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Abstract

We define a multi-dimensional geometric extension of cutwidth. A graph has d-
cutwidth at most k if it can be embedded in the d-dimensional euclidean space so
that no hyperplane can intersect more than k of its edges. We prove a series of
combinatorial results on d-cutwidth which imply that for every d and k, there is a
linear time algorithm checking whether the d-cutwidth of a graph G is at most k.

1 Introduction

The cutwidth of a (total) vertex ordering of a graph is the maximum number of edges
connecting vertices on opposite sides of any of the “gaps” between successive vertices
in the linear layout. The cutwidth of a graph G, denoted by cw(G), is the minimum
cutwidth over all its possible vertex orderings. The problem that asks, given a n-vertex
graph G and an integer k, whether cw(G) ≤ k, is an NP-complete problem known in
the literature as the Minimum Cut Linear Arrangement problem [4]. From the
parameterized complexity point of view, the same problem is fixed parameter tractable,
as an algorithm that checks whether cutwidth(G) ≤ k in f(k) ·n steps was given in [10].
Cutwidth has been extensively studied both from its combinatorial (see e.g. [2, 7, 1]) as
well as its algorithmic point of view [8, 11, 3, 6].

d-dimensional cutwidth. In this note we introduce a multi-dimensional geometric
extension of cutwidth, namely the d-dimensional cutwidth (or, simply, d-cutwidth) that,
roughly, instead of mono-dimensional linear arrangements of the graph G, we consider
embeddings of G in the d-dimensional Euclidean space Rd and define the d-cutwidth
of such an embedding to be the maximum number of edges that can be intersected by
a hyperplane of Rd. Then, the d-cutwidth of G, denoted by cwd(G), is the minimum
d-cutwidth over all such embeddings. Our results are summarized in the following.

Theorem 1 The following hold:
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i. d-cutwidth is immersion closed1.
ii. For every graph G and every d ≥ 1, cwd(G) ≤ cwd+1(G).
iii. For every graph G and every d ≥ 1, cwd(G) ≤ d · cw(G).
iv. For every graph G, cw3(G) ≤ 2 · cw2(G).

2 Preliminaries and definitions

Hyperplanes and hyperspheres. Every (d − 1)-dimensional subspace Π of a d-
dimensional space X is called a hyperplane of X . Here we are interested in hyperplanes
of Rd (subspaces isomorphic to Rd−1). Let Π be a hyperplane in Rd, then there are
a0, a1, . . . , ad ∈ R such that Π = {(x1, . . . , xd) ∈ Rd | a1x1 + · · · + adxd + a0 = 0}. We
denote by H(d) the set of all hyperplanes of Rd. A hypersphere, S(c, r), with center c
and radius r in Rd is the set {(x1, . . . , xd) ∈ Rd |

∑d
i=1(xi − ci)2 = r2}. We denote by

S(d) the set of all hyperspheres of Rd.

Curves of Rd. We call a continuous function C : [0, 1]→ Rd a curve of Rd with ends
C(0) and C(1).

Graph Embeddings in Rd. Let G = (V,E) be a graph. An embedding of G, denoted
by Ed(G), in the euclidean space Rd is a tuple (f, C), where f : V → Rd is an injection,
mapping the vertices of G to Rd and C = {Ce | e ∈ E} is a set of curves of Rd with the
following properties:

1. for every e = {u, v} ∈ E, the ends of Ce are f(u) and f(v)

2. for all x ∈ (0, 1) and for all v ∈ V it holds that Ce(x) 6= f(v).

For simplicity, we may sometimes refer to the elements of f(V ) and C as the vertices
and edges of Ed(G) respectively.

Essential embeddings, Ed(G). We denote by Ed(G) the set of all embeddings
Ed(G) = (f, C), of G in Rd, such that for every positive integer i ≤ d, if S is a sub-
set of V with |S| ≥ i, then the dimension of the subspace defined by {f(u) | u ∈ S} is
i − 1. We call every element of Ed(G) an essential-embedding of G in Rd. Let Ed(G)
be an essential-embedding of G in Rd, then if Π is a hyperplane of Rd (resp. Σ is a
hypersphere of Rd) that does not intersect any f(v), v ∈ V , we denote by ∂G(Ed(G),Π)
(resp. ∂G(Ed(G),Σ)) the set of curves of Ed(G) that are intersected by Π (resp. Σ).

