we refer to it as the graph G doubly rooted on v.

Definition 9.2.2. A graph G, doubly rooted on some vertex v is a fan if
none of the graphs in the set A depicted in Figure 9.10 is a contraction of
the rooted graph G(v), and G is outerplanar.
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Fans will play an important role in this proof.

Lemma 9.2.6. LetG(v) = (G, {v}, {v}) be a graph doubly rooted at some
vertex v. If G(v) is a fan, then cmp(G(v)) ≤ 2.

Proof. We claim first that ifG(v) is a fan, then the graphG\v is a collection
of paths where each of them has at least one endpoint that is a neighbour of
v. Indeed, if this is not correct, then some of the connected components of
G \ v would be contractible to either a K3 or a K1,3. In the first case, G is
either non-outperlanar or G(v) can be contracted to to the first two rooted
graphs of Figure 9.10. In the second case G is either non-outeplanar or
G(v) the last three graphs of Figure 9.10. Moreover, if both endpoints of
a path in the set of connected components G \ v are non adjacent to v in
G, then G(v) can be contracted to the last rooted graph in Figure 9.10.

Let now P1, . . . , Pr be the connected components of G \ v and, for
each i ∈ {1, . . . , r}, let {vi1, . . . , viji} be the vertices of Pi, ordered as in
Pi, such that vi1 is adjacent to v in G. Let uin and uout be the two vertices
added in enh(G(v)). If ein = {v, uin} and eout = {v, uout} then the edge
expansions of enh(G(v)) is E in = {ein} and Eout = {eout}.

For each i ∈ {1, . . . , r} we define the edge ordering

Ai = ⟨{v, vi1}, {vi1, vi2}, {v, vi2}, {vi2, vi3} . . . , {viji , v}⟩,

then we delete from Ai the edges not in E(G). Let A′
i be the orderings

obtained after the edge deletions. We define A = ⟨ein⟩ ◦ A1 ◦ · · · ◦ Ar.
Notice that prefsec(A) is a monotone and connected (E in, Eout)-expansion
of enh(G(v)) with cost at most 2. Therefore, it holds that cmp(G(v)) ≤ 2,
as required.

9.2.4 Spine-degree and central blocks

Given a graph G and a vertex v we denote by C(v)G the set of all graphs in
CG(v), each doubly rooted on v. The spine-degree of v is the number of
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doubly rooted graphs in C(v)G that are not fans.
A cut-vertex of a graph G is called a central cut-vertex, if it has spine-

degree greater than 1 and a block ofG is called a central block if it contains
at least 2 central cut-vertices.

Lemma 9.2.7. Let G ∈ Q. The following hold:

1. All vertices of G have spine-degree at most 2.

2. None of the blocks of G contains more than 2 central cut-vertices.

3. G contains at least one central cut-vertex

4. There is a total orderingB1, B2, . . . , Br (r ≥ 0) of the central blocks
ofG and a total ordering c1, . . . , cr+1 of the central cut-vertices ofG
such that, for i ∈ {1, . . . , r}, the cut-vertices of Bi are ci and ci+1.

Proof. 1. Let v be a vertex of G with spine-degree at least 3. That means
that there exist at least three subgraphs of G, doubly rooted at v, that can
be contracted to some graph in A. Therefore, G can be contracted to a
graph in O10, a contradiction.

2. Suppose that B is a block of G containing 3 (or more) central cut-
vertices, say c1, c2 and c3. Construct the graph H by contracting all edges
ofB to a triangle T with {c1, c2, c3} as vertex set. As ci is a central vertex,
there is a rooted graph Ri in CG(ci) that contains some of the graphs in A
as a rooted contraction. Next we apply the same contractions to H f or
every ci, i ∈ {1, 2, 3} and then contract – to vertices – all blocks of H
different than T and not contained in some Ri. It is easy to see that the
resulting graph is a graph in O5, a contradiction.

3. Assume that G has no central cut-vertices. We distinguish two
cases.
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Case 1. There is a cut-vertex ofG, say v, such that all rooted graphs in C(v)G

are fans and let G1, . . .Gr be these rooted graphs. From Lemmata 9.1.2
and 9.2.6, we conclude that cmp(G, {v}, {v}) = cmp(glue(G1, . . .Gr))

≤ 2 and from Lemma 9.1.1, cmp(G) ≤ 2 contradicting to the first condi-
tion of Lemma 9.2.3.

Case 2. For every cut-vertex v of G, at least one of the rooted graphs in
C(v)G is not a fan. We denote byHv the corresponding non-fan rooted graph
in C(v)G (this is unique due to the fact that v is non-central). Among all cut
vertices, let x be one for which the set V (G) \ V (Hx) is maximal. Let B
be the block of Hx that contains x and let S be the set of the cut-vertices
of G that belong to B (including x).

For every y ∈ S we denote by Wy = {W1
y, . . . ,W

ry
y } the set of all

rooted graphs in C(y)G , except from the one, call it Ry, that contains B. We
also define Wy = glue(W1

y, . . . ,W
ry
y ). We claim that all Wy, y ∈ S are

fans. Indeed, if for some y, Wy is a non-fan, because y is not central, Ry

should be a fan, contradicting the choice of x.
According to the above, the edges of G can be partitioned to those of

the rooted graph GB and the edges in the rooted graphs Wy, y ∈ S. Let
also GB = (B,X, Y ) and we assume that, if Y = {y1, y2}, then y1 is
light.

Notice that, according to Lemma 9.2.6 cmp(Wy) ≤ 2, y ∈ S and
according to Lemma 9.2.5 cmp(GB) ≤ 2. We distinguish two cases.

Case 2.1. Y = {y1, y2}where y2 is light. Then letG1 = (G[{y1, y2}], {y1,
y2}, {y2}) andG2 = (G[{y1, y2}], {y2}, {y1}). Clearly cmp(G1) = 2 and
cmp(G2) = 1. Therefore, if G′ = glue(GB,G1,Wy2 ,G2,Wy1), then,
from Lemma 9.1.2, cmp(G′) ≤ 2.

