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Abstract

We consider the connected variant of the classic mixed search game where, in
each search step, cleaned edges form a connected subgraph. We consider graph
classes with bounded connected (and monotone) mixed search number and we
deal with the question whether the obstruction set, with respect of the contrac-
tion partial ordering, for those classes is finite. In general, there is no guarantee
that those sets are finite, as graphs are not well quasi ordered under the con-
traction partial ordering relation. In this paper we provide the obstruction set
for k = 2, where k is the number of searchers we are allowed to use. This set
is finite, it consists of 177 graphs and completely characterises the graphs with
connected (and monotone) mixed search number at most 2. Our proof reveals
that the “sense of direction” of an optimal search searching is important for
connected search which is in contrast to the unconnected original case. We also
give a double exponential lower bound on the size of the obstruction set for the
classes where this set is finite.
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1. Introduction

A mixed searching game is defined in terms of a graph representing a sys-
tem of tunnels where an agile and omniscient fugitive with unbounded speed is
hidden (alternatively, we can formulate the same problem considering that the
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tunnels are contaminated by some poisonous gas). The fugitive is occupying
the edges of the graph and the searchers can be placed on its vertices. In the
beginning of the game, the fugitive chooses some edge and there are no searchers
at all on the graph. The objective of the searchers is to deploy a search strat-
egy on the graph that can guarantee the capture of the fugitive. The fugitive
is captured if at some point he resides on an edge e and one of the following
capturing cases occurs.

A: both endpoints of e are occupied by a searcher,

B: a searcher slides along e, i.e., a searcher is moved from one endpoint of
the edge to the other endpoint.

A search strategy on a graph G is a finite sequence S containing moves of the
following types.

p(v): placing a new searcher on a vertex v,

r(v): deleting a searcher from a vertex v,

s(v, u): sliding a searcher on v along the edge {v, u} and placing it on u.

We stress that the fugitive is agile and omniscient, i.e. he moves at any time in
the most favourable, for him, position and is invisible, i.e. the searchers strategy
is given “in advance” and does not depend on the moves of the fugitive during
it.

Given a search S, we denote by E(S, i) the set of edges that are clean after
applying the first i steps of S, where by “clean” we mean that the search strategy
can guarantee that none of its edges will be occupied by the fugitive after the
i-th step. More formally, we set E(S, 0) = ∅ and in step i > 0 we define E(S, i)
as the set defined as follows: first consider the set Qi containing all the edges
in E(S, i− 1) plus the edges of E(i) the set of edges that are cleaned after the
i-th move because of the application of cases A or B. Notice that E(i) may be
empty. In particular, it may be non-empty in case the i-move is a placement
move, will always be empty in case the i-th move is a removal move and will
surely be non-empty in case the i-th move is a sliding move. In the third case,
the edge along which the sliding occurs is called the sliding edge of E(i). Then,
the set E(S, i) is defined as the set of all edges in Qi minus those for which there
is a path starting from them and finishing in an edge not in Qi. This expresses
the fact that the agile and omniscient fugitive could use any of these paths in
order to occupy again some of the edges in Qi. In case E(S, i) ⊂ Qi, we say
that the i-th move is a recontamination move. Notice that in such a case we
have that E(S, i− 1) 6⊆ E(S, i).

The object of a mixed search is to clear all edges using a search. We call
search S complete if at some step all edges of G are clean, i.e. E(S, i) = E(G)
for some i.
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Connected monotone mixed search number. The mixed search number of a
search is the maximum number of searchers on the graph during any move.
A search without recontamination moves is called monotone. Mixed search
number has been introduced in [1]. The mixed search number, ms(G), of a
graph G is the minimum mixed search number over all the possible complete
searches on it (if G is an edgeless graph, then this number is 0). A search is
connected if E(S, i) induces a connected subgraph of G for every step i. Given a
graph G, we will denote the minimum mixed search number over all the possible
complete connected searches on it by cms(G) and we will call this number con-
nected mixed search number of G. The monotone (resp. connected monotone)
mixed search number, mms(G) (resp. cmms(G)), of G is the minimum mixed
search number over all the possible complete monotone (connected monotone)
searches of it (connected variants are defined only under the assumption that
G is a connected graph). The concept of connectivity in graph searching was
introduced for the first time in [2] and was motivated by application of graph
searching where the “clean” territories should be maintained connected so to
guarantee the safe communication between the searchers during the search.

Obstructions. Given a graph invariant p, a partial ordering relation on graphs
E, and an integer k we denote by obsE(G[p, k]) the set of all E-minimal graphs
G where p(G) > k and we call it the k-th E-obstruction set for p. We also say
that p is closed under E if for every two graphs H and G, H EG implies that
p(H) E p(G). Clearly, if p is closed under E, then the k-th E-obstruction set
for p provides a complete characterisation for the class Gk = {G | p(G) E k}: a
graph belongs in Gk iff none of the graphs in the k-th E-obstruction set for p is
contained in G with respect to the relation E.

Our results. In this paper we are interested in obstruction characterisations for
the graphs with bounded connected (monotone) mixed search number. While
it is known that ms is closed under taking of minors, this is not he case for cms
and cmms where the connectivity requirement applies. From Robertson and
Seymour Theorem [3], the k-th ≤-obstruction set for ms is always finite, where
≤ is the minor partial ordering relation (defined formally in Subsection 2.4).
Moreover this set has been found for k = 1 (2 graphs) and k = 2 (36 graphs)
in [4]. However, no such result exists for the obstruction characterisations of the
connected monotone mixed search number. As we prove in this paper, cms and
cmms are closed under contractions. Unfortunately, graphs are not well quasi
ordered with respect to the contraction relation, therefore there is no guarantee
that the k-th contraction obstruction set for cms or cmms is finite for all k.
The finiteness of this set is straightforward if k = 1 as obs�(G[cmms, 1]) =
{K3,K1,3}. In this paper we completely resolve the case where k = 2. We
prove that obs�(G[cmms, 2]) = obs�(G[cms, 2]) and we prove that this set
is finite by providing all 177 graphs that it contains. The proof of our results
is based on a series of lemmata that confine the structure of the graphs with
connected monotone mixed search number at most 2. We should stress that, in
contrary to the case of ms the direction of searching is crucial for cmms. This
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makes the detection of the corresponding obstruction sets more elaborated as
special obstructions are required in order to force a certain sense of direction
in the search strategy. For this reason, our proof makes use of a more general
variant of the mixed search strategy that forces the searchers to start and finish
to specific sets of vertices. Obstructions for this more general type of searching
are combined in order to form the required obstructions for cmms. We also give
a double exponential lower bound on the size of the contraction obstruction set
for the classes with bounded connected monotone search number. This lower
bound is only meaningful for the classes where this obstruction set is finite.

2. Preliminary Definitions and Results

Let A be a set and let A = 〈a1, . . . , ar〉 be an ordering of A. We denote by
prefsec(A) the ordering 〈A0, . . . , Ar〉 of subsets of A, where A0 = ∅ and for
i = 1, . . . , r, Ai = {a1, . . . , ai}. Let A1 and A2 be two disjoint orderings of A,
we denote by A1 ⊕A2 the concatenation of these two orderings.

All graphs under consideration will be finite, without loops or multiple edges.
Let G be a graph and e = {u, v} ∈ E(G) an edge. The edge-contraction of {u, v}
(or just the contraction of {u, v}) is the operation that deletes this edge, adds
a new vertex xuv and connects this vertex to all the neighbours of u and v (if
some multiple edges are created we delete them). We denote by G/e the graph
obtained from G by contracting edge e.

If S ⊆ V (G) we call graph G[S] = (S,
{
{u, v} ∈ E(G) | u, v ∈ S

}
) the

subgraph of G induced by S. Also, given a set F ⊆ E(G) we call graph G[F ] =
(
⋃
e∈F e, F ) the subgraph of G induced by F and we denote by V (F ) the set of

vertices in G[F ].
We define the union of two graphs G1 = (V1, E1) and G2 = (V2, E2) to be

the graph G1 ∪G2 = (V1 ∪ V2, E1 ∪E2). When V1 and V2 are disjoint, we refer
to this union as the disjoint union of G1 and G2 (we denote it as G1 +G2).

A vertex of a graph is called pendant if it has degree at most 1. An edge e
of a graph G is pendant if one of its endpoints is pendant. If both endpoints of
an edge of G are pendant, then we say that e is an isolated edge.

We adapt the standard notations for the neighbourhood and the degree of
a vertex u ∈ V (G), i.e. the set off all vertices connected with u by an edge and
the cardinality of this set, which is NG(u) and degG(u) respectively.

2.1. Rooted graph triples.

A rooted graph triple, or, for simplicity, a rooted graph, is an ordered triple
(G,Sin, Sout) where G is a connected graph and Sin and Sout are subsets of
V (G) (Sin and Sout are not necessarily disjoint sets). If G = (G,Sin, Sout) then
we also say that G is the graph G in-rooted on Sin and out-rooted at Sout. Given
a rooted graph G = (G,Sin, Sout), we define rev(G) = (G,Sout, Sin).

Given a rooted graph (G,Sin, Sout), where

Sin = {vin1 , . . . , vin|Sin|} and Sout = {vout1 , . . . , vout|Sout|},
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we define its enhancement as the graph enh(G,Sin, Sout) obtained from G after
adding two vertices uin and uout and the edges in the sets

Ein = {{vin1 , uin}, . . . , {vin|Sin|, u
in}}

and
Eout = {{vout1 , uout}, . . . , {vout|Sout|, u

out}}.

From now on, we will refer to the vertices uin, uout as the vertex extensions
of enh(G,Sin, Sout) and the edge sets Ein and Eout as the edge extensions of
enh(G,Sin, Sout).

2.2. An extension of the connected search game.

In the above setting we assumed that searchers cannot make their first move
in the graph before the fugitive makes his first move. Let G be a graph and let
Sin, Sout ⊆ V (G). A (Sin, Sout)-complete strategy for G is a search strategy S
on enh(G,Sin, Sout) such that

(i) E(S, i) = Ein, for some i,

(ii) E(S, i) ∩ Eout = ∅, for every i and

(iii) E(S, i) = E(G) \ Eout, for some i,

where Ein, Eout are the edge extensions of enh(G,Sin, Sout).
Based on the above definitions, we define ms(G,Sin, Sout) as the minimum

mixed search number over all possible (Sin, Sout)-complete search strategies for
it. Similarly, we define mms(G,Sin, Sout) and cmms(G,Sin, Sout) where, in
the case of connected searching, we additionally demand that Sin induces a
connected subgraph of G. Notice that ms(G) = ms(G, ∅, ∅) and that this
equality also holds for mms and cmms.

2.3. Expansions.

Given a graph G and a set F ⊆ E(G), we define

∂G(F ) = (
⋃
e∈F

e) ∩ (
⋃

e∈E(G)\F

e)

Let G be a graph and let E1 and E2 be subsets of E(G). An (E1, E2)-
expansion of G is an ordering E = 〈A1, . . . , Ar〉 where

1. For i ∈ {1, . . . , r − 1}, E1 ⊆ Ai ⊆ E(G) \ E2.

2. For i ∈ {1, . . . , r − 1}, |Ai+1 \Ai| ≤ 1.

3. A1 = E1,

4. Ar = E(G) \ E2.

An (E1, E2)-expansion of G is connected if the following condition holds:
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5. For i ∈ {1, . . . , r}, G[Ai] is connected.

