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Abstract

We define a multi-dimensional geometric extension of cutwidth. A graph has d-
cutwidth at most £ if it can be embedded in the d-dimensional euclidean space so
that no hyperplane can intersect more than k of its edges. We prove a series of
combinatorial results on d-cutwidth which imply that for every d and k, there is a
linear time algorithm checking whether the d-cutwidth of a graph G is at most k.

1 Introduction

The cutwidth of a (total) vertex ordering of a graph is the maximum number of edges
connecting vertices on opposite sides of any of the “gaps” between successive vertices
in the linear layout. The cutwidth of a graph G, denoted by cw(G), is the minimum
cutwidth over all its possible vertex orderings. The problem that asks, given a n-vertex
graph G and an integer k, whether cw(G) < k, is an NP-complete problem known in
the literature as the MINIMUM CUT LINEAR ARRANGEMENT problem [4]. From the
parameterized complexity point of view, the same problem is fixed parameter tractable,
as an algorithm that checks whether cutwidth(G) < k in f(k)-n steps was given in [10].
Cutwidth has been extensively studied both from its combinatorial (see e.g. [2, 7, 1]) as
well as its algorithmic point of view [8, 11, 3, 6].

d-dimensional cutwidth. In this note we introduce a multi-dimensional geometric
extension of cutwidth, namely the d-dimensional cutwidth (or, simply, d-cutwidth) that,
roughly, instead of mono-dimensional linear arrangements of the graph G, we consider
embeddings of G in the d-dimensional Euclidean space R? and define the d-cutwidth
of such an embedding to be the maximum number of edges that can be intersected by
a hyperplane of R%. Then, the d-cutwidth of G, denoted by cwy(G), is the minimum
d-cutwidth over all such embeddings. Our results are summarized in the following.

Theorem 1 The following hold:
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i. d-cutwidth is immersion closed!.

ii. For every graph G and every d > 1, cwy(G) < cWy41(G).
iii. For every graph G and every d > 1, cwy(G) < d - cwW(G).
. For every graph G, cws(G) < 2-cwy(G).

2 Preliminaries and definitions

Hyperplanes and hyperspheres. Every (d — 1)-dimensional subspace II of a d-
dimensional space X is called a hyperplane of X. Here we are interested in hyperplanes
of R? (subspaces isomorphic to R%~!). Let II be a hyperplane in R?, then there are
ag,ai, . ..,aq € R such that I = {(x1,...,24) € R? | ayzy + -+ + agrqg + ag = 0}. We
denote by H(d) the set of all hyperplanes of R%. A hypersphere, S(c,r), with center c
and radius v in RY is the set {(z1,...,24) € R | Z?Zl(:ni —¢;)? = r?}. We denote by
S(d) the set of all hyperspheres of R

Curves of R?%. We call a continuous function C : [0,1] — R? a curve of R? with ends
C(0) and C(1).

Graph Embeddings in R?. Let G = (V, E) be a graph. An embedding of G, denoted
by £4(G), in the euclidean space R? is a tuple (f,C), where f: V — R? is an injection,
mapping the vertices of G to R? and C = {C, | e € E} is a set of curves of R? with the
following properties:

1. for every e = {u,v} € E, the ends of C, are f(u) and f(v)
2. for all x € (0,1) and for all v € V it holds that C¢(z) # f(v).

For simplicity, we may sometimes refer to the elements of f(V') and C as the vertices
and edges of £;(G) respectively.

Essential embeddings, E;(G). We denote by E4(G) the set of all embeddings
E4(G) = (f,0), of G in RY, such that for every positive integer i < d, if S is a sub-
set of V' with [S| > 4, then the dimension of the subspace defined by {f(u) | u € S} is
i — 1. We call every element of E4(G) an essential-embedding of G in R, Let £4(G)
be an essential-embedding of G in R?, then if II is a hyperplane of RY (resp. ¥ is a
hypersphere of RY) that does not intersect any f(v), v € V, we denote by 9g(£4(G),1I)
(resp. 0g(E4(G),)) the set of curves of £4(G) that are intersected by II (resp. X).