Case 2.2. Y = {y1}. Let G′ = glue(GB,Wy1), then, from Lemma 9.1.2,
cmp(G′) ≤ 2.
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In both cases, if X = {x}, then we set G = glue(Wx,G′) while if
X = ∅ we set G = G′. In any case, we observe that, from Lemma 9.1.2,
cmp(G) ≤ 2. From Lemma 9.1.1, cmp(G) ≤ 2 contradicting to the first
condition of Lemma 9.2.3.

As in both cases we reach a contradiction, G must contain at least one
central cut-vertex.

4. Let C be the set of all central cut-vertices of G. For each c ∈ C,
let Xc be the subset of C(v)G that contains all its members that are not fans.
Clearly,Xc contains exactly two elements. Notice that none of the vertices
inC\{c} belongs in the double rooted graphs in C(v)G \Xc. Indeed, if this is
the case for some vertex y ∈ C \ {c}, then the member of C(y)G that avoids
c would be a subgraph of some member of C(v)G \Xc, and this would imply
that some fan would contain as a contraction some double rooted graph
that is not a fan. We conclude that, for each c ∈ C there is a partition
p(c) = (Ac, Bc) of C \{c} such that all members ofAc are vertices of one
of the members of Xc and all members of Bc are vertices of the other.

We say that a vertex c ∈ C is extremal if p(c) = {∅, C \ {c}}

We claim that for any three vertices {x, y, z} of C, there is one, say
y of them such that x and z belong in different sets of p(y). Indeed, if
this is not the case, then one of the following would happen: Either there
is a vertex w ∈ C such that x, y, z belong to different elements of C(w)G ,
a contradiction to the first statement of this lemma, or x, y, and z belong
to the same block of G, a contradiction to the second statement of this
lemma.

By the claim above, there is a pathP containing all central cut-vertices
inC. We can assume that this path is of minimum length, which permits us
to further assume that its endpoints are extremal vertices of C. Moreover,
heavy cut-vertices in V (P ) are members ofC. Let c1, . . . , cr+1 be the cen-
tral cut-vertices ordered as they appear in P . As, for every i ∈ {1, . . . , r}
there is a blockBi containing the central cut-vertices ci and ci+1 we end up
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with the two orderings required in the forth statement of the lemma.

LetG be a graph inQ. Suppose also that c1, . . . , cr+1 andB1, B2, . . . ,

Br are as in Lemma 9.2.7.4. We define the extremal blocks of G as fol-
lows:

• If r > 0, then among all blocks that contain c1 as a cut-vertex letB0

be the one such that CG(c1, B0), doubly rooted at c1, is not a fan,
does not contain any edge of the central blocks of G and does not
contain cr+1. Symmetrically, among all blocks that contain cr+1 as
a cut-vertex let Br+1 be the one such that CG(cr+1, Br+1) doubly
rooted at cr+1 is not a fan, does not contain any edge of the central
blocks of G and does not contain c1.

• If r = 0, then letB0 andB1 be the two blocks with the property that
for i ∈ {0, 1}, CG(c1, Bi), doubly rooted at c1, is not a fan.

We call B0 and Br+1 left and right extremal block of G respectively.
We also call the blocks ofG that are either central or extremal spine blocks
ofG. LetA(G) be the set of cut-vertices of the graphsB0, B1, B2, . . . , Br,

Br+1. We partition A(G) into three sets A1, A2 and A3 as follows:

- A1 = {c1, . . . , cr+1} (i.e., all central vertices).

- A2 contains all vertices of A(G) that belong to central blocks and
are not central vertices.

- A3 contains all vertices of A(G) that belong to extremal blocks and
are not central cut-vertices.

Moreover, we further partition A3 to two sets: A(0)
3 = A3 ∩ V (B0) and

A
(r+1)
3 = A3 ∩ V (Br+1) (see Figure 9.11 for an example).

Let G ∈ Q and v ∈ A(G). We denote by R(v)
G the set of the doubly

rooted graphs in C(v)G that do not contain any of the edges of the spine
blocks of G.
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c4
B2c2
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Figure 9.11: A graph G and the blocks B0, B1, . . . , B3, and B4. The cut-
vertices in A1 = {c1, . . . , c4} are the grey circular vertices, the vertices in
A2 are the white square vertices and the vertices in A3 are the dark square
vertices.

Lemma 9.2.8. Let G ∈ Q and v ∈ A(G). The following hold:

a) Each doubly rooted graph inR(v)
G is a fan.

b) All vertices in v ∈ A2 are light, i.e., for each v ∈ A2 R(v)
G contains

exactly one graph that is a hair block of G.

Proof. a) Let v ∈ A(G). We distinguish two cases:

Case 1: v ∈ A1. If there exists a double rooted graph in R(v)
G that is not

a fan, v will have spine-degree greater than 3, a contradiction to the first
property of Lemma 9.2.7.

Case 2: v ∈ A2 ∪ A3. If there exists a double rooted graph in R(v)
G that

is not a fan, v will have spine-degree greater than 2, therefore v must be
central, a contradiction.

b) Let v ∈ A2, and suppose that R(v)
G can be contracted to two edges

with v as their unique common endpoint, or to a triangle. As v belongs to
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Figure 9.12: A graph G, the extended extremal blocks B∗
0 and B∗

4 the
extended central blocks B∗

1 , B
∗
2 , and B∗

3 and the rooted graphs F1, F2 and
F4 (F3 is the graph consisting only of the vertex c3, doubly rooted on c3).

a central block, G can be contracted to a graph in O5, a contradiction to
the third property of Lemma 9.2.3.