An (E1, E2)-expansion of G is monotone if the following condition holds:

6. A1 ⊆ · · · ⊆ Ar.

Let i ∈ {1, . . . , r− 1}. The cost of an expansion E at position i is defined as
costG(E , i) = |∂G(Ai)|+ qi where qi is equal to one if one of the following holds

• |Ai| ≥ 2 and Ai \Ai−1 contains a pendant edge of G

• Ai consists of only one edge that is an isolated edge of G.

If none of the above two conditions hold then qi is equal to 0. The cost of
the expansion E , denoted as costG(E), is the maximum cost of E among all
positions i ∈ {1, . . . , r − 1}.

We define p(G,Sin, Sout) as the minimum cost that an (Ein, Eout)-expansion
of enh(G,Sin, Sout) may have, where Ein, Eout are the edge extensions of enh(G,
Sin, Sout). We also define mp(G,Sin, Sout) (if we consider only monotone
(Ein, Eout)-expansions) and cmp(G,Sin, Sout) (if we consider connected mono-
tone (Ein, Eout)-expansions). We finally define cmp(G) = cmp(G, ∅, ∅).

Lemma 1. Let (G,Sin, Sout) be a rooted graph and let Sin
1 ⊆ Sin and Sout

1 ⊆
Sout, where G[Sin] is a connected subgraph of G. Then cmp(G,Sin

1 , S
out
1 ) ≤

cmp(G,Sin, Sout).

Proof. Let Ein, Eout and Ein
1 , E

out
1 be the edge extensions of enh(G,Sin, Sout)

and enh(G,Sin
1 , S

out
1 ) respectively. Notice that, as Sin

1 ⊆ Sin and Sout
1 ⊆ Sout,

Ein
1 ⊆ Ein and Eout

1 ⊆ Eout.
Let E = 〈A1, . . . , Ar〉 be an monotone and connected (Ein, Eout)-expansion

of enh(G,Sin, Sout), with cost at most k.

As G[Sin] is a connected subgraph of G, for every vertex of Sin \ Sin
1 there

exist a path connecting it with a vertex of Sin
1 that only uses vertices of Sin.

We define the following edge sets:

• E1
1 contains all edges that have a vertex of Sin

1 and a vertex of Sin \Sin
1 as

endpoints. Let V1 = (
⋃
e∈E1

1
e) \Sin

1 , then E2
1 contains all edges that have

both endpoints in V1.

• E1
j contains all edges that have a vertex of Vj−1 and a vertex of S =

Sin \ (Sin
1 ∪ (

⋃
l=1...,j−1 Vl)) as endpoints. Let Vj = (

⋃
e∈E1

j
e) \S, then E2

j

contains all edges that have both endpoints in Vj .

For each edge set Eij , 1 ≤ j ≤ d and i ∈ {1, 2}, where d is the maximum

distance between a vertex of Sin\Sin
1 to some vertex in Sin

1 , we define arbitrarily
an edge ordering Lij . We then define an ordering E1 of edge sets as follows:

• A′1 = (A1 \ Ein) ∪ Ein
1
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• A′1+l = A
′

1+l−1∪Âl for l = 1, . . . , |E1
1 |, where 〈Â1, . . . , Â|E1

1 |〉 = prefsec(L1
1)

• A′
1+|E1

1 |+l
= A

′

1+|E1
1 |+l−1

∪ Âl for l = 1, . . . , |E2
1 |, where 〈Â1, . . . , Â|E2

1 |〉 =

prefsec(L2
1)

• A′
1+|E1

1 |+|E2
1 |+···+|E1

j−1|+|E2
j−1|+l

= A
′

1+|E1
1 |+|E2

1 |+···+|E1
j−1|+|E2

j−1|+l−1
∪ Âl

for l = 1, . . . , |E1
j |, where 〈Â1, . . . , Â|E1

j |〉 = prefsec(L1
j )

• A′
1+|E1

1 |+|E2
1 |+···+|E1

j−1|+|E2
j−1|+|E1

j |+l
= A

′

1+|E1
1 |+|E2

1 |+···+|E1
j−1|+|E2

j−1|+|E1
j |+l−1

∪ Âl for l = 1, . . . , |E2
j |, where 〈Â1, . . . , Â|E2

j |〉 = prefsec(L2
j )

Let s = |E1
1 |+|E2

1 |+· · ·+|E1
d |+|E2

d |. Notice that there exist a l0 ∈ {2, . . . , r}
such that A

′

1+s = (Al0 \Ein)∪Ein
1 . We define a second ordering E2 of edge sets

as follows: A
′

1+s+l = (Al0+l \ Ein) ∪ Ein
1 for l = 1, . . . , r − l0.

Clearly E ′ = E1 ⊕ E2 satisfies conditions 1–4 and therefore is an (Ein
1 , E

out
1 )-

expansion of enh(G,Sin
1 , S

out
1 ). Moreover, the monotonicity and connectivity of

E ′ follows from the monotonicity and connectivity of E .

Notice that, for every i ∈ {1, . . . , r}, ∂G(Ai) = ∂G((Ai \Ein)∪Ein
1 ) therefore

costG(E ′, i) ≤ costG(E , i). From this we conclude that E ′ has cost at most
k.

Let G1, . . . ,Gr be rooted graphs such that Gi = (Gi, S
in
i , S

out
i ) where

V (Gi)∩V (Gi+1) = Sout
i = Sin

i+1, i ∈ {1, . . . , r−1}. We define, glue(G1, . . . ,Gr)
= (G1 ∪ · · · ∪Gr, Sin

1 , S
out
r ).

Lemma 2. Let G1, . . . ,Gr be rooted graphs such that Gi = (Gi, S
in
i , S

out
i )

where V (Gi) ∩ V (Gi+1) = Sout
i = Sin

i+1, i ∈ {1, . . . , r − 1}. Then

cmp(glue(G1, . . . ,Gr)) ≤ max{cmp(Gi) | i ∈ {1, . . . , r}}.

Proof. Let Ein
i , E

out
i be the edge extensions and Ei = 〈Ai1, . . . , Aili〉 be an mono-

tone and connected (Ein
i , E

out
i )-expansion of enh(Gi, S

in
i , S

out
i ), for every i ∈

{1, . . . , r}. Clearly E = 〈A1
1, . . . , A

1
l1
, A1

l1
∪ A2

2, . . . , A
1
l1
∪ A2

l2
, . . . , (∪1≤i<rAili) ∪

Ar2, . . . , (∪1≤i<rAili) ∪Arlr 〉 is an (Ein
1 , E

out
r )-expansion of glue(G1, . . . ,Gr) and,

as expansions Ei, i ∈ {1, . . . , r} are monotone and connected, conditions 5 and
6 hold.

We observe that costG1∪···∪Gr (E) ≤ max{costG1(E1), . . . , costGr (Er)}, there-
fore cmp (glue(G1, . . . ,Gr)) ≤ max{cmp(Gi) | i ∈ {1, . . . , r}}.

Lemma 3. For every graph G, cmms(G,Sin, Sout) = cmp(G,Sin, Sout).

Proof. Assume that G∗ = enh(G,Sin, Sout) has a complete search strategy S
satisfying conditions (i) – (iii) with cost at most k. We construct an edge
ordering of E(G) as follows. Observe that, because of the monotonicity of S,
E(i) = E(S, i) \ E(S, i − 1). For every i ∈ {1, . . . , |S|}, we define Li by taking
any ordering of the set E(i) and insisting that, if E(i) contains some sliding edge,
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this edge will be the first edge of Li. Let E = 〈A0, . . . , Ar〉 be the sequence of
prefixes of L1 ⊕ . . . ⊕ L|S|, including the empty set (that is A0 = ∅). Notice
that, because of Condition (i), As = Ein for some s ∈ {1, . . . , |S|}, and, because
of Condition (iii), At = E(G) \ Eout, for some t ∈ {1, . . . , |S|}. We now claim
that E ′ = 〈As, . . . , At〉 is an (Ein, Eout)-expansion of G∗. Indeed, Condition (1)
holds because of Condition (ii) and Conditions (2) – (4) hold because of the
construction of E ′. Moreover, the connectivity and the monotonicity of E ′ follow
directly from the connectivity and the monotonicity of S.

It remains to prove that the cost of E ′ is at most k. For each j ∈ {0, . . . , |E ′|}
we define ij such that the unique edge in Aj \ Aj−1 is an edge in E(ij) and we
define hj such that Ahj

\ Ahj−1 contains the fist edge of Lij . Notice now that
the cost of E ′ at positions hj to j is upper bounded by the cost of E ′ at position
hj . Therefore, it is enough to prove that the cost of E ′ at position hj is at most
k. Recall that this cost is equal to |∂G(Ahj

)|+ qhj
. We distinguish two cases:

Case 1. If qhj
= 0, then the cost of E ′ at position hj is equal to |∂G(Ahj

)|. As S
is monotone, all vertices in ∂G(Ahj ) should be occupied by searchers after the
ij-th move of S and therefore the cost of E ′ at position hj is at most k.

Case 2. If qhj
= 1, then the ij-th move of S is either the placement of a

searcher on a pendant vertex x or the sliding of a searcher along a pendant
edge {y, x} towards its pendant vertex x. In both cases, x 6∈ ∂G(Ahj

) and all
vertices in ∂G(Ahj ) should be occupied by searchers after the ij-th move. In
the first case, there are in total at least |∂G(Ahj )| + 1 searchers on the graph
and we are done. In the second case, we observe that, because of monotonic-
ity, ∂G(Ahj

) = ∂G(Ahj−1) \ {y}. As after the (hj − 1)-th move all vertices of
∂G(Ahj−1) were occupied by searchers, we obtain that |∂G(Ahj

)| ≤ k − 1 and
thus the cost of E ′ at position hj is at most k.

Now assume that there exist a monotone and connected (Ein, Eout)-expansion
of G∗, say E = 〈A1, . . . , Ar〉, with cost at most k. We can additionally assume
that E is properly monotone; this can be done by discarding additional repeti-
tions of a set in E .

Moreover, starting from E , we can construct a monotone and connected
(Ein, Eout)-expansion of G∗, with cost at most k, say E ′ = 〈A′1, . . . , A′r〉, with
the following additional property:

Expansion property: For every i ∈ {1, . . . , r − 1} for which V (A′i) ⊂ V (A′i+1),
A′i contains all edges of G∗ with both endpoints in V (A′i).

This can be accomplished by a series of appliances of the following rule:

Rule: Let V (Ai) ⊂ V (Ai+1) for some i and let L = 〈e1, . . . , en〉 be an order-
ing of the edges E(G∗) \ Ai with both endpoints in V (Ai). For every j ≤ i
define A′j = Aj . Then, define A′i+1 = Ai ∪ {e1}, A′i+2 = Ai ∪ {e1, e2} and
so on until A′i+n = Ai ∪ {e1, . . . , en}. Finally, for every j ≥ i + n, define
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A′j = Aj ∪ {e1, . . . , en}.

One can easily check that, after every application of this Rule, the con-
structed sequence of edge sets is indeed an (Ein, Eout)-expansion of G∗ and
furthermore it is monotone and connected. Notice that, for j = 1, . . . , n,
∂G∗(A

′
i+j) ⊆ ∂G∗(Ai) and for j ≥ i + n, |∂G∗(A′j)| ≤ |∂G∗(Aj)|. Moreover,

if |Ai| ≥ 2 and Ai \ Ai−1 contains a pendant edge of G∗ then for every j ∈
{1, . . . , n}, |A′i+j | ≥ 2 and A′i+j \A′i+j−1 contains the same pendant edge of G∗,
hence the cost of E ′ is at most k (notice that if Ai consists of only one edge that
is an isolated edge of G∗ then there does not exist an edge in E(G∗) \ Ai with
both endpoints in V (Ai), therefore we do not need to apply this rule).