Vertical projection. Given a point x = (x1, . . . , xd) in Rd and a hyperplane Π =
{(x1, . . . , xd) ∈ Rd | a1x1 + · · ·+ adxd + a0 = 0}, the vertical projection of x on Π is the
point y = {y1, . . . , yd} ∈ Rd where

yi = xi − ai
a1x1 + · · ·+ adxd + a0

a12 + · · ·+ ad2
, i ∈ {1, . . . , d}.

1A graph H is an immersion of a graph G if it can be obtained from G after a sequence of vertex/edge
removals or edge lifts (the operation of lifting two edges {x, y} and {y, z} incident to the same vertex y
is the operation of replacing these edges by the edge {x, z}). A graph invariant is immersion closed if
its value on a graph G is always smaller or equal than its value on its immersions.
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Definition 1 Let G = (V,E) be a graph and k, d be positive integers, where d ≥ 2.
Then, we define the d-dimensional cutwidth of G, or simply d-cutwidth, to be

cwd(G) = min
Ed(G)∈Ed(G)

max{|∂G(Ed(G),Π)| | Π ∈ H(d)}

We say that an embedding Ed(G) ∈ Ed(G) realizes d-cutwidth of G if for every
hyperplane Π of Rd, |∂G(Ed(G),Π)| ≤ cwd(G) and the equation holds for at least one
hyperplane. Observe that any hyperplane Π of Rd that meets a curve Ce ∈ C once (if it
meets a curve more than once it is easy to observe that this particular embedding does
not realize the d-cutwidth of G), also meets the unique straight line segment of Rd with
parametric equation σe(t) = t ·Ce(0)+(1−t) ·Ce(1), t ∈ R, i.e., the straight line segment
of Rd that is defined by the “images” of the endpoints of edge e. Therefore, without
loss of generality, we can consider only straight-line embeddings where C = {σe | e ∈ E}.
Notice that every straight line embeding Ed(G) = (f, C) is fully defined by the function
f , therefore, for simplicity, from now on we will omit C.

Cutwidth. The cutwidth of a graph G = (V,E) with n vertices is defined as follows.
Let L = 〈v1, . . . , vn〉 be a layout of V . For i = 1, . . . , n− 1, we define the cut at position
i, denoted by ∂G(L, i), as the set of crossover edges of G that have one endpoint in
{v1, . . . , vi} and one in {vi+1, . . . , vn}. The width of a layout L of V (G) is equal to
max{|∂G(L, i)| | 1 ≤ i ≤ n − 1} and the cutwidth of G is the minimum width over all
the orderings of V (G).

According to the notation of Definition 1 we can give an equivalent definition of
cutwidth as follows:

Let G = (V,E) be a graph. An embedding of G in R, denoted E1(G), is a tuple (f, I),
where f : V → R is an injection, mapping the vertices of G to R and I = {(f(u), f(v)) ⊂
R | {u, v} ∈ E} is a set of open intervals of R. Given an embedding E1(G) = (f, I), we
denote by ∂G(E1(G), x) the set of intervals of I in which x belongs.

Definition 2 Let G = (V,E) be a graph and k a positive integer. We define 1-cutwidth,
or simply cutwidth, of G to be

cw1(G) = min
E1(G)

max{|∂G(E1(G), x)| | x ∈ R}.

Observe that the above definition of cutwidth is equivalent to its usual definition.
Also observe that in this case, hyperplanes degenerate to subspaces of R of dimension
1, i.e. points, and our demand of essential embeddings is expressed by our demand of
injective functions. Therefore, d-cutwidth is the intuitive generalization of the notion of
cutwidth in any dimension d ≥ 2.

3 Properties of d-cutwidth

In this section we will prove some properties of d-dimensional cutwidth.
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Lemma 1 For every graph G and every d ≥ 1,

cwd(G) ≤ cwd+1(G).

Proof. Let G = (V,E) be a graph, and let Ed+1(G) = f be an embedding of G in
Rd+1 that realizes cwd+1(G). Let Π0 be a hyperplane of Rd+1 such that, for every
e ∈ E, Π0 is not vertical to σe. We vertically project Ed+1(G) on Π0, which gives us an
embedding Ed(G) of G in Rd, as the restriction of f in Rd satisfies the conditions of a
graph embedding.