9.2.5 Directional obstructions

Let G ∈ Q and let B0, B1, . . . , Br, Br+1 be the spine blocks of G. Notice
first that, from Lemma 9.2.4.6, for every i ∈ {1, . . . , r}, |A2∩V (Bi)| ≤ 1.
Also, from Lemma 9.2.4.6, if A2 ∩ V (Bi) = {v}, then v is a light cut-
vertex. For i ∈ {1, . . . , r}, we define the rooted graphs B∗

i as follows:
If A2 ∩ V (Bi) = {v}, then B∗

i is the union of Bi and the underlying
graph of the unique rooted graph inR(v)

G (this rooted graph is unique and
its underlying graph is a hair block of G from the second statement of
Lemma 9.2.8). If A2 ∩ V (Bi) = ∅, then B∗

i is Bi. We finally define the
rooted graph B∗

i = (B∗
i , {ci}, {ci+1}) for i ∈ {1, . . . , r}.

We also define B∗
0 as follows: Consider the unique graph B0 in C(c1)G

that, when doubly rooted at c1, is not a fan, does not contain any edge of the
central blocks of G and does not contain cr+1. Then B∗

0 = (B0, ∅, {c1}).
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v u v u v u

7

Figure 9.13: The set of rooted graphs L containing three rooted graphs
each of the form (G, {v}, {u}).

Analogously, we defineB∗
r+1 by considering the graphBr+1 of the unique

rooted graph in R(cr+1)
G that, when doubly rooted at cr+1, is not a fan,

does not contain any edge of the central blocks of G and does not con-
tain c1. Then B∗

r+1 = (Br+1, {cr+1}, ∅). Finally, we define for each
i ∈ {1, . . . , r + 1} the graph Fi that is the union of all the graphs of
the rooted graphs in R(ci)

G that are fans (when performing the union, the
vertex ci stays the same), and in the case where R(ci)

G is empty, then Fi is
the trivial graph ({ci}, ∅). We set Fi = (Fi, {ci}, {ci}) i ∈ {1, . . . , r+1}
and we call the rooted graphs F1, . . . ,Fr+1 extended fans of G. We call
B∗

0,B∗
1, . . . ,B∗

r,B∗
r+1 the extended blocks of the graph G ∈ Q and we –

naturally – distinguish them in central and extremal (left or right), de-
pending on the type of the blocks that contains them (see Figure 9.12 for
an example). Notice that

{E(B∗
0), E(F1), E(B∗

1), E(F2), . . . , E(Fr), E(B∗
r ), E(Fr+1), E(B

∗
r+1)}

is a partition of the edges of G.

Lemma 9.2.9. Let G ∈ Q and let B∗
1, . . . ,B∗

r be the central blocks of G.
None of the rooted graphs in the set L of Figure 9.13 is a contraction of
B∗
i if and only if cmp(B∗

i ) ≤ 2.

Proof. Clearly, for every graph H ∈ L, cmp(H, {v}, {u}) = 3, there-
fore if B∗

i can be contracted to a graph in L, according to Lemma 9.1.4,
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cmp(B∗
i ) ≥ 3.

Let now B∗
i be an central extended block of G that cannot be con-

tracted to a graph in L. If Bi does not contain some light cut-vertex, we
define GBi

= (Bi, {ci}, {ci+1}). Notice that B∗
i = GBi

and, as from
Lemma 9.2.5 cmp(GBi

) ≤ 2, we are done.
In the remaining case, where Bi contains a light cut-vertex, say c, ob-

serve that c cannot be adjacent via an outer edge to ci, or else B∗
i could

be contracted to a graph in L. Therefore, according to Lemma 9.2.4.7, c is
connected via an haploid edge with ci+1. Notice thatGBi

= (Bi, {ci}, {ci+1,

c}). According to Lemma 9.2.5, cmp(GBi
) ≤ 2 and, according to Lemma

9.2.8,R(c) contains only a hair block, say (H, {c}, {c}). Clearly cmp(H,
{c}, {c})= 2. LetG1 = (G[{c, ci+1}], {c, ci+1}, {c}),G2 = (G[{c, ci+1}],
{c}, {ci+1}), and G = glue(GBi

,G1, (H, {c}, {c}), G2). From Lemma
9.1.2, cmp(G) ≤ 2 and the lemma follows as G = B∗

i .

Lemma 9.2.10. If B∗
i is one of the central extended blocks of a graph

G ∈ Q, then either cmp(B∗
i ) ≤ 2 or cmp(rev(B∗

i )) ≤ 2.

Proof. Proceeding towards a contradiction, from Lemma 9.2.9, both B∗
i

and rev(B∗
i ) must contain one of the rooted graphs in Figure 9.13 as a

contraction. It is easy to verify that, in this case, either B∗
i contains at

least four cut-vertices, which contradicts to Lemma 9.2.4.9 or G can be
contracted to either a graph inO8 (if the two roots are adjacent) or a graph
inO6 (if the two roots are not adjacent), a contradiction to Lemma 9.2.3.3.

Now we give labels to central extended blocks. These labels are in-
tended to indicate the way these blocks can be searched.

Definition 9.2.3. Let G ∈ Q and let B∗
i be one of the central extended

blocks of G.

- If rev(B∗
i ) can be contracted to a graph in L (Figure 9.13), then we

assign to B∗
i the label←.
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Figure 9.14: The set of rooted graphs B containing 12 rooted graphs each
of the form (G, ∅, {v}).

- If B∗
i can be contracted to a graph inL (Figure 9.13), then we assign

to B∗
i the label→.

- If both B∗
i and rev(B∗

i ) can be contracted to a graph in L (Fig-
ure 9.13), then we assign to B∗

i the label↔.

Lemma 9.2.11. LetG ∈ Q and let B∗
0 be the extended left extremal block

ofG. None of the rooted graphs in the set B in Figure 9.14 is a contraction
of B∗

0 if and only if cmp(B∗
0) ≤ 2.

Proof. Clearly, for every graph H ∈ B, cmp(H, ∅, {u}) = 3. There-
fore, if B∗

0 can be contracted to a graph in B, according to Lemma 9.1.4,
cmp(B∗

0) ≥ 3.
Suppose now that B∗

0 cannot be contracted to a graph in B. We dis-
tinguish three cases according to the number of cut-vertices in B0 (recall
that, from Lemma 9.2.4.4, B0 can have at most 3 cut-vertices).
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Case 1: B0 contains only one cut-vertex, which is c1. Then, B∗
0 = GB0

and the result follows because of Lemma 9.2.5.