For the rest of the proof, we will consider that the Expansion property holds
for the given (Ein, Eout)-expansion of G∗.

Our target is to define a (Sin, Sout)-complete monotone search strategy S of
G∗ with cost at most k.

The first |Sin| moves of S will be p(uin) and the next |Sin| will be s(uin, vini ).
We denote this sequence of moves by S0. Notice that E(S, 2|Sin|) = A1.

For every vertex u in the set V ∗ = V (G∗) \ Sin \ {uout}, we define lu to be
the first integer in {1, . . . , r} such that u ∈ V (Alu).

Let L = 〈u1, . . . , u|V ∗|〉 be an ordering of V ∗ such that i ≤ j when lui
≤ luj

.
Notice that, for each i ∈ {1, . . . , |V ∗|}, the vertex ui is an endpoint of the unique
edge ei in Alui

−1 \ Alui
and let vi be the other endpoint of ei. Notice that,

because of the connectivity and the monotonicity of E , vi ∈ ∂G∗(Alui
−1). We

also observe that ui is pendant iff ui 6∈ ∂G∗(Alui
). We define E′ = {e1, . . . , e|V ∗|}

and we call a set Aj , j ∈ {1, . . . , r}, crucial iff |Aj−1 ∩ E′| < |Aj ∩ E′|.
For each i ∈ {1, . . . , |V ∗|}, we define a sequence Si of moves as follows:

If vi ∈ ∂G∗(Alui
) then the first move of Si is p(ui), otherwise it is s(vi, ui).

The rest of the moves in Si are the removals, one by one, of the searchers in
∂G∗(Alui

−1) \ ∂G∗(Alui
). Then we define S = S0 ⊕ S1 ⊕ · · · ⊕ S|V ∗|.

Notice that, according to the Expansion property, all edges of the sets Aj , for
j = 1, . . . , lu1

have both endpoints in Sin. Moreover, for every i ∈ {1, . . . , |V ∗|−
1} all edges of the sets Aj , for j = lui , . . . , lui+1 − 1, have both endpoints in
V (Alui

) and all edges of the sets Aj , for j = lu|V ∗| , . . . , r, have both endpoints
in V (Alu|V ∗| ).

First we show that the following claim is true:

Claim 1. For every Aj , j ∈ {1, . . . , r}, the vertices of ∂G∗(Aj) are exactly the
vertices occupied by searchers after the last move of Smj

, where mj is the index
of the edge in (A ∩ E′) \ (Aj−1 ∩ E′), where A is the first crucial set of E such
that Aj ⊆ A.

Clearly, this is true for A1 = Ein. Assume that it holds for Aj′ .
We will show that the vertices in ∂G∗(Aj′+1) are exactly the vertices occupied

by searchers after the last move of Smj′+1
.

If Aj′+1 is not crucial then ∂G∗(Aj′+1) ⊆ ∂G∗(Aj′) and mj′+1 = mj′ , there-
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fore Claim 1 holds.
Now, if Aj′+1 is crucial and {emj′+1

} = (Aj′+1 ∩ E′) \ (Aj′ ∩ E′), then
vmj′+1

∈ ∂G∗(Aj′) and therefore must be occupied by a searcher. We distin-
guish three cases:

Case 1. If vmj′+1
∈ ∂G∗(Aj′+1) and umj′+1

∈ ∂G∗(Aj′+1), then ∂G∗(Aj′+1) =
∂G∗(Aj′) ∪ {umj′+1

} and the first move in Smj′+1
will be p(umj′+1

).

Case 2. If vmj′+1
∈ ∂G∗(Aj′+1) and umj′+1

6∈ ∂G∗(Aj′+1) then ∂G∗(Aj′+1) =
∂G∗(Aj′).

Case 3. If vmj′+1
6∈ ∂G∗(Aj′+1), then ∂G∗(Aj′+1) = (∂G∗(Aj′) \ {vmj′+1

}) ∪
{umj′+1

}, and the first move in Smj′+1
will be s(vmj′+1

, umj′+1
).

Observe that in all three cases the Claim 1 holds.

Let VS(i) be the set of vertices already visited by searchers after the i-th move
of S, and let VS = 〈VS(1), . . . , VS(r)〉. Notice that this sequence is monotone
and that if the i-th move belong to the subsequence Sj , then VS(i) = V (Aluj

).

We must next prove the following claim:

Claim 2: For every i ∈ {1, . . . , |S|}, all edges of G∗[VS(i)] are clean.

Clearly, the claim is true for i ∈ {1, . . . , 2 · |Sin|}. Assume that it holds for
some i ∈ 2 · |Sin|+ 1, . . . , r, we will show that all edges of G∗[VS(i + 1)] are
clean. We must distinguish three cases about the (i+ 1)-th move:

Case 1. It is a removal, say r(u). Notice that G∗[VS(i + 1)] = G∗[VS(i)],
therefore the Claim will not be true if r(u) is a recontamination move. In this
case, there exist an edge connecting u with a vertex not in VS(i), say v. As
u ∈ ∂G∗(Aluj

−1) \ ∂G∗(Aluj
), for some j ∈ {1, . . . , |V ∗|}, all edges with u as

endpoint must belong to Aluj
, therefore {u, v} ∈ Aluj

. But VS(i) = V (Aluj
), a

contradiction.

Case 2. It is a placement of searcher say p(u). By the definition of S, there exist
an edge {u, v}, where v is a vertex in VS(i). Notice that, according to our search
game, all such edges are clean after p(u), thus all edges of G∗[VS(i+1)] are clean.

Case 3. It is a slide, say s(vj , uj), for some j ∈ {1, . . . , |V ∗|}. As in the previous
case, G∗[VS(i+ 1)] contains all edges of G∗[VS(i)] and additional all edges with
uj as the first endpoint and a vertex v ∈ VS(i) as the other. According to our
search game, after the i-th move there must be searcher in vj , therefore due to
Claim 1, vj ∈ ∂G∗(Aluj

). Notice that, the Claim will not be true if s(vj , uj) is

a recontamination move, i.e., there exist an edge connecting vj with a vertex,
say u, not in VS(i) = V (Aluj

). As vj 6∈ ∂G∗(Aluj
), all edges with u as endpoint
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must belong to Aluj
, therefore {vj , u} ∈ Aluj

, a contradiction.

In all three cases we show that after the (i + 1)-th move of S all edges of
G∗[VS(i+ 1)] are clean, therefore Claim 2 is true.

We will now prove that S is a (S1, S2)-complete strategy for G∗. Clearly,
Condition (i) holds for every strategy starting with S0. Moreover, Condition (ii)
holds as vout is not a vertex of V ∗ and therefore, no placement on uout or
sliding towards uout appears in S. Notice that, according to Claim 2, for every
i ∈ {1, . . . , |V ∗|− 1}, E(S, |S0⊕· · ·⊕Si−1|+ 1) = · · · = E(S, |S0⊕· · ·⊕Si−1|+
|Si|) = Alui+1

−1, and that for i = |V ∗|, E(S, |S0 ⊕ · · · ⊕ S|V ∗||) = Ar, therefore

Condition (iii) holds.
By the definition of S, it is clear that S is a connected search strategy,

moreover, according to Claim 2, S is monotone. It remains to prove that S
has cost at most k. For the first 2|Sin| moves, we use |Sin| = costG∗(E , 1) ≤ k
searchers. Assume that after j moves exactly k searchers are occupying ver-
tices of G∗ and that the (j + 1)-th move is p(ui), for some i ∈ {i, . . . , |V ∗|}.
Then the vertices in ∂G∗(Alui

−1) are exactly the vertices occupied by the k
searchers, therefore |∂G∗(Alui

−1)| = k. Observe that, if ui is not pendant, then
∂G∗(Alui

) = ∂G∗(Alui
−1) ∪ {ui}, therefore |∂G∗(Alui

)| = k + 1, a contradiction
and if ui is pendant then ∂G∗(Alui

) = ∂G∗(Alui
−1) and the cost of E at position

lui is |∂G∗(Alui
)|+ 1 = k + 1, again a contradiction. Thus, for every move of S

at most k searchers are occupying vertices of G∗.

2.4. Contractions.

Let (G1, S
in
1 , S

out
1 ) and (G2, S

in
2 , S

out
2 ) be rooted graphs. We say that (G1, S

in
1 ,

Sout
1 ) is a contraction of (G2, S

in
2 , S

out
2 ) and we denote this fact by (G1, S

in
1 , S

out
1 )

� (G2, S
in
2 , S

out
2 ) if there exist a surjection φ : V (G2)→ V (G1) such that:

1. for every vertex v ∈ V (G1), G2[φ−1(v)] is connected

2. for every two distinct vertices u, v ∈ V (G1), it holds that {v, u} ∈ E(G1)
if and only if the graph G2[φ−1(v) ∪ φ−1(u)] is connected

3. φ(Sin
2 ) = Sin

1

4. φ(Sout
2 ) = Sout

1

We also write (G1, S
in
1 , S

out
1 ) �φ (G2, S

in
2 , S

out
2 ) to make clear the function that

certifies the contraction relation. We say that G1 is a contraction of G2 if
(G1, ∅, ∅) � (G2, ∅, ∅) and we denote this fact by G1 � G2. If furthermore G1 is
not isomorphic to G2 we say that G1 is a proper contraction of G2.

We define the minor relation for the two rooted graph by removing in the sec-
ond property the demand that if {u, v} /∈ E(G1) then G2[φ−1(v)∪φ−1(u)] is not
connected. We denote the minor relation by (G1, S

in
1 , S

out
1 ) ≤ (G2, S

in
2 , S

out
2 ).

Again, we say that G1 is a minor of G2 if (G1, ∅, ∅) ≤ (G2, ∅, ∅) and we denote
this fact by G1 ≤ G2.
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Lemma 4. If (G1, S
in
1 , S

out
1 ) and (G2, S

in
2 , S

out
2 ) are rooted graphs and (G1, S

in
1 ,

Sout
1 ) � (G2, S

in
2 , S

out
2 ), then cmp(G1, S

in
1 , S

out
1 )) ≤ cmp(G2, S

in
2 , S

out
2 )).

Proof. Suppose that E = 〈A1, . . . , Ar〉 is a monotone (Ein
2 , E

out
2 )-expansion of

G∗2 = enh(G2, S
in
2 , S

out
2 ) with cost at most k. Our target is to construct a

monotone (Ein
1 , E

out
1 )-expansion of G∗1 = enh(G1, S

in
1 , S

out
1 ) with cost at most

k.
Let φ be a function where (G1, S

in
1 , S

out
1 ) �φ (G2, S

in
2 , S

out
2 ). We consider an

extension ψ of φ that additionally maps uin2 to uin1 and uout2 to uout1 . Notice that
the construction of ψ yields the following:

(G∗1, S
in
1 ∪ {uin1 }, Sout

1 ∪ {uout1 }) �φ (G∗2, S
in
2 ∪ {uin2 }, Sout

2 ∪ {uout2 })

Given an edge f = {x, y} ∈ E(G1) we consider the set Ef containing all
edges of G2 with one endpoint in ψ−1(x) and one endpoint in ψ−1(y). We now
pick, arbitrarily, an edge in Ef and we denote it by ef . We also set E′ = {ef |
f ∈ E(G1)}. Then it is easy to observe that E ′ = 〈A1 ∩ E′, . . . , Ar ∩ E′〉 is a
connected expansion of G∗1 and that the cost of E ′ at step i is no bigger than
the cost of E at the same step, where i ∈ {1, . . . , r − 1}.