Assume that there exists a hyperplane Π in Rd that intersects Ed(G) more than
cwd+1(G) times. Then we can construct a new hyperplane Π′ in Rd+1 that intersects
Ed+1(G) more than cwd+1(G) times. This hyperplane Π′ is the hyperplane vertical to
Π that passes through Π. But this fact leads to a contradiction, since any hyperplane
in Rd+1 can intersect Ed+1(G) at most cwd+1(G) times. Hence our assumption that Π′

exists is false, i.e., every hyperplane in Rd intersects Ed(G) at most cwd+1(G) times.
Therefore, cwd(G) ≤ cwd+1(G). �

Proposition 1 For every d ≥ 1, cwd(Pd) = d, where by Pn we denote the path of
length n.

Proof. Let Ed(Pd) be an essential straight line-embedding of Pd = (V,E) in Rd, where
V = {v1, . . . , vd+1} and E = {{vi, vi+1} | i ∈ {1, . . . , d − 1}}. Consider the midpoints
mi of σ{i,i+1}, for every i ∈ {1, . . . , d− 1}. These d points of Rd define a hyperplane of

Rd that intersects all edges of Ed(Pd). Thus cwd(Pd) ≥ d and as |E(Pd)| = d we derive
that cwd(Pd) = d. �

Lemma 2 For every graph G and every d ≥ 2 we have:

cwd(G) ≤ d · cw(G).

Proof. Consider the d-dimensional curve C with parametric equation

C(t) := (t, t2, t3, . . . , td), t ∈ R.

Consider an ordering of the nodes of G that realizes the cutwidth of G. Embed a node
vi of G to the point pi = C(ti), for an appropriate value ti. By appropriate we mean
that if a node vi is after a node vj in the cutwidth ordering, then the parametric value
ti corresponding to vi is strictly greater than the parameter value tj corresponding to
node vj . Now embed an edge eij = (vi, vj) of G by connecting the points pi and pj on
C with the minimum length arc of C connecting these points.

Consider a generic hyperplane Π with equation a1x1 + a2x2 + . . . + adxd + a0 = 0,
where, for all i, ai ∈ R. Π can cut C at at most d points. To see that, solve the system
of equations

a1x1 + a2x2 + . . .+ adxd + a0 = 0,

xi = ti, i = 1, . . . , d
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for t. This gives the polynomial equation q(t) := a0 + a1t + a2t
2 + . . . + adt

d = 0, in
t of maximum degree d. Since q(t) = 0 has at most d real roots, we deduce that Π
intersects C at at most d points. At each point of intersection at most cw(G) edges
of the embedding of G pass through that point. Hence, Π intersects at most d · cw(G)
edges of G, i.e., cwd(G) ≤ d cw(G). �

Corollary 1 For G = Pd the inequality of Lemma 2 becomes an equation. Hence,
Lemma’s 2 bound is tight.

Proof. We have from Proposition 1, that for every d ≥ 1, cwd(Pd) = d, thus cwd(Pd) =
d · cw1(Pd). This proves that the inequality of Lemma 2 can be tight.

Definition 3 Let G = (V,E) be a graph and k, d be positive integers, where d ≥ 2. Then
we define the spherical d-dimensional cutwidth of G, or simply spherical d-cutwidth, to
be

scwd(G) = min
Ed(G)∈Ed(G)

max{|∂G(Ed(G),Σ)| | Σ ∈ S(d)}

Lemma 3 For every graph G and any d ≥ 2 we have:

cwd(G) ≤ scwd(G) ≤ (d+ 1) cw(G).

Proof. The left-most inequality is obvious. For every embedding Ed(G) of G in Rd,
the number of intersections of Ed(G) with a generalized hypersphere (of an appropriate
center and radius) in Rd is greater or equal to the number of intersections of Ed(G) with
a hyperplane in Rd. Hence, cwd(G) ≤ scwd(G).

Now consider the curve C(t) = (t, t2, . . . , td), with t ∈ Rd, and consider the ordering
of the nodes of G that realizes cw(G). We embed the i-th node vi of G, in this ordering,
to the point pi = C(i). We embed an edge eij = (vi, vj) of G by connecting the points
pi and pj on C with the minimum length arc of C connecting these points.
We claim that this curve has at most d+ 1 intersections with a generalized hypersphere
S in Rd. If S is actually a plane then we can simply apply the argumentation presented
in the proof of Lemma 2. Suppose now that S is a true hypersphere, and let

∑d
i=1(xi−

ai)
2 + a0 = 0 be the equation of S, where, for all i, ai ∈ R. Consider the following

system of equations:

d∑
i=1

(xi − ai)2 + a0 = 0,

xi = ti, i = 1, . . . , d.