Case 2: B0 contains two cut-vertices, c1 and c. If B0 has not a chord or it
has a chord and c and c1 are incident to two different haploid faces of B0,
then we can assume that GB0 = (B0, {c}, {c1}) and, from Lemma 9.2.5,
cmp(GB0) ≤ 2. According to Lemma 9.2.8.a, R(c) is a fan, say (F, {c},
{c}) and from Lemma 9.2.6, cmp(F, {c}, {c}) ≤ 2. LetG = glue((F, {c},
{c}), GB0). From Lemma 9.1.2, cmp(G) ≤ 2. Combining the fact that
G = (B∗

0 , {c}, {c1}) with Lemma 9.1.1, cmp(B∗
0) ≤ 2. In the remain-

ing case c and c1 are adjacent and c is light. Then GB0 = (B0, ∅, {c, c1})
and, from Lemma 9.2.5, cmp(GB0) ≤ 2. According to Lemma 9.2.8.b,
R(c) is a hair, say (H, {c}, {c}). Let G1 = (G[{c, c1}], {c, c1}, {c}),
G2 = (G[{c, c1}], {c}, {c1}) and G = glue(GB0 ,G1, (H, {c}, {c}), G2).
Notice that G = (B∗

0 , ∅, {c1}) = B∗
0. From Lemma 9.1.2, we obtain that

cmp(G) ≤ 2, therefore cmp(B∗
0) ≤ 2.

Case 3: B0 contains three cut-vertices, c1, c and x. We first examine the
case where there is a partition {X, Y } of {c1, c, x} such that |Y | = 2, c1 ∈
Y , the cut-vertex in Y \ {c1} is light, and Y is an edge of B0 that, in case
B0 is a chord, is haploid. In this case we claim that cmp(B∗

0)≤ 2. Indeed,
we may assume that c be the light cut-vertex of Y \ {c1}, thus GB0 =

(B0, {x}, {c, c1}). According to Lemma 9.2.5, cmp(GB0) ≤ 2. From
Lemma 9.2.8.a,R(x) is a fan, say (F, {x}, {x}) and, from Lemma 9.2.8.b,
R(c) contains only a hair block, say (H, {c}, {c}). Let G1 = (G[{c, c1}],
{c, c1}, {c}), G2 = (G[{c, c1}], {c}, {c1}) and G = glue((F, {x}, {x}),
GB0 ,G1, (H, {c}, {c}), G2). Notice that G = (B∗

0 , {x}, {c1}) and. From
Lemma 9.1.2 cmp(G) ≤ 2. Now, Lemma 9.1.1 implies that cmp(B∗

0)≤ 2

and the claim holds.

In the remaining cases, the following may happen:
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1. None of x and c is adjacent to c1 via an edge that, in case B0 has a
chord, is haploid. In this case B∗

0 can be contracted to the rooted graphs
of the first column in Figure 9.14.

2. Both c1 and x are light and only one of them, say x, is adjacent to
c1. In this case B0 has a chord and either the edge {x, c1} is not haploid
or {x, c1} is haploid and belongs in the same haploid face with c. In the
first case, B∗

0 can be contracted to the second rooted graph of the second
column in Figure 9.14 and in the second case B∗

0 can be contracted to the
first and the third rooted graph of the second column in Figure 9.14.

3. c1 has only one, say x, heavy neighbour in {c, x} such that, in
case B0 has a chord, the edge {c1, x} is haploid. In this case B∗

0 can be
contracted to the rooted graphs of the third and the fourth column in Fig-
ure 9.14.

Lemma 9.2.12. Let G ∈ Q and let B∗
r+1 be the extended right extremal

block of G. None of the rooted graphs in the set C in Figure 9.15 is a
contraction of B∗

r+1 if and only if cmp(B∗
r+1) ≤ 2.

Proof. Clearly, for every graph H ∈ C, cmp(H, {u}, ∅) = 3, therefore
if B∗

r+1 can be contracted to a graph in C, according to Lemma 9.1.4,
cmp(B∗

r+1) ≥ 3.
Suppose now that B∗

r+1 cannot be contracted to a graph in C. We dis-
tinguish three cases according to the number of cut-vertices inBr+1 (recall
that, from Lemma 9.2.4.4, Br+1 can have at most 3 cut-vertices).

Case 1: Br+1 contains only one cut-vertex, which of course is c1. Notice
that B∗

r+1 = GBr+1 and the result follows because of Lemma 9.2.5.

Case 2: If Br+1 has not a chord or it has a chord and c and c1 are incident
to two different haploid faces of Br+1 then we can assume that GBr+1 =

(Br+1, {cr+1}, {c}) and from Lemma 9.2.5, cmp(GBr+1) ≤ 2. In any
other case, cr+1 and c are on the boundary of the same haploid face of
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Br+1 and none of them belongs in the boundary of the other. Then B∗
r+1

can be contracted to some of the rooted graphs in the second column of
Figure 9.15.

Case 3: Br+1 contains three cut-vertices, cr+1, c and x. If c and x are not
adjacent, then B∗

r+1 can be contracted to some of the rooted graphs in the
first column of Figure 9.15. Otherwise, one, say c, of them will be light
and the edge {x, c} should be haploid. Then we can assume that GBr+1 =

(Br+1, {cr+1}, {x, c}) and according to Lemma 9.2.5, cmp(GBr+1) ≤ 2.
From Lemma 9.2.8,R(x) is a fan, say (F, {x}, {x}) andR(c) contains only
a hair block, say (H, {c}, {c}). Let G1 = (G[{c, x}], {c, x}, {c}), G2 =

(G[{c, x}], {c}, {x}) andG = glue(GBr+1 ,G1, (H, {c}, {c}),G2, (F, {x},
{x})). Notice thatG = (B∗

r+1, {cr+1}, {x}) and, because of Lemma 9.1.2,
cmp(G) ≤ 2. Applying Lemma 9.1.1, we conclude that cmp(B∗

r+1) ≤
2.