Lemma 5. If G1 and G2 are two graphs and G1 � G2, then cs(G1) ≤ cs(G2).

Proof. First observe that if this is the case any contraction of G2 can be derived
by applying a finite number of edge-contractions of some edges in E(G2).

It suffices to prove that the Lemma hold if G1 is obtained by the contraction
of edge e = {u, v} ∈ E(G1) to vertex xuv. Let S be a connected search strategy
for G2 that in any step uses at most k searchers. Based on S we will construct
a search strategy S ′ for G1. Let i be an integer in {1, . . . , |S|}. We distinguish
eight cases:

Case 1: If the i-th move of S is p(x) for some vertex x /∈ {u, v} then the next
move of S ′ will be p(x).

Case 2: If the i-th move of S is r(x) for some vertex x /∈ {u, v} then the next
move of S ′ will be r(x).

Case 3: If the i-th move of S is s(x, y) for some vertices x, y /∈ {u, v} then the
next move of S ′ will be s(x, y).

Case 4: If the i-th move of S is p(u) or p(v) then the next move of S ′ will be
p(xuv).

Case 5: If the i-th move of S is r(u) or r(v) then the next move of S ′ will be
r(xuv).

Case 6: If the i-th move of S is s(z, u) or p(z, v) for some vertex z then the next
move of S ′ will be s(z, xuv).
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Case 7: If the i-th move of S is s(u, z) or p(v, z) for some vertex z then the next
move of S ′ will be s(xuv, z).

Case 8: If the i-th move of S is s(u, v) or p(v, u) then the next move of S ′ will
be defined according the lateral cases from the (i+ 1)-th move of S.

Observe that S ′ is a complete search strategy for G1. Furthermore, as S is
connected, S ′ must also be connected. Finally, it is clear that S ′ at any step
uses at most k searchers, thus cms(G1) ≤ k.

2.5. Parameters and obstructions.

We denote by G the class of all graphs. A graph parameter is a function
f : G → N. Given a graph parameter f and an integer k ∈ N we define the
graph class G[f, k], containing all the graphs G ∈ G where f(G) ≤ k.

Let H be a graph class. We denote by obs(H) the set of all graphs in G \H
that are minimal with respect to the relation �.

2.6. Cut-vertices and blocks.

We call the 2-connected components of a graph G blocks. If the removal of
an edge in a graph increases the number of its connected components then it
is called bridge. We consider the subgraph of G induced by the endpoints of a
bridge of G as one of its blocks and we call it trivial block of G.

A cut-vertex of a graph G is a vertex such that G \ x has more connected
components than G. Given a graph G a cut-vertex of a block B of G is a
cut-vertex of G that belongs in V (B).

Let G bet a graph and let x ∈ V (G). We define

CG(x) = {(x,G[V (C) ∪ {x}]) | C is a connected component of G \ x}.
Let B be a block of G and let x be a cut-vertex of B. We denote by CG(x,B)

the (unique) graph in CG(x) that contains B as a subgraph and by CG(x,B) the
graphs in CG(x) that do not contain B.

2.7. Outerplananr graphs.

We call a graph G outerplanar if it can be embedded in the plane such
that all its vertices are incident to its infinite face (also called outer face). This
embedding, when exists, is unique up to homeomorphism and, from now on, each
outerplanar graph is accompanied with such an embedding. An edge e ∈ E(G)
is called outer edge of G, if it is incident to the outer face of G, otherwise is
called a chord of G.

A face F of an outer planar graph that is different than the outer face, is
called haploid if and only if at most one edge incident to F is a chord, otherwise
F is a inner face. A vertex u ∈ V (G) is haploid if it is incident to an haploid
face and inner if it is incident to an inner face (notice that some vertices can
be both inner and haploid). A vertex of G that is not inner or haploid is called
outer. We call a chord haploid if it is incident to an haploid face. Non-haploid
chords are called internal chords.
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Essential Block

i
i

Cycle blocks

h

h
h

h

h

h
A chord

An outer edge Hair Blocks

Essential Block

Bridge Block

1

Figure 1: A outerplanar graph and its blocks. The cut-vertices are hexagonal and the outer
vertices are squares. Inner and haploid faces are denoted by “i” and “h” respectively. There
are, in total, four inner vertices (all belonging to the essential block on the right) and, among
them only the triangular one is not an haploid vertex. The white hexagonal vertices are the
light cut-vertices while the rest of the hexagonal vertices are the heavy ones.

K4K2,3 K+
2,3

2

Figure 2: The set O1.

Observation 1. A block of a connected outerplanar graph with more than one
edge can be one of the following.

• a hair block: it is a trivial block containing exactly one vertex of degree 1
in G.

• a bridge block: it is a trivial block that is not a hair-block.

• a cycle block: if it is a chordless non-trivial block, or

• an essential block: if it is a non-trivial block with at least one chord.

Let G be a connected outerplanar graph with more than one edges. Given a
cut-vertex c of G, we say that c is light if it is the (unique) cut-vertex of exactly
one hair block. If a cut-vertex of G is not light then it is heavy.

It is known that the class of outerplanar graphs is closed under the relations
≤,� and that a graph is outerplanar if and only if K4 � G and K2,3 � G.

Let K+
2,3 be the graph obtained by K2,3 after connecting the two vertices of

degree 3 (Figure 2).
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Lemma 6. If H is the class of all outerplanar graphs, then obs(H) = O1.

Proof. Observe that the graphs in O1 cannot be embedded in the plane in such
a way that all of its vertices are incident to a single face and therefore neither
the graphs in O1, neither the graphs that contain as a contraction a graph in
O1, can be outerplannar.

To complete the proof, one must show that every non-outerplannar graph
can be contracted to a graph in O1. Let G be non-outerplannar, then K4 ≤ G
or K2,3 ≤ G. Clearly, as K4 is a clique, K4 ≤ G implies that K4 � G. Suppose
now that K2,3 ≤ G. Let Vx, Vy, V1, V2, V3 be the vertex sets of the connected
subgraphs of G that are contracted towards creating the vertices of K2,3 (Vx and
Vy are contracted to vertices of degree 3). If there is no edge in G between two
vertices in Va and Vb for some (a, b) ∈ {(x, y), (1, 2), (2, 3), (1, 3)} then K2,3 � G.
If the only such edge is between Vx and Vy then K+

2,3 � G and in any other
case, K4 � G.

3. Obstructions for Graphs with cmms at most 2

In this section we give the obstruction set for graphs with connected mono-
tone mixed search number at most 2 and we prove its correctness.

3.1. The obstruction set for k = 2

Let D1 = O1 ∪ · · · ∪ O12 where O1 is depicted in Figure 2, O2, . . . ,O9

are depicted in Figure 3 and O10 and O11 and O12 are constructed as follows.

O10 : contains every graph that can be constructed by taking three disjoint
copies of some graphs in Figure 8 and then identify the vertices denoted
by v in each of them to a single vertex. There are, in total, 35 graphs
generated in this way.

O11 : contains every graph that can be constructed by taking two disjoint copies
of some graphs in Figure 12 and then identify the vertices denoted by v in
each of them to a single vertex. There are, in total, 78 graphs generated
in this way.

O12 : contains every graph that can be constructed by taking two disjoint copies
of some graphs in Figure 13 and then identify the vertices denoted by v in
each of them to a single vertex. There are, in total, 21 graphs generated
in this way.

Observe that, D1 contains 177 graphs.

3.2. Proof strategy

Lemma 7. D1 ⊆ obs(G[cmp, 2]).
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Proof. From Lemma 4, it is enough to check that for every G ∈ D1, the following
two conditions are satisfied (i) cmp(G) ≥ 3 and (ii) for every edge e of G it
holds that cmp(G/e) ≤ 2. One can verify that this is correct by inspection, as
this concerns only a finite amount of graphs and, for each of them, there exists
a finite number of edges to contract.

Lemma 8. D1 ⊇ obs(G[cmp, 2]).

The rest of this section is devoted to the proof of Lemma 8. For this, our
strategy is to consider the set

Q = obs(G[cmp, 2]) \ D1

and prove that Q = ∅ (Lemma 21). For this, we need a series of structural
results whose proofs use the following three fundamental properties of the set
Q.

Lemma 9. Let G ∈ Q. Then the following hold.

i. cmp(G) ≥ 3.

ii. If H is a proper contraction of G, then cmp(G) ≤ 2.

iii. G does not contain any of the graphs in D1 as a contraction.

Proof. Properties i. and ii. hold because G ∈ obs(G[cmp, 2]). For property
iii. suppose, to the contrary, that G contains some graph in H ∈ D1 as a
contraction. From Lemma 7, H ∈ obs(G[cmp, 2]). Clearly, H is different than
G as Q does not contain members of D1. Therefore, H is a proper contraction
of G and, from property ii., cmp(H) ≤ 2. This contradicts to the fact that
H ∈ obs(G[cmp, 2]) and thus cmp(H) ≥ 3.

3.3. Basic structural properties

Lemma 10. Let G ∈ Q. The following hold:

1. G is outerplanar.

2. Every light cut-vertex of G has degree at least 3.

3. Every essential block B of G, has exactly two haploid faces.

4. Every block of G, has at most 3 cut-vertices

5. Every cut-vertex of a non-trivial block of G is an haploid vertex.

6. Every block of G contains at most 2 heavy cut-vertices.

7. If a block of G has 3 cut-vertices, then there are two, say x and y, of these
vertices that are not both heavy and are connected by an haploid edge.
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O4O2 O5O3

O6

O8

O7

O9

3

Figure 3: The sets of graphs in D1.

8. If an essential block of G with haploid faces F1 and F2 has two heavy cut-
vertices, then one can choose one, say c1, of these two heavy cut-vertices
so that it is incident to F1 and one say c2 that is incident to F2. Moreover,
this assignment can be done in such a way that if there is a third light cut-
vertex c3, adjacent to one, say c1, of c1, c2, then c3 is incident to F1 as
well.

Proof. 1. By the third property of Lemma 9, G cannot be contracted to a graph
in O1 and therefore, from Lemma 6, G must be outerplannar.

2. Let c be a light cut-vertex of a block B in G, with degree 2 (notice that,
as c is a cut-vertex, c cannot have degree 1 or 0). That means that c belongs
to a path with at least two edges, the hair block B and an edge say e. Observe
that cmp(G/B) = cmp(G), contradicting to the second property of Lemma 9.

3. Let B be an essential block of G. As it is essential, it has at least one
chord, therefore it has at least 2 haploid faces. Assume, that B has at least 3
haploid faces. Choose 3 of them, say F1, F2 and F3 (see Figure 4). Let S ⊆ E(B)
be the set of all chords incident to B. Contract in G all edges in E(G) \ S not
belonging to those faces. Then, for each of the three faces, contract all but two
edges not in S that are incident to F1, F2 and F3 and notice that the obtained
graph is the graph in O2, a contradiction to the third property of Lemma 9.