The intersections of S with the afore-mentioned embedding of G in C is bounded by
the number of real solutions of the system above, for which t is positive. Solving this
system for t we get a polynomial equation for t, namely:

d∑
i=1

(ti − ai)2 + a0 = 0.

5



Expanding the above equation we get:

d∑
i=1

a2i − 2
d∑

i=1

ait
i +

d∑
i=1

a2i + a0 = 0,

which can be rewritten as:

d∑
i=1

t2i − 2

b d
2
c∑

i=1

a2it
2i − 2

d d
2
e∑

i=1

a2i−1t
2i−1 +

d∑
i=1

a2i + a0 = 0.

It is fairly easy to verify that the above equation can actually be rewritten as:

d∑
i=b d

2
c+1

t2i +

d∑
i=1

(
1 + (−1)i

2
− 2ai

)
ti +

d∑
i=1

a2i + a0 = 0.

By Descartes’ rule of signs, the number of positive real roots of this polynomial is
bounded above by the number of sign variations in the sequence of its (non-zero) coeffi-
cients. Taking a close look at this polynomial, we observe that its first d−bd2c non-zero
coefficients are equal to 1, which implies that the number of sign variations in the se-
quence of its coefficients is fully determined by the last d+ 2 coefficients. A sequence of
d+ 2 real numbers can have at most d+ 1 sign variations, hence the number of positive
real roots of this polynomial is at most d+ 1.

To finalize the proof, since any hypersphere in Rd intersects with C at most d + 1
times, we conclude that the maximum number of intersections of the embedding of G
in C is at most (d+ 1) cw(G). Therefore, scwd(G) ≤ (d+ 1) cw(G). �

Lemma 4 For every graph G and every d ≥ 1 we have:

cwd+1(G) ≤ scwd(G).

Proof. Consider a graph G and an embedding Ed(G) in Rd for which scwd(G) is at-
tained. Let us identify Rd with the hyperplane xd+1 = 0 in Rd+1 and consider the unit
hypersphere Sd in Rd+1 centered at the origin. Let Σ : Rd → Sd be the stereographic
projection from Rd to the unit hypersphere Sd in Rd+1, and define Ed+1(G) to be the
image of Ed(G) through the stereographic projection Σ, i.e., Ed+1(G) = Σ(Ed(G)).

Assume that there exists a hyperplane Π in Rd+1 that cuts Ed+1(G) more than
scwd(G) times. Let S be the intersection of Π with Sd and let S′ be the inverse
image of S with respect to the stereographic projection, i.e., S′ = Σ−1(S). Since S
is a hypersphere lying on Sd, S′ is either a hyperplane or hypersphere in Rd. Since
the stereographic projection preserves intersections, we deduce that S′ intersects Ed(G)
more than scwd(G) times. But this contradicts the definition of Ed(G), which implies
that our assumption that Π cuts Ed+1(G) more than scwd(G) times is false. Hence, we
found an embedding of G in Rd+1 for which the maximum number of intersections with
any hyperplane in Rd+1 is at most scwd(G). Therefore, cwd+1(G) ≤ scwd(G). �
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Lemma 5 For any graph G,

cw3(G) ≤ 2 cw2(G).

Proof. Let G be a graph and consider an ordering of the nodes of G that realizes cw(G).
Consider an axis-aligned ellipse E centered at the origin with its x-axis being greater
than its y-axis (e.g., the ellipse 4x2 + y2 − 4 = 0). Embed the nodes of G on the
positive half of E, denoted as E1/2, that is on the half-ellipse that lies on the positive
halfplane with respect to the x-axis, in such a way so that their x-coordinates preserve
the ordering. In other words, given two nodes vi and vj of G, such that vi precedes vj
in the node ordering, then xi < xj . Let us call E2(G) the above-mentioned embedding.
Given a generalized circle C on the plane, C can cut the half-ellipse E1/2 at most two
times. Hence we found an embedding of G in R2 such that any generalized circle C in R2

intersects this embedding at most 2 cw(G) times. In other words, scw2(G) ≤ 2 cw(G).
Using the results from Lemmas 1 and 4 we conclude:

cw3(G) ≤ scw2(G) ≤ 2 cw(G) ≤ 2 cw2(G),

which is what we wanted to prove. �

4 Immersions

Immersions. We say that a graph H is an immersion (strong immersion) of a graph
G = (V,E), H � G, if we can obtain H from a subgraph (induced subgraph resp.) of G
by lifting edges, where an edges lift is the following operation: given two adjacent edges,
say {v, u} and {u,w}, of G, we delete these edges from E and add the edge {v, w} (Iin
the case where {v, w} already was present this operation creates a multiple edge). We
can also define the immersion relation as follows: H is an immersion of G if there is an
injective mapping f : V (H) → V (G), such that for every edge {u, v} of H, there is a
path from f(u) to f(v) in G and for any two edges of H the corresponding paths in G
are edge-disjoint, that is, they do not share common edges. Additionally, if these paths
are internally disjoint from f(V (H)), then we say that H is a strong immersion of G.

Theorem 2 Let G = (V,E) be a graph and H be an immersion (strong immersion)
of G. For every d ≥ 1, cwd(H) ≤ cwd(G), i.e. d-cutwidth is an immersion closed
parameter.

Proof. Let Ed(G) be an an embedding of G in Rd that realizes cwd(G). Let H ′ be a
subgraph of G. Then, given Ed(G) = (f, C), we define an embedding Ed(H ′) = (fH′ , CH′)
of H ′ in Rd, where fH′ is the restriction of f to V (H ′) and CH′ = {ce ∈ C | e ∈
E(H ′)}. Observe that every hyperplane of Rd that intersected l ≤ cwd(G) edges of
Ed(G) intersects at most l edges of Ed(H ′), therefore cwd(H) ≤ cwd(G).

We will next prove that if H is the result of one lift of edges e1 = {u, v}, e2 = {v, w}
of E, then cwd(H) ≤ cwd(G). Clearly, for any hyperplane R of Rd its corresponding
numbers |∂H(Ed(H), R)| and |∂G(Ed(G), R)| can differentiate only due to the intersec-
tions of R with edges e, e1 and e2. Let E(H) 3 e = {u,w} be the resulting edge of
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the lift. Let Π ∈ H(d) be a hyperplane that does not intersect f(v), ∀v ∈ V . If Π
intersects e (more accurately, the straight line segment that represents e in the embed-
ding in Ed(G)), then Π separates Rd into two halfspaces (i.e. subspaces of dimension d),
namely A and B. Assume, without loss generality, that u ∈ A and w ∈ B. Then, as
Π does not intersect f(v), either v ∈ A or v ∈ B, which means that either Π intersects
e1 or Π intersects e2 in Ed(G). Therefore, |∂H(Ed(H),Π)| ≤ |∂G(Ed(G),Π)|. The same
holds trivially for the case that Π does not intersect e. Therefore, cwd(H) ≤ cwd(G).
Summing up the above we get that, for every graph H that is the result of some (maybe
none) vertex deletions, edge deletions and edge lifts of G, cwd(H) ≤ cwd(G), which is
what we stated. Notice that the above proof implies the same relation between a graph
G and a strong immersion H of G. �

5 Algorithmic remarks about d-cutwidth

As a consequence of the result in [9], for every k, the class of immersion minimal graphs
with d-cutwidth bigger than k contains a finite set of graphs. We call this class immersion
obstruction set for cutwidth at most k and we denote it by Ok. This fact, combined
with Theorem 1.i, implies that cwd(G) ≤ k if and only if none of the graphs in Ok

is contained in G as an immersion. According to the result of Grohe, Kawarabayashi,
Marx, and Wollan in [5], checking whether an n-vertex graph contains as an immersion
some k-vertex graph H, can be done in f(k) · n3 steps. As a consequence, checking
whether cwd(G) ≤ k can be done in f(k) · n3 steps. This running time can become
linear (on n) using the first inequality of Theorem 1.iii. Indeed, the algorithm first
checks whether cw(G) ≤ k. If the answer is negative then we can safely report that
cwd(G) > k. If not, then it is known (see e.g. [10]) that G has a tree decomposition
of width ≤ k and to check whether some of the graphs in Ok is contained in G as an
immersion can be done using dynamic programming in f(k) · n steps.

Unfortunately, the above algorithm is non-constructive as we have no other knowl-
edge about the set Ok, except from the fact that it is finite. To obtain a constructive
f(k) · n step algorithm for d-cutwidth remains an insisting open problem.
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