Vertical projection. Given a point = (21,...,24) in R? and a hyperplane II =
{(z1,...,2q) €R? | @12y + - - + agrq + ag = 0}, the vertical projection of = on II is the
point y = {y1,...,y4} € R? where

yi= aalxl—l-"-—f—adazd—{—ao
i — &g — U4
a2+ +ag?

, 1e{l,...,d}.

YA graph H is an immersion of a graph G if it can be obtained from G after a sequence of vertex/edge
removals or edge lifts (the operation of lifting two edges {z,y} and {y, z} incident to the same vertex y
is the operation of replacing these edges by the edge {z, z}). A graph invariant is immersion closed if
its value on a graph G is always smaller or equal than its value on its immersions.



Definition 1 Let G = (V, E) be a graph and k,d be positive integers, where d > 2.
Then, we define the d-dimensional cutwidth of G, or simply d-cutwidth, to be

Ccwy(G) = Ed(GI)nGI}Eld(G) max{|0q(Eq(G), )| | I € H(d)}

We say that an embedding &;(G) € E4(G) realizes d-cutwidth of G if for every
hyperplane IT of Ry, |0¢(E4(G),II)| < cwy(G) and the equation holds for at least one
hyperplane. Observe that any hyperplane IT of R; that meets a curve C, € C once (if it
meets a curve more than once it is easy to observe that this particular embedding does
not realize the d-cutwidth of G), also meets the unique straight line segment of R? with
parametric equation o (t) = t-Ce(0)+(1—1)-Ce(1), t € R, i.e., the straight line segment
of R% that is defined by the “images” of the endpoints of edge e. Therefore, without
loss of generality, we can consider only straight-line embeddings where C = {0, | e € E}.
Notice that every straight line embeding £;(G) = (f,C) is fully defined by the function
f, therefore, for simplicity, from now on we will omit C.

Cutwidth. The cutwidth of a graph G = (V, E) with n vertices is defined as follows.
Let L = (v1,...,v,) be alayout of V. For i =1,...,n— 1, we define the cut at position
i, denoted by 0G(L,1i), as the set of crossover edges of G that have one endpoint in
{v1,...,v;} and one in {vit11,...,v,}. The width of a layout L of V(G) is equal to
max{|0q(L,7)| | 1 < i < n—1} and the cutwidth of G is the minimum width over all
the orderings of V(G).

According to the notation of Definition 1 we can give an equivalent definition of
cutwidth as follows:

Let G = (V, E) be a graph. An embedding of G in R, denoted & (G), is a tuple (f,7),
where f : V' — R is an injection, mapping the vertices of G to R and Z = {(f(u), f(v)) C
R | {u,v} € E} is a set of open intervals of R. Given an embedding & (G) = (f,Z), we
denote by 0z (&1(G), x) the set of intervals of Z in which z belongs.

Definition 2 Let G = (V, E) be a graph and k a positive integer. We define 1-cutwidth,
or simply cutwidth, of G to be
cwW1(G) = min max{|0g(&1(G),x)| | x € R}.
&1(G)
Observe that the above definition of cutwidth is equivalent to its usual definition.
Also observe that in this case, hyperplanes degenerate to subspaces of R of dimension
1, i.e. points, and our demand of essential embeddings is expressed by our demand of

injective functions. Therefore, d-cutwidth is the intuitive generalization of the notion of
cutwidth in any dimension d > 2.

3 Properties of d-cutwidth

In this section we will prove some properties of d-dimensional cutwidth.



Lemma 1 For every graph G and every d > 1,

cw4(G) < cWgyi(G).

Proof. Let G = (V,E) be a graph, and let £;,1(G) = f be an embedding of G in
R that realizes cWqy1(G). Let Iy be a hyperplane of R such that, for every
e € E, Il is not vertical to o.. We vertically project £;41(G) on Iy, which gives us an
embedding £;(G) of G in R?, as the restriction of f in R? satisfies the conditions of a
graph embedding.