4. Let B be a block of G containing more than 3 cut-vertices. Chose four
of them, say c1, c2, c3 and c4. Let S ⊆ E(B) be the set of all chords incident
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F1

F2

F3

Figure 4: An example for the proof of Lemma 10.3.

to B (see Figure 5). Contract all edges in E(G) \ S not having an endpoint in
{c1, c2, c3, c4}. Then, contract all edges e ∈ E(B)\S such that e * {c1, c2, c3, c4}
and all edges not in E(B), except from one for each of the cut-vertices. Notice
that the obtained graph belongs to O3, a contradiction to the third property of
Lemma 9.

c1

c4

c2

c3

Figure 5: An example for the proof of Lemma 10.4.

5. Let B be a block of G containing a cut-vertex c that is not haploid and
let S ⊆ E(B) be the set of all chords incident to B (see Figure 6). Contract
all edges in E(G) \ E(B) not having c as endpoint and all edges in E(B) \ S
not having c as endpoint, except from two edges for each of the haploid faces.
Then contract all edges not in E(B) with c as endpoint, except for one. Notice
that the obtained graph belongs to O4, a contradiction to the third property of
Lemma 9.

c

Figure 6: An example for the proof of Lemma 10.5.
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6. Let B be a block of G containing three heavy cut-vertices, say c1, c2 and
c3 (see Figure 7). We contract all edges in B except from 3 so that B is reduced
to a triangle T with vertices c1, c2 and c3. Then, in the resulting graph H, for
each ci, i ∈ {1, 2, 3}, in CH(ci) \ {T} contains either a non trivial block or at
least two hair blocks. In any case, H can be further contracted to one of the
graphs in O5 a contradiction to the third property of Lemma 9.

c1

c2

c3

Figure 7: An example for the proof of Lemma 10.6.

7. Let {x, y, z} be three cut-vertices of a (not-trivial) block B. If no two of
them are connected by an outer edge, then contract all blocks of G, except B,
to single edges, then contract all outer edges of B that do not have an endpoint
in {x, y, z} and continue contracting hair blocks with a vertex of degree ≥ 4, as
long as this is possible. This creates either a graph in O6 or a graph that after
the contraction of a hair block makes a graph in O7 or a graph that after the
contraction of two hair blocks is a graph makes a graph in O4 and, in any case,
we have a contradiction to the third property of Lemma 9. We contract G to a
graph H as follows:

• if for some w ∈ {x, y, z} the set CG(w,B) contains at least two elements,
then contract the two of them to a pendant edge (that will have w as an
endpoint) and the rest of them to w.

• if for some w ∈ {x, y, z} the set CG(w,B) contains only one element that is
not a hair, then contact it to a triangle (notice that this is always possible
because of (2)).

Case 1. |V (B)| ∈ {3, 4}. Then because of (6), one, say x of {x, y, z} is non-
heavy and there is an outer edge connecting x with one, say y, vertex in {x, y, z}.
Then x, y is the required pair of vertices.
Case 2. |V (B)| > 4 and there is at most one outer edge e with endpoints from
{x, y, z} in H. W.l.o.g. we assume that e = {x, y}. Notice e is a haploid edge,
otherwise H can be contracted to the 5th graph in O6. Moreover at least one
of x, y is non-heavy, otherwise H can be contracted to one of the graphs in
O8 ∪ O9 (recall that B may have one or two haploid faces).
Case 3. There are two outer edges with endpoints from {x, y, z}. W.l.o.g. we
assume that these edges are {x, y} and {y, z}. One, say {x, y}, of {x, y}, {y, z}
is haploid, otherwise H can be contracted to some graph in O4. If {x, y} has
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a light endpoint, then we are done, otherwise, from (6), z is light. In this
remaining case, if if {z, y} is haploid, then it is also the required edge, otherwise
H can be contracted to a graph in O9.

8. Let x and y be two heavy cut-vertices vertices of B. From (5) x, y
are among the vertices that are incident to the faces F1 and F2. Suppose, in
contrary, that for some face, say F ∈ {F1, F2}, there is no cut vertex in {x, y}
that is incident to F . Then G can be contracted to one of the graphs in O9.
This is enough to prove the first statement except from the case where x and
y are both lying in both haploid faces and there is a third light cut-vertex z
incident to some, say x, of x, y. In this case, x is assigned the face where z
belongs and y is assigned to the other.

Let G ∈ Q and let B be a block of G. Let also S be the set of cut vertices
of G that belong to B. According to Lemma 10, we can define a rooted graph
GB = (B,X, Y ) such that

• {X,Y } is a partition of S where X and Y are possibly empty.

• if B has a chord, then all vertices in X and Y are haploid.

• |X| ≤ 1 and |Y | ≤ 2.

• If |Y | = 2, then its vertices are connected with an edge e and one of them
is light and, moreover, in the case where B has a chord then e is haploid.

• If B has a chord, we name the haploid faces of B by F1 and F2 such that
all vertices in X are incident to F1 and all vertices od Y are incident to
F2.

Lemma 11. Let G ∈ Q and let B be a block of G. Then cmp(GB) ≤ 2.

Proof. We examine the non-trivial case where B is a non-trivial block and con-
tains two haploid faces F1 and F2. As B is 2-connected and outer-planar, all
vertices of V (B) belong to the unique hamiltonian cycle of B, say C. Our proof
is based on the fact that there are exactly two haploid faces and this gives a
sense of direction on how the search should be performed. To make this formal,
we create an ordering A of the edges of E(B) using the f ollowing procedure.

1. if X 6= ∅, then
2. Q← X,
3. else
4. Q← {x} where x is an arbitrarily chosen vertex

in the boundary of F1.
5. R← Q
6. i← 1
7. while there is a vertex v in V (B) \R that is connected with some, say u,

vertex in Q \ Y whose unique neighbor in V (B) \R is v,
8. R← R ∪ {v}
9. Q← (Q \ {u}) ∪ {v}
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10. ei = {u, v}
11. i← i+ 1
12. if Q ∈ E(B), then
13. ei ← Q,
14. i← i+ 1
15. if Y ∈ E(B), then
16. ei ← Y

Let Ein, Eout be the edge extensions of enh(GB), and let prefsec(A) = 〈A0,
. . . , Ar〉. It is easy to verify that E = 〈Ein, A0∪Ein, . . . , Ar∪Ein〉 is a monotone
and connected (Ein, Eout)-expansion of enh(GB), with cost at most 2.

v vvvv

4

Figure 8: The set A contains 5 r-graphs, each of the form (G, {v}, {v}).

3.4. Fans

Let G be a graph and v be a vertex in V (G). We denote by G(v) the rooted
graph (G, {v}, {v}) and we refer to it as the graph G doubly rooted on v.

We say that a graph G, doubly rooted on some vertex v is a fan if none of
the graphs in the set A depicted in Figure 8 is a contraction of the rooted graph
G(v) and G is outerplanar.

Lemma 12. Let G(v) = (G, {v}, {v}) be a graph doubly rooted at some vertex
v. If G(v) is a fan, then cmp(G(v)) ≤ 2.

Proof. We claim first that if G(v) is a fan, then the graph G \ v is a collection
of paths where each of them has at least one endpoint that is a neighbour of v.
Indeed, if this is not correct, then some of the connected components of G \ v
would be contractible to either a K3 or a K1,3. In the first case, G is either
non-outperlanar or G(v) can be contracted to to the first two rooted graphs of
Figure 8. In the second case G is either non-outeplanar or G(v) the last three
graphs of Figure 8. Moreover, if both endpoints of a path in the set of connected
components G \ v are non adjacent to v in G, then G(v) can be contracted to
the last rooted graph in Figure 8.

Let now P1, . . . , Pr be the connected components of G \ v and, for each
i ∈ {1, . . . , r}, let {vi1, . . . , viji} be the vertices of Pi, ordered as in Pi, such

that vi1 is adjacent to v in G. Let uin and uout be the two vertices added in
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enh(G(v)). If ein = {v, uin} and eout = {v, uout} then the edge expansions of
enh(G(v)) is Ein = {ein} and Eout = {eout}.

For each i ∈ {1, . . . , r} we define the edge ordering

Ai = 〈{v, vi1}, {vi1, vi2}, {v, vi2}, {vi2, vi3} . . . , {viji , v}〉,

then we delete from Ai the edges not in E(G). Let A′i be the orderings obtained
after the edge deletions. We define A = 〈ein〉 ⊕ A1 ⊕ · · · ⊕ Ar. Notice that
prefsec(A) is a monotone and connected (Ein, Eout)-expansion of enh(G(v))
with cost at most 2. Therefore, cmp(G(v)) ≤ 2 as required.

3.5. Spine-degree and central blocks

Given a graph G and a vertex v we denote by C(v)G the set of all graphs in
CG(v), each doubly rooted on v. The spine-degree of v is the number of doubly

rooted graphs in C(v)G that are not fans.
A cut-vertex of a graph G is called central cut-vertex, if it has spine-degree

greater than 1 and a block of G is called central block if it contains at least 2
central cut-vertices.

Lemma 13. Let G ∈ Q. The following hold:

1. All vertices of G have spine-degree at most 2.

2. None of the blocks of G contains more than 2 central cut-vertices.

3. G contains at least one central cut-vertex

4. There is a total ordering B1, B2, . . . , Br (r ≥ 0) of the central blocks of G
and a total ordering c1, . . . , cr+1 of the central cut-vertices of G such that,
for i ∈ {1, . . . , r}, the cut-vertices of Bi are ci and ci+1.

Proof. 1. Let v be a vertex of G with spine-degree at least 3. That means
that there exist at least three subgraphs of G, doubly rooted on v, that can be
contracted to some graph in A, therefore G can be contracted to a graph in
O10, a contradiction.

2. Suppose that B is a block of G containing 3 (or more) central cut-
vertices, say c1, c2 and c3. Construct the graph H by contracting all edges
of B to a triangle T with {c1, c2, c3} as vertex set. As ci is a central vertex,
there is a rooted graph Ri in CG(ci) that contains some of the graphs in A as
a rooted contraction. Next we apply the same contractions to H f or every
ci, i ∈ {1, 2, 3} and then contract to vertices all blocks of H different than T
and not contained in some Ri. It is easy to see that the resulting graph is a
graph in O5, a contradiction.

3. Assume that G has no central cut-vertices. We distinguish two cases.

Case 1. There is a cut-vertex of G, say v, such that all rooted graphs in C(v)G

are fans and let G1, . . .Gr be these rooted graphs. From Lemmata 2 and 12,
we conclude that cmp(G, {v}, {v}) = cmp(glue(G1, . . .Gr)) ≤ 2 and from
Lemma 1, cmp(G) ≤ 2 contradicting to the first condition of Lemma 9.
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Case 2. For every cut-vertex v of G, at least one of the rooted graphs in C(v)G

is not a fan. We denote by Hv the corresponding non-fan rooted graph in C(v)G

(this is unique due to the fact that v is non-central). Among all cut vertices,
let x be one for which the set V (G) \ V (Hx) is maximal. Let B be the block of
Hx that contains x and let S be the set of the cut-vertices of G that belong to
B (including x).

For every y ∈ S we denote by Wy = {W1
y, . . . ,W

ry
y } the set of all rooted

graphs in C(y)G , except from the one, call it Ry, that contains B. We also define
Wy = glue(W1

y, . . . ,W
ry
y ). We claim that all Wy, y ∈ S are fans. Indeed,

if for some y, Wy is a non-fan, because y is not central, Ry should be a fan,
contradicting the choice of x.