Lemma 9.2.13. Let G ∈ Q and let B∗
0 and B∗

r+1 be the two extremal
extended blocks of G. It is never the case that B∗

0 contains some graph in
B and rev(B∗

0) contains some rooted graph in C. Also it is never the case
that B∗

r+1 contains some graph in C and rev(B∗
r+1) contains some rooted

graph in B.

Proof. Let G be a rooted graph in K = {rev(B∗
0),B∗

r+1}. We distinguish
the following cases, that apply for both rooted graphs in K:

Case 1: G can be contracted to a graph in the first column of Figure 9.15
and rev(G) to a graph in the first column of Figure 9.14. Notice that every
cut-vertex of G cannot be connected with an outer edge and therefore G
can be contracted to a graph in O6.

Case 2: G can be contracted to a graph in the first column of Figure 9.15
and rev(G) to a graph in the second column of Figure 9.14. Notice that
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Figure 9.15: The set of rooted graphs C containing six rooted graphs each
of the form (G, {v}, ∅).

the two cut-vertices of G, that are other than the central cut-vertex, can-
not be connected with an outer edge and therefore G can be contracted to
graph in O7.

Case 3: G can be contracted to a graph in the first column of Figure 9.15
and rev(G) to a graph in the third or fourth column of Figure 9.14. Notice
that the two cut-vertices of G, that are other than the central cut-vertex,
cannot be connected with an outer edge and therefore G can be contracted
to graph in O8.

Case 4: G can be contracted to a graph in the second column of Fig-
ure 9.15 and rev(G) to a graph in the first column of Figure 9.14. Notice
that the two cut-vertices of G, that are other than the central cut-vertex,
cannot be connected with an outer edge and therefore G can be contracted
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to graph in O7.

Case 5: G can be contracted to a graph in the second column of Figure 9.15
and rev(G) to a graph in the second column of Figure 9.14. Notice that
there must be an haploid face containing only the central cut-vertex, there-
fore G can be contracted either to the graph in O2 or to a graph in O4

(depending whether G can be contracted to the last graph in the second
column of Figure 9.15 or not) .

Case 6: G can be contracted to a graph in the second column of Figure 9.15
and rev(G) to a graph in the third or fourth column of Figure 9.14. Notice
that the light cut-vertex of G can not be connected via an haploid edge
with the central cut-vertex, therefore G can be contracted to a graph in
O7 either to a graph in O9 (depending whether the central cut-vertex is
connected via haploid edge with a heavy cut-vertex or not).

We will also give labels to the extremal extended blocks. These labels
will indicate the way a search must start.

Definition 9.2.4. Let G ∈ Q and let B∗
0, B∗

r+1 be the extended left
and right extremal blocks of G.

- If B∗
0 contains some graph in B (Figure 9.14) then we assign to B∗

0

the label←.

- If rev(B∗
0) contains some graph in C (Figure 9.15) then we assign to

B∗
0 the label→.

- If B∗
r+1 contains some graph in C (Figure 9.15) then we assign to

B∗
r+1 the label←.

- If rev(B∗
r+1) contains some graph in B (Figure 9.14) then we assign

to B∗
r+1 the label→.
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- If neither B∗
0 contains some graph in B (Figure 9.14) nor rev(B∗

0)

contains some graph in C(Figure 9.15) then we assign toB∗
0 the label

↔.

- If neitherB∗
r+1 contains some graph in C (Figure 9.15) nor rev(B∗

r+1)

contains some graph in B then we assign to B∗
r+1 the label↔.

Lemma 9.2.14. Let G ∈ Q and let B∗
0,B∗

1, . . . ,B∗
r,B∗

r+1 be the extended
blocks of G. It is not possible that one of these extended blocks is labeled
with← and an other with→.

Proof. We distinguish two cases according to the labelling of B∗
0:

Case 1: Suppose thatB∗
0 is labeled← and thatB∗

i , for some i ∈ {1, . . . , r+
1}, is labeled→. According to their respective labels, (B∗

0 , ∅, {c1}) can be
contracted to a graph in B and, if i ≤ r, rev(B∗

i ) = (B∗
i , {ci+1}, {ci}) can

be contracted to a graph in L, otherwise rev(B∗
r+1) = (B∗

r+1, ∅, {cr+1})
can be contracted to a rooted graph in B. Notice that if i ≤ r, G[V (G) \
(V (B∗

1) ∪ · · · ∪ V (B∗
i−1))], ∅, {ci}} can be contracted to a graph in the

third and forth columns of B. By further contracting all edges of E(B∗
1)∪

· · · ∪ E(B∗
i−1) we obtain a graph in O11, a contradiction.

Case 2: Suppose now that B∗
0 is labeled → and that B∗

i , for some i ∈
{1, . . . , r+1}, is labeled←. According to their respective labels, rev(B0)

∗

= (B∗
0 , {c1}, ∅) can be contracted to a graph in C and, if i ≤ r, (B∗

i , {ci},
{ci+1}) can be contracted to a graph in L, otherwise (B∗

r+1, {cr+1}, ∅) can
be contracted to a graph in C. Notice that if i ≤ r, G[V (G) \ (V (B∗

1) ∪
· · ·∪V (B∗

i−1))], {ci}, ∅} can be be contracted to a graph in the first column
of C. By further contracting all edges ofE(B∗

1)∪· · ·∪E(B∗
i−1) we obtain

a graph in O12, a contradiction.
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9.2.6 Putting things together

The last lemma we need to prove is the following:

Lemma 9.2.15. Q = ∅.