Assume that there exists a hyperplane IT in R? that intersects £;(G) more than
CWgq41(G) times. Then we can construct a new hyperplane II’ in R%*! that intersects
Ei+1(G) more than cwg41(G) times. This hyperplane IT’ is the hyperplane vertical to
IT that passes through II. But this fact leads to a contradiction, since any hyperplane
in R™! can intersect £441(G) at most CWgy1(G) times. Hence our assumption that IT/
exists is false, i.e., every hyperplane in R intersects £;(G) at most CWq,1(G) times.
Therefore, cWg(G) < CW4i41(G). O

Proposition 1 For every d > 1, cwgy(P;) = d, where by P, we denote the path of
length n.

Proof. Let £;4(Py) be an essential straight line-embedding of Py = (V, E) in R?, where
V =A{vi,...,v441} and E = {{v;,vit1} | i € {1,...,d — 1}}. Consider the midpoints
m; of o(;;41}, for every i € {1,...,d — 1}. These d points of R? define a hyperplane of
R? that intersects all edges of £4(Py). Thus cwy(Py) > d and as |E(Py)| = d we derive
that cwy(Py) = d. O

Lemma 2 For every graph G and every d > 2 we have:

CcWy(G) < d-cw(G).

Proof. Consider the d-dimensional curve C' with parametric equation
C(t):= (t,2,63,...,t%), teR.

Consider an ordering of the nodes of G that realizes the cutwidth of G. Embed a node
v; of G to the point p; = C(t;), for an appropriate value t;. By appropriate we mean
that if a node v; is after a node v; in the cutwidth ordering, then the parametric value
t; corresponding to v; is strictly greater than the parameter value t; corresponding to
node v;. Now embed an edge e;; = (v;,v;) of G by connecting the points p; and p; on
C with the minimum length arc of C' connecting these points.

Consider a generic hyperplane II with equation a1z + asxs + ... + agxrqg + ag = 0,
where, for all 7, a; € R. 1II can cut C at at most d points. To see that, solve the system
of equations

a1x1 + asxs + ... +agrg+ag = 0,
Tr; = ti, iZl,...,d



for t. This gives the polynomial equation q(t) := ag + ait + ast® + ... + aqt? = 0, in
t of maximum degree d. Since ¢(t) = 0 has at most d real roots, we deduce that II
intersects C' at at most d points. At each point of intersection at most cw(G) edges
of the embedding of G pass through that point. Hence, II intersects at most d - cw(G)
edges of G, i.e., cW4(G) < d cw(G). O

Corollary 1 For G = P; the inequality of Lemma 2 becomes an equation. Hence,
Lemma’s 2 bound is tight.

Proof. We have from Proposition 1, that for every d > 1, cwy(Py;) = d, thus cwy(Py) =
d - cwy(P;). This proves that the inequality of Lemma 2 can be tight.

Definition 3 Let G = (V, E) be a graph and k, d be positive integers, where d > 2. Then
we define the spherical d-dimensional cutwidth of G, or simply spherical d-cutwidth, to
be

sowq(G) = Ed(GI)nei]I*]ld(G) max{|0c(&4(G),X)| | £ € S(d)}

Lemma 3 For every graph G and any d > 2 we have:

CW4(G) <scwg(G) < (d+1) cw(G).

Proof. The left-most inequality is obvious. For every embedding &;(G) of G in R
the number of intersections of £;(G) with a generalized hypersphere (of an appropriate
center and radius) in R? is greater or equal to the number of intersections of £;(G) with
a hyperplane in R%. Hence, cwy(G) < scwy(G).

Now consider the curve C(t) = (t,2,...,t%), with ¢t € R?, and consider the ordering

of the nodes of G that realizes CW(G). We embed the i-th node v; of G, in this ordering,
to the point p; = C'(i). We embed an edge e;; = (v;,vj) of G by connecting the points
p; and p; on C with the minimum length arc of C' connecting these points.
We claim that this curve has at most d 4 1 intersections with a generalized hypersphere
S in R?. If S is actually a plane then we can simply apply the argumentation presented
in the proof of Lemma 2. Suppose now that S is a true hypersphere, and let Z?Zl(xi —
a;)? 4+ ag = 0 be the equation of S, where, for all i, a; € R. Consider the following
system of equations:

r = t, i=1,...,d

The intersections of S with the afore-mentioned embedding of G in C' is bounded by
the number of real solutions of the system above, for which ¢ is positive. Solving this
system for ¢ we get a polynomial equation for £, namely:

d

Z(ti — ai)z + ag = 0.