According to the above, the edges of G can be partitioned to those of the
rooted graph GB and the edges in the rooted graphs Wy, y ∈ S. Let also
GB = (B,X, Y ) and we assume that, if Y = {y1, y2}, then y1 is light.

Notice that, according to Lemma 12 cmp(Wy) ≤ 2, y ∈ S and according
to Lemma 11 cmp(GB) ≤ 2. We distinguish two cases.

Case 2.1. Y = {y1, y2} where y2 is light. Then let G1 = (G[{y1, y2}], {y1, y2},
{y2}) and G2 = (G[{y1, y2}], {y2}, {y1}). Clearly cmp(G1) = 2 and cmp(G2) =
1. Therefore, if G′ = glue(GB ,G1,Wy2

,G2,Wy1
), then, from Lemma 2,

cmp(G′) ≤ 2.
Case 2.2. Y = {y1}. Let G′ = glue(GB ,Wy1

), then, from Lemma 2, cmp(G′)
≤ 2.

In both cases, if X = {x}, then we set G = glue(Wx,G
′) while if X = ∅ we

set G = G′. In any case, we observe that, from Lemma 2, cmp(G) ≤ 2. From
Lemma 1, cmp(G) ≤ 2 contradicting to the first condition of Lemma 9.

As in both cases we reach a contradiction G must contain at least one central
cut-vertex.

4. Let C be the set of all central cut-vertices of G. For each c ∈ C, let Xc
be the subset of C(v)G that contains all its members that are not fans. Clearly,
Xc contains exactly two elements. Notice that none of the vertices in C \ {c}
belongs in the double rooted graphs in C(v)G \ Xc. Indeed, if this is the case

for some vertex y ∈ C \ {c}, then the member of C(y)G that avoids c would be

a subgraph of some member of C(v)G \ Xc and this would imply that some fan
would contain as a contraction some double rooted graph that is not a fan. We
conclude that for each c ∈ C there is a partition p(c) = (Ac, Bc) of C \ {c} such
that that all members of Ac are vertices of one of the members of Xc and all
members of Bc are vertices of the other.

We say that a vertex c ∈ C is extremal if p(c) = {∅, C \ {c}}
We claim that for any three vertices {x, y, z} of C, there is one, say y of them

such that x and z belong in different sets of p(y). Indeed, if this is not the case,
then one of the following would happen: either there is a vertex w ∈ C such that

x, y, z belong to different elements of C(w)
G , a contradiction to the first statement

of this lemma or x, y, and z belong to the same block of G, a contradiction to
the second statement of this lemma.
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By the above claim, there is a path P containing all central cut-vertices in C
and we assume that this path is of minimum length which permits us to assume
that its endpoints are extremal vertices of C. Moreover, heavy cut-vertices in
V (P ) are members of C. Let c1, . . . , cr+1 be the central cut-vertices ordered as
they appear in P . As, for every i ∈ {1, . . . , r} there is a block Bi containing
the central cut-vertices ci and ci+1 we end up with the two orderings required
in the forth statement of the lemma.

Let G be a graph in Q. Suppose also that c1, . . . , cr+1 and B1, B2, . . . , Br
are as in Lemma 13.4. We define the extremal blocks of G as follows:

• If r > 0, then among all blocks that contain c1 as a cut-vertex let B0

be the one such that CG(c1, B0), doubly rooted at c1, is not a fan, does
not contain any edge of the central blocks of G and does not contain cr+1.
Symmetrically, among all blocks that contain cr+1 as a cut-vertex let Br+1

be the one such that CG(cr+1, Br+1) doubly rooted at cr+1 is not a fan,
does not contain any edge of the central blocks of G and does not contain
c1.

• If r = 0, then let B0 and B1 be the two blocks with the property that for
i ∈ {0, 1}, CG(c1, Bi), doubly rooted at c1, is not a fan.

We call B0 and Br+1 left and right extremal block of G respectively. We
also call the blocks of G that are either central or extremal spine blocks of G.
Let A(G) be the set of cut-vertices of the graphs B0, B1, B2, . . . , Br, Br+1. We
partition A(G) into three sets A1, A2 and A3 as follows:

• A1 = {c1, . . . , cr+1} (i.e. all central vertices).

• A2 contains all vertices of A(G) that belong to central blocks and are not
central vertices.

• A3 contains all vertices of A(G) that belong to extremal blocks and are
not central cut-vertices.

Moreover, we further partition A3 to two sets A
(0)
3 = A3 ∩ V (B0) and A

(r+1)
3 =

A3 ∩ V (Br+1).

Let G ∈ Q and v ∈ A(G). We denote by R(v)
G the set of the doubly rooted

graphs in C(v)G that do not contain any of the edges of the spine blocks of G.

Lemma 14. Let G ∈ Q and v ∈ A(G). The following hold:

a) Each doubly rooted graph in R(v)
G is a fan.

b) All vertices in v ∈ A2 are light, i.e., for each v ∈ A2 R(v)
G contains exactly

one graph that is a hair block of G.
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Figure 9: A graph G and the blocks B0, B1, . . . , B3, and B4. The cut-vertices in A1 =
{c1, . . . , c4} are the grey circular vertices, the vertices in A2 are the white square vertices and
the vertices in A3 are the dark square vertices.

Proof. a) Let v ∈ A(G). We distinguish two cases:

Case 1: v ∈ A1. If there exist a double rooted graph in R(v)
G that is not a fan,

v will have spine-degree greater than 3, a contradiction to the first property of
Lemma 13.

Case 2: v ∈ A2 ∪ A3. If there exist a double rooted graph in R(v)
G that is not

a fan, v will have spine-degree greater than 2, therefore v must be central, a
contradiction.

b) Let v ∈ A2, and suppose that R(v)
G can be contracted to two edges with

v as their unique common endpoint, or to a triangle. As v belongs to a central
block, G can be contracted to a graph in O5, a contradiction to the third
property of Lemma 9.

3.6. Directional obstructions

Let G ∈ Q and let B0, B1, . . . , Br, Br+1 be the spine blocks of G. Notice first
that from Lemma 10.6 for every i ∈ {1, . . . , r}, |A2 ∩ V (Bi)| ≤ 1. Also, from
Lemma 10.6, if A2∩V (Bi) = {v}, then v is a light cut-vertex. For i ∈ {1, . . . , r},
we define the rooted graphs B∗i as follows: if A2 ∩ V (Bi) = {v}, then B∗i is the

union of Bi and the underlying graph of the unique rooted graph in R(v)
G (this

rooted graph is unique and its underlying graph is a hair block of G from the
second statement of Lemma 14). If A2 ∩ V (Bi) = ∅, then B∗i is Bi. We finally
define the rooted graph B∗i = (B∗i , {ci}, {ci+1}) for i ∈ {1, . . . , r}.

We also define B∗0 as follows: consider the unique graph B0 in C(c1)G that,
when doubly rooted on c1, is not a fan, does not contain any edge of the cen-
tral blocks of G and does not contain cr+1. Then B∗0 = (B0, ∅, {c1}). Anal-
ogously, we define B∗r+1 by considering the graph Br+1 of the unique rooted
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Figure 10: A graph G, the extended extremal blocks B∗
0 and B∗

4 the extended central blocks
B∗

1 , B
∗
2 , and B∗

3 and the rooted graphs F1, F2 and F4 (F3 is the graph consisting only of the
vertex c3, doubly rooted on c3).

graph in R(cr+1)
G that, when doubly rooted on cr+1, is not a fan, does not

contain any edge of the central blocks of G and does not contain c1. Then
B∗r+1 = (Br+1, {cr+1}, ∅). Finally, we define for each i ∈ {1, . . . , r+1} the graph

Fi that is the union of all the graphs of the rooted graphs in R(ci)
G that are fans

(when performing the union, the vertex ci stays the same), and in the case where

R(ci)
G is empty, then Fi is the trivial graph ({ci}, ∅). We set Fi = (Fi, {ci}, {ci})

i ∈ {1, . . . , r + 1} and we call the rooted graphs F1, . . . ,Fr+1 extended fans of
G. We call B∗0,B

∗
1, . . . ,B

∗
r ,B

∗
r+1 the extended blocks of the graph G ∈ Q and

we naturally distinguish them in central and extremal (left or right), depending
of type of the blocks that contain them. Notice that

{E(B∗0), E(F1), E(B∗1), E(F2), . . . , E(Fr), E(B∗r ), E(Fr+1), E(B∗r+1)}

is a partition of the edges of G.

v u v u v u

7

Figure 11: The set of rooted graphs L containing three rooted graphs each of the form
(G, {v}, {u}).

Lemma 15. Let G ∈ Q and let B∗1, . . . ,B
∗
r be the central blocks of G. None of

the rooted graphs in the set L of Figure 11 is a contraction of B∗i if and only if
cmp(B∗i ) ≤ 2.
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Proof. Clearly, for every graph H ∈ L, cmp(H, {v}, {u}) = 3, therefore if B∗i
can be contracted to a graph in L, according to Lemma 4, cmp(B∗i ) ≥ 3.

Let now B∗i be an central extended block of G that cannot be contracted to
a graph in L. If Bi does not contain some light cut-vertex, we define GBi

=
(Bi, {ci}, {ci+1}). Notice that B∗i = GBi

and, as from Lemma 11 cmp(GBi
) ≤

2, we are done.
In the remaining case, where Bi contains a light cut-vertex, say c, observe

that c cannot be adjacent via an outer edge to ci, or else B∗i could be con-
tracted to a graph in L. Therefore, according to Lemma 10.7, c is connected
via an haploid edge with ci+1. Notice that GBi

= (Bi, {ci}, {ci+1, c}). Ac-
cording to Lemma 11, cmp(GBi

) ≤ 2 and, according to Lemma 14, R(c)

contains only a hair block, say (H, {c}, {c}). Clearly cmp(H, {c}, {c}) = 2.
Let G1 = (G[{c, ci+1}], {c, ci+1}, {c}), G2 = (G[{c, ci+1}], {c}, {ci+1}), and
G = glue(GBi

,G1, (H, {c}, {c}), G2). From Lemma 2, cmp(G) ≤ 2 and
the lemma follows as G = B∗i .

Lemma 16. If B∗i is one of the central extended blocks of a graph G ∈ Q, then
either cmp(B∗i ) ≤ 2 or cmp(rev(B∗i )) ≤ 2.

Proof. Proceeding towards a contradiction, from Lemma 15, both B∗i and rev(B∗i )
must contain one of the rooted graphs in Figure 11 as a contraction. It is easy
to verify that, in this case, either B∗i contains at least four cut-vertices, which
contradicts to Lemma 10.9 or G can be contracted to either a graph in O8 (if
the two roots are adjacent) or a graph in O6 (if the two roots are not adjacent),
a contradiction to Lemma 9.3.

Let G ∈ Q and let B∗i be one of the central extended blocks of G.

• If rev(B∗i ) can be contracted to a graph in L, then we assign to B∗i the
label ←.

• If B∗i can be contracted to a graph in L, then we assign to B∗i the label
→.

• If both B∗i and rev(B∗i ) can be contracted to a graph in L, then we assign
to B∗i the label ↔.

Lemma 17. Let G ∈ Q and let B∗0 be the extended left extremal block of G.
None of the rooted graphs in the set B in Figure 12 is a contraction of B∗0 if
and only if cmp(B∗0) ≤ 2.