Proof. Suppose in contrary thatQ contains some graphG. LetB∗
0,B∗

1, . . . ,

B∗
r,B∗

r+1 and F1, . . . ,Fr+1 be the extended blocks and fans of G, respec-
tively. From Lemma 9.2.14, we can assume that the extended blocks
of G are all labeled either → or ↔ (if this is not the case, just reverse
the ordering of the blocks). By the labelling of B∗

0, none of the rooted
graphs in the set B is a contraction of B∗

0 therefore, from Lemma 9.2.11,
cmp(B∗

0) ≤ 2. Also as none of the rooted graphs B∗
i , i = 1, . . . , r,

can be contracted to a graph in L, from Lemma 9.2.9, it follows that
cmp(B∗

i ) ≤ 2. We distinguish two cases according to the labelling of
B∗
r+1. If the labelling is↔, then B∗

r+1 cannot be contracted to a graph in
C. If the labelling is →, then rev(B∗

r+1) can be contracted to a graph in
B and, according to Lemma 9.2.14, B∗

r+1 cannot be contracted to a graph
in C. Thus, in both cases, from Lemma 9.2.12, cmp(B∗

r+1) ≤ 2. No-
tice that (G, ∅, ∅) = glue(B∗

0,F1,B∗
1, . . . ,Fr,B∗

r,Fr+1,B∗
r+1) and, from

Lemma 9.1.2, cmp(G, ∅, ∅) ≤ 2. This implies that cmp(G) ≤ 2, a con-
tradiction to the first property of Lemma 9.2.3.

This completes the proof of Lemma 9.2.2 and show us that obs≤c

(cmms, 2) contains exactly the graphs of D1. If someone look closely
to the graphs of obs≤c(cmms, 2), it is not very difficult to reach the fol-
lowing conclusion.

Corollary 9.2.1. obs≤c(cmms, 2) = obs≤c(cms, 2).

Proof. It is easy to check that for every H ∈ obs≤c(cmms, 2):

1. cms(H) ≥ 3,

2. for every proper contraction H ′ of H it holds that cms(H ′) ≤ 2,

251



9.3. GENERAL OBSTRUCTIONS FOR CMMS

therefore obs≤c(cmms, 2) ⊆ obs≤c(cms, 2).
If there exists a graph H ∈ obs≤c(cms, 2) \ obs≤c(cmms, 2), then

cms(H) ≥ 3. Notice that the connected search number of a graph is
always bounded from the monotone and connected search number, as a
complete monotone and connected search strategy is obviously a complete
connected search strategy, therefore cmms(H) ≥ 3, which means that
there exists a graph H ′ ∈ obs≤c(cmms, 2) such that H ′ ≤c H . Further-
more, since H ′ is a proper contraction of H , according to Lemma 9.1.5,
cms(H) ≥ cms(H ′). As we have already stressed that cms(H ′) ≥ 3 we
reach a contradiction to the minimality (with respect of ≤c) of H .

9.3 General Obstructions for cmms
As mentioned before, for k > 2, we have no guarantee that the set obs≤c

(cmms, k) is a finite set. In this Section we prove that, when this set is
finite, its size should be double exponential in k. Therefore, it seems hard
to extend the results presented in this Chapter for k ≥ 3 as, even if we
somehow manage to prove that the obstruction set for a specific k is finite
(see [99,132] for a couple cases where a contraction obstruction set is not
finite), then this set would contain more than 22

Ω(k) graphs.
We will describe a procedure that generates, for each k, a set of at

least 4
3
(5
2
)3·2

k−2 non-isomorphic graphs that have connected, and mono-
tone search number k+1 and are contraction-minimal with respect to this
property. Hence, these 4

3
(5
2
)3·2

k−2 graphs will belong to obs≤c(cmms, k).
Let us first define a set of rooted graphs which will produce these ob-

structions.

Definition 9.3.1. For every k ≥ 1 we define the set of obstruction-
branches, denoted by Br(k), as follows:

For k = 1: The set Br(1) consists of the five graphs of Figure 9.10 rooted
at v.
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For k = l > 1: The set Br(l) is constructed by choosing two branches
of the set Br(l − 1) and identify the two roots to a single vertex, say v.
Then we add a new edge with v as an endpoint, say {u, v}, and we root
this branch to u. We will refer to this edge as the trunk of the branch.

Let f(k) be the number of branches of Br(k). Notice that f(1) = 5

and f(k) is equal to the number of ways we can pick two branches of
Br(k − 1), with repetition. Therefore:

f(k) =

(
f(k − 1) + 2− 1

2

)
=

(
f(k − 1) + 1

2

)

=
f(k − 1)2 + f(k − 1)

2
≥ f(k − 1)2

2

≥
(f(k−2)2

2

)2
2

=
f(k − 2)2

2

22+1
≥ f(k − 3)2

3

222+2+1

≥ · · · ≥ f(1)2
k−1

22k−2+···+2+1
=

52
k−1

22k−1

= 2
(5
2

)2k−1

Definition 9.3.2. Let OBr(k) be the set containing the graphs obtained
by choosing three rooted branches of Br(k), with repetitions, and identify
the three roots.

Notice that any two selections according to the definition above pro-
duce two non-isomorphic graphs.

We are going to prove that:

OBr(k) ⊆ obs≤c(cmms, k + 1)
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Figure 9.16: The left graph belongs to OBr(2) and the right to OBr(3).

Notice that:

|OBr(k)| =

(
f(k) + 3− 1

3

)
=

(
f(k) + 2

3

)

=
(f(k) + 2)(f(k) + 1)f(k)

6

=
f(k)3 + 3f(k)2 + 2f(k)

6

≥ f(k)3

6
≥ 4

3

(5
2

)3·2k−1

Hence, the cardinality of obs≤c(cmms, k) is at least 4
3

(
5
2

)3·2k−2

. In
order to prove this we need the following lemmata.

Lemma 9.3.1. Let B ∈ Br(k) and let v be its root. There does not exist
a complete connected and monotone search strategy for B – that uses k
searchers – such that the first edge being cleaned is the trunk of B.
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Proof. We are going to prove this by induction. We can easily check that
for k = 1 the claim holds. Let B ∈ Br(k) and let v be its root and
u the other endpoint of the trunk. Since we are forced to clean B, in
a connected and monotone manner, with a search strategy, say S, that
first cleans {u, v}, a searcher must be placed in u during each step of
S , therefore we must clean a (k − 1)-level branch using k − 1 searchers
that first clean the trunk of this branch, which contradicts the induction
hypothesis.

Corollary 9.3.1. Let G ∈ OBr(k), then cmms(G) > k + 1.