=1



Expanding the above equation we get:

d d d
Za% -2 Zaiti—i—Za% +ag =0,
i=1 i=1 i=1
which can be rewritten as:
d 1£) [l d
Ztm -2 Z agitQZ -2 Z GQi_thZ_l + Z GZZ + ag = 0.
i=1 i=1 i=1 i=1
It is fairly easy to verify that the above equation can actually be rewritten as:
d d ; d
- 14 (—1) »
3 t2’+2((2)2ai> Y =0
=g+l =l =

By Descartes’ rule of signs, the number of positive real roots of this polynomial is
bounded above by the number of sign variations in the sequence of its (non-zero) coeffi-
cients. Taking a close look at this polynomial, we observe that its first d — ng non-zero
coefficients are equal to 1, which implies that the number of sign variations in the se-
quence of its coefficients is fully determined by the last d + 2 coefficients. A sequence of
d + 2 real numbers can have at most d + 1 sign variations, hence the number of positive
real roots of this polynomial is at most d + 1.

To finalize the proof, since any hypersphere in R? intersects with C' at most d + 1
times, we conclude that the maximum number of intersections of the embedding of G
in C is at most (d 4+ 1) cw(G). Therefore, sScwW4(G) < (d+ 1) cw(G). O

Lemma 4 For every graph G and every d > 1 we have:

CWa11(G) < scwy(G).

Proof. Consider a graph G and an embedding £;(G) in R? for which scwy(G) is at-
tained. Let us identify R? with the hyperplane 4.1 = 0 in R*! and consider the unit
hypersphere S% in R*t! centered at the origin. Let ¥ : R — S% be the stereographic
projection from R? to the unit hypersphere S? in R9*!, and define £;,1(G) to be the
image of £;(G) through the stereographic projection X, i.e., £44+1(G) = X(E4(G)).
Assume that there exists a hyperplane II in R4*! that cuts £z,1(G) more than
scwy(G) times. Let S be the intersection of IT with S? and let S’ be the inverse
image of S with respect to the stereographic projection, i.e., S = ¥~(S). Since S
is a hypersphere lying on S%, S’ is either a hyperplane or hypersphere in R?. Since
the stereographic projection preserves intersections, we deduce that S’ intersects E;(G)
more than sSCw,4(G) times. But this contradicts the definition of £;(G), which implies
that our assumption that II cuts £441(G) more than SCwy(G) times is false. Hence, we
found an embedding of G in R4 for which the maximum number of intersections with
any hyperplane in R4 is at most sScw,4(G). Therefore, CWqy1(G) < scwy(G). O



Lemma 5 For any graph G,

CW3(G) <2 CWQ(G).

Proof. Let G be a graph and consider an ordering of the nodes of G that realizes cw(G).
Consider an axis-aligned ellipse E centered at the origin with its z-axis being greater
than its y-axis (e.g., the ellipse 422 + y?> — 4 = 0). Embed the nodes of G on the
positive half of E, denoted as F /o, that is on the half-ellipse that lies on the positive
halfplane with respect to the z-axis, in such a way so that their z-coordinates preserve
the ordering. In other words, given two nodes v; and v; of G, such that v; precedes v;
in the node ordering, then z; < x;. Let us call £&(G) the above-mentioned embedding.
Given a generalized circle C' on the plane, C' can cut the half-ellipse £/, at most two
times. Hence we found an embedding of G in R? such that any generalized circle C' in R?
intersects this embedding at most 2 ¢w(G) times. In other words, scws(G) < 2 cw(G).
Using the results from Lemmas 1 and 4 we conclude:

Ccw3(G) < scwa(G) <2 cw(G) <2 cwa(G),

which is what we wanted to prove. O

4 Immersions

Immersions. We say that a graph H is an immersion (strong immersion) of a graph
G = (V,E), H =< G, if we can obtain H from a subgraph (induced subgraph resp.) of G
by lifting edges, where an edges lift is the following operation: given two adjacent edges,
say {v,u} and {u,w}, of G, we delete these edges from F and add the edge {v,w} (Ilin
the case where {v,w} already was present this operation creates a multiple edge). We
can also define the immersion relation as follows: H is an immersion of G if there is an
injective mapping f : V(H) — V(G), such that for every edge {u,v} of H, there is a
path from f(u) to f(v) in G and for any two edges of H the corresponding paths in G
are edge-disjoint, that is, they do not share common edges. Additionally, if these paths
are internally disjoint from f(V(H)), then we say that H is a strong immersion of G.

Theorem 2 Let G = (V, E) be a graph and H be an immersion (strong immersion)
of G. For every d > 1, cwWg(H) < cwgy(G), i.e. d-cutwidth is an immersion closed
parameter.

Proof. Let £4(G) be an an embedding of G' in R that realizes cwq(G). Let H' be a
subgraph of G. Then, given £;(G) = (f,C), we define an embedding E4(H') = (fg,Cp)
of H' in R where fz is the restriction of f to V(H’) and Cgyr = {c. € C | e €
E(H')}. Observe that every hyperplane of R? that intersected | < cwy(G) edges of
E4(Q) intersects at most [ edges of £;(H'), therefore cwy(H) < cwy(G).

We will next prove that if H is the result of one lift of edges e; = {u, v}, es = {v, w}
of B, then cwg(H) < cwy(G). Clearly, for any hyperplane R of R? its corresponding
numbers [0y (E4(H), R)| and [0g(E4(G), R)| can differentiate only due to the intersec-
tions of R with edges e,e; and es. Let E(H) 3 e = {u,w} be the resulting edge of



the lift. Let II € H(d) be a hyperplane that does not intersect f(v), Vv € V. If II
intersects e (more accurately, the straight line segment that represents e in the embed-
ding in £4(G)), then II separates R? into two halfspaces (i.e. subspaces of dimension d),
namely A and B. Assume, without loss generality, that u € A and w € B. Then, as
IT does not intersect f(v), either v € A or v € B, which means that either II intersects
e1 or II intersects ey in E4(G). Therefore, |0y (Eq(H),IT)| < |0a(E4(G),I)|. The same
holds trivially for the case that IT does not intersect e. Therefore, cwy(H) < cwy(G).
Summing up the above we get that, for every graph H that is the result of some (maybe
none) vertex deletions, edge deletions and edge lifts of G, cwq(H) < ¢w4(G), which is
what we stated. Notice that the above proof implies the same relation between a graph
G and a strong immersion H of G. O

5 Algorithmic remarks about d-cutwidth

As a consequence of the result in [9], for every k, the class of immersion minimal graphs
with d-cutwidth bigger than k contains a finite set of graphs. We call this class immersion
obstruction set for cutwidth at most k£ and we denote it by Op. This fact, combined
with Theorem 1.7, implies that cwg(G) < k if and only if none of the graphs in Oy
is contained in G as an immersion. According to the result of Grohe, Kawarabayashi,
Marx, and Wollan in [5], checking whether an n-vertex graph contains as an immersion
some k-vertex graph H, can be done in f(k) - n3 steps. As a consequence, checking
whether cW4(G) < k can be done in f(k) - n3 steps. This running time can become
linear (on n) using the first inequality of Theorem 1.i7i. Indeed, the algorithm first
checks whether cw(G) < k. If the answer is negative then we can safely report that
CcWq4(G) > k. If not, then it is known (see e.g. [10]) that G has a tree decomposition
of width < k and to check whether some of the graphs in Oy is contained in G as an
immersion can be done using dynamic programming in f(k) - n steps.

Unfortunately, the above algorithm is non-constructive as we have no other knowl-
edge about the set Oy, except from the fact that it is finite. To obtain a constructive
f(k) - n step algorithm for d-cutwidth remains an insisting open problem.
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