Proof. Clearly, for every graph H ∈ B, cmp(H, ∅, {u}) = 3. Therefore, if B∗0
can be contracted to a graph in B, according to Lemma 4, cmp(B∗0) ≥ 3.

Suppose now that B∗0 cannot be contracted to a graph in B. We distinguish
three cases according to the number of cut-vertices in B0 (recall that, from
Lemma 10.4, B0 can have at most 3 cut-vertices).
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Figure 12: The set of rooted graphs B containing 12 rooted graphs each of the form (G, ∅, {v}).

Case 1: B0 contains only one cut-vertex, which is c1. Then, B∗0 = GB0 and the
result follows because of Lemma 11.

Case 2: B0 contains two cut-vertices, c1 and c. If B0 has not a chord or it has
a chord and c and c1 are incident to two different haploid faces of B0 then we
can assume that GB0

= (B0, {c}, {c1}) and from Lemma 11, cmp(GB0
) ≤ 2.

According to Lemma 14.a, R(c) is a fan, say (F, {c}, {c}) and from Lemma 12
cmp(F, {c}, {c}) ≤ 2. Let G = glue((F, {c}, {c}),GB0). From Lemma 2,
cmp(G) ≤ 2. Combining the fact that G = (B∗0 , {c}, {c1}) with Lemma 1,
cmp(B∗0) ≤ 2. In the remaining case c and c1 are adjacent and c is light. Then
GB0

= (B0, ∅, {c, c1}) and, from Lemma 11, cmp(GB0
) ≤ 2. According to

Lemma 14.b, R(c) is a hair, say (H, {c}, {c}). Let G1 = (G[{c, c1}], {c, c1}, {c}),
G2 = (G[{c, c1}], {c}, {c1}) and G = glue(GB0 ,G1, (H, {c}, {c}), G2). Notice
that G = (B∗0 , ∅, {c1}) = B∗0. From Lemma 2, we obtain that cmp(G) ≤ 2,
therefore cmp(B∗0) ≤ 2.

Case 3: B0 contains three cut-vertices, c1, c and x. We first examine the case
where there is a partition {X,Y } of {c1, c, x} such that |Y | = 2, c1 ∈ Y , the
cut-vertex in Y \ {c1} is light, and Y is an edge of B0 that, in case B0 is a
chord, is haploid. In this case we claim that cmp(B∗0) ≤ 2. Indeed, we may
assume that c be the light cut-vertex of Y \ {c1}, thus GB0

= (B0, {x}, {c, c1}).
According to Lemma 11, cmp(GB0

) ≤ 2. From Lemma 14.a, R(x) is a fan,
say (F, {x}, {x}) and, from Lemma 14.b, R(c) contains only a hair block, say
(H, {c}, {c}). Let G1 = (G[{c, c1}], {c, c1}, {c}), G2 = (G[{c, c1}], {c}, {c1})
and G = glue((F, {x}, {x}),GB0 ,G1, (H, {c}, {c}), G2). Notice that G =
(B∗0 , {x}, {c1}) and. From Lemma 2 cmp(G) ≤ 2. Now, Lemma 1 implies that
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cmp(B∗0) ≤ 2 and the claim holds.
In the remaining cases, the following may happen:

1. None of x and c is adjacent to c1 via an edge that, in case B0 has a chord,
is haploid. In this case B∗0 can be contracted to the rooted graphs of the first
column in Figure 12.

2. Both c1 and x are light and only one of them, say x, is adjacent to c1. In
this case B0 has a chord and either the edge {x, c1} is not haploid or {x, c1} is
haploid and belongs in the same haploid face with c. In the first case, B∗0 can
be contracted to the second rooted graph of the second column in Figure 12 and
in the second case B∗0 can be contracted to the first and the third rooted graph
of the second column in Figure 12.

3. c1 has only one, say x, heavy neighbour in {c, x} such that, in case B0

has a chord, the edge {c1, x} is haploid. In this case B∗0 can be contracted to
the rooted graphs of the third and the fourth column in Figure 12.

Lemma 18. Let G ∈ Q and let B∗r+1 be the extended right extremal block of G.
None of the rooted graphs in the set C in Figure 13 is a contraction of B∗r+1 if
and only if cmp(B∗r+1) ≤ 2.

Proof. Clearly, for every graph H ∈ C, cmp(H, {u}, ∅) = 3, therefore if B∗r+1

can be contracted to a graph in C, according to Lemma 4, cmp(B∗r+1) ≥ 3.
Suppose now that B∗r+1 cannot be contracted to a graph in C. We distin-

guish three cases according to the number of cut-vertices in Br+1 (recall that,
from Lemma 10.4, Br+1 can have at most 3 cut-vertices).

Case 1: Br+1 contains only one cut-vertex, which of course is c1. Notice that
B∗r+1 = GBr+1

and the result follows because of Lemma 11.

Case 2: If Br+1 has not a chord or it has a chord and c and c1 are inci-
dent to two different haploid faces of Br+1 then we can assume that GBr+1 =
(Br+1, {cr+1}, {c}) and from Lemma 11, cmp(GBr+1) ≤ 2. In any other case,
cr+1 and c is on the boundary in the same haploid face of Br+1 and none of
them belongs in the boundary of the other. Then B∗r+1 can be contracted to
some of the rooted graphs in the second column of Figure 13.

Case 3: Br+1 contains three cut-vertices, cr+1, c and x. If c and x are not adja-
cent, then B∗r+1 can be contracted to some of the rooted graphs in the first col-
umn of Figure 13. Otherwise, one, say c, of them will be light and the edge {x, c}
should be haploid. Then we can assume that GBr+1 = (Br+1, {cr+1}, {x, c}) and

according to Lemma 11, cmp(GBr+1) ≤ 2. From Lemma 14, R(x) is a fan, say

(F, {x}, {x}) and R(c) contains only a hair block, say (H, {c}, {c}). Let G1 =
(G[{c, x}], {c, x}, {c}), G2 = (G[{c, x}], {c}, {x}) and G = glue(GBr+1 ,G1,
(H, {c}, {c}),G2, (F, {x}, {x})). Notice that G = (B∗r+1, {cr+1}, {x}) and, be-
cause of Lemma 2, cmp(G) ≤ 2. Applying Lemma 1, we conclude that
cmp(B∗r+1) ≤ 2.
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Figure 13: The set of rooted graphs C containing six rooted graphs each of the form (G, {v}, ∅).

Lemma 19. Let G ∈ Q and let B∗0 and B∗r+1 be the two extremal extended
blocks of G. It is never the case that B∗0 contains some graph in B and rev(B∗0)
contains some rooted graph in C. Also it is never the case that B∗r+1 contains
some graph in C and rev(B∗r+1) contains some rooted graph in B.

Proof. Let G be a rooted graph in K = {rev(B∗0),B∗r+1}. We distinguish the
following cases, that apply for both rooted graphs in K:

Case 1: G can be contracted to a graph in the first column of Figure 13 and
rev(G) to a graph in the first column of Figure 12. Notice that every cut-vertex
of G cannot be connected with an outer edge and therefore G can be contracted
to graph in O6.

Case 2: G can be contracted to a graph in the first column of Figure 13 and
rev(G) to a graph in the second column of Figure 12. Notice that the two cut-
vertices of G, that are other than the central cut-vertex, cannot be connected
with an outer edge and therefore G can be contracted to graph in O7.

Case 3: G can be contracted to a graph in the first column of Figure 13 and
rev(G) to a graph in the third or fourth column of Figure 12. Notice that
the two cut-vertices of G, that are other than the central cut-vertex, cannot be
connected with an outer edge and therefore G can be contracted to graph in O8.

Case 4: G can be contracted to a graph in the second column of Figure 13 and
rev(G) to a graph in the first column of Figure 12. Notice that the two cut-
vertices of G, that are other than the central cut-vertex, cannot be connected
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with an outer edge and therefore G can be contracted to graph in O7.

Case 5: G can be contracted to a graph in the second column of Figure 13 and
rev(G) to a graph in the second column of Figure 12. Notice that there must
be an haploid face containing only the central cut-vertex, therefore G can be
contracted either to the graph in O2 or to a graph in O4 (depending whether
G can be contracted to the last graph in the second column of Figure 13 or not) .

Case 6: G can be contracted to a graph in the second column of Figure 13 and
rev(G) to a graph in the third or fourth column of Figure 12. Notice that the
light cut-vertex of G can not be connected via an haploid edge with the central
cut-vertex, therefore G can be contracted to a graph in O7 either to a graph
in O9 (depending whether the central cut-vertex is connected via haploid edge
with a heavy cut-vertex or not).

• If B∗0 contains some graph in B then we assign to B∗0 the label ←.

• If rev(B∗0) contains some graph in C then we assign to B∗0 the label →.

• If B∗r+1 contains some graph in C then we assign to B∗r+1 the label ←.

• If rev(B∗r+1) contains some graph in B then we assign to B∗r+1 the label
→.

• If neither B∗0 contains some graph in B nor rev(B∗0) contains some graph
in C then we assign to B∗0 the label ↔.

• If neither B∗r+1 contains some graph in C nor rev(B∗r+1) contains some
graph in B then we assign to B∗r+1 the label ↔.

Lemma 20. Let G ∈ Q and let B∗0,B
∗
1, . . . ,B

∗
r ,B

∗
r+1 be the extended blocks of

G. It is not possible that one of these extended blocks is labeled with ← and an
other with →.

Proof. We distinguish two cases according to the labelling of B∗0:

Case 1: Suppose that B∗0 is labeled← and that B∗i , for some i ∈ {1, . . . , r+1}, is
labeled →. According to their respective labels, (B∗0 , ∅, {c1}) can be contracted
to a graph in B and, if i ≤ r, rev(B∗i ) = (B∗i , {ci+1}, {ci}) can be contracted to
a graph in L, otherwise rev(B∗r+1) = (B∗r+1, ∅, {cr+1}) can be contracted to a
rooted graph in B. Notice that if i ≤ r, G[V (G)\(V (B∗1)∪· · ·∪V (B∗i−1))], ∅, {ci}}
can be contracted to a graph in the third and forth columns of B. By further
contracting all edges of E(B∗1) ∪ · · · ∪ E(B∗i−1) we obtain a graph in O11, a
contradiction.

Case 2: Suppose now that B∗0 is labeled→ and that B∗i , for some i ∈ {1, . . . , r+
1}, is labeled ←. According to their respective labels, rev(B0)∗ = (B∗0 , {c1}, ∅)
can be contracted to a graph in C and, if i ≤ r, (B∗i , {ci}, {ci+1}) can be con-
tracted to a graph in L, otherwise (B∗r+1, {cr+1}, ∅) can be contracted to a graph
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in C. Notice that if i ≤ r, G[V (G) \ (V (B∗1)∪ · · · ∪V (B∗i−1))], {ci}, ∅} can be be
contracted to a graph in the first column of C. By further contracting all edges
of E(B∗1) ∪ · · · ∪ E(B∗i−1) we obtain a graph in O12, a contradiction.

3.7. Putting things together

Lemma 21. Q = ∅.