Proof. Let G ∈ OBr(k). Notice that G consists of three k-level obstruc-
tion branches, say B1, B2 and B3. If there exist a complete connected
and monotone search strategy S that uses k + 1 searchers, then from
Lemma 9.3.1 S cannot start by placing searchers in the central vertex,
i.e., the vertex where B1, B2 and B3 are connected. Therefore, S starts
by placing searchers in a vertex of B1, B2 or B3 and consequently the
first edge cleaned belongs to this branch. Notice that the first time that a
searcher is placed on the central vertex the connectivity and monotonicity
of S force us to clean a k-level branch with k searchers, which is impos-
sible according to Lemma 9.3.1.

Lemma 9.3.2. Let B ∈ Br(k) and let v be its root.

a) There exist a complete connected and monotone search strategy for
B – that uses k + 2 searchers – such that in each step a searcher
occupies v.

b) There exists a complete connected and monotone search strategy for
B – that uses k+1 searchers – such that the first edge being cleaned
is the trunk of B.

c) There exist a complete connected and monotone search strategy for
B – that uses k+1 searchers – such that the last edge being cleaned
is the trunk of B.
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Proof. a) We are going to prove this by induction. We can easily check
that for k = 1 the claim holds. Let B ∈ Br(k) and let v be its root
and u the other endpoint of the trunk. We are going to describe a search
strategy S with the properties needed. We place a searcher in v and as
second searcher in u. According to the induction hypothesis for each one
of the two (k − 1)-level branches connected to u there exists a complete
connected and monotone search strategy that uses k+1 searchers such that
in each step a searcher occupies u, therefore, we can continue by cleaning
one of these (k − 1)-level branches and then clean the other.

b) We are going to prove this by induction. For k = 1 the claim is
trivial. Let B ∈ Br(k) and let v be its root and u the other endpoint
of the trunk. There are two (k − 1)-level branches connected to u, say
B1 and B2. The search strategy, say S, with the properties needed is the
following: we place a searcher in v and then slide him to u. According
to the first claim of Lemma 9.3.2 there exists a complete connected and
monotone search strategy S1 for B1 that uses k + 1 searchers such that in
each step a searcher occupies u. By the induction hypothesis there exists
a complete connected and monotone search strategy S2 for B2 that uses k
searchers such that the first edge cleaned is the trunk of B2. Using these
two search strategies we can start by cleaning B1, keeping in all times a
searcher in u, and then we can clean B2.

c) We are going to prove this by induction. Notice that for k = 1 the
claim holds. Let B ∈ Br(k) and let v be its root and u the other endpoint
of the trunk. There are two (k − 1)-level branches connected to u, say
B1 and B2. According to the induction hypothesis there exist a complete
connected and monotone search strategy S1 for B1 that uses k searchers
such that the last edge cleaned is the trunk of B1. Moreover, according
to the first claim of Lemma 9.3.2 there exists a complete connected and
monotone search strategy S2 for B2 that uses k + 1 searchers such that
in each step a searcher occupies u. Using these two search strategies we
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can clean B, in a connected and monotone manner, as follows: We start
by cleaning B1 then we clean B2, keeping in all times a searcher in u, and
then we clean {u, v}.

Lemma 9.3.3. Let G ∈ OBr(k) and B ∈ Br(k) one of the three branches
of G. If we contract an edge of B there exist a complete connected and
monotone search strategy forB that uses k+1 searchers, such that in each
step a searcher occupies v.

Proof. We are going to prove this by induction. It is easy to check that for
k = 1 the claim is true. Let v be the root of B and u the other endpoint of
the trunk, B1 and B2 the two (k − 1)-level branches connected to u and
e ∈ E(B) the edge contracted. We distinguish to cases:

Case 1: e ∈ E(B1)∪E(B2). We can assume that e is an edge of B1. We
are going to describe a search strategy S forB with the properties needed.
We place a searcher in v and a second searcher in u. From the induction
hypothesis there exists a complete connected and monotone search strat-
egy S1 for B1 – that uses k searchers – such that in each step a searcher
occupies u. Moreover, according to the second claim of Lemma 9.3.2
there exists a complete connected and monotone search strategy S2 forB2

– that uses k searchers – such that the first edge cleaned is the trunk ofB2.
Using these two search strategies we can start by cleaning B1, keeping in
all times a searcher in u, and then we can cleanB2. Notice that this search
strategy uses k+1 searchers and during each step a searcher occupies v.

Case 2: e = {u, v}. According to the first property of Lemma 9.3.2, for
each one of B1 and B2 there exists a complete connected and monotone
search strategy – that uses k+1 searchers – such that in each step a searcher
occupies v. Hence, we can cleanB starting by cleaningB1, keeping in all
times a searcher in v, and then clean B2.

Corollary 9.3.2. If G ∈ OBr(k) and G′ be a contraction of G, then
cmms(G′) = k + 1.
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Proof. It suffices to prove this claim for a single edge contraction.
Let G ∈ OBr(k), let B1, B2, and B3 be the three k-level obstruction-

branches of G connected to v, e ∈ E(G) the edge contracted and G′ the
graph obtained from G after the contraction of e. We can assume that
e ∈ E(B2). We are going to describe a complete connected and mono-
tone search strategy S for G. From the third claim of Lemma 9.3.2 we
know that there exist a complete connected and monotone search strategy
S1 for B1 – that uses k + 1 searchers – such that the last edge cleaned
is the trunk of B1. From Lemma 9.3.3 we know that there exist a com-
plete connected and monotone search strategy S2 for B2 – that uses k+ 1

searchers – such that in each step a searcher occupies the root of B2, in
other words v. From the second claim of Lemma 9.3.2 we know that there
exist a complete connected and monotone search strategy S3 for B3 – that
uses k + 1 searchers – such that the first edge cleaned is the trunk of B3.
Therefore, we can cleanG′ starting by cleaningB1 according to S1 (notice
that the trunk of B1 will be the last edge of E(B1) being cleaned), then
clean B2 according to S2, keeping in all times a searcher in v, and finish
by cleaning B3 according to S3.