Proof. Suppose in contrary that Q contains some graph G. Let B∗0,B
∗
1, . . . ,B

∗
r ,

B∗r+1 and F1, . . . ,Fr+1 be the extended blocks and fans of G, respectively. From
Lemma 20, we can assume that the extended blocks of G are all labeled either
→ or ↔ (if this is not the case, just reverse the ordering of the blocks). By
the labelling of B∗0, none of the rooted graphs in the set B is a contraction
of B∗0 therefore, from Lemma 17, cmp(B∗0) ≤ 2. Also as none of the rooted
graphs B∗i , i = 1, . . . , r, can be contracted to a graph in L, from Lemma 15, it
follows that cmp(B∗i ) ≤ 2. We distinguish two cases according to the labelling
of B∗r+1. If the labelling is ↔, then B∗r+1 cannot be contracted to a graph
in C. If the labelling is →, then rev(B∗r+1) can be contracted to a graph in
B and, according to Lemma 20, B∗r+1 cannot be contracted to a graph in C.
Thus, in both cases, from Lemma 18, cmp(B∗r+1) ≤ 2. Notice that (G, ∅, ∅) =
glue(B∗0,F1,B

∗
1, . . . ,Fr,B

∗
r ,Fr+1,B

∗
r+1) and, from Lemma 2, cmp(G, ∅, ∅) ≤

2. This implies that cmp(G) ≤ 2, a contradiction to the first property of
Lemma 9.

Corollary 1. obs�(G[cmms, 2]) = obs�(G[cms, 2]).

Proof. It is easy to check that for every H ∈ obs�(G[cmms, 2]):

1. cms(H) ≥ 3,

2. for every proper contraction H ′ of H it holds that cms(H ′) ≤ 2,

therefore obs�(G[cmms, 2]) ⊆ obs�(G[cms, 2]).
If there exist a graphH ∈ obs�(G[cms, 2])\obs�(G[cmms, 2]), then cms(H)

≥ 3. Notice that the connected search number of a graph is always bounded
from the monotone and connected search number, as a complete monotone
and connected search strategy is obviously a complete connected search strat-
egy, therefore cmms(H) ≥ 3, which means that there exist a graph H ′ ∈
obs�(G[cmms, 2]) such that H ′ � H. Furthermore, since H ′ is a proper con-
traction of H, according to Lemma 5, cms(H) ≥ cms(H ′). As we have already
stressed that cms(H ′) ≥ 3 we reach a contradiction to the minimality (with
respect of �) of H.

4. General Obstructions for cmms

As we mentioned before, for k > 2, we have no guarantee that the set
obs�(G[ cmms, k]) is a finite set. In this section we prove that when this set
is finite its size should be double exponential in k. Therefore, it seems hard to
extend our results for k ≥ 3 as, even if we somehow manage to prove that the
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obstruction set for a specific k is finite, then this set would contain more than

22
Ω(k)

graphs.
We will describe a procedure that generates, for each k, a set of at least

4
3 ( 5

2 )3·2
k−2

non-isomorphic graphs that have connected and monotone search
number k+1 and are contraction-minimal with respect to this property. Hence,

these 4
3 ( 5

2 )3·2
k−2

graphs will belong to obs�(G[cmms, k]).
We define for every k ≥ 1 a set of rooted graphs, namely the set of obstruction-

branches denoted Br(k), as follows:

For k = 1: The set Br(1) consists of the five graphs of Figure 8 rooted at v.

For k = l > 1: The set Br(l) is constructed by choosing two branches of the
set Br(l − 1) and identify the two roots to a single vertex, say v. Then we add
a new edge with v as an endpoint, say {u, v}, and we root this branch to u. We
will refer to this edge as the trunk of the branch.

Let f(k) be the number of branches of Br(k). Notice that f(1) = 5 and
f(k) is equal to the number of ways we can pick two branches of Br(k − 1),
with repetition. Therefore:

f(k) =

(
f(k − 1) + 2− 1

2

)
=

(
f(k − 1) + 1

2

)
=

f(k − 1)2 + f(k − 1)

2
≥ f(k − 1)2

2

≥
( f(k−2)2

2

)2
2

=
f(k − 2)2

2

22+1
≥ f(k − 3)2

3

222+2+1

≥ · · · ≥ f(1)2
k−1

22k−2+···+2+1
=

52
k−1

22k−1 = 2
(5

2

)2k−1

Let OBr(k) be the set containing the graphs obtained by choosing three
rooted branches of Br(k), with repetitions, and identify the three roots. Notice
that any two such selections produce two non-isomorphic graphs. We are going
to prove that OBr(k) ⊆ obs�(G[cmms, k + 1]). Notice that:

|OBr(k)| =

(
f(k) + 3− 1

3

)
=

(
f(k) + 2

3

)
=

(f(k) + 2)(f(k) + 1)f(k)

6

=
f(k)3 + 3f(k)2 + 2f(k)

6
≥ f(k)3

6

≥ 4

3

(5

2

)3·2k−1

Hence the cardinality of obs�(G[cmms, k]) is at least 4
3

(
5
2

)3·2k−2

. In order

to prove this we need the following Lemmata.
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Figure 14: The left graph belongs to OBr(2) and the right to OBr(3).

Lemma 22. Let B ∈ Br(k) and let v be its root. There does not exist a
complete monotone and connected search strategy for B that uses k searchers,
such that the first edge being cleaned is the trunk of B.

Proof. We are going to prove this by induction. We can easily check that for
k = 1 the claim holds. Let B ∈ Br(k) and let v be its root and u the other
endpoint of the trunk. Since we are forced to clean B, in a connected and
monotone manner, with a search strategy, say S, that first cleans {u, v}, a
searcher must be placed in u during each step of S, therefore we must clean
a (k − 1)-level branch using k − 1 searchers that first clean the trunk of this
branch, which contradicts the induction hypothesis.

Corollary 2. Let G ∈ OBr(k), then cmms(G) > k + 1.

Proof. Let G ∈ OBr(k). Notice that G consists of three k-level obstruction
branches, say B1, B2 and B3. If there exist a complete monotone and connected
search strategy S that uses k+1 searchers, then from Lemma 22 S cannot start
by placing searchers in the central vertex, i.e. the vertex where B1, B2 and B3

are connected. Therefore, S starts by placing searchers in a vertex of B1, B2 or
B3 and consequently the first edge cleaned belongs to this branch. Notice that
the first time that a searcher is placed on the central vertex the connectivity
and monotonicity of S force us to clean a k-level branch with k searchers, which
is impossible according to Lemma 22.

Lemma 23. Let B ∈ Br(k) and let v be its root.

a) There exist a complete monotone and connected search strategy for B that
uses k + 2 searchers, such that in each step a searcher occupies v.

b) There exists a complete monotone and connected search strategy for B that
uses k + 1 searchers, such that the first edge being cleaned is the trunk of
B.
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c) There exist a complete monotone and connected search strategy for B that
uses k + 1 searchers, such that the last edge being cleaned is the trunk of
B.

Proof. a) We are going to prove this by induction. We can easily check that
for k = 1 the claim holds. Let B ∈ Br(k) and let v be its root and u the
other endpoint of the trunk. We are going to describe a search strategy S
with the properties needed. We place a searcher in v and as second searcher in
u. According to the induction hypothesis for each one of the two (k − 1)-level
branches connected to u there exists a complete monotone and connected search
strategy that uses k + 1 searchers such that in each step a searcher occupies u,
therefore we can continue by cleaning one of these (k − 1)-level branches and
then clean the other.

b) We are going to prove this by induction. For k = 1 the claim is trivial.
Let B ∈ Br(k) and let v be its root and u the other endpoint of the trunk.
There are two (k−1)-level branches connected to u, say B1 and B2. The search
strategy, say S, with the properties needed is the following: we place a searcher
in v and then slide him to u. According to the first claim of Lemma 23 there
exists a complete monotone and connected search strategy S1 for B1 that uses
k + 1 searchers such that in each step a searcher occupies u. By the induction
hypothesis there exists a complete monotone and connected search strategy S2
for B2 that uses k searchers such that the first edge cleaned is the trunk of B2.
Using these two search strategies we can start by cleaning B1, keeping in all
times a searcher in u, and then we can clean B2.

c) We are going to prove this by induction. Notice that for k = 1 the
claim holds. Let B ∈ Br(k) and let v be its root and u the other endpoint of
the trunk. There are two (k − 1)-level branches connected to u, say B1 and
B2. According to the induction hypothesis there exist a complete monotone
and connected search strategy S1 for B1 that uses k searchers such that the
last edge cleaned is the trunk of B1. Moreover, according to the first claim of
Lemma 23 there exists a complete monotone and connected search strategy S2
for B2 that uses k + 1 searchers such that in each step a searcher occupies u.
Using these two search strategies we can clean B, in a monotone and connected
manner, as follows: we start by cleaning B1 then we clean B2, keeping in all
times a searcher in u, and then we clean {u, v}.

Lemma 24. Let G ∈ OBr(k) and B ∈ Br(k) one of the three branches of
G. If we contract an edge of B there exist a complete monotone and connected
search strategy for B that uses k+1 searchers, such that in each step a searcher
occupies v.

Proof. We are going to prove this by induction. It is easy to check that for
k = 1 the claim is true. Let v be the root of B and u the other endpoint of the
trunk, B1 and B2 the two (k − 1)-level branches connected to u and e ∈ E(B)
the edge contracted. We distinguish to cases:

Case 1: e ∈ E(B1) ∪ E(B2). We can assume that e is an edge of B1. We are
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going to describe a search strategy S for B with the properties needed. We place
a searcher in v and a second searcher in u. From the induction hypothesis there
exists a complete monotone and connected search strategy S1 for B1 that uses k
searchers, such that in each step a searcher occupies u. Moreover, according to
the second claim of Lemma 23 there exists a complete monotone and connected
search strategy S2 for B2 that uses k searchers such that the first edge cleaned is
the trunk of B2. Using these two search strategies we can start by cleaning B1,
keeping in all times a searcher in u, and then we can clean B2. Notice that this
search strategy uses k+ 1 searchers and during each step a searcher occupies v.

Case 2: e = {u, v}. According to the first property of Lemma 23, for each one
of B1 and B2 there exists a complete monotone and connected search strategy
that uses k+ 1 searchers such that in each step a searcher occupies v. Hence we
can clean B starting by cleaning B1, keeping in all times a searcher in v, and
then clean B2.

Corollary 3. If G ∈ OBr(k) and G′ be a contraction of G, then cmms(G′) =
k + 1.

Proof. It suffices to prove this claim for a single edge contraction. Let G ∈
OBr(k), let B1, B2, and B3 be the three k-level obstruction- branches of G
connected to v, e ∈ E(G) the edge contracted and G′ the graph obtained from
G after the contraction of e. We can assume that e ∈ E(B2). We are going
to describe a complete monotone and connected search strategy S for G. From
the third claim of Lemma 23 we know that there exist a complete monotone
and connected search strategy S1 for B1 that uses k + 1 searchers, such that
the last edge cleaned is the trunk of B1. From Lemma 24 we know that there
exist a complete monotone and connected search strategy S2 for B2 that uses
k + 1 searchers, such that in each step a searcher occupies the root of B2, in
other words v. From the second claim of Lemma 23 we know that there exist
a complete monotone and connected search strategy S3 for B3 that uses k + 1
searchers, such that the first edge cleaned is the trunk of B3. Therefore, we
can clean G′ starting by cleaning B1 according to S1 (notice that the trunk of
B1 will be the last edge of E(B1) being cleaned), then clean B2 according to
S2, keeping in all times a searcher in v, and finish by cleaning B3 according to
S3.

Combining Corollaries 2 and 3 we conclude that every graph in OBr(k)
is a contraction obstruction for the graph class G[cmms, k + 1] and therefore
OBr(k) ⊆ obs�(G[cmms, k + 1]).
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