Combining Corollaries 9.3.1 and 9.3.2 we conclude that every graph
in OBr(k) is a contraction obstruction for the graph class G[cmms, k + 1]

and therefore OBr(k) ⊆ obs≤c(cmms, k + 1).

9.4 Conclusion

In this Chapter we showed that both obs≤c(cmms, 2) and obs≤c(cms, 2)
are finite, and we gave a complete list of the graphs in these sets. There-
fore, we managed to characterized these two graph classes, G[cmms, 2]
and G[cms, 2], using forbidden contractions. Forbidden contractions char-
acterizations are very rare (e.g., [99, 128, 132] ), and finite one even rarer
(e.g., [128]).
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From the algorithmic point of view, we can use a cubic-time contrac-
tion checking algorithm for planar graphs (e.g., [46,47]) to obtain a cubic
algorithm deciding whether a graph belongs to G[cms, 2] (or G[cmms, 2]).
An even faster approach will be to use Theorem 5.3.1, the fact that the
class C of graphs not containing as contraction a graphs in G[cms, 2] is
MSO-definable, and the fact that for every graph G

tw(G) ≤ pw(G) ≤ ns(G) ≤ ms(G) + 1 ≤ cms(G) + 1

(this follows from the definition of tw and pw, Theorem 8.4.1, Observa-
tion 8.1.1, and the definition of ms and cms). This approach yields the
following linear-time algorithm:

Step 1: Use the algorithm of Theorem 4.1.2 and check whether the input
graph G has tw(G) > k. If so, return No and stop.

Step 2: If tw(G) ≤ k, run the algorithm of Theorem 5.3.1 and check if
G ∈ C.

As we have mentioned a number of times before, the contraction re-
lation is not a well-quasi-ordering on G, thus, we do not have a priori
knowledge that the obstruction set of a contraction-closed graph class will
be finite. Hence, the following question has great significance:

For what values of k ≥ 2 obs≤c(cmms, k) and obs≤c(cms, k)
are finite?

Our “guts feeling” is that for some k ≥ 3 (perhaps some small values)
these sets are finite but not for all k ≥ 3. We hope that this question
would be answered sometime soon. On the other hand we do not believe
that complete lists of the graphs of these sets are possible to be found,
when they are finite, due to their – double exponential on k – size. At
least not without the use of computer programs.
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We have not given much information about the computational com-
plexity of the problem of finding the search number of a graph. Let us
define the following problems:

k-Search
Input: A graph G, a positive integer k.
Question: Is •(G) ≤ k?

where • ∈ {es,ns,ms, ces, cns, cms}3.
For the three basic types of searching, that is edge search, node search

and mixed searched, this problem is NP-complete.

Theorem 9.4.1 ( Megiddo, Hakimi, Garey, Johnson, and Papadimitriou,
1983 [115]). The k-Search problem for edge search is NP-complete.

If we consider the relation between the three search numbers es, ns and
ms (see Observation 8.1.1) we can prove that:

Theorem 9.4.2. The k-Search problem for node search is NP-hard.

Theorem 9.4.3. The k-Search problem for mixed search is NP-hard.

In order to prove that these problems are in NP we have to prove the
existence of a certificate of polynomial size that will certify that •(G) ≤ k.
A search strategy will be perfect for this purpose. The problem is that, if
we allow non-monotone search strategies, we may not have a polynomial
number of moves in a strategy and, therefore, no polynomial certificate.
As edge search, node search and mixed search are monotone we do not
face this obstacle. But Theorem 8.3.1 shows us that connected edge search
is not monotone. We believe that the same holds for connected node search
and connected mixed search, thus, the following question not only remains
unanswered, but also seems to be a hard one:

3Remeber that for a graph G es(G) = mes(G), ns(G) = mns(G), and ms(G) =
mms(G).
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Is the k-Search problem in NP for connected mixed search?
If so, is it NP-complete?

To show the difficulty of this question – at least at this moment – we
pose another substantially easier question:

Is the 3-Search problem or the 4-Search problem for con-
nected mixed search in NP? If so, is it NP-complete?

We also have to mention that we do not know the answer to these
questions even for the case of connected and monotone mixed search.

Changing our perspective and looking at this problem from the parame-
trerized complexity point of view, we pose the following question:

Is the k-Search problem parameterized by k in FPT?

The answer in not known yet, as all existing techniques fail to provide
as with one.

261



9.4. CONCLUSION

262



Appendices

263





APPENDIXA

SOME NICE FIGURES OF OBSTRUCTIONS!

Here, we present three obstruction sets, mentioned in Chapters 4 and 8.
As their size is by far larger than the other sets presented in this thesis –
except from those of Chapter 9) – we thought it would be better to move
there depiction here.

We remind you the three theorems completely characterizing obs≤m

(lw, 2), obs≤m(ms, 2), and obs≤m(ns, 3).

Theorem 4.1.4 (Thilikos, 2000 [120]). The obstruction set obs≤m (lw, 2)
consists of the 52 graphs shown in Figure A.1.

Theorem 8.5.3 (Takahashi, Ueno, and Kajitani, [136]). The obstruction
set obs≤m (ms, 2) consists of the 36 graphs shown in Figure A.2.

Theorem 8.5.4 (Kinnersley and Langston, [133]). The obstruction set
obs≤m (ns, 3) consists of the 110 graphs shown in Figures A.3, A.4, A.5
and A.6.
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Fig. 13. The obstruction set L2 =L1
2 ∪L2

2 ∪L3
2 ∪L4

2 ∪L5
2 ∪L6

2 ∪L7
2 ∪L8

2 ∪L9
2.

Electronic Engineering of Tokyo Institute of Technology on February 1997, motivated
the present research. Finally, I acknowledge the helpful and detailed comments of the
referees that substantially improved the presentation of this paper.

Figure A.1: The graphs of obs≤m(lw, 2).

266



APPENDIX A. SOME NICE FIGURES OF OBSTRUCTIONS!

Figure A.2: The set obs≤m(ms, 2